CSV(3) CSV(3)

NAME
csv — CSV parser and writer library

SYNOPSIS
#include <libcsv/csv.h>

int csv_init(struct csv_parser *p, unsigned charoptions);
size_t csv_parse(struct csv_parserp:
const void *s,
size_tlen,
void (* cbl)(void *, size_t, void *),
void (* cb2)(int, void *),
void *data);
int csv_fini(struct csv_parser ¥,
void (* cbl)(void *, size_t, void *),
void (* cb2)(int, void *),
void *data);
void csv_free(struct csv_parser p);

unsigned char csv_get_delim(struct csv_parserp};
unsigned char csv_get_quote(struct csv_parsepy,
void csv_set_space_func(struct csv_parsep?int (*f)(unsigned char));
void csv_set_term_func(struct csv_parserg, int (*f)(unsigned char));

int csv_get_opts(struct csv_parserp);

int csv_set_opts(struct csv_parserg, unsigned charoptions);
int csv_error(struct csv_parser *p);

char * csv_strerror(int error);

size_t csv_write(void tlest, size_tdest_size, const void *src,
size tsrc_size);
int csv_fwrite(FILE * fp, const void *src, Sze_tsrc_size);

size_t csv_write2(void test, Sze_tdest size, const void *src,
size_tsrc_size, unsigned charquote);
int csv_fwrite2(FILE * fp, const void *src, Sze_tsrc_size, unsigned charquote);

void csv_set_realloc_func(struct csv_parserp; void *(* func)(void *, size_t));
void csv_set_free_func(struct csv_parserp; void (*func)(void *));

void csv_set_blk_size(struct csv_parsernst sze_tsize);

size_t csv_get_blk_size(struct csv_parsepy;

size_t csv_get_buffer_size(struct csv_parsep);

DESCRIPTION
The CSV library provides a flexible, intwié interface for parsing and writing csv data.

OVERVIEW
The idea behind parsing witlbcsv is straight-forward: you initialize a parser object wagv_init() and
feed data to the parsevan one or more calls tesv_parse()providing callback functions that handle end-
of-field and end-of-re events. csv_parse()parses the data prided calling the user-defined callback func-
tions as it reads fields anda®. Whencomplete,csv_fini() is called to finish processing the current field
and mak a fnal call to the callback functions if neccessacgv_free()is then called to free the parser
object. csv_error() and csv_strerror() provide information about errors encountered by the functions.
csv_write() andcsv_fwrite() provide a simple interface for ceerting rawv data into CSV data and storing
the result into a buffer or file respeeiy.

9 January 2013 1

CSV(3) CSV(3)

CSV is a binary format allowing the storage of arbitrary binary data, files opened for reading or writing
CSV data should be opened in binary mode.

libcsv provides a default mode in which the parser will happily procegsiata as CSV without complaint,
this is useful for parsing files which domthere to all the traditional rules. A strict mode is also supported
which will cause apviolation of the imposed rules to cause a parsing failure.

ROUTINES

PARSING DATA
csv_init() initializes a pointer to asv_parserstructure. Thistructure contains housekeeping information
such as the current state of the parder luffer, current size and position, etdhe csv_init() function
returns 0 on success and a non-zero value ugdbmd. csv_init() will fail if the pointer passed to it is a
null pointer The options agument specifies the parser options, these may be changed later with the
csv_set_opts(junction.

OPTIONS

CSV_STRICT
Enables strict mode.

CSV_REPALL_NL
Causes each instance of a carriage return or linefeed outside of a record to be reported.

CSV_STRICT_FINI
Causes unterminated quoted fields encountereavinfini() to cause a parsing error (see
below).

CSV_APPEND_NULL
Will cause all fields to be nul-terminated when providecbilg introduced in 3.0.0.

CSV_EMPTY_IS_NULL
Will cause NULL to be passed as the firguanent tocbl for empty unquoted, fields.
Empty means consisting only of either spaces and tabs oalies\defined by the a cus-
tom function registered viesv_set_space_func()Added in 3.0.3.

