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Abstract –  
Context/Background: Conway’s Game of Life is a well-known cellular automaton. By applying a set              
of rules to simple configurations, players create intricate patterns in this “zero-player game”. 
Aims: This project examines different visualisation techniques in the web browser, primarily (1)             
using vanilla JavaScript, and (2) React. This project also has the objective of examining whether               
offloading generation computation to a server is efficient. 
Method: I built custom implementations for each of the defined aims. Rendering and generation were               
implemented client-side in the browser. Comparison of each of these methods took place to determine               
which was more performant. A simple server-client environment was also partially implemented. 
Results: In general, React was more performant than using vanilla JavaScript. A combination of              
React’s diffing algorithms with custom optimisation and diffing techniques led to fast and efficient              
rendering and updating of the board for each generation. The most effective change, however, is               
having a dedicated server perform the generation computation rather than the web browser. 
Conclusions: React and vanilla JavaScript both provide suitable, relatively performant frameworks to            
visualise Conway’s Game of Life. However, work in this field must continue, as web technology               
changes so rapidly that any performant visualisation implemented today will be outdated in fewer than               
five years. 
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I. INTRODUCTION 

A. Context 

First popularised after appearing in a Scientific American article (Gardner 1970), Conway’s            
Game of Life is a zero-player game. Its evolution is determined by its initial state, with no                 
further input required. A player creates an initial configuration and allows the simulation to              
iterate repeatedly, observing how the state evolves. 

The Game starts with a two-dimensional infinite grid of cells, where each cell can be               
alive or dead. The living cells comprise the current population. On each iteration of the               
Game, the following simple genetic laws (McIntosh 2010) apply: 

 
1. Rules 

a. Survival – every live cell with exactly two or three neighbouring live cells survives              
for the next iteration. 

b. Death – every live cell with four or more alive neighbours dies due to overpopulation.               
Every live cell with one or zero live neighbours dies from isolation. 

c. Birth – every dead cell with exactly three live neighbours becomes alive. 
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Figure 1 (above). A cell can be alive or dead. A cell has eight neighbours. 

 

  → 

Figure 2 (above). In each iteration, some cells die due to under- or overpopulation, some cells are born, and 
some survive. 

B. Research Question 

What is the most performant technique for visualising Conway’s Game of Life in a web               
browser? 

This project’s goal was to implement and visualise Conway’s Game of Life. To determine              
the most optimal technique, I intend to build a selection of different technical approaches for               
simulating and visualising the Game. 

The intention was also to use advanced rendering techniques, such as only rendering the              
changes on each iteration rather than re-rendering the entire visualisation. The best way to              
implement this approach is by using React, which uses diffing algorithms to determine which              
elements on a webpage to update in response to a change of state (Facebook Inc. 2019). 

C. Objectives and Deliverables 

1. Basic 2. Intermediate 3. Advanced 

● Use different techniques 
to implement a frontend 
simulation of Conway’s 
Game of Life such that it 
is performant on a range 
of browsers, e.g. 
○ <div>s in native 

HTML DOM using 
“vanilla” JavaScript 

○ React virtual DOM 

Basic, and: 
● Use a client/server 

architecture where the 
server is responsible for 
computing each iteration 
of the Game 

● Use different techniques 
to vary what we send: 
○ Do we send the 

whole state on each 

Intermediate, and: 
● Intelligently compute 

each iteration of the 
Game: 
○ Avoid calculating the 

next iteration for 
completely stable 
regions (as these 
will not change on 
that iteration), taking 
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● Analyse and evaluate 
the performance of each 
implementation, 
suggesting possible 
improvements for each 

iteration? 
○ Do we just send the 

changes between 
iterations? 

● Use different techniques 
to change how we send 
iterations: 
○ Ajax with long 

polling 
○ WebSockets 

care to respect 
possible changes at 
the boundaries of 
these regions 

○ Try to identify 
periodic regions of 
the Game using 
hashing and record 
these to avoid 
having to 
recompute 
periodically 

 

II. RELATED WORK 

A. Existing Game of Life Visualisations 

There exist already many visualisations of the Game of Life. Having been popularised for              
close to 50 years, these range from implementations using modern web technology to Python              
visualisations or even older ones. 

Many existing web-based visualisations utilise the DOM heavily. The Document Object           
Model (DOM) refers to the structure of a document (usually the HTML representing a              
webpage) in the browser and how it is stored in memory (Mozilla Contributors 2020). The               
DOM represents a document with a logical tree. Each branch of the tree ends in a node (also                  
called an element, for example a <h1> or <div> tag) and each node contains objects (such as                 
plain text or more nodes). JavaScript can be used to interact with the DOM programmatically,               
by selecting elements and changing their style, structure, or content. This forms the basis of               
most modern web applications. 

A simple, elegant visualisation (Weldon & Laventure 2018) of Conway’s Game of Life             
was submitted as a project to a hackathon, HackUVic 2018. This web-based visualisation             
uses a 100x100-cell grid and is rather rudimentary in its approach (which is to be expected,                
given that it is a hackathon project). All computation happens on the client-side, with 10,000               
nodes in the DOM comprising the grid, which is not particularly performant when the              
iteration interval is set to the minimum option, 100 milliseconds. 

