R Grundlagen

Schummelzettel

Hilfeoptionen

Zugriff auf Hilfsdateien

?mean

Hilfe erhalten für eine bestimmte Funktion

help.search('weighted mean')

Hilfsdateien nach einem Wort oder Ausdruck durchsuchen

help(package = 'dplyr')

Hilfe für ein bestimmtes Package bekommen.

Objektinformationen

str(iris)

Zusammenfassung der Objektstruktur.

class(iris)

Auskunft über die Klasse des Objekts.

Verwendung von Packages

install.packages('dplyr')

Ein Package von CRAN herunterladen und installieren.

library(dplyr)

Lädt das Package in die Sitzung und macht die Benutzung seiner Funktionen möglich.

dplyr::select

Verwendet eine bestimmte Funktion aus einem Package.

data(iris)

Lädt einen eingebauten Datensatz.

Arbeitsverzeichnis

getwd()

Zeigt das aktuelle Arbeitsverzeichnis an.

setwd('C://ordner/pfad')

Verändert das aktuelle Arbeitsverzeichnis.

Verwenden Sie Projekte in RStudio, um das Arbeitsverzeichnis in den Ordner zu setzen, in dem Sie arbeiten möchten.

Vektoren

Vektoren erstellen

c(2, 4, 6)	2 4 6	Verbindet Elemente zu einem Vektor
2:6	23456	Eine Zahlen- folge
seq(2, 3, by=0.5)	2.0 2.5 3.0	Eine komplexe Folge
rep(1:2, times=3)	121212	Wiederholt einen Vektor
rep(1:2, each=3)	111222	Wiederholt Elemente in einem Vektor

Funktionen für Vektoren

sort(x) rev(x)

Gibt x sortiert Gibt x umgekehrt zurück. zurück.

table(x) unique(x)
Zeigt Anzahl der Zeigt welche Werte

Elemente im Vektor.

Vektorelemente auswählen

vorkommen.

Positionsabhängig

x[<mark>4</mark>]	Das vierte Element.		
x[-4]	Alle Elemente außer das vierte.		
x[2:4]	Alle Elemente von Position 2 bis 4.		
x[-(<mark>2:4</mark>)]	Alle Elemente außer von Position 2 bis 4.		
x[c(<mark>1,5</mark>)]	Elemente an Position 1 und 5.		
	Werteabhängig		

Werteabhängig			
x[x == 10]	Elemente, die gleich 10 sind.		
x[x < 0]	Alle Elemente, die kleiner als 0 sind.		
x[x %in% c(1,2,5)]	Alle Elemente, die im Vektor genannt werden.		
	Benannte Vektoren		

v[(Apfolf]	Elemente mit dem Namen		
x['Apfel']	'Apfel'.		

Programmieren

i<-i+1

For-Schleife

```
for (Variable in Zahlensequenz){
    ...etwas machen...
}

Beispiel

for (i in 1:4){
```

```
for (i in 1:4){
    j <- i + 10
    print(j)
}</pre>
```

While-Schleife

```
while (Bedingung){
    ...etwas machen...
}

Beispiel

while (i < 5){
    print(i)</pre>
```

If und Else

```
if (Bedingung){
    ...etwas machen...
} else {
    ...etwas anderes machen...
}
```

Beispiel

```
if (i > 3){
    print('i ist groesser als 3')
} else {
    print('i ist kleiner oder gleich 3')
}
```

Funktionen

```
Funktionsname <- function(variable){
    ...etwas machen...
    return(neue_variable)
}
```

Beispiel

```
quadrat <- function(x){
   ergebnis <- x*x
   return(ergebnis)
}</pre>
```

Daten einlesen und schreiben

Siehe **readr** package

Eingabe	Ausgabe	Beschreibung
df <- read.table('Datei.txt')	write.table(df, 'Datei.txt') Liest und schreibt in eine Textdatei.	
df <- read.csv('Datei.csv')	write.csv(df, 'Datei.csv')	Liest und schreibt eine kommagetrennte Datei. Dies ist ein Sonderfall von read.table/write.table.
load('Datei.RData')	save(df, file = ' Datei.Rdata')	Liest und schreibt eine R-Datei, ein Dateityp den R verwendet.

