
Firmware is the new Black – Analyzing Past 3
years of BIOS/UEFI Security Vulnerabilities

Bruce Monroe & Rodrigo Rubira Branco (@bsdaemon) & Vincent Zimmer
(@vincentzimmer)

{ bruce.monroe || rodrigo.branco || vincent.zimmer } @ intel.com

DISCLAIMER

• Intel has official documentation that is highly comprehensive and should be used to make technical decisions related
to Intel’s technologies. To have a high-level of accuracy for such documentation, lots of reviews are performed

• The accuracy of this talk can’t be compared and should not be used to compare with official documentation. We
are going to discuss directions, strategies and initiatives being proposed, giving recommendations to OEMs, researchers
and customers but everything should be treated as *OUR* opinion instead of official statements

• There possibly are other initiatives and focus areas that we are not at liberty to talk about or that we are even unaware
of, so this should not be considered the full scope of the problem, but instead, *OUR* vision of it

• This talk is about BIOS/UEFI security. We are not pedantic on terminology (since we accept that the majority outside
of Intel have a harder time to know/differentiate what is the responsibility of different components of the platform in
order to guarantee the security of it). As so, we did include things that are *NOT* directly related to errors in BIOS/UEFI
per-se, but that somehow affected the expectations for it

Agenda

• BIOS/UEFI background
• BIOS/UEFI ecosystem
• BIOS/UEFI security technologies
• Dataset & Methodology
• Bug classes (a proposal for UEFI)
• Vulnerability distribution (by bug classes)
• Platform Firmware Threat Modelling
• Future

UEFI Background

UEFI – Unified Extensible Firmware Interface old school terms…(BIOS)

• First up root of trust on the system

• It hands over control to the operating system
• Rest of the magic then occurs ;)

• UEFI Membership spans the compute spectrum

http://uefi.org/members

UEFI – sets up the platform to run…

http://uefi.org/members

SMM / BIOS

CPU

App

OS

App

VM

App

OS

App

VM

VMM / Hypervisor

Memory Peripherals

Firmware

Hardware

Platform

P
ri

vi
le

ge

BIOS & OS/VMM share

access, but not trust

UEFI + PI SMM

Hypervisor can

grant VM direct

hardware access

DMA

A specific Peripheral may have

its own processor, and its own

firmware, which is undetectable

by host CPU/OS.

Where is UEFI firmware

What’s in UEFI

• UEFI Ecosystem is an “Onion”. Layers upon layers…

• Peel the onion and you have:
• Tianocore (Open Source EDK II) Intel is the sole maintainer
• IBV – Independent BIOS Vendors
• OEM – Other Equipment Manufacturers (The folks building your systems)
• ODM – Original Design Manufacturer
• Consumers (deliberate action to download/install updates)

• If a vuln mitigation goes out it has to navigate the
onion

• Additional update lag time is introduced because end users have to take deliberate
action to download/install updates

UEFI Ecosystem Overview

UEFI Ecosystem

UEFI.org is a standards body

• UEFI is a specification

• About 2 years ago UEFI.org stood up USRT
• USRT – is Unified Security Response Team

Sea change. UEFI had never taken a stance on implementations.

They Are Now…

History

• USRT is comprised by Firmware Engineers from member companies

• To report a security issue in UEFI Firmware implementation from a vendor:
• Send email to security@uefi.org

• Encrypt sensitive info with their PGP public key - security@uefi.org

• Please provide as much information as possible, including:
• The products and versions affected

• Detailed description of the vulnerability

• Steps to demonstrate the vulnerability or reproduce the exploit, including specific
configurations or peripherals, if relevant

• Potential impact of the vulnerability, when exploited

• Information on known exploits

UEFI USRT

mailto:security@uefi.org
mailto:security@uefi.org

Tianocore EDK II that is solely maintained by Intel is in bug bounty scope

• Send vulnerability report to secure@intel.com
• Encrypt using PGP Public Key of secure@intel.com

• Intel Bug Bounty Program is Private Invite Only

• If you find a good quality bug in Tianocore we will extend an invite
providing you agree to abide by Intel Bug Bounty program terms