A more complete and polished visualisation (Bettilyon 2018) is also a client-side,            
web-based visualisation. However, it utilises the modern HTML5 canvas and, as such, can             
achieve a vastly more responsive simulation than that of Weldon and Laventure. 

Another accessible visualisation (Vanderplas 2013) uses Python and NumPy to compute           
iterations for the Game of Life. It then passes the calculated results to the author’s package,                
JSAnimation, which is responsible for visualising the calculated results on a webpage. This             
approach renders complex populations smoothly and promptly as no computation takes place            
during render-time. 

Arguably the most well-known and respected visualisation is the application Golly           
(Trevorrow & Rokicki 2006), which has native apps for Windows, macOS, Linux, Android             
and iOS. It contains support for many different types of cellular automaton rule             
configurations, as well as implementations of many different algorithms for simulating with            
those rules. Moreover, Golly provides scripting support for Lua or Python, with some             
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standard scripts enabling it to produce animated GIFs of patterns. 
While there are several web-based implementations of Game of Life visualisations, these            

tend to be reasonably simple implementations with little consideration given to the            
performance or suitability of a particular visualisation. Typically, all computation occurs           
client-side, leaving the browser to do complex calculations for large grids. Conway’s Game             
of Life is in fact Turing-complete (Durand & Róka 1999), and so the potential for large                
simulations in the Game is interesting as a result. 

This project addresses some of these concerns by using more advanced rendering            
techniques to reduce the load on the web browser and produce a more performant              
implementation. 

 
B. Computing New Iterations 

While the rules of the Game of Life are simple, it is shown that small, finite patterns can                  
produce emergent structures of immense complexity, given enough iterations (Gotts 2010).           
The famous “glider” structure uses just five live cells and a bounding box of 3x3 (Sapin                
2010) but translates itself across the board indefinitely. Moreover, the “glider gun” (36 live              
cells, contained within a 36x9 bounding box) produces gliders, which as they themselves             
move, have the effect of growing the non-empty part of the board with no upper bound. 

It follows that, over time, each iteration of the simulation could increase in complexity.              
Golly implements an algorithm called Hashlife (Trevorrow & Rokicki 2006). Hashlife is a             
memoised algorithm which computes the long-term outcome of a given starting           1

configuration in Conway’s Game of Life (and related cellular automata). It is known for              
doing so with impressive speed and comparatively small computational load. 

Memoisation (Abelson, Sussman & Sussman 1997), also called tabulation, refers to           
storing previously computed values in a lookup table. When a memoised procedure calculates             
a result, it first checks the table to see if the result has already been calculated. If the                  
computed result is not found in the lookup table, the result is calculated ordinarily and stored                
in the lookup table for future use. 

This approach is used in Hashlife by splitting the board into subpatterns. For example, a               
commonly reused pattern (like the aforementioned “glider gun”, or indeed merely large            
regions of space) can be hashed and mapped to the lookup table. Many copies of the same                 
subpattern can be stored just once using the corresponding hash table entry (Gosper 1984).              
Hashing values in this way avoids having to recompute the same value over and over, instead                
essentially caching the result. 

C. Web-Based Client-Server Communication 

The most basic architecture for retrieving data from a server using the web is through a single                 
page load. The user requests a web page, and the server responds with some (static) contents                
(Berners-Lee & Cailliau 1990). After the server responds, additional data must be requested             
by requesting a new web page. In this architecture, the client must request some data from the                 
server for the server to respond; the server is unable to “push” data directly to the client                 
without the client having requested it. 

While it is technically possible to have a web page periodically self-reload, the delay is               

1 Most dictionaries only list the US-variant spelling memoization. However, Wikipedia lists memoisation as an               
acceptable spelling, and as this paper is written in British English, the -isation variant shall be adopted                 
throughout. 
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too high for many applications, and decreasing the delay would lead to unnecessarily many              
network requests. In the context of a Game of Life visualisation, this approach would lead to                
abysmal user experience as the page would have to reload for every iteration! 

This “stateless” architecture is dated and much of the modern web now heavily utilises              
Ajax (Zepeda & Chapa 2007). Ajax enables a client to request additional data from a server                
without having to reload the entire web page. Google Maps, for example, heavily relies on               
Ajax to dynamically load new regions of the map as the user pans around the area, without                 
having to reload the page. Such a technique could be used for a Game of Life visualisation if                  
the server were to, say, send blocks of computed iterations in response to a client making                
successive requests. However, Ajax still faces the limitation that the client must request data              
from the server for the server to respond. 

