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Self-Organising Maps 
What is a Self-Organising Map? 

“A Self-Organising Map (S.O.M.) or Self-Organising Feature Map (S.O.F.M.) is a type of Artificial Neural 
Network (A.N.N.) that is trained using unsupervised learning to produce a low-dimensional (typically 
two-dimensional), discretized representation of the input space of the training samples, called a map, 
and is therefore a method to do dimensionality reduction. Self-Organising Maps differ from other 
Artificial Neural Networks as they apply competitive learning as opposed to error-correction learning 
(such as backpropagation with gradient descent), and in the sense that they use a neighborhood 
function to preserve the topological properties of the input space.” 

[Wikipedia - https://en.wikipedia.org/wiki/Self-organizing_map ] 

The algorithm is used for clustering (feature detection) and visualization in exploratory data analysis. 
Application fields include pattern recognition, data mining and process optimisation. 

Problem 
So, what’s the problem? And how to mitigate it or solve it? 

Sometimes, in Computer Science, to compute and execute tasks that require large computational 
resources and too much run-time, such as very complicated numerical simulations, it’s better to use 
some kind of parallelisation and high performance computing mechanisms. 

The CPU (if it’s not specified any mechanism for parallelisation), usually execute tasks in a sequential 
way, even if their work processes, that are being processed it’s not dependable of each other. 

One recent way to mitigate this problem with the large quantity of computational resources and run-
times, was introduced with the GPU computing. 

“The GPU computing is defining a new, supercharged law to replace Moore’s law. It starts with a highly 
specialized GPU parallel processor and continues through system design, software, algorithms, and 
optimized applications. Each GPU-accelerated server replaces dozens of commodity CPU servers, 
delivering a dramatic boost in application throughput and cost savings.” 

[NVIDIA - https://www.nvidia.com/en-us/high-performance-computing/ ]  
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CUDA 
CUDA API (Compute Unified Device Architecture) 

“CUDA is a parallel computing platform and application programming interface (API) model created by 
NVIDIA. It allows software developers to use a CUDA-enabled graphics processing unit (GPU) for general 
purpose processing — an approach termed GPGPU (General-Purpose Computing on Graphics Processing 
Units). The CUDA platform is a software layer that gives direct access to the GPU's virtual instruction 
set and parallel computational elements, for the execution of compute kernels.” 

“The API includes a set of CUDA ISA's (Instruction Set Architecture) instructions and the parallel 
computing engine on the GPU. It exposes the different memory types of the board and forces the 
developer to configure the global memory accesses, the cache, the amount and the layout of the 
threads. The developer will also be responsible for staggering activities between the GPU and the CPU.” 

[Wikipedia - https://en.wikipedia.org/wiki/CUDA ] 

Project’s Goal 
Implementing a Self-Organising Map, using GPU’s programming and parallelisation 

to improve the performance of the overall computing 

The goal of this project it’s to develop a GPU’s implementation of the Self-Organising Map (S.O.M.) 
Algorithm, using parallelism and tunings for the computing of kernels’ executions. And then, compare 
the overall performance (analysing some aspects as velocity, efficiency and cost) of that GPU’s 
implementation with a sequential implementation, for the same algorithm. 

It was asked to be developed a solution, using the CUDA or OpenCL APIs. 

In this report will be explained how the algorithm and respectively functions was developed, using the 
previously mentioned aspects and mechanisms. 

In this report, will be also shown some experimental results and some comparisons against a given 
sequential implementation of this same algorithm. 

At last, at the end of this report, will be taken and shown some conclusions about the collected 
experimental results and some comparisons made between the multiple implementations.  
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GPU’s Implementation 

Explanation of programming of the kernels of the GPU’s Implementation, using the 

CUDA API 

The Algorithm to be Implemented 

 
Where learning_rate(t) is given by the following formula: 
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It was implemented two CUDA-based versions of the algorithm (one version with the four core kernels 
asked and, a version based on the first one but with another some parallelism optimisations in the 
distances’ kernels and using CUDA’s Streams). The implementation of the four kernels will be explained 
next, as also, some other optimisations performed in another version. 
 
Each CUDA’s kernel launches a grid (or an array/vector) of Threads, divided by Blocks of the same 
dimension, where every Thread and Block are identified by an ID. 
 