• Note: you need to be invited to be eligible

• You can find more information on the Intel Bug bounty program online

• Full participation guidelines https://security-
center.intel.com/docs/BugBountyParticipationGuidelines.pdf

Reporting to Intel Bug Bounty

mailto:secure@intel.com
mailto:secure@intel.com
https://security-center.intel.com/BugBountyProgram.aspx
https://security-center.intel.com/docs/BugBountyParticipationGuidelines.pdf

The Intel Bug Bounty Program is a Private Invite Only program

• If the security vulnerability is in open source implementation of
Tianocore solely maintained by Intel

• It’s Eligible for the Intel Bug Bounty Program administered by HackerOne

• You must be invited to join via HackerOne platform

Vulnerability Severity Intel Software Intel Firmware Intel Hardware

Critical Up to $7,500 Up to $10,000 Up to $30,000

High Up to $2,500 Up to $5,000 Up to $10,000

Medium Up to $1,000 Up to $1,500 Up to $2,000

Low Up to $500 Up to $500 Up to $1,000

Intel Bug Bounty Recap

• The EFI Developer Kit II (EDKII) provides an open source
implementation http://www.tianocore.org/

• Core features https://github.com/tianocore/edk2

• Platform examples https://github.com/tianocore/edk2-platforms

• Reporting security issues on open source
https://github.com/tianocore/tianocore.github.io/wiki/Reporting-
Security-Issues

• Advisories https://www.gitbook.com/book/edk2-docs/security-
advisory/details

EDKII Bugzilla

http://www.tianocore.org/
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2-platforms
https://github.com/tianocore/tianocore.github.io/wiki/Reporting-Security-Issues
https://www.gitbook.com/book/edk2-docs/security-advisory/details

• UEFI is the specification

• EDK II is the code

P
ro

tect

Detect

System

Firmware

Use of EDKII Defenses

CPU/SOC
(Intel)

Start Block
PEI

(OEM)

Policy

Policy Engine

Enforces

BIOS
DXE/UEFI

(OEM)

OS Loader/Kernel
(OSV)

Policy

Policy Engine

Enforces

Policy

Policy Engine

Enforces

OEM PI
Verification
Using PI Signed
Firmware Volumes
Vol 3, section 3.2.1.1
of PI 1.3 Specification

OEM UEFI 2.7
Secure Boot

Chapter 27.2 of
The UEFI 2.4
Specification

Intel® Device Protection
Technology with Boot Guard

http://www.intel.com/content/dam/www/public/us/en/docu
ments/product-briefs/4th-gen-core-family-mobile-brief.pdf

Executable Executable Executable
Intel® Boot

Guard

Measure Measure Measure

Protect

DetectFully Verified Boot Sequence

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf

UEFI authenticate OS
loader
(pub key and policy)

Check signature of before
loading

• UEFI Secure boot will stop
platform boot if signature not
valid (OEM to provide
remediation capability)

• UEFI will require remediation
mechanisms if boot fails

UEFI PI will measure OS
loader & UEFI drivers into
TPM (1.2 or 2.0) PCR
(Platform Configuration
Register)

• TCG Trusted boot will never fail
• Incumbent upon other software

to make security decision using
attestation

UEFI Firmware

UEFI OS Ldr,
Drivers

Kernel

Drivers

Apps

TPM

re
co

rd
 in

 P
C

R

Trusted Versus Secure Boot Protect

Detect

• UEFI Secure and TCG Measured boot - Upper layer API’s defined in UEFI and TCG spec
• Implementation source + document for UEFI Secure & TPM measured boot

• https://github.com/tianocore/edk2/tree/master/SecurityPkg

• https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Implementing_TPM2_Support_in_EDKII.pdf

• http://bluestop.org/edk2/docs/specs/A_Tour_Beyond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf

• Signed updates - Capsules defined in UEFI Spec
• Signed updates required by NIST 800-147 http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

for core and NIST-193 http://csrc.nist.gov/publications/drafts/800-193/sp800-193-draft.pdf for platform components