One previously popular model that attempts to circumvent this limitation is Comet, also             
known as Ajax 2.0 (Crane & McCarthy 2008). Comet utilises a “long-polling” technique.             
Because the client must initiate a connection to the server, the server is unable to send data                 
directly to the client without the client having first requested it. “Comet” itself is an umbrella                
term (Russell 2006), encompassing several techniques in which a long-held HTTP(S) request            
allows a web server to push data to a browser (the client), without the browser explicitly                
having requested it. The client must make the first initial Ajax request, but the server does not                 
respond until it wishes to. Long-polling allows a server to effectively push data to a client                
only when it needs to rather than needing to wait for an incoming request from the client. For                  
a long time, this was considered the best way to send data asynchronously to a browser                
(Kachhwaha & Patni 2012). Indeed, Facebook Messenger used a variant of this approach             
when it first launched (Letuchy 2008). Implementing Comet, however, is non-trivial and can             
present scalability issues (Mesbah & van Deursen 2008). 

WebSocket (Puranik, Feiock & Hill 2013) is a modern standard that seeks to address              
these issues. Long-polling itself can be memory and network intensive and is an anti-pattern              
to how Ajax was initially designed. Unlike HTTP, WebSocket provides full-duplex           
communication, enabling a server to send a stream of data to the client with significantly               
reduced overhead and significant performance improvements (Lubbers & Greco n.d.). It is            
ideal for situations where a web server needs to continuously send data to a browser – perfect                 
for repeatedly sending new states and iterations of a Game of Life implementation for a               
browser to then visualise on the client-side. 

III. SOLUTION 

In this project, I successfully implemented two distinct Game of Life visualisations. Both             
relied entirely on client-side computation and rendering. No server was used, beyond hosting             
a static server on the user’s machine to serve the files from the local filesystem to the browser                  
over HTTP. 

The two visualisation techniques successfully implemented from the basic objectives are           
as follows: 

● <div>s in native HTML DOM using “vanilla” JavaScript 
● React virtual DOM 

A. Architecture 

As the vanilla JavaScript and React approaches had a lot of shared elements, the two               
applications were built using a modular approach. By isolating the simulation and            
computation into a separate JavaScript module, this module was able to be reused between              
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both implementations with very few changes. 
 

 
Figure 3 (above). Architecture overview. 

 
Webpack is used as a module bundler to compile the separate JavaScript modules into one               
single JavaScript file app.js. This bundling has the benefit of a web browser only having to                
make one request for the JavaScript, and it can cache this response, rather than having to                
make several requests for separate scripts. Moreover, Webpack creates a dependency graph            
and only bundles the minimum number of required JavaScript modules, reducing overall file             
size and also the number of files (Singh 2019). Webpack has numerous other benefits, in               
addition to improved speed and dependency management, with one key example being            
scoping, or name collisions. Webpack gives each module and global variable a unique name,              
eliminating the possibility of name collisions or scoping issues, without having to resort to              
immediately-invoked function expressions (O’Brien, Montoya, Menichelli, et al. 2020). 

Stylesheets are compiled similarly from Sass, which is a CSS preprocessor scripting            
language that gets compiled to standard CSS. Sass provides powerful features such as             
variables and mixins (Nesbitt 2020), making development more straightforward. Using          
webpack to compile JavaScript and Sass is standard in modern web development. 

B. Vanilla JavaScript Implementation 

The first implementation used vanilla (plain) JavaScript without any frameworks like           
React.js, jQuery, Vue.js, or any number of numerous JavaScript libraries. 

Because the intention was to compare this approach with a React.js-based           
implementation, the two implementations were kept as structurally and architecturally similar           
as possible to compare React’s rendering approach to a vanilla JavaScript one. 

 
1. Interface 
Modernism was embraced, and a clean and straightforward interface for visualising           
Conway’s Game of Life was developed. This interface is shared by both the             
vanilla-JavaScript-based and the React-based visualisations. 

Cells are illuminated upon mouseover to indicate over which cell the user is hovering. To               
ease the drawing and erasing of live or dead cells, the user can hold the Alt or Control keys                   
to switch between Drawing and Erasing mode, respectively (see Figure 4 and Figure 5). 
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Figure 4 (above). Interface with Alt key pressed to enable Drawing Mode. Observe the highlighted cell, over 

which the user’s cursor is currently hovering. 
 
 

 
Figure 5 (above). Interface with Control key pressed to enable Erasing Mode. 

 
After drawing the user’s desired initial state, the user can click the Next Iteration →                 
button to iterate the simulation (Figure 6).  
 

 
Figure 6 (above). Board after the user has progressed to the next iteration. 

 
2. Initial Render 
The original index.html file encodes the ‘external’ interface elements (the header and            
footer) as static elements. However, the grid and the cells are created dynamically by              
JavaScript when the page loads. As the grid is generated dynamically, we (as the developer)               
can specify the dimensions of the grid as . Each row is its own DOM element to        m × n          
improve source code readability and maintainability. Within each row, each cell exists as a              
separate node. 