Multiple options can be specified by OR-ing them together.
csv_parse()is the function that does the actual parsing, it takes 6 arguments:
pis a pointer to an initializestruct csv_parser

sis a pointer to the data to read in, such as a dynamically allocgied t&F memory containing
data read in from a call foead().

lenis the number of bytes of data to process.

cbl is a pointer to the callback function that will be called frosa_parse()after an entire field

has been readbl will be called with a pointer to the parsed data (which isSTMOI-terminated

unless the CSV_APPEND_NULL option is set), the number of bytes in the data, and the pointer
that was passed tsv_parse()

cb2 is a pointer to the callback function that will be called when the end of a record is encoun-
tered, it will be called with the character that caused the record to end, cast to an unsigmed char
-1 if called from csv_fini, and the pointer that was passedwuoinit().

datais a pointer to user-defined data that will be passed to the callback functions vdked.in

cbl and/orch2 may beNULL in which case no function will be called for the associated actions.
data may also beNULL but the callback functions must be prepared to handle receiving a null
pointer.

By default cb2 is not called when rows that do not contaily éields are encounteredhis behavior is
meant to accomodate files using only either a linefeed or a carriage return as a record seperator to be parsed

9 January 2013 2

CSV(3) CSV(3)

properly while at the same time being able to parse files with terminated by multiple characters from
resulting in blank ravs after each actualwoof data (for example, processing a text CSV file created that
was aeated on a dows machine on a Unix machineJhe CSV_REPALL_NL option will causecb2

to be called once forwvery carraige return or linefeed encountered outside of a faii2lis called with the
character that prompted the call to the function, , cast to an unsigneaittearCSV_CR for carriage
return,CSV_LF for linefeed, or-1 for record termination from a call tsv_fini() (see belw). A carriage
return or linefeed within a non-quoted fieldvays marks both the end of the field and th&.r@ther char
acters can be used aswroterminators and thus be pided as an argument taeb2 using
csv_set_space_func()

Note: The first parameter of thabl function isvoid *, not const void * the pointer passed to the callback
function is actually a pointer to the entyffer inside thecsv_parser struct this data may safely be modi-
fied from the callback function (or wifiunction that the callback function calls) but you must not attempt to
access more thden bytes and you should not access the data after the callback function returnsués the b
fer is dynamically allocated and its location and size may change during czgls fmarse()

Note: Different callback functions may safely be specified during each aal/tgarse()out keep in mind
that the callback functions may be called snimes during a single call tcsv_parse()depending on the
amount of data being processed in\aegicall.

csv_parse(returns the number of bytes processed, on a successful call this leil| et is |ess than len

an error has occured. An error can océor example, if there is indigient memory to store the contents
of the current field in the entryuffer. An eror can also occur if malformed data is encountered while run-
ning in strict mode.

Thecsv_error() function can be used to determine what the error is ancsthestrerror() function can be
used to preide a textual description of the errosv_error() takes a single argument, a pointer tstact
csv_parser and returns one of the following values definedst.h

CSV_EPARSE A parse error has occured while in strict mode

CSV_ENOMEM There vas not enough memory while attempting to increase the eutigrb
for the current field

CSV_ETOOBIG Continuing to process the current field would requireuieb of more than
SIZE_MAX bytes

The value passed tsv_strerror() should be one returned froesv_error(). The return value ofsv_str-
error() is a pointer to a static string. The pointer may be used for the entire lifetime of the program and the
contents will not change duringeeution but you must not attempt to modify the string it points to.

When you hee finished submitting data tsv_parse() you need to call thesv_fini() function. Thisfunc-

tion will call the cbl function with aly remaining data in the entryfier (if there is any) and call treb2
function unless we are already at the end ofva (tbe last byte processed was avlwee character for
example). Itis neccessary to call this function because the file being processed might not end with a car
riage return or newlineut the data that has been read in to this point still needs to be submitted to the call-
back routines.If cb2 is called from withincsv_fini() it will be because the vowas not terminated with a
newline sequence, in this cad® will be called with an argument of -1.