• https://github.com/tianocore/edk2/tree/master/SignedCapsulePkg

• https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf

EDKII Defenses (1/3) Protect

Recover

Detect

https://github.com/tianocore/edk2/tree/master/SecurityPkg
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Implementing_TPM2_Support_in_EDKII.pdf
http://bluestop.org/edk2/docs/specs/A_Tour_Beyond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf
http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf
http://csrc.nist.gov/publications/drafts/800-193/sp800-193-draft.pdf
https://github.com/tianocore/edk2/tree/master/SignedCapsulePkg
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf

• Defense in depth mechanisms of UEFI Core
• NX, ASLR, stack canaries during pre-OS https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-

uefi-bios/details

• Hardened SMM
• Implementing the Windows SMM Mitigation Table (WSMT) https://github.com/tianocore-

docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf

• A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Overflow_in_UEFI
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Overflow_in_UEFI.pdf

• And lock-box protocol, user identification, password, and random number
generation

• Overall dev BKM (Best Known Methods)
• Security BKM https://github.com/tianocore-

docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf

EDKII Defenses (2/3) Protect

Recover

https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-uefi-bios/details
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Overflow_in_UEFI.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf

• Intel STM (SMI Transfer Monitor):
https://firmware.intel.com/content/smi-transfer-monitor-stm

• BIOS Guard (PFAT): SMM compromises do not directly lead to flash
access (persistence)

• Other SMM protections:

Continued SMM Defenses Protect

https://firmware.intel.com/content/smi-transfer-monitor-stm

• VT-d boot protection
• https://lists.01.org/pipermail/edk2-devel/2017-April/009454.html

https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Using_Intel_VT-d_for_DMA_Protection.pdf

• And to pull things together - Full open source EDKII-based platforms
• Quark https://github.com/tianocore/edk2/tree/master/QuarkPlatformPkg

• Atom BYT https://github.com/tianocore/edk2-platforms/tree/minnowboard-max-udk2015

• Atom APL https://github.com/tianocore/edk2-platforms/tree/devel-MinnowBoard3-UDK2017

• Intel KBL https://github.com/tianocore/edk2-platforms/tree/devel-MinPlatform core platform tree

• Atom and core platforms based upon Intel Firmware Support Package (FSP)
• https://github.com/IntelFsp/FSP

• https://firmware.intel.com/sites/default/files/A_Tour_Beyond_BIOS_Using_the_Intel_Firmware_Support_Package_with_the
_EFI_Developer_Kit_II_%28FSP2.0%29.pdf

• http://www.apress.com/us/book/9781484200711

• Very through training package made available by Intel’s ATR* – covers chipsec
• https://github.com/advanced-threat-research/firmware-security-training

• Intel’s ATR moved from SeCoE to Intel Security and is now part of McAfee

EDKII Defenses (3/3) Protect

Detect

Recover

https://lists.01.org/pipermail/edk2-devel/2017-April/009454.html
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Using_Intel_VT-d_for_DMA_Protection.pdf
https://github.com/tianocore/edk2/tree/master/QuarkPlatformPkg
https://github.com/tianocore/edk2-platforms/tree/minnowboard-max-udk2015
https://github.com/tianocore/edk2-platforms/tree/devel-MinnowBoard3-UDK2017
https://github.com/tianocore/edk2-platforms/tree/devel-MinPlatform
https://github.com/IntelFsp/FSP
https://firmware.intel.com/sites/default/files/A_Tour_Beyond_BIOS_Using_the_Intel_Firmware_Support_Package_with_the_EFI_Developer_Kit_II_(FSP2.0).pdf
http://www.apress.com/us/book/9781484200711
https://github.com/advanced-threat-research/firmware-security-training

• It is quite hard to provide really good analysis of datasets related to security issues:
• A must see if somehow you wonder why: https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-

Suck-Slides.pdf

• We used Intel’s PSIRT Data in different ways:
• For the past 3 years (124 issues related to BIOS/Firmware), to give an ‘idea’ of the amount of issues (which adds attrition bias as well)
• For as long as we could find (Circa 2007), to generate taxonomy