If there are rows and columns, then the number of DOM elements to display the   m    n            
grid is as follows: 

1. Each row requires elements to be stored in the DOM ( cells and node for    1n +          n    1    
the row). 
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2. There are  rows.m  
3. There is  container node.1  
4. Therefore there are  nodes in the DOM for the grid.n 1)m × ( +  + 1  

This is important because it shows that the number of nodes that must be parsed or rewritten                 
on each iteration tends to varying linearly with the number of rows or columns. 

 
3. State Computation and Final Render 
When the user clicks Next Iteration →, the application computes the new board and                
renders the application with the new state. The process for this is as follows: 
 
Step 1: Get Current Board 
The application begins determining the current state of the board. The board state is not held                
anywhere in the application memory apart from the existing state of the DOM. Cells are               
classed as alive or dead, depending on whether or not they have the alive class. 
 
This process makes heavy use of for and forEach loops. 

1. Select all row nodes. 
2. For each row, get the child nodes (cells). 
3. For each cell, determine whether the cell is alive (i.e. has the alive class) and push                

this Boolean value onto an array which stores the row’s cells’ alive statuses. 
4. This procedure gives us a two-dimensional array of values, for example: 

 

board = [ 
  [true, true, false, ...] 
  ... 
  [false, true, false, ...] 
] 

 

 
Step 2: Compute New Cell Statuses 
Taking the two-dimensional board array from step 1, the application loops through every row              
and cell and determines whether the cell should be alive on the next iteration. 

1. Create a two-dimensional array for the statuses of the cells on the new iteration. 
2. Count the number of neighbours the cell has, making sure to consider boundary cases              

(a cell in a corner of the board only has three neighbours, for example). 
3. Look at the current status of the cell, then apply the rules (I.A.1) to determine whether                

the cell should be alive in the new generation, and store the result. 
 
Step 3: Render the Updated Board 
This step is rudimentarily implemented with vanilla JavaScript and would be far better             
achieved using React (see React Implementation). 

1. Get each row and cell DOM node. 
2. For each cell, check against the two-dimensional array whether the new cell status is 

alive or dead, and add or remove the alive class accordingly. 
 
This process is a little convoluted and relies on storing the board state in the classes of DOM                  
nodes, which is not ideal. It would be better to store the state separate from the DOM to avoid                   
having to read the state from the DOM. It would also be better to use a more structured way                   
of re-rendering cells rather than using nested for loops. 
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C. React Implementation 

The second implementation is entirely a React app. The index.html file contains just two              
tags within the body. 

With this approach, the board state is stored in the <GameOfLife /> React component,               
and React is responsible for rendering the changed components rather than us having to              
render those changes manually. 
 
1. Introduction to React  2

React is a JavaScript framework used heavily by the modern web. Its popularity among              
developers is due to how it embraces the fact that, for dynamic web applications, rendering               
logic is inherently coupled with other UI logic: how events are handled, how the state               
changes over time, and how the data is prepared for display. 

Instead of artificially separating technologies by putting markup and logic in separate            
files, React instead separates concerns through loosely coupled units called “components”           
that contain both markup and logic.  

Every React component can be represented as a JavaScript class, and so the “state” for               
that component is stored in either the class instance or its parent. If the state is stored in a                   
parent component, then relevant values are passed down to the child component as “props”              
(properties). A component cannot change its own props, but it can change its own state (and                
potentially the states of its parents, if callback functions to achieve this are passed down to                
the child component as props). 

For example, a React component can be written as the following: 
 
import React from "react"; 
 
class Cell extends React.Component { 
   render() { 
       return ( 
           <div 
               onMouseEnter={(e) => this.props.handleCellMouseEnter(e)} 
               className="cell" 
           /> 
       ); 
   } 
} 
 
export default Cell; 

 
This JavaScript class uses JSX, a syntax extension to JavaScript used to describe React              
“elements” in JavaScript files. It is a hybrid between plain HTML and JavaScript that allows               
components to directly refer to their state or props through this.state and this.props. In              
the example above, the component returns a <div> element with an event listener attached              
that calls a function handleCellMouseEnter(), which is passed to the component through            
its props.  

JSX cannot itself be parsed by the browser, and so it is transpiled to “vanilla” JavaScript                
using babel, as part of the build process in Webpack (see Figure 3). 

2 This description borrows heavily from the official React documentation (Facebook Inc. 2020). 
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React performs advanced diffing algorithms (Facebook Inc. 2019) to determine whether           
an element should update based on its state and props. If the component should update, the                
render() function of the component is called to determine the output based on the state and                
props. This approach allows developers to define a component functionally and have it             
automatically re-render on the page where necessary, and is consequently very powerful. 
 
2. Interface 
The React-based visualisation has visually the same appearance as the vanilla JavaScript            
implementation. This is because its HTML output is identical, except the React            
implementation separates the page into React components whereas the first implementation is            
simply a mixture of plain HTML and some vanilla JavaScript. 

 
Figure 7 (right). Interface of React app,       
with React components highlighted. 
 
 
 
 
 
 

 
3. Initial Render 
The HTML markup produced by React for the board is identical to the             
markup produced by the vanilla JavaScript implementation (see        
III.B.2). Rows are represented with distinct DOM nodes, and each cell           
exists as a separate node within that row. 