To access the ID of the current executing Thread in the overall grid of Threads, by the following formula: 

● executingThreadIndex = (blockIndex x blockDim) + threadIndex 

Where: 
I. The blockIndex it’s the ID of the block on which the current executing Thread it’s computing; 

II. The blockDim it’s the dimension of the blocks launched inside the overall grid; 
III. The threadIndex it’s the ID of the the current executing Thread which it’s place inside the array/vector of 

the currently executing block; 

 
Example: 

1) To access to the executing Thread in the overall grid with the ID no. 13, in a grid with blocks of dimension 
of 8 Threads per each one, like the following one: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

blockID = 0 blockID = 1 

blockDim = 8 
2 * 8 = 16 Threads, from position 0 to 15 in the overall grid of executing Threads 

 
2) It’s the necessary to calculate the first position of the block where it’s placed the executing 

Thread that’s pretended to access. Since the Thread with the ID no. 13 it’s placed in the block 
with the ID no. 1, we have: 

● blockIndex x blockDim = 1 x 8 = 8 

3) And finally it’s applied some kind of offset given by the adinitionaly sum of the ID of the current 
executing Thread which it’s placed inside the array/vector of the block that’s being accessed. 
Since the Thread with the ID no. 13 it’s the Thread with the ID no. 5 placed in the block with the 
ID no. 1, we have: 

● ( blockIndex x blockDim ) + threadIndex = ( 1 x 8 ) + 5 = 8 + 5 = 13 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

 
The computed results are placed in this arrays/vectors or grids, in the GPU’s memory, and it’s almost 
always necessary to the user to transfer the related data to the CPU, and sometimes, finishes the 
computing process locally in the CPU memory. Basically, all the computing processes that need 
parallelism must be transfer from the CPU’s memory (Host) to the GPU’s memory (Device) and, at the 
end, it’s necessary make the opposite transfer flow back, from the GPU’s memory (Device) to the CPU’s 
memory (Host). 
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1. Distance Function 

For the Distance function, was implemented five distances’ functions (which two of them, was 
mandatory to implement and are the default ones in the application, the others are optional to use). 
The distances’ functions implemented are the following: 

1) Euclidean 2D (mandatory) 
2) Cosine (mandatory) 
3) Manhattan (bonus) 
4) Minkowski (bonus) 
5) Chebyshev (bonus) 

 
Since the accesses in memory made for all the distances’ functions are similar, it will be only explained 
the accesses to the indexes. 
 
All the distances’ functions are implemented by a CUDA’s kernel, that will receive as arguments the 
general map of observations, the current observation that’s being considered, the number of features 
(or components) for each observation, the size of the general map of observations, and also, the matrix 
of distances, where the final results will be placed. This functions use the following specifications: 

a) It’s calculated the ID of the current executing Thread in the overall grid of Threads to be considered as 
the index of the general map of observations; 

b) If the previously mentioned index or ID it’s inside of the dimensions of the matrix of distances, it will be 
summed to that index, some kind of offset, given for each feature (or component) of the observation 
that’s being currently computed. This access will be used for one of the vectors to compute the distance; 

c) For each observation accessed, will be considered every feature (or component) that’s being analysed, 
for the previously mentioned current vector being used for computing the distance, according to the used 
distances’ function at the moment; 

d) The result will be placed in a matrix of distances with the same dimensions of the general map of 
observations, but instead of have an observation with multiple features, will have only the calculated 
distance for every observation processed; 

The accesses to the indexes on the general map of observations in the distances’ functions, in the 
simplest version, are only made by the previously mentioned operations on the indexes of the overall 
grid of the executing threads. But additionally was implemented a optimised version, that takes 
advantage of the computed index to access also the index of the features of an observation and 
improves the performance, by using parallelism properties of the threads and parallel reduction 
operations. This it’s made with the support of shared memory and uses the following modified 
specifications: 

a) For access the indexes of each feature of an observation, it’s reused the ID of the executing Thread in the 
current executing block, the threadIndex, but it’s only considered if that threadIndex it’s lower than the 
number of features of an observation; 

b) Instead of, making a global summation considering each feature analysed incrementally, it’s only 
considered unit vectors (with only one observation) and its result it’s placed in a shared memory; 

c) The final global sum it’s made by summing the values placed in the shared memory, doing a sum 
reduction parallel operation, in a logarithmic complexity; 

d) The final result will be placed in the first index of the shared memory and will be used to fulfill all the 
indexes of the matrix of distances;   
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2. ArgMin Function 

