{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%display latex # Mostrar os resultados renderizados (latex)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solução dos exercícios"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Gaussiana\n",
"\n",
" a. Verifique que $\\displaystyle\\int\\limits_{-\\infty}^\\infty e^{-\\frac{1}{2}x^2}dx = \\sqrt{2\\pi}$\n",
" \n",
" b. Defina a variável simbólica \"$a$\". Assuma $a>0$ e determine $\\displaystyle\\int\\limits_{-\\infty}^\\infty e^{-\\frac{1}{2}ax^2}dx$"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"\\begin{math}\n",
"\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\sqrt{2} \\sqrt{\\pi}\n",
"\\end{math}"
],
"text/plain": [
"sqrt(2)*sqrt(pi)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(exp(-1/2*x^2),x,-oo,oo)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"var('a')\n",
"assume(a>0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"\\begin{math}\n",
"\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{2 \\, \\sqrt{\\frac{1}{2}} \\sqrt{\\pi}}{\\sqrt{a}}\n",
"\\end{math}"
],
"text/plain": [
"2*sqrt(1/2)*sqrt(pi)/sqrt(a)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(exp(-1/2*a*x^2),x,-oo,oo)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. Oscilador amortecido\n",
"\n",
" a. Resolva a equação do oscilador amortecido $$m\\ddot{y}(t) +b\\dot{y}(t)= -ky(t).$$\n",
"\n",
"Para isso você precisará:\n",
" - Definir as variáveis simbólicas e funções involvidas (ver guia de referencia rápida);\n",
" - Estabelecer a equação diferencial;\n",
" - Assuma $4mk-b^2>0$;\n",
" - Resolver a equação diferencial usando o `desolve`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A sintáxe do comando é `desolve(equação, dvar, ivar=t)`, onde `dvar` é a variável dependente e `ivar=t` indica que a variável independente e $t$. Use a ajuda `desolve?` se necessário."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Solução"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Definir as variáveis simbólicas e funções involvidas (ver guia de referencia rápida);*"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"var('m,b,k,t')\n",
"y = function('y')(t)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Estabelecer a equação diferencial;*"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"\\begin{math}\n",
"\\newcommand{\\Bold}[1]{\\mathbf{#1}}b \\frac{\\partial}{\\partial t}y\\left(t\\right) + m \\frac{\\partial^{2}}{(\\partial t)^{2}}y\\left(t\\right) = -k y\\left(t\\right)\n",
"\\end{math}"
],
"text/plain": [
"b*diff(y(t), t) + m*diff(y(t), t, t) == -k*y(t)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq = m*diff(y,t,2)+b*diff(y,t) == -k*y\n",
"eq"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Assuma $4mk-b^2>0$;*"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"assume(4*m*k-b^2>0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Resolver a equação diferencial usando o `desolve`.*"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"\\begin{math}\n",
"\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\left(K_{2} \\cos\\left(\\frac{1}{2} \\, t \\sqrt{-\\frac{b^{2}}{m^{2}} + \\frac{4 \\, k}{m}}\\right) + K_{1} \\sin\\left(\\frac{1}{2} \\, t \\sqrt{-\\frac{b^{2}}{m^{2}} + \\frac{4 \\, k}{m}}\\right)\\right)} e^{\\left(-\\frac{b t}{2 \\, m}\\right)}\n",
"\\end{math}"
],
"text/plain": [
"(_K2*cos(1/2*t*sqrt(-b^2/m^2 + 4*k/m)) + _K1*sin(1/2*t*sqrt(-b^2/m^2 + 4*k/m)))*e^(-1/2*b*t/m)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"desolve(eq,y,ivar=t)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"b. Suponha que um sistema mecânico seja governado por pela equação diferencial $$\\ddot{y}(t) +\\frac{1}{5}\\dot{y}(t)= -\\frac{1}{4}y(t).$$\n",
"Encontre a solução assumindo as condições iniciais $$y(0) = \\frac{1}{2}, \\dot{y}(0) = \\frac{7}{4}.$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Para incluir as condições iniciais, use `desolve(equação, dvar, ics=[t_0, y(t_0), y'(t_0)])`, onde `t_0, y(t_0), y'(t_0)` são as tais condições."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"\\begin{math}\n",
"\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{1}{5} \\, \\frac{\\partial}{\\partial t}y\\left(t\\right) + \\frac{\\partial^{2}}{(\\partial t)^{2}}y\\left(t\\right) = -\\frac{1}{4} \\, y\\left(t\\right)\n",
"\\end{math}"
],
"text/plain": [
"1/5*diff(y(t), t) + diff(y(t), t, t) == -1/4*y(t)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq2 = diff(y,t,2)+1/5*diff(y,t) == -1/4*y; eq2"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"\\begin{math}\n",
"\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{1}{2} \\, {\\left(3 \\, \\sqrt{6} \\sin\\left(\\frac{1}{5} \\, \\sqrt{6} t\\right) + \\cos\\left(\\frac{1}{5} \\, \\sqrt{6} t\\right)\\right)} e^{\\left(-\\frac{1}{10} \\, t\\right)}\n",
"\\end{math}"
],
"text/plain": [
"1/2*(3*sqrt(6)*sin(1/5*sqrt(6)*t) + cos(1/5*sqrt(6)*t))*e^(-1/10*t)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol = desolve(eq2,y,ivar=t,ics=[0,1/2,7/4]); sol"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"c. Plote um gráfico da solução encontrada no intervalo $05*sqrt(6)*t))*e^(-1/10*t)\n",
"t Expression t\n",
"y Expression y(t)\n"
]
}
],
"source": [
"whos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.2",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}