The key differences start when we examine how the rows are           
initially painted in the browser. As the whole page is a single React             
app, components are provided with “props” to define how they should           
render. In this implementation, the hierarchy of the React app is           
illustrated to the right. 

We must initialise each component to define how the components          
should render on page load. The key initial props used are the height             
and width of the grid (number of rows and cells within rows to create, respectively) and the                 
initial board state. 

As per the first implementation, the board is represented as a two-dimensional array.             
However, because we are using React components, the board is stored in the “state” (this               
term has a special meaning in React; this.state is an object on the React component that                
represents the parts of an app that can change). 

We generate a two-dimensional array and fill it with the value false to represent the               
board being empty (all cells are dead) on page load. 

However, storing the board as a two-dimensional array causes us some issues, which we              
will examine in more detail below. 

 
4. State Computation and Final Render 
One of React’s key strengths is that it only re-renders a component when its state or props                 
have changed. This means that, in theory, if the board is in a stable position (say, all cells are                   
dead) and a re-render is triggered (if the user clicks Next Iteration →), none of the cells                   
will be rendered on the page again. 
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In practice, however, this is not the case using our current two-dimensional array             
implementation. When determining whether state or props for a component have changed,            
React does shallow comparison on the old vs new state and props objects. This means that if                 
we store the board in the state in a nested format, like a two-dimensional array, React does                 
not do a deep comparison and so it may not detect a change. However, because JavaScript is                 
pass-by-reference for objects and arrays, we find that in fact, because our iteration             
computation engine returns a new board array regardless of whether its contents have             
changed, React always re-renders all children of the <GameOfLife /> component. 

This led to very poor performance in the React implementation. In some cases, it would               
take almost 500 ms to render a cell as alive/dead after clicking on it to toggle its state. This is                    
obviously unacceptable. 

 
Figure 8 (left). Screenshot from the      
Performance tab of the Firefox     
Developer Tools. When the click event      
is fired after clicking on a cell to toggle         
its alive state, it took hundreds of       
milliseconds before the DOM was     
updated and the new cells painted on       
the webpage. 

 

 
Figure 9 (above). Screenshot from the Profiler tab of the React DevTools in Firefox. On every iteration, every                  
single component re-rendered. In this graph, the bottom blocks each represent a cell that has re-rendered                
because its parent has “changed”. This leads to serious performance issues. 

 
The issue of poor performance was first addressed by changing the <Cell /> component               
from a React.Component to a React.PureComponent. The <Cell /> component is purely             
functional in that it always gives exactly the same rendered output, given the same set of                
props as an input, and so declaring it as a React.PureComponent had the effect of slightly                
increasing performance. 

Moreover, memoisation was also implemented (see II.B) – which is trivial in React,             
simply export the component as export default React.memo(Cell) rather than export             
default Cell – and enabling this significantly increased performance. Memoisation stores            
the result of a computation to avoid having to recompute it, so enabling it unsurprisingly               
made a notable difference to performance. 

 

Figure 10 (left). After enabling memoisation and       
changing the <Cell /> component from a        
React.Component to a React.PureComponent,    
performance improved significantly. This Event     
Handler only took 85.89 ms compared to the 479.61         
ms of Figure 8. 

The other key change made to improve performance was to manually override React’s diffing              
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algorithms. As mentioned earlier, React’s diffing algorithm does shallow comparison for           
state and props, meaning that it does not detect deep changes inside a nested state or props                 
object. Alternatively, due to objects and arrays being pass-by-reference in JavaScript, React            
can mistakenly detect changes when there are no semantic changes. 

On each render, each row received a copied (and possibly modified) version of the              
previous state’s cell statuses (stored as an array of true or false). This meant React would                
always “detect” a change due to doing shallow comparison on a pass-by-reference object. To              
prevent this, a custom deep comparison algorithm was manually implemented by overloading            
the shouldComponentUpdate() React method. 

 

We pass the new “row board” (a subset of the two-dimensional board array containing              
only this row’s cell statuses) and the old row board (the row board from the previous                
iteration) and check whether any of the cell statuses have changed. If none of them have                
changed then the row is the same as it was in the previous iteration, and therefore no changes                  
need to be made. This approach means React does not have to render the component to the                 
shadow DOM and therefore reduces the number of components that need to be re-rendered              
significantly. 

 

 
Figure 11. Observe how only affected Row and Cell components render rather than all of them when a                  
change to the board is made. 
 

 

Figure 12 (left). Performance is now      
greatly improved. In this screenshot, the      
Event Handler takes just 23.60 ms when       
clicking on a cell toggle it.  

IV. RESULTS 

A. Testing Conditions 

In order to compare the React and vanilla JavaScript implementations, a glider was drawn on               
the board in each implementation and 20 iterations were made successively. The glider             
graphic is used because it translates itself diagonally across the board, moving (1, 1) after               
four iterations. All tests were performed under the following conditions: 

● Google Chrome 84.0.4147.105 (Official Build) (64-bit) 
● macOS Catalina 10.15.6 
● Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz 
● 32 GB 2400 MHz DDR RAM 
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● Intel UHD Graphics 630 1536 MB 
● 100x100 grid 

B. Vanilla JavaScript Implementation 

Table 1 (below). Vanilla JavaScript, 20 iterations of a glider. 
 