Note: A call to csv_finiimplicitly ends the field current field andwo If the last field processed is a quoted
field that ends before a closing quote is encountered, no error will be reported by deéuwlf, e
CSV_STRICT is specified. To cause csv_fini() to report an error in such a case, set the
CSV_STRICT_FINI option (ne in version 1.0.1) in addition to the CSV_STRICT option.

csv_fini() also reinitializes the parser state so that it is ready to be used on the next file or set of data.
csv_fini() does not alter the currentiffer size. If the last set of data that was being parsed contairezgl a v
large field that increased the size of thdfdr, and you need to free that memory before continuing, you
must callcsv_free() you do not need to cadkv_init() again aftercsv_free() Like csv_parse, the callback
functions provided ta@sv_fini() may be NULL. csv_fini() returns O on success and a non-zedoe if you

pass it a null pointer.

9 January 2013 3

CSV(3) CSV(3)

After calling csv_fini() you may continue to use the same struct csv_parser pointer without reinitializing it
(in fact you must not caltsv_init() with an initialized csv_parser object or the memory allocated for the
original structure will be lost).

When you are finished using the csv_parser object you can fralymamically allocated memory associ-
ated with it by callingcsv_free() You may callcsv_free()at ary time, it need not be preceded by a call to
csv_fini(). You must only caltsv_free()on a csv_parser object that has been initialized with a successful
call tocsv_init().

WRITING DATA
libcsv provides two functions to transform va data into CSV formatted data: thesv_write() function
which writes the result to a providedffer, and thecsv_fwrite() function which writes the result to a file.
The functionality of both functions is straight-forward,thverite out a single field including the opening
and closing quotes and escape each encountered quote with another quote.

The csv_write() function takes a pointer to a souragfer (src) and processes at most_size characters

from src. csv_write() will write at mostdest_size characters taest and returns the number of characters

that would hae been written ifdest was large enough.This can be used to determine if all the characters

were written and, if not, lvolargedest needs to be to write out all of the datsv_write() may be called

with a null pointer for thelest agument in which case no data is written but the size required to write out

the data will be returned. The space needed to write out the data is the size of the data + number of quotes
appearing in data (each one will be escaped) + 2 (the leading and terminating cesvte®jite() and
csv_fwrite() always surround the output data with quotd§.src_size is very large (SIZE_MAX/2 or

greater) it is possible that the number of bytes needed to represent the data, after inserting escaping quotes,
will be greater than SIZE_MAXIn such a case, csv_write will return SIZE_MAX which should be-inter
preted as meaning the data is too large to write to a single Tibklcsv_fwrite() function is not similiarly

limited.

csv_fwrite() takes a FILE pointer (which shouldebeen opened in binary mode) and wats and writes

the data pointed to bgrc of sizesrc_size. It returns0 on success andOF if there was an error writing to
the file. csv_fwrite() doesnt provide the number of characters processed or written. If this functionality is
required, use thesv_write() function combined wittiwrite() .

csv_write2()andcsv_fwrite2() work similiarly but tale an aditional argument, the quote character to use
when composing the field.

CUSTOMIZING THE PARSER
The csv_set_delim()and csv_set_quote()ffunctions provide a means to change the characters that the
parser will consider the delimiter and quote characters redyetast to unsigned chacsv_get_delim()
and csv_get_delim()return the current delimiter and quote characters regplgctiWhen csv_init() is
called the delimiter is set t6SV_COMMA and the quote t&€SV_QUOTE. Note that the rest of the
CSV corventions still apply when these functions are used to change the delimiter and/or quote characters,
fields containing the mequote character or delimiter must be quoted and quote characters must be escaped
with an immediately preceeding instance of the same chara&tilitionally, the csv_set_space_func()
andcsv_set_term_func(Jallow a userdefined function to be provided which will be used determine what
constitutes a space character and what constitutes a record terminator chéinectpiace characters deter
mine which characters are rewed from the bginning and end of non-quoted fields and the terminator
characters gern when a record enddVhencsv_init() is called, the effect is as if these functions were
each called with a NULL argument in which case no function is called and C8ZES#d CSV_RAB
are used for space characters, and CSV_CR and CSV_LF are used for terminator characters.

