import h2o h2o.init() print("Import approved and rejected loan requests...") loans = h2o.import_file(path = "data/loan.csv") loans["bad_loan"] = loans["bad_loan"].asfactor() rand = loans.runif(seed = 1234567) train = loans[rand <= 0.8] valid = loans[rand > 0.8] myY = "bad_loan" myX = ["loan_amnt", "longest_credit_length", "revol_util", "emp_length", "home_ownership", "annual_inc", "purpose", "addr_state", "dti", "delinq_2yrs", "total_acc", "verification_status", "term"] from h2o.estimators.gbm import H2OGradientBoostingEstimator model = H2OGradientBoostingEstimator(score_each_iteration = True, ntrees = 100, max_depth = 5, learn_rate = 0.05, model_id = "BadLoanModel") model.train(x = myX, y = myY, training_frame = train, validation_frame = valid) print(model) # Download generated MOJO for model import os if not os.path.exists("tmp"): os.makedirs("tmp") model.download_mojo(path = "tmp") myY = "int_rate" myX = ["loan_amnt", "longest_credit_length", "revol_util", "emp_length", "home_ownership", "annual_inc", "purpose", "addr_state", "dti", "delinq_2yrs", "total_acc", "verification_status", "term"] model = H2OGradientBoostingEstimator(score_each_iteration = True, ntrees = 100, max_depth = 5, learn_rate = 0.05, model_id = "InterestRateModel") model.train(x = myX, y = myY, training_frame = train, validation_frame = valid) print(model) # Download generated MOJO for model model.download_mojo(path = "tmp")