Iteration 
No. 

Time to 
Get 
Current 
Board (ms) 

Time to 
Calculate 
New State 
(ms) 

Time to 
Render 
Updated 
Board (ms) Total 

1 11.0 62.7 19.8 93.5 

2 7.4 57.8 15.0 80.2 

3 9.6 55.5 16.1 81.2 

4 6.6 56.4 15.3 78.3 

5 10.0 55.5 16.0 81.5 

6 6.3 55.3 15.4 77.0 

7 11.4 55.2 14.9 81.5 

8 5.9 55.8 15.3 77.0 

9 6.0 55.5 15.8 77.3 

10 6.2 55.3 15.1 76.6 

11 10.1 53.8 15.2 79.1 

12 5.9 55.4 15.4 76.7 

13 5.8 55.7 16.5 78.0 

14 6.8 55.8 15.1 77.7 

15 10.7 54.2 15.2 80.1 

16 6.3 55.2 14.9 76.4 

17 6.0 54.9 17.7 78.6 

18 7.1 55.8 15.4 78.3 

19 6.1 55.9 15.4 77.4 

20 6.0 56.6 15.5 78.1 
Mean 
(ms): 7.6 55.9 15.8 79.2 

Percentage 
of time: 9.54% 70.58% 19.88% 100% 

Standard 
Deviation 

(ms): 1.97 1.752 1.126 3.641 
 

 
Figure 13 (above). Vanilla JavaScript, 20      
iterations of a glider. 

 
From Table 1, we can observe that       
9.54% of the time spent per iteration,       
on average, was spent on calculating      
the current board state from the DOM.       
Recall that the single source of truth for        
whether a given cell is alive or dead is         
whether that cell DOM node has the       
alive class. On average, the browser      
spends 7.6 ms computing the current      
board state. 

It is also clear that the vast majority        
of the time spent at each iteration is on         
calculating the new state and applying      
the Game of Life rules (see I.A.1). This        
step takes 55.9 ms on average per       
iteration and is the longest part of the        
computation process because intense    
array manipulation occurs. For all of      
the cells on the board, each of each nm         
cell’s eight neighbours are examined,     
and the rules applied based on the       
number of live neighbours and the      
current status of that cell. Therefore      
roughly  cells are examined.mn9   

This means that, for every cell on the board, up to nine cells (including the target cell) are                  
parsed by reading several arrays within the board. This stage is unavoidably computationally             
expensive, and might be better served if offloaded to a high performance server. 
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Figure 14 (left). Each of these quick anonymous functions is run          
for a cell within a row. Functions which contain further nested          
functions are those where a class was added or removed, i.e. the            
cell’s alive status was changed. 

 
C. React Implementation 

 
Figure 15. React, 20 iterations of a glider. 

 
Table 2 shows the benefit of storing the        
board in a React component rather than       
encoded in the DOM. The mean time for        
retrieving the current board in this      
algorithm is just 0.18 ms, only 0.28% of        
the time required to visualise the next       
iteration. 

Interestingly, the state calculation    
was approximately 15% faster on average      
than the same task in the vanilla       
JavaScript implementation. It is possible     
that less garbage collection takes place      
because of the reduced overhead in the       
previous task, therefore lowering the     
overhead of this task. 
 

Table 2. React, 20 iterations of a glider. 
 

Iteration 
No. 

Time to 
Get 
Current 
Board (ms) 

Time to 
Calculate 
New State 
(ms) 

Time to 
Render 
Updated 
Board (ms) Total 

1 0.6 51.8 21.5 73.9 

2 0.1 49.6 16.1 65.8 

3 0.1 49.2 15.9 65.2 

4 0.1 48.6 14.0 62.7 

5 0.1 41.7 17.4 59.2 

6 0.3 50.2 16.3 66.8 

7 0.1 48.6 14.9 63.6 

8 0.1 48.7 16.9 65.7 

9 0.1 48.9 19.8 68.8 

10 0.2 49.6 17.1 66.9 

11 0.3 48.5 15.0 63.8 

12 0.3 47.1 19.0 66.4 

13 0.1 49.7 19.4 69.2 

14 0.3 44.8 14.1 59.2 

15 0.1 46.2 15.2 61.5 

16 0.1 47.8 17.7 65.6 

17 0.1 48.5 18.6 67.2 

18 0.1 46.9 14.6 61.6 

19 0.1 39.5 23.9 63.5 

20 0.3 42.7 14.7 57.7 
Mean 
(ms): 0.18 47.43 17.11 64.72 
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Percentage 
of time: 0.28% 73.29% 26.43% 100% 

Standard 
Deviation 

(ms): 0.13 3.003 2.560 3.743 
 

Figure 16 (left). Observe how many nested functions are         
called as part of the setState() function. 