For the ArgMin function to find the BMU (Best Matching Unit), was implemented a CUDA’s kernel, that 
will receive as arguments the previously computed matrix of distances, the dimensions of that matrix 
of distances, and two arrays/vectors to keep the minimum value of all the distances for the observation 
that’s being currently analysed and its respectively index, where the final results will be placed, since 
the ArgMin function it’s supposed to return the index of the minimum value and not that value itself. 
This function uses the following specifications: 
 
For access the indexes of each feature of an observation, it’s reused the ID of the executing Thread in 
the current executing block, the threadIndex, but it’s only considered if that threadIndex it’s lower than 
the number of features of an observation; 

a) It’s performed a parallel reduction with the support of two shared memories, to be kept the temporary 
minimum value of all the distances for the observation that’s being currently analysed and its 
respectively index: 

b) This parallel reduction it’s performed by doing parallel comparisons between the assessed values instead 
of having a global variable to be keeping the minimum value until the moment. These comparisons and 
the parallel process to find the minimum value of each block will be made considering consecutive 
divisions in half of the blocks’ size, in a logarithmic way, considering always the blocks’ size and the 
currently executing Thread’s ID inside each block. 

c) At the end of the process, both minimum value of all the distances for the observation that’s being 
currently analysed and its respectively index, will be placed in the first position of the respectively shared 
memories; 

d) Since, this process only computes the minimum value of all the distances for the observation that’s being 
currently analysed and its respectively index, for each block, the both values at shared memories will be 
transferred to the corresponding arrays/vectors to keep that values, and posteriorly, transferred to the 
CPU’s memory, to be find the global minimum value and the respectively index, between all the blocks; 
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3. Neighborhood Function 

For the Neighborhood function to compute the matrix of Neighborhood to a specific observation, was 
implemented a CUDA’s kernel, that will receive as arguments the current iteration, the number of 
features (or components) for all the observations, the previously computed BMU (Best Matching Unit), 
as the index of that minimum value, as explained before, the size of the matrix of Neighborhood, which 
will have the same dimensions of the matrix of distances, the maximum distance that these matrices 
may have, and the matrix of Neighborhood itself, where the final results will be placed. This function 
uses the following specifications: 

a) It’s calculated the ID of the current executing Thread in the overall grid of Threads to be considered as 
the index of the matrix of Neighborhood; 

b) If the previously mentioned Thread’s ID it’s inside of the dimensions of the matrix of Neighborhood, it 
will be compute to that index, the result of the neighborhood function specified in the algorithm of the 
project’s description; 

c) The computing and calculations for the Neighborhood function will be made, taking in consideration, the 
value of theta based in the received arguments of the maximum distance that these matrices may have, 
the current iteration and the number of inputs (number of observations) of the file that’s being 
processed, the square root of the two power of the absolute value of the difference between the BMU 
(Best Matching Unit), previously calculated. And finally, it will be calculated the exponential value of the 
negative value resulting of the previously calculated square root divided by two power of the theta value; 

d) The result will be placed in a matrix of Neighborhood, in the previously specified and calculated index. If 
the final result of the all the previous operations is lower than 0.01, otherwise the result place in that 
index, will be 0.0; 

4. UpdateMap Function 

For the UpdateMap function to update the indexes of the general map of observations, accordingly 
with the computing steps made by the previously three functions, was implemented a CUDA’s kernel, 
that will receive as arguments the current iteration, the number of features (or components) of an 
observation, the observation that’s being currently processed, the dimensions of the general map of 
observations, the matrix of Neighborhood and also, the general map of observations, where will be 
kept the updated values in the corresponding indexes. This function use the following specifications: 

a) It’s calculated the ID of the current executing Thread in the overall grid of Threads to be considered as 
the index of the general map of observations; 

b) If the previously mentioned Thread’s ID it’s inside of the dimensions of the general map of observations, 
it will be compute to that index, the update value for the corresponding observation, accordingly to the 
specified in the algorithm of the project’s description; 

c) The computing and calculations for the update of observations contained in the general map of 
observations will be made by the summation of all the products between the learning rate (which is 1 
divided by the current iteration), the value of the previously mentioned index in the matrix of 
Neighborhood and the difference between all the features of the observation that’s being currently 
processed and all the features of the observation of the corresponding to the previously calculated index; 
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CUDA’s Parallel Streams 

In the CUDA’s optimised version it’s implemented also, with the support of CUDA’s Parallel Streams to 
overlap computation with communication. 

