DeclareDesign:: **CHEAT SHEET**

C			
Model	Inquiry	Data Strategy	Answer Strategy
What is your model of the world, including how outcomes respond to interventions in the world?	What is the research question you want to answer?	How will you generate data to answer your inquiry?	How will you generate an answer to your inquiry? OI S with robust standard errors
Population	Causal inquiries	Sampung	
Define the size of the population, hierarchical	<pre>declare_estimand(ATE = mean(Y_Z_1 - Y_Z_0))</pre>	<pre>declare_sampling(n = 100)</pre>	<pre>declare_estimator(Y ~ Z, model = lm_robust)</pre>
structure (If any), and background variables.		<pre>declare_sampling(</pre>	
Simple dataset with no background variables	Descriptive inquiries	strata_n = 20, strata = urban area)	2SLS instrumental variables regression with robust SEs
<pre>pop <- declare_population(N = 100) pop()</pre>	<pre>declare_estimand(Y_median = median(Y))</pre>	_ Treatment assignment	<pre>declare_estimator(Y ~ D Z, model = iv_robust)</pre>
Simple detect with background variables		declars accimment $(m - 100)$	
Simple dataset with background variables	Conditional estimands	dectare_assignment(m = 100)	Difference-in-means
<pre>declare_population(N = 100,</pre>	<pre>declare_estimand(LATE = mean(Y Z 1 - Y Z 0)</pre>	<pre>declare_assignment(clusters = villages,</pre>	<pre>declare_estimator(Y ~ Z,</pre>
	<pre>subset = complier == TRUE)</pre>	m = 10)	<pre>model = difference_in_means)</pre>
Two-level dataset			

DeclareDesign is a software implementation of the MIDA framework, according to which research designs have a Model of the world, an Inquiry about that model, a **D**ata strategy that generates information about the world, and an **A**nswer strategy that uses data to make a guess about the Inquiry. Declared designs can be "diagnosed" to calculate the properties of the design such as power and bias using Monte Carlo simulation.

All declare_* functions return *functions*. Most functions take a data.frame and return a data.frame.

Design Declaration

Put together all the steps into a declared design using the + operator

design < declare_population(N = 200, X = rnorm(N)) + declare_potential_outcomes(Y ~ .5 * Z + X) + declare_estimand(ATE = mean(Y_Z_1 - Y_Z_0)) + declare_sampling(n = 100) + declare_assignment(m = 50) + declare_estimator(Y ~ Z, model = lm_robust)</pre>

draw_data(design)
draw_estimates(design)
get_estimates(design, data = real_data)
draw_estimands(design)
run_design(design)
summary(design)
compare_designs(design_1, design_2)

Design Diagnosis

Diagnose the properties of your design

```
diagnosis <- diagnose_design(
    design, sims = 100, bootstrap_sims = 100)</pre>
```

```
summary(diagnosis)
get_diagnosands(diagnosis)
get_simulations(diagnosis)
```

Custom diagnosands

```
diagnose_design(
    design,
    diagnosands = declare_diagnosands(
        sig_pos = mean(p.value < .05 & estimate > 0)))
```

Outcomes

declare population(

add level(N = 10,

add level(N = 100,

funding = rnorm(N)),

scores = rnorm(N))

schools =

students =

```
Outcomes that depend on a treatment (Z)

Using a formula

declare_potential_outcomes(

Y ~ .5 * Z + rnorm(N))

As separate variables

declare_potential_outcomes(

Y_Z_0 = rnorm(N),

Y_Z_1 = Y_Z_0 + .5)
```

Outcomes that do not depend on treatment

declare_potential_outcomes(
 Y = rnorm(N))