The final task, rendering the updated board, is interestly a little slower on average than in the                 
vanilla JavaScript implementation. Its times, however, are less consistent, with a standard            
deviation of 2.560 ms compared to the first implementation’s 1.126 ms. Taking a look at the                
call stack of the Component.setState() function (determining whether or not to re-render a             
component) using the performance tools in the Chrome Developer Tools (Figure 16), it is              
apparent that the render() function is part of the bottleneck. The render() function, as part               
of beginWork$1, is called when the component’s state or props have changed. However, the              
render() function is only called four times within this call stack, and much of the delay is                 
from the fixed overhead of React. While React is known for being fast, the framework               
overhead is not insignificant here. 

However, the call stack for the renderUpdatedBoard() function in the vanilla JavaScript            
implementation (Figure 14) shows a different story. Every cell within a row has an              
anonymous function operated against it, usually taking a fraction of a millisecond, but these              
add up quickly when there are hundreds of rows and columns. It is clear that React is faster at                   
re-rendering cells, but has a fixed overhead that hurts performance. It is thus concluded that               
as the dimensions of the grid (and thus the number of cells) increases, React becomes the                
clear winner, as its fixed overhead becomes a negligible cost and its faster per-component              
re-rendering times lead to it being the more performant implementation overall. 

D. node.js Implementation 

It is clear that, on the whole, React is faster than vanilla JavaScript when rendering large                
amounts of DOM elements due to the optimisations it makes. Moreover, it is well suited to                
this form of visualisation, where data is stored in a single multidimensional array and DOM               
nodes represent each of the array’s values. 

However, in order to further investigate, and to implement some of the intermediate             
objectives of this project, the iteration computation was offloaded to a node.js server. While              
this server did not yet interface with the frontend of the application, it did demonstrate               
significantly improved performance when compared to having the web browser perform the            
state calculation.  
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Table 3 (below). node.js v14.7.0, 
20 iterations of a glider.

Iteration 
No. 

Time to Calculate 
New State (ms) 

1 37.9 
2 27.4 
3 31.1 
4 32.4 
5 27.9 
6 30.8 
7 28.3 
8 33.7 
9 32.8 

10 27.9 
11 27.6 
12 31.1 
13 34.2 
14 31.8 
15 30.0 
16 33.8 
17 31.0 
18 28.4 
19 28.3 
20 30.1 

Mean (ms): 30.83 
Standard 
Deviation 

(ms): 2.696 
 

 
Figure 17. node.js v14.7.0, 20 iterations of a glider. 

 
Figure 17 shows us how much of a performance increase          
we get using node.js compared to vanilla JavaScript in the          
browser. The same test was performed – iterating a         
100x100 grid with a single glider on it 20 times. This           
performance increase suggests that it would be worthwhile        
to offload the iteration computation to a server to enable          
the client to be responsible solely for rendering the output          
of the computation. 

It is worth noting that there would be additional         
overhead from the network connection used to       
communicate between the client and the server, whether        
this be Ajax, WebSockets or indeed another technique,        
which could potentially negate any improvement brought       
about by implementing this approach. 

V. EVALUATION 

A. Future Work 

It is clear that there is a lot of benefit to offloading the iteration computation to a server. In                   
the node.js implementation (see IV.D) the mean iteration computation time was 30.83 ms,             
nearly half the 55.92 ms when using client-side vanilla JavaScript. This suggests that there is               
definitely scope for building very performant applications by having a dedicated server            
perform the state computation. Network overhead is something to consider here, however, as             
a slow or high-latency connection has the potential to bottleneck performance significantly.            
Experimenting with different connection protocols, such as Ajax or WebSockets, would           
likely lead to finding an optimal solution. 

There remains potential for further optimisation in the actual state computation itself.            
Rather than just relying on a more optimised or powerful platform, there exist approaches              
which reduce the computational complexity of the iteration calculation. One such example,            
discussed in section II.B, is to use memoisation. Hashlife (Trevorrow & Rokicki 2006) is the               
de facto standard memoisation algorithm used in Game of Life simulations and implementing             
it on a server-side simulator would likely yield significant performance improvements. Many            
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configurations of the board in the Game of Life lead to periodic patterns, which would benefit                
immensely from being cached using memoisation. 

B. Vanilla JavaScript Implementation 

1. Achievements 
The vanilla JavaScript implementation is clean and effective in its approach. Able to handle a               
large number of cells whilst remaining responsive and performant, its lightweight footprint            
means it has a very small file size. Moreover, debugging and maintaining the application is               
simple as it does not require any prerequisite knowledge of a particular framework. 
 
2. Improvements 
There is significant scope for improvement in the most simple implementation. Storing the             
current board state in the physical DOM is not efficient. When the application calculates a               
new iteration, 10% of the time per iteration is just retrieving the current status of the board                 
from the DOM by parsing all the existing nodes. 