This parallelism that was pretended to obtain, in order to improve the overall performance and runtime 
of the global process, it’s based in process more than observation at the same moment. 

If it’s four or more remaining observations to process, it will be launched four parallel CUDA’s kernels 
in different CUDA’s parallel streams. 

If it’s only three remaining observations to process, it will be launched three parallel CUDA’s kernels in 
the different CUDA’s parallel streams. 

If it’s only two remaining observations to process, it will be launched two parallel CUDA’s kernels in the 
different CUDA’s parallel streams. 

If, at last, it’s only one remaining observation to process, it will be launched a single CUDA’s kernel that 
will not be in any CUDA’s parallel stream. 

The CUDA’s kernels in different CUDA’s streams runs in parallel and in an independent way from each 
other. This it’s a good mechanism to improve the overall computing performance and runtime of the 
execution of the algorithm for all observations that have to be processed. 

The following simple example, shows the differences between the supposed behaviours of CUDA’s 
kernels executing in different parallel streams: 
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Evaluations & Comparisons 
 
It was performed some experimental tests (most specifically, a total of 4 tests), considering the input 
file iris.data. The table of the best obtained results are shown in the following table: 

 

 
Performed 

Test no. 

 
Dimensions of the 

matrices 

Runtimes of executions (in milliseconds) 
for each version of the SOM algorithm 

CPU’s Sequential 
Version 

GPU’s Parallel Version GPU’s Optimised Parallel 
Version 

#1 [20x20] 486 ms 73 ms 66 ms 

#2 [200x200] 49 525 ms 72 ms 69 ms 

#3 [500x500] 305 281 ms 69 ms 71 ms 

#4 [1000x1000]  1 207 795 ms 72 ms 68 ms 

 
Table 1: The table of evaluation and comparison of the experimental tests, considering the three versions of the Self-Organising 

Maps algorithm for the input file of iris.data 

 
It was performed some experimental tests (most specifically, a total of 4 tests), considering the input 
file correlated-stream.data. The table of the best obtained results are shown in the following table: 

 

 
Performed 

Test no. 

 
Dimensions of the 

matrices 

Runtimes of executions (in milliseconds) 
for each version of the SOM algorithm 

CPU’s Sequential 
Version 

GPU’s Parallel Version GPU’s Optimised Parallel 
Version 

#1 [20x20] 2 280 ms 336 ms 334 ms 

#2 [200x200] 305 186 ms 438 ms 367 ms 

#3 [500x500] 1 956 461 ms 442 ms 372 ms 

#4 [1000x1000] 6 736 328 ms 679 ms 364 ms 

 
Table 2: The table of evaluation and comparison of the experimental tests, considering the three versions of the Self-Organising 

Maps algorithm for the input file of correlated-stream.data 
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Computer’s Characteristics and 
Specifications 
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Conclusions 
The implementation of this project using parallelism of the GPU with the support of CUDA’s kernels 
properties give huge improvements in the computing performance, specially when we are dealing with 
computing processes on huge and massive amounts of data. The runtime of the computing and the 
processing decrease in exponential scale. 

Sometimes, using the CUDA’s Parallel Streams to overlap computation with communication, can 
leverage even more the global computing performance, decreasing even more the runtimes and the 
processing costs, since we can make operations that are not dependable of each others, 
simultaneously, using a kind of processing channels, most specifically parallel computing streams. 
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Project’s Repository 
 
If you are interested in check the CUDA and C++ (C Plus Plus) versions of the several implementations 
of the algorithm, as also, the generated outputs from some experimental tests performed, you can 
check it all in the following GitHub’s repository: 
 

● https://github.com/rubenandrebarreiro/gpu-cuda-self-organising-maps 
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