{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Hierarchical Clustering (SciPy)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "from matplotlib import pyplot as plt\n",
    "from sklearn import datasets\n",
    "\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "\n",
    "from scipy.cluster.hierarchy import dendrogram, linkage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    },
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD7CAYAAABDld6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAcVElEQVR4nO3de3BV9b338feXEDEiGBkSDIkY7UEuCRAgI1CdqOWEoGUUErVGPEoT69Q5Pg/eoDCd1uI8CiP1CLWOFQ9Wqg4UNYKDCnIVamsxkCCxNF6pEKiAGhUIJYTf80cCJRqSnWSvvdbe+/OacUzWzt7ru6J+XHzX72LOOUREJLi6+F2AiIi0TkEtIhJwCmoRkYBTUIuIBJyCWkQk4BTUIiIBp6AWETmFmZ1vZuvN7G9m9p6ZTW063svMVpvZB01/PzdiNWkctYjIv5lZGpDmnNtqZj2ALcBEYArwhXNujpnNAM51zv0sIjV5EdS9e/d2mZmZYf9cEZFI+/DDD0lNTeXTTz9lwIABJCYmUl9fT3V1NdnZ2WE7z5YtWw4451Jaes2ToM7NzXXl5eVh/1wRkUjauXMneXl5VFVV0a9fP2prawFwznHuueee/D4czGyLcy63pdfUoxaRmFVSUkJqamqzO98vvviC/Px8+vfvT35+Pl9++WWL7z148CBFRUXMmzePnj17NnvNzDAzT2s/lYJaRGLWlClTWLlyZbNjc+bMYezYsXzwwQeMHTuWOXPmfOd99fX1FBUVMXnyZAoLCwHo06cPe/fuBWDv3r2kpqZ6fwFNFNQiErPy8vLo1atXs2PLly/n1ltvBeDWW29l2bJlzV53zlFaWsqgQYO45557Th6/5pprWLRoEQCLFi3i2muv9bb4U3SN2JlERALgs88+Iy0tDYDzzjuPzz77rNnrb731Fs8++yxDhgwhJycHgIceeogZM2Zwww03sHDhQi644AKWLl0asZoV1CISt1rqNV922WWcbpDF2rVrI1HWdyioRSSunOg1p6Wlha3XvKyihrmrqtlTW0ff5CSmFQxg4vD0MFTbSD1qEYkr4e41L6uoYWbZdmpq63BATW0dM8u2s6yiJgzVNlJQi0jMKi4uZsyYMVRXV5ORkcHChQuZMWMGq1evpn///qxZs4YZM2Z06hxzV1VTV9/Q7FhdfQNzV1V36nNPpdaHiMSsxYsXt3g8nL3mPbV17TreEQpqEZFTtLff3Dc5iZoWQrlvclLYalLrQ0SkSUf6zdMKBpCUmNDsWFJiAtMKBoStLgW1iEiTjvSbJw5PZ3bhENKTkzAgPTmJ2YVDwjrqQ60PEZEmHe03TxyeHtZg/jbdUYuINDldXzmc/eaOUFCLSKtaWoHuhEceeQQz48CBAz5UFn6R6Dd3hIJaRFrV0gp0ALt27eKNN96gX79+PlTljUj0mztCPWoRaVVeXh47d+78zvG7776bhx9+OKKryEWC1/3mjtAdtUiMa6110VHLly8nPT2dYcOGhe0z5fQU1CIx7nSti446fPgwDz30EA888EDYPlNap6AWiXEtLZ7fGR999BGffPIJw4YNIzMzk927dzNixAj++c9/hu0c0px61CLSLkOGDGHfvn0nv8/MzKS8vJzevXv7WFVs0x21iLSqpRXoJLJ0Ry0irTrdCnQntDQiRMJLQS0iYef1jifxRq0PkSjX0vC7F154gaysLLp06UJBQUFEWxeR2PEk3iioRaJcS8PvsrOzKSsrIy8vjwcffJC9e/dSX1/P7t27KS0t9bSeSOx4Em/U+hCJci3NHBw0aFBI7/WiRRGJHU/ije6oReKUVy2KoK5AF80U1CJxyqsWRVBXoItmIQW1md1tZu+ZWZWZLTazM70uTES85VWLIqgr0EWzNnvUZpYO/F9gsHOuzsyWAjcCz3hcm4h4yMtNWYO4Al00C7X10RVIMrOuwFnAHu9KEpH2aGnm4Msvv0xGRgZ/+ctf+OEPf0hBQcF33qcWRfQw51zbP2Q2FXgQqAPecM5NbuFnbgduB+jXr9/If/zjH2EuVUTCTRNTgsPMtjjnclt6LZTWx7nAtcCFQC3wgpnd7Jx77tSfc84tABYA5Obmtp3+IuKbbwf0oz/KUUAHWCitj/8EPnHO7XfO1QNlwPe9LUtEvKKZg9EnlKD+FBhtZmeZmQFjgR3eliUiXtHMwejTZlA75/4KvAhsBbY3vWeBx3WJiEc0czD6hDSF3Dl3P3C/x7WISAR4OSxPvKGZiSJxRsPyoo8WZRKJMydGd2hYXvRQUIvEIc0cjC5qfYiIBJyCWkQk4BTUIiIBp6AWEQk4BbWISMApqEVEAk5BLSIScApqEZGAU1CLiAScglpEJOAU1CIBMH/+fLKzs8nKymLevHl+lyMBo6AW8VlVVRVPPfUUmzdvZtu2baxYsYIPP/zQ77IkQBTUIj7bsWMHo0aN4qyzzqJr165cfvnllJWV+V2WBIiCWsRn2dnZbNq0ic8//5zDhw/z2muvsWvXLr/LkgDRMqciPhs0aBA/+9nPGDduHN27dycnJ4eEhIS23yhxQ3fUIgFQWlrKli1b2LhxI+eeey4XX3yx3yVJgOiOWiQA9u3bR2pqKp9++illZWW8/fbbfpckAaKgFgmAoqIiPv/8cxITE3n88cdJTk72uyQJEAW1SABs2rTJ7xIkwBTUIgG2rKJGm9CKglokqJZV1DCzbDt19Q0A1NTWMbNsO4DCOs5o1IdIQM1dVX0ypE+oq29g7qpqnyoSvyioRQJqT21du45L7FJQiwRU3+Skdh2X2KWgFgmoaQUDSEpsPkMxKTGBaQUDfKpI/KKHiSIBdeKBoUZ9iIJaJMAmDk9XMItaHyIiQaegFhEJOAW1iEjAKahFRAJOQS0iEnAKahGRgAspqM0s2cxeNLO/m9kOMxvjdWEiItIo1HHU84GVzrnrzOwM4CwPaxIRkVO0GdRmdg6QB0wBcM4dBY56W5aIiJwQyh31hcB+4PdmNgzYAkx1zh069YfM7HbgdoDu3buTmppKamoqVVVVAPzoRz+iurpxecba2lqSk5OprKwM24WIiMSqUHrUXYERwBPOueHAIWDGt3/IObfAOZfrnMtNT09n5cqVzV7/4x//SGVlJZWVlRQVFVFYWBiO+kVEYl4oQb0b2O2c+2vT9y/SGNyn1aNHD3r16tXia845li5dSnFxcbsKFRGJV20GtXPun8AuMzuxtuJY4G8dPeGmTZvo06cP/fv37+hHiIjElVBHffwf4PmmER8fAz/u6AkXL16su2kRkXYIKaidc5VAbmdPduzYMcrKytiyZUtnP0piRG1tLbfddhtVVVWYGU8//TRjxmiYvsipIroe9Zo1axg4cCAZGRmRPK0E2NSpUxk/fjwvvvgiR48e5fDhw36XJBI4nkwh//jjjxkzZgzV1dVkZGSwcOFCAJYsWaK2h5z01VdfsXHjRkpLSwE444wzSE5O9rcokQDy5I76oosuory8/DvHn3nmGS9OJ1Hqk08+ISUlhR//+Mds27aNkSNHMn/+fLp37+53aSKBEphFmZZV1HDpnHVcOONVLp2zjmUVNX6XJB47duwYW7du5Y477qCiooLu3bszZ84cv8sSCZxABPWyihpmlm2nprYOB9TU1jGzbLvCOsZlZGSQkZHBqFGjALjuuuvYunWrz1WJBE8ggnruqmrq6huaHaurb2DuqmqfKpJIOO+88zj//PNPLi2wdu1aBg8e7HNVIsETiF3I99TWteu4xI7HHnuMyZMnc/ToUS666CJ+//vf+12SSOAEIqj7JidR00Io901O8qEaiaScnJwWHzyLyL8FovUxrWAASYkJzY4lJSYwrWDAad4hkVBSUkJqairZ2dknj02bNo2BAwcydOhQJk2aRG1tbdjPGw0Plh999FGysrLIzs6muLiYI0eO+F2SxLBABPXE4enMLhxCenISBqQnJzG7cAgTh6f7XVpcmzJlyndWQczPz6eqqop3332Xiy++mNmzZ4f1nNHwYLmmpobf/OY3lJeXU1VVRUNDA0uWLPG7LIlhgWh9QGNYK5iDJS8vj507dzY7Nm7cuJNfjx49mhdffDGs52ztwXKQ/v04duwYdXV1JCYmcvjwYfr27et3SRLDAnFHLdHp6aef5qqrrgrrZ0bDg+X09HTuu+8++vXrR1paGuecc06z/4GJhJuCWjrkwQcfpGvXrkyePDmsn3u6B8hBerD85Zdfsnz5cj755BP27NnDoUOHeO655/wuS2KYglra7ZlnnmHFihU8//zzmFlYPzsaHiyvWbOGCy+8kJSUFBITEyksLOTPf/6z32VJDAtMj1qiw8qVK3n44Yd58803Oeus8G9Gf6IPPXdVNXtq6+ibnMS0ggGB6k/369ePt99+m8OHD5OUlMTatWvJze30KsAip6WgltMqLi5mw4YNHDhwgIyMDGbNmsXs2bP517/+RX5+PtD4QPF3v/tdWM8b9AfLo0aN4rrrrmPEiBF07dqV4cOHc/vtt/tdlsQwc86F/UNzc3OdJjFIuJWUlLBixYpmu9v/6le/4qmnniIlJQWAhx56iKuvvtrPMkU6xMy2OOda/KOZ7qglrJZV1HjWtpgyZQp33nknt9xyS7Pjd999N/fdd19YztEZXl67xDcFtYTNickqJ8ZBn5isAnDXpEvp0aMHCQkJdO3atUPTxlsa1x0UrV27wlo6S6M+JGzaWgVx/fr1VFZWhn1tj9/+9rcMHTqUkpISvvzyy7B+dqi0AqR4SUEtYePHZJU77riDjz76iMrKStLS0rj33ns9O1dromGijkQvBbWETWuTVcyMcePGMXLkSBYsWBC2c/bp04eEhAS6dOnCT37yEzZv3hy2z26PaJioI9FLQS1h09pklT/96U9s3bqV119/nccff5yNGzeG5Zx79+49+fXLL7/cbKW/SIqGiToSvfQwUcImlMkqqampTJo0ic2bN5OXl9euz29pXPeGDRuorKzEzMjMzOTJJ58M6zWFKhom6kj00jhq8dyhQ4c4fvw4PXr04NChQ+Tn5/PLX/6S8ePH+12aSGBoHLX46rPPPmPSpElA4/KgN910U8RCWmObJRYoqMVzF110Edu2bYv4eTW2WWKFglp84/XdbrRsQiDSFo36EF9EYsutWBnb3NLelZWVlYwePZqcnBxyc3N9G5YokaGgFl9EYiZfrIxtbmnvyunTp3P//fdTWVnJAw88wPTp032qTiJBQS2+iMTdbqyMbc7Ly6NXr17NjpkZX3/9NQBfffWV9myMcepRiy/6JidR00Ioh/NuN5bHNs+bN4+CggLuu+8+jh8/rh1mYpyCWnwxrWBAsxEZ4M3dbtA3IeioJ554gkcffZSioiKWLl1KaWkpa9as8bss8YhaH+KLicPTmV04hPTkJAxIT05iduGQmAxVLyxatIjCwkIArr/+ej1MjHG6oxbfxOrdbiT07duXN998kyuuuIJ169bRv39/v0sSDymoRQKupTVOnnrqKaZOncqxY8c488wzw7oioQRPyEFtZglAOVDjnJvgXUkicqrFixe3eHzLli0RrkT80p476qnADqCnR7WISBhofZPYE9LDRDPLAH4I/K+35YhIZ0RixqdEXqijPuYB04Hjp/sBM7vdzMrNrHz//v3hqE1E2kl7N8amNoPazCYA+5xzrTbEnHMLnHO5zrnclJSUsBUoIqGLlfVNpLlQ7qgvBa4xs53AEuAHZvacp1WJSIfEyvom0lybQe2cm+mcy3DOZQI3Auucczd7XpmItFusrG8izWkctUgMieX1TeKZ9kwUEQmA1vZM1FofIiIBp6AWEQk4BbWISMApqEVEAk5BLSIScApqEZGAU1CLiAScglpEJOAU1CIiAaegFhEJOAW1iEjAKahFRAJOQS0iEnAKahGRgFNQi4gEnIJaJMYcOXKESy65hGHDhpGVlcX999/vd0nSSdrhRSTGdOvWjXXr1nH22WdTX1/PZZddxlVXXcXo0aP9Lk06SHfUIjHGzDj77LMBqK+vp76+HjPzuSrpDAW1SAxqaGggJyeH1NRU8vPzGTVqlN8lSScoqEViUEJCApWVlezevZvNmzdTVVXld0nSCQpqkRiWnJzMlVdeycqVK/0uRTpBQS0SY/bv309tbS0AdXV1rF69moEDB/pblHSKRn2IxJi9e/dy66230tDQwPHjx7nhhhuYMGGC32VJJyioRWLM0KFDqaio8LsMCSMFtUicWFZRw9xV1eypraNvchLTCgYwcXi632VJCBTUInFgWUUNM8u2U1ffAEBNbR0zy7YDKKyjgB4misSBuauqT4b0CXX1DcxdVe1TRdIeCmqRTti1axdXXnklgwcPJisri/nz5/tdUov21Na167gEi1ofIp3QtWtXHnnkEUaMGME333zDyJEjyc/PZ/DgwX6X1kzf5CRqWgjlvslJPlQj7aU7apFOSEtLY8SIEQD06NGDQYMGUVNT43NV3zWtYABJiQnNjiUlJjCtYIBPFUl76I5aJEx27txJRUVFINfVOPHAUKM+opOCWiQMDh48SFFREfPmzaNnz55+l9OiicPTFcxRSq0PkU6qr6+nqKiIyZMnU1hY6Hc5EoMU1CKd4JyjtLSUQYMGcc899/hdjsQoBbVIJ7z11ls8++yzrFu3jpycHHJycnjttdf8LktijHrUIp1w2WWX4ZzzuwyJcQpqEY9obQ0JlzZbH2Z2vpmtN7O/mdl7ZjY1EoWJRLMTa2vU1Nbh+PfaGssqgjfGWoIvlB71MeBe59xgYDTw32YWrGlXIgGjtTUknNoMaufcXufc1qavvwF2APrzm0grtLaGhFO7Rn2YWSYwHPhrC6/dbmblZla+f//+MJUnEp1Ot4aG1taQjgg5qM3sbOAl4C7n3Nffft05t8A5l+ucy01JSQlnjSJRR2trSDiFNOrDzBJpDOnnnXNl3pYkEv20toaEU5tBbWYGLAR2OOf+x/uSRGKD1taQcAml9XEp8F/AD8yssumvqz2uS8RzJSUlpKamkp2d3ez4Y489xsCBA8nKymL69Ok+VRf9qqurT87WzMnJoWfPnsybN8/vsqJSm3fUzrk/ARaBWkQiasqUKdx5553ccsstJ4+tX7+e5cuXs23bNrp168a+fft8rDC6DRgwgMrKSgAaGhpIT09n0qRJ/hYVpbTWh8StvLw8evXq1ezYE088wYwZM+jWrRsAqampfpQWc9auXcv3vvc9LrjgAr9LiUoKapFTvP/++2zatIlRo0Zx+eWX88477/hdUkxYsmQJxcXFfpcRtRTUIqc4duwYX3zxBW+//TZz587lhhtuiPiiSy31zn/xi18wdOhQcnJyGDduHHv27IloTZ1x9OhRXnnlFa6//nq/S4laCmqRU2RkZFBYWIiZcckll9ClSxcOHDgQ0RqmTJnCypUrmx2bNm0a7777LpWVlUyYMIEHHnggojV1xuuvv86IESPo06eP36VELQW1yCkmTpzI+vXrgcY2yNGjR+ndu3dEa2ipd37q9l6HDh2icdRsdFi8eLHaHp2kZU4lbhUXF7NhwwYOHDhARkYGs2bNoqSkhJKSErKzsznjjDNYtGhRYELx5z//OX/4wx8455xzTv7PJOgOHTrE6tWrefLJJ/0uJaqZF/233NxcV15eHvbPFYkXO3fuZMKECVRVVX3ntdmzZ3PkyBFmzZrlQ2XiFTPb4pzLbek13VGLtEMQNgOoqKigrKyMl1566WSQb9u2jZ/+9KccPHiQzMxMnn/++cDuhg7B+D