csv_set_realloc_func(kan be used to set the function that is called when the intarfiaf beeds to be

resized, only realloc, not malloc, is used internally; thawlefs to use the standard realloc functihike-
wise, csv_set_free_func(iis used to set the function called to free the internffeb the default is the

9 January 2013 4

CSV(3) CSV(3)

standard free function.

csv_get_blk_size(andcsv_set_blk_size(fan be used to get and set the block size of the parser respec-
tively. The block size if the amount of extra memory allocateslyetime the internal bffer needs to be
increased, the default is 128sv_get_buffer_size(will return the current number of bytes allocated for
the internal buffer.

THE CSV FORMAT
Although quite preelant there is no standard for the CSV formahere are hwever, a £t of traditional
corventions used by manapplications. libcsv follows the cowmentions described at http://wweve-
ativyst.com/Doc/Articles/CSV/CSVO01.htm which seem to reflect the most common usage of the format,
namely:

Fields are seperated with commas.

Rows are delimited by newline sequences (see below).

Fields may be surrounded with quotes.

Fields that contain comma, quote, or newline characters MUST be quoted.

Each instance of a quote character must be escaped with an immediately preceding quote charac-
ter.

Leading and trailing spaces and tabs are wethtrom non-quoted fields.
The final line need not contain a newline sequence.
In strict mode, apdetectable violation of these rules results in an error.

RFC 4180 is an informational memo which attempts to document the CSV format, especiallgaith re
to its use as a MIME type. There are aesal parts of the description documented in this memo which
either do not accurately reflect widely usedwemtions or artificially limit the usefulness of the format.
The differences between the RFC dibdsv are:

"Each line should contain the same number of fields throughout the file"
libcsv doesnt care if every record contains a different number of fields, such a restriction
could easily be enforced by the application itself if desired.

"Spaces are considered part of a field and should not be ignored"
Leading and trailing spaces that are part of non-quoted fields are ignored as theris by f
the most common behavior and expected byynapplications.

abc, def
is considered equalent to:

"abc", "def"

"The last field in the record must not be followed by a comma"
The meaning of this statement is not claearibthe last character of a record is a comma,
libcsv will interpret that as a final empty field, i.e.:

"abc", "def",
will be interpreted as 3 fields, egdient to:

"abc", "def", "

RFC 4180 limits the allwable characters in a CSV fielibcsv allows ary character to be present
in a field provided it adheres to the gemtions mentioned alve. This makes it possible to store
binary data in CSV format, an attribute that snapplication rely on.

9 January 2013 5

CSV(3)

CSV(3)

RFC 4180 states that a Carriage Return plus Linefeed combination is used to delimit records,
libcsv allows ary combination of Carriage Returns and Linefeeds to signify the end of a record.
This is to increase portability among systems that use different combinations to densliee ne
sequence.

PARSING MALFORMED D ATA

libcsv should correctly parse arCSV data that conforms to the rules discussed@bBy default, hav-

eva, libcsv will also attempt to parse malformed CSV data such as data containing unescaped quotes or
guotes within non-quoted field§.or example:

allc' Ildllfll

would be parsed equalently to the correct form:

"a""C", Ildllllfll

This is often desirable as there are some applications that do not adhere to the specifications previously dis-

cussed. Hwaever, there are instances where malformed CSV data is ambigious, namely when a comma or
newline is the next non-space character following a quote such as:

"Sally said "Hello", Wally said "Goodbye™"

This could either be parsed as a single field containing the data:

Sally said "Hello", Wally said "Goodbye"

or as 2 seperate fields:

Sally said "Hello andWally said "Goodbye™"

Since the data is malformed, there is no way torkiiohe quote before the comma is meant to be a literal
guote or if it signifies the end of the field. This is of course not an issue for properly formed data as all

guotes must be escapdibcsv will parse this example as 2 seperate fields.

libcsv provides a strict mode that will return with a parse error if a quote is seen inside a non-quoted field
or if a non-escaped quote is seen whose next non-space charatteodsmha or newline sequence.

