---
title: "R Notebook"
output: html_notebook
---
```{r}
library(h2o)
h2o.init(nthreads = -1)
h2o.no_progress()
print("Import approved and rejected loan requests...")
loans <- h2o.importFile(path = "data/loan.csv")
loans$bad_loan <- as.factor(loans$bad_loan)
rand <- h2o.runif(loans, seed = 1234567)
train <- loans[rand$rnd <= 0.8, ]
valid <- loans[rand$rnd > 0.8, ]
myY = "bad_loan"
myX = c("loan_amnt", "longest_credit_length", "revol_util", "emp_length",
"home_ownership", "annual_inc", "purpose", "addr_state", "dti",
"delinq_2yrs", "total_acc", "verification_status", "term")
#Save train/valid data
h2o.downloadCSV(train, "data/train.csv")
h2o.downloadCSV(valid, "data/valid.csv")
model <- h2o.gbm(x = myX, y = myY,
training_frame = train, validation_frame = valid,
score_each_iteration = T,
ntrees = 100, max_depth = 5, learn_rate = 0.05,
model_id = "BadLoanModel")
print(model)
# Download generated MOJO for model
if (! file.exists("tmp")) {
dir.create("tmp")
}
#h2o.download_pojo(model, path = "tmp")
h2o.download_mojo(model, path = "tmp")
myY = "int_rate"
myX = c("loan_amnt", "longest_credit_length", "revol_util", "emp_length",
"home_ownership", "annual_inc", "purpose", "addr_state", "dti",
"delinq_2yrs", "total_acc", "verification_status", "term")
model <- h2o.gbm(x = myX, y = myY,
training_frame = train, validation_frame = valid,
score_each_iteration = T,
ntrees = 100, max_depth = 5, learn_rate = 0.05,
model_id = "InterestRateModel")
print(model)
# Download generated MOJO for model
if (! file.exists("tmp")) {
dir.create("tmp")
}
#h2o.download_pojo(model, path = "tmp")
h2o.download_mojo(model, path = "tmp")
#Add "id" field to valid dataset and save as eval
eval=as.data.frame(valid)
eval$id=rownames(eval)
eval=eval[,c("id",myX,"bad_loan","int_rate")]
write.csv(eval,"tmp/eval.csv" , row.names = F)
```