Bedingungen

	a == b	Sind gleich	a > b	Größer als a >= b		Größer oder gleich	is.na(a)	Fehlt a
n	a != b	Nicht gleich	a < b	Kleiner als	a <= b	Kleiner oder gleich	is.null(a)	Ist a NULL

Datentypen

Konvertierung zwischen üblichen Datentypen in R. Man kann immer von einem höheren Wert in der Tabelle zu einem niedrigeren Wert transformieren.

as.logical	TRUE, FALSE, TRUE	Logische Datentypen (WAHR oder FALSCH)
as.numeric	1, 0, 1	Ganze Zahlen oder Gleitkommazahlen
as.character	'1', '0', '1'	Zeichenketten. Häufig einfacher zu handhaben als factors.
as.factor	'1', '0', '1' Levels: 0,1	Zeichenketten mit definierten Ebenen. Werden für manche statistischen Modelle genutzt.

Mathematische Funktionen

log(x)	Natürlicher Logarithmus	sum(x)	Summe
exp(x)	Exponentialfunktion	mean(x)	Mittelwert
max(x)	Größtes Element	median(x)	Median
min(x)	Kleinstes Element	quantile(x)	Quantile
round(x, n)	Runde auf n Dezimalstellen	rank(x)	Rang der Elemente
signif(x, n)	Runde auf n signifikante Stellen	var(x)	Varianz
cor(x, y)	Korrelation	sd(x)	Standardabweichung

Variablenzuweisung

Entwicklungsumgebung

ls()	Listet alle Variablen der Umgebung.
rm(x)	Entfernt x aus der Umgebung.
rm(list = ls())	Entfernt alle Variablen aus der Umgebung.
Sie können in der Registe	erkarte "Environment" in

RStudio ihre Variablen einsehen

Matrizen

$m \leftarrow matrix(x, nrow = 3, ncol = 3)$ Erstellt eine Matrix aus x.

Listen

I <- list(x = 1:5, y = c('a', 'b'))

Eine Liste ist eine Sammlung von Elementen. Dabei kann die Liste aus verschiedenen Datentypen bestehen.

I[[1]]	l[2]	I\$x	l['y']
Inhalt des	Zweites	Inhalt des	Element mit
ersten	Element von	Elements mit	Namen y von
Elements von	Liste l.	Namen x von	Liste I.
Liste l		Liste I.	

Datensätze

Siehe dplyr Package

Listen Untergruppen

df < -data.frame(x = 1:3, y = c('a', 'b', 'c'))

Ein besonderer Fall der Liste, in der alle Elemente die selbe Länge haben.

^	У			•
1	а	df\$x		df [[2]]
2	b			
3	С	<i></i>	Datensat	z anzeigen
Matrix Unt	tergruppen	Vie	w(df)	Zeigt den ganzen Datensatz.
df [, 2]		hea	nd(df)	Zeigt die ersten 6 Zeilen.
df [2,]		nrow(df) Anzahl der Zeilen	cbind-	Verbindet Spalten.
df [2, 2]		ncol(df) Anzahl der Spalten	rbind –	Verbinde Zeilen.
		dim(df)		

Anzahl der

und Zeilen

Spalten

Zeichenketten

Siehe **stringr** Package

Verbindet mehrere Vektoren miteinander. paste(x, y, sep = ' ') Verbindet Elemente eines Vektors miteinander. paste(x, collapse = ' ') Findet den regulären Ausdruck in x. grep(pattern, x) Ersetzt Übereinstimmungen in x mit einer gsub(pattern, replace, x) Zeichenkette. Konvertiert zur Großschreibung. toupper(x) tolower(x) Konvertiert zur Kleinschreibung Anzahl an Zeichen in der Zeichenkette. nchar(x)

Faktoren

factor(x)

Verwandelt einen Vektor in einen Faktor. Kann die Ebenen des Faktors und die Reihenfolge bestimmen.

cut(x, breaks = 4)

Verwandelt einen numerischen Vektor in einen Faktor, indem er in Bereiche "geschnitten" wird.

Statistik

 $Im(y \sim x, data=df)$ t.test(x, y) Lineares Modell Führt einen t-Test für den Unterschied $glm(y \sim x, data=df)$ zwischen Generalisiertes lineares Mittelwerten durch. Modell summary pairwise.t.test Erhalte detailliertere

Testet nach einem Unterschied zwischen Verhältnissen

Führe einen t-Test für paarweise Datensätze durch.

aov Führt eine Varianzanalyse durch.

prop.test

Verteilungen

	Zufalls- variable	Dichte- funktion	Kumulative Verteilung	Quantil
Normal-	rnorm	dnorm	pnorm	qnorm
Poission-	rpois	dpois	ppois	qpois
Binomial-	rbinom	dbinom	pbinom	qbinom
Gleich-	runif	dunif	punif	qunif

Grafik

Siehe **ggplot2** Package

plot(x) Werte von x der Reihe nach.

Informationen über

das Modell

plot(x, y) Werte von x im Vergleich zu y.

hist(x) Histogramm von x.

Datum / Daten

Siehe lubridate Package