• Intel’s PSIRT data include issues found internally (vendor selection bias) that somehow were identified to affect released
products

• It does not mean every internally found issue is there
• The way the data is capture changed along the years (hopefully for better), but that is one of the mistakes clearly stated in the aforementioned

presentation 
• We constantly receive reports for issues that affect a specific OEM-only (and as so, have nothing to do with Intel – please, keep involving us, it is

helpful!): We counted those too, but obviously, lots of issues are not reported to us as well (that also adds a researcher selection bias, since some
researchers always involve us and as so, whatever issues they are finding, are accounted for, but not all researchers do that)

• PSIRT does sometimes group multiple issues under one case (specially internal ones), and as so, the count itself also added an abstraction bias
• For some other cases, issues are divided in multiple cases (given it potentially spawning multiple different actions): We tried to clean the obvious

cases
• We only considered the confirmed issues that affect at least one product, therefore there is also publication bias

• Total number of issues considered/used: 77 issues

Dataset & Methodology (1/2)

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

• With so many problems in the dataset, does it have any value?
• Yes, but not to compare platforms (so we do not include such information)

• Yes, for defining a taxonomy (so we did generate/propose one)

• Yes, to help defining next steps/future strategies (so we did do that)
• Maybe, to define trends (as in: are those kind of problems getting more

external attraction?)

• No, if you want to say that there are more bugs (not bugs being reported,
which is the previous point) now than few years back -> DO NOT USE THE
DATA FOR THAT PURPOSE 

Dataset & Methodology (2/2)

• Those bugs are not BIOS-bugs per-se, but they do affect platform
security and what is expected from BIOS (we did not consider them
in the total count presented, and we did group those in the
taxonomy as a single class: ‘HW bugs’). Some examples:

• LAPIC bug (memory range overlapping and decoding priorities leading to
SMRAM access)

• SMM memory written-back cached data from Ring0 leading to SMRAM access
• Fuse mis-configuration for BootGuard leading to platform compromise (See

for example “Safeguarding rootkits: Intel BootGuard” presented at
ZeroNights 2016
(https://dsec.ru/upload/medialibrary/82b/82b222a0ab6470a724108b42208f
0630.pdf)

HW Bugs?

https://dsec.ru/upload/medialibrary/82b/82b222a0ab6470a724108b42208f0630.pdf

• We do not claim it to be a comprehensive list, but it is comprehensive enough to cover
all PSIRTs received by Intel

• Many bugs might fit multiple classes (since one problem might lead to another, we use the first in the
chain to aggregate)

• Help evolve this list

• Notice that we grouped together things that are a bit more classical software cases (for
example, not properly validating untrusted input)

• But we still called out ones that have some specificities due to the expectations for the whole
platform security

• The main intention: be able to easily define a class for a given issue and to remove the
sentiment (shared by many researchers) that BIOS security is something obscure

• Notice that when we group the classes per the number of reported issues in each 

Proposal of Bug Classes (1/2)

The main complexity is the sheer number of platform-specific configurations

• Inconsistent power-transition checks
• Bad Initialization State (secrets kept in memory, assumption of certain system state)
• S3 Boot Script

• Race Condition
• Enabling protection mechanisms (including disabling/enabling certain HW elements, including wrong module launching order)
• Time of Check/Time of Use (TOCTOU) Race Conditions

• Trusting input (from less privileged entities in the platform, or having different assets configured by different threat vectors)
• Could lead to race conditions (double fetches and TOCTOUs, for example if a pointer is pointing to unprotected memory area and therefore can be

arbitrarily modified after any checks)

• Measurement failures
• Not measuring certain modules
• Accepting signed updates, but for the wrong platform due to using same keys
• Accepting to load certain modules in the wrong time (when certain assets are not properly protected)
• Failing to identify a measurement error/problem

• Platform capability not properly configured
• Locks not set, devices not properly initialized, features not disabled, etc

• Security of meaningful assets exposed to untrusted entities
• E.g.: UEFI variables