It would also be wise to decouple the rendering logic from the computation logic. In this                
specific implementation, the computation-engine.js file is tied closely to the DOM and            
would benefit from being extracted to its own separate module to allow easy reuse. 

Moreover, continuously parsing and updating the DOM is memory- and CPU-intensive,           
and this implementation is not scalable. Therefore, the vanilla JavaScript implementation is            
not a particularly performant technique for visualising Conway’s Game of Life. 

C. React Implementation 

1. Achievements 
The React implementation is appropriately architected and is more performant than the            
vanilla JavaScript implementation. Indeed, the React framework provides several         
optimisation techniques such as memoisation and custom diffing (see III.C.4), which this            
implementation makes heavy use of in order to increase performance. While performance            
was poor with the default React configuration, making some of the described changes             
increased performance significantly to the point at which it was faster than the vanilla              
JavaScript implementation, despite the overhead of using a ~40 kB framework. 

From a development perspective, React allows the application to have a sensible            
architecture which lends itself to good maintainability and future improvement.  

With this implementation, the computation-engine.js file was simplified such that it           
only contained the core logic for calculating the next iteration of the board, given an existing                
board. This had the benefit that this module was able to be included directly in the node.js                 
implementation with no changes needing to be made to the file at all. 
 
2. Improvements 
As noted, the React framework is approximately 40 kB in size. This is a large framework                
whose presence in an application dwarfs the application’s own native code. One alternative             
could be to use a framework called Preact (Miller & Hagemeister 2020), a lightweight              
alternative to React that uses the same syntax. For a relatively simple use case such as this                 
one, Preact may suffice. It is only 3 kB, so it is a far lighter library to include with the                    
application build.  

Further optimisations could certainly be made to the React application. Parts of the             
rendering process could be improved by further implementing custom diffing to override            
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React’s diffing, which does not support deep comparison. Alternatively, to avoid the            
shallow/deep comparison issue in the first place, values could be stored in the state using a                
flat hierarchy rather than multidimensional arrays. While this would be more difficult to             
develop and maintain, it would enable React to perform its own diffing directly on the state                
and props of each component between iterations, which would likely be significantly faster             
than the custom diffing algorithms currently implemented. 

D. node.js Implementation 

The node.js implementation is not complete. The core logic for calculating new iterations of              
the board state is developed and a server-side script exists for processing this. However, it               
would need to be connected to the frontend interface, and significant changes would need to               
be made to the frontend in order to accommodate retrieving the state from a server.  

This is, however, definitely a route worth pursuing as the statistics show that it brings               
about a significant performance increase. Furthermore, this would provide the opportunity to            
implement parallelisation to compute iterations, and would also provide a suitable           
environment for implementing the memoisation algorithm Hashlife. 

There already exist node.js packages on npm such as memoizee and node-gol-hashlife            
which implement memoisation and the Hashlife algorithm respectively. These would be           
suitable for usage in a client-server environment such as the one developed here. 

E. Project Management 

This project was not developed in quite as structured or a planned way as intended. However,                
a simplified git flow model (Driessen 2010) was adopted, enabling each implementation to be              
distinct from the others and for a clear commit history to exist in the git repository.  

Netlify was used for static hosting. Each implementation was hosted on its own static              
server during development, facilitating rapid testing and evaluation of each implementation.           
This also enabled detection of build errors much faster, as with each commit each application               
was rebuilt from scratch as part of a continuous integration development workflow. 

F. Further Comments 

The various algorithms implemented in this project are sufficient for visualising the Game of              
Life and also provide interesting opportunities for testing and experimentation. In particular,            
using custom diffing for React provides us with a scientific opportunity to compare our own               
custom-built algorithm with the existing general-purpose React shallow comparison.  

The existing implementation of the rules of the Game of Life in the computation engine               
provides an opportunity to contrast against more specific algorithms such as the Hashlife             
algorithm. It is worth noting that the node-gol-hashlife algorithm (Harel 2015) explicitly            
states that it should be used for “far-future” evolutionary computation of the simulation, and              
not for “evolving the simulation one generation at a time”.  
 

VI. CONCLUSION 

From our implementations, it is evident that JavaScript can be used effectively and efficiently              
to visualise Conway’s Game of Life in the browser. However, the slowest part of the               
generation process by far is the iteration computation. For both the vanilla JavaScript and              
React implementations, over 70% of the time spent on each iteration is computing the new               
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generation of the board.  
Preliminary experimentation with a node.js server yielded results significantly faster than           

having the browser perform this computation. With additional optimisations such as           
memoisation and the Hashlife algorithm, the time spent calculating the next state of the board               
could be significantly reduced. While network overhead is a consideration, with an            
appropriate architecture and implementation, this could probably be reduced such that           
offloading the computation to a separate server is still beneficial. 

Research in this field must continue, with Conway’s Game of Life being over 50 years               
old at the time of writing. Web technology adapts so quickly that any visualisation              
implemented today will be out-of-date within five years. More work can be done to speed up                
rendering in the browser and this developing field leaves ample scope for future optimisation. 
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