PARSER DETAILS

Afield is considered quoted if the first non-space character fav &ieid is a quote.

If a quote is encountered in a quoted field and tlxe men-space character is a comma, the field ends at the
closed quote and the field data is submitted when the comma is encountered. Xf ttenrepace charac-

ter after a quote is a newline charactiee rav has ended and the field data is submitted and the endof ro

is signalled (via the appropriate callback functioti)two quotes are immediately adjacent, the first one is
interpreted as escaping the second one and one quote is written to theffezldibthe next non-space
character following a quote is anything else, the quote is interpreted as a non-escaped literal quote and it
and what follows are written to the field buffdris would cause a parse error in strict mode.

Example 1

"abc""

Pases asabc"

The first quote marks the field as quoted, the second quote escapes the following quote and the last quote
ends the field. This is valid in both strict and non-strict modes.

Example 2

9 January 2013 6

CSV(3)

CSV(3)

"ab"c

Pases asab"c

The first qute marks the field as quoted, the second quote is taken as a literal quote since the next non-space
character is not a comma, owrime and the quote is not escaped. The last quote ends the field (assuming
there is a newline character follimg). A parse error would result upon seeing the character c in strict
mode.

Example 3

"abc" "

Pases asabc"

In this case, since the next non-space charactenialipthe second quote is not a comma or newline-char
acter a literal quote is written, the space character after is part of the field, and the last quote terminated the
field. Thisdemonstrates thet that a quote must immediately precede another quote to escapésit.

would be a strict-mode violation as all quotes are required to be escaped.

If the field is not quoted, gmuote character is taken as part of the field datacamma terminated the
field, and ag newline character terminated the field and the record.

Example 4

ab™'c

Pases asab™'c

Quotes are not considered special in non-quoted fields. This would be a strict mode violation since quotes
may not exist in non-quoted fields in strict mode.

EXAMPLES

The following example prints the number of fields and rows in a file. This is a simplified version of the
csvinfo program provided in thex@mples directoryError checking not related ticsv has been renved
for clarity, the csvinfo program also provides an option for enabling strict mode and handles multiple files.

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include "libcsv/csv.h"

struct counts {
long unsigned fields;
long unsigned rows;

I3

void cbl (void *s, size_t len, void *data) {
((struct counts *)data)->fields++; }

void cb2 (int c, void *data) {
((struct counts *)data)->rows++; }

int main (int argc, char *argv[]) {
FILE *fp;
struct csv_parser p;
char buf[1024];
size_t bytes read;
struct counts ¢ = {0, 0};

if (csv_init(&p, 0) != 0) exit(EXIT_FAILURE);

fp = fopen(argv[1], "rb");
if ('fp) exit(EXIT_FAILURE);

9 January 2013 7

CSV(3) CSV(3)

while ((bytes_read=fread(buf, 1, 1024, fp)) > 0)
if (csv_parse(&p, buf, bytes_read, cbl, cb2, &c) != bytes_read) {
fprintf(stdert "Error while parsing file: %s\n",
csv_strerror(csv_error(&p)));
exit(EXIT_FAILURE);

}
csv_fini(&p, cbl, cb2, &c);

fclose(fp);
printf("%lu fields, %lu rows\n", c.fields, c.rows);

csv_free(&p);
exit(EXIT_SUCCESS);
}

See the examples directory fovaml complete example programs.

AUTHOR
Written by Robert Gamble.

BUGS
Please send questions, comments, bugs, etc. to:

rganble@users.sourceforge.net

9 January 2013 8