• HW Misbehavior
• Wrongly defined architecture, micro-architecture, bad design, etc
• Platform components behaving differently than specified

Proposal of Bug Classes (2/2)

• Inconsistent power-transition checks

• Bad Initialization State (secrets kept in memory, assumption of certain
system state)

• S3 Boot Script

• Many talks mention the S3 Boot Script vulnerability and public
exploits/write-ups are available (http://blog.cr4.sh/2015/02/exploiting-uefi-
boot-script-table.html)

• Some of the bugs in this category can be very subtle, like when in a system is
turned on a given code path is taken which copies certain data structures
inside SMRAM for parsing, while when the system is coming back from
resume the SMM code consumes external tables directly (therefore, wrongly
trusting the runtime OS)

Examples (1/7)

http://blog.cr4.sh/2015/02/exploiting-uefi-boot-script-table.html

• Race Condition
• Enabling protection mechanisms (including disabling/enabling certain HW

elements, including wrong module launching order)
• Time of Check / Time of Use TOCTOU Race Condition

• A good example we saw was a third party option ROM being launched
before EndOfDxe (lots of assets unprotected)

• Another common case is SMM code validating input *before* copying it to
protected memory (which could be altered after the checks)

• We experimenting with extending Simics to catch some of those (See: “Windows
Kernel Race Condition Analysis While Accessing User-mode Data” paper in PoC ||
GTFO for some of our tests/experiments reproducing Project Zero’s work on
Windows for similar problem)
https://www.alchemistowl.org/pocorgtfo/pocorgtfo15.pdf

Examples (2/7)

https://www.alchemistowl.org/pocorgtfo/pocorgtfo15.pdf

• Trusting input (from less privileged entities in the platform, or having
different assets configured by different threat vectors)

• Could lead to race conditions (double fetches and TOCTOUs, for example if a
pointer is pointing to unprotected memory area and therefore can be
arbitrarily modified after any checks)

• Traditional code bugs apply here (like buffer and integer overflows)

• Lots presented/found along the years by Intel’s ATR, SeCoE and other
internal and external researchers

• Many caught by our Excite Project (BIOS symbolic execution)
(https://github.com/REhints/Publications/blob/master/Conferen
ces/ZeroNights_2016/Excite_Project_ZN.pdf)

Examples (3/7)

https://github.com/REhints/Publications/blob/master/Conferences/ZeroNights_2016/Excite_Project_ZN.pdf

• Measurement failures
• Not measuring certain modules

• Accepting signed updates, but for the wrong platform due to using same
keys

• Accepting to load certain modules in the wrong time (when certain assets
are not properly protected)

• Failing to identify a measurement error/problem

• Two real examples we’ve seem:
• Client & Server parts using the same keys, meaning that an image from one

would load in the other, but obviously bricking the platform

• TE (Terse Executables) are loaded correctly, but not measured since deeper
parts check for specific PE header presence (but the boot succeeds)

Examples (4/7)

• Platform capability not properly configured
• Locks not set, devices not properly initialized, features not disabled, etc

• Lots of times guidance is just not being followed
• Chipsec use by OEMs and consumers would identify most of these

• See the Chipsec Platform Security Assessment Framework

https://github.com/chipsec/chipsec

Watch the talk at 5pm: “Betraying the BIOS: Where the guardians of the BIOS are failing”
for real life recent examples . Callout to Alex Matrosov

Examples (5/7)

https://github.com/chipsec/chipsec

• Security of meaningful assets exposed to untrusted entities
• E.g.: UEFI variables

• At least one case we’ve seem included UEFI variables that control PK/KEK
not requiring physical presence to be modified

• That essentially undermines Secure Boot

• Some times, sample code has validation features that should be
disabled/removed from production versions, such as a UEFI variable that
sets the policy responsible for configuring EISS (also known as SMM_BWP,
which essentially opens the flash for writes from outside of SMM) bit in the
SPI controller to be false

Examples (6/7)

• HW Misbehavior
• Wrongly defined architecture, micro-architecture, bad design, etc
• Platform components behaving differently than specified

• See Intel’s Erratas We do our best, but things fail. Complexity and composition
are security’s worst enemies

• Examples of those:
• The Memory Sinkhole (by Christopher Domas in Black Hat USA 2015)

https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-
Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation-wp.pdf

• Phrack article “Using SMM for Other Purposes” (http://phrack.org/issues/65/7.html) release
of a weird cache behavior, followed by Joanna’s and Rafal’s work proving it was an exploitable
vulnerability in “Attacking SMM Memory via Intel CPU Cache Poisoning”
(http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf)

• McAfee ATR work on “BARing the System” at Recon2017
(http://www.intelsecurity.com/advanced-threat-
research/content/data/REConBrussels2017_BARing_the_system.pdf)

Examples (7/7)

https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation-wp.pdf
http://phrack.org/issues/65/7.html
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://www.intelsecurity.com/advanced-threat-research/content/data/REConBrussels2017_BARing_the_system.pdf

Bug Class Distribution
2015-2017 (Past Week – Middle July)

0

5

10

15

20

25

30

Inconsistent power-
transition checks

Race Condition Trusting input Measurement failures Platform capability not
properly configured

Security of meaningful
assets exposed to
untrusted entities

Issues Distribution per Class: Total of 77 issues

Bug Class Distribution per Year
2015-2017 (Past Week – Middle July)

0

5

10

15

20

25

30

35

Inconsistent power-transition
checks

Race Condition Trusting input Measurement failures Platform capability not properly
configured

Security of meaningful assets
exposed to untrusted entities

Issues Distribution per Year

Total 2015 2016 2017

• “My house is secure” is almost meaningless
• Against a burglar? Against a meteor strike? A thermonuclear device?

• “My system is secure” is almost meaningless
• Against what? To what extent?

• Threat modeling is a process to define the goals and constraints of a
(software) security solution

• Translate user requirements to security requirements

• We used threat modeling for our UEFI / PI codebase
• We believe the process and findings are applicable to driver implementations as

well as UEFI implementations in general

Rationale for a Threat Modeling

• A Threat Model (TM) defines the security assertions and constraints for a
product

• Assets: What we’re protecting

• Threats: What we’re protecting it against

• Mitigations: How we’re protecting our Assets

• Use TM to narrow subsequent mitigation efforts
• Don’t only perform a secure review, fuzz test all interfaces

• Select the ones that are critical

• TM is part science, part art, part experience, part nuance, part preference
• Few big assets vs lots of focused assets

Defining, using a Threat Modeling

PE/COFF

Operating System

Option ROM

SMM

This reg

That reg

Other bit

NIST

Security
“Researchers”

UEFI, TCG,
OSV

Internal
Research

Source

BIOS Flash

Build tools

SMM Boot flow

S3  S0

Internal
Research

We don’t always get to choose our assets

Flash**

• NIST SP800-147 says
• Lock code flash except for update before Exit Mfg Auth (Common Bugs: HW Misbehavior, Platform capability not properly configured)
• Signed update (>= RSA2048, SHA256) (Common Bugs: Security meaningful assets exposed to untrusted entities, Trusting input, Measurement

Failures)
• High quality signing servers (Outside of the scope of the BIOS itself, but signing keys must be secret, etc)
• Without back doors (“non-bypassability”) (Common Bugs: A group of the above)

• Threats
• PDoS – Permanent Denial of Service

• System into inefficient room heater

• Elevation of privileges
• Owning the system at boot is an advantage to an attacker

• Known attacks
• CIH / Chernobyl 1999-2000
• Mebroni 2010
• Hacking Team 2015
• Various reputed government leaks (2016, 2017…)

• Mitigations include
• Reexamining flash protection methods – use the best even if its new
• Using advanced techniques to locate and remove vulnerabilites

** or tomorrow’s equivalent NV storage

SMM

• SMM is valuable because
• It’s invisible to System Software (including Anti Virus, etc)
• SMM sees all of system RAM (standard notion, without STM)
• Not too different from PCI adapter device firmware
• Most BIOS bugs are somehow related to getting SMM access (so all classes apply)

• Threats
• Elevation of privileges

• View secrets or own the system by subverting RAM

• Known attacks
• See e.g: Duflot, “Phrack Using SMM for Other Purposes and others”, Legbacore,

McAfee’s Advanced Threat Research, Cr4sh

• Mitigations include
• Validate “external” / “untrusted” input
• Remove calls from inside SMM to outside SMM

SMM

Resume from S3

• ACPI says that we return the system to the S5S0 configuration at S3S0
• Must protect the data structures we record the cold boot config in (Common Bugs:

Inconsistent power-transition checks, Race Condition, Security of meaningful assets
exposed to untrusted entities)

• Threats
• Changing data structures could cause security settings to be incorrectly configured leaving

S3
• Reopen the other assets’ mitigated threats

• Known attacks (McAfee ATR, Legbacore, cr4sh)

• Mitigations include
• Store data in SMM -or-
• Store hash of data structures and refuse to resume if the hashes don’t compare

This reg

That reg

Other bit

Tool chain

• Tools create the resulting firmware
• Rely on third party tools and home grown tools
• Incorrect or attacked tools leave vulnerabilities
• We did not add a class for those (instead we tried to tie the final bug to a class)

• Threats
• Disabled signing, for example

• Known attacks
• See e.g. Reflections on Trust, Ken Thompson**

• Mitigation
• Difficult: For most tools, provided as source code
• Review for correct implementation
• Use static, dynamic code analysis tools

• PyLint for Python, for example

** CACM, Vol 27, No 8, Aug, 1984, pp. 761-763

Boot flow

• Secure boot (Common Bugs: Measurement failures, Platform capability not
properly configured, Security of meaningful assets exposed to untrusted
entities, Race Condition)

• Authenticated variables
• Based on the fundamental crypto being correct
• Correct location for config data

• Threats
• Run unauthorized op roms, boot loaders
• PDoS systems with bad config variables

• Known attacks
• Mitigations include

• Sanity check config vars before use, use defaults
• Reviews, fuzz checking, third party reviews, etc.

PE/
COFF

• We can’t foresee the future, but there are lots of things that Intel is planning and that the overall industry
can help!

• The release of a Platform Security Configuration Guide, independent of the BIOS Writer Guide (which currently already
have a section for security)

• Release of more Chipsec and HSTI security checks
• Increase in mitigating technologies as part of the platform (some were discussed in this talk), to evolve the state-of-the-

art
• Share of other initiatives, as we did for example with Excite (symbolic execution tool, currently used to automate finding

SMM call-outs and having heavy investment)

• What *you* can do to help? *OUR* CALL FOR ACTIONS!
• The ecosystem is complex, help naming the names and demonstrating the value to whoever cares about security
• Always question if attack demonstrated are against the state-of-the-art available, or are just one more configuration

mistake (and mention the state-of-the-art if you are a researcher)
• Help us evolving such state-of-the-art: propose new attack classes (as some of you are already doing), propose

architectural improvements: Dream high! Let us care about making it a reality 
• If you are an end-user: Those attacks are *NOT* complex. Understand and define your threat model, run the available

tools and pressure your vendor!

Future

• Lots of different individuals (and teams) inside and outside of Intel
contribute to the evolution of UEFI security, some names from Intel
(knowing very well we forgot many):

• Bulygin, Yuriy; Govindarajan, Sugumar; Mathews, John; Loucaides, John; Delgado,
Brian; Yao, Jiewen; Frinzell, Aaron; Brannock, Kirk; Wolman, Ayellet; Rosenbaum, Lee

• Without them, this talk would not have been possible and we strongly
appreciate their help, continuous feedback and work

• To all the researchers that collaborate with Intel, directly or indirectly (yes,
any form of report, including full-disclosure contributed to actions, decisions
and direction changes) -> Thank you!

Acknowledgements

QUESTIONS?

THE END! IS IT?

Bruce Monroe & Rodrigo Rubira Branco (@bsdaemon) & Vincent Zimmer (@vincentzimmer)

{ bruce.monroe || rodrigo.branco || vincent.zimmer } @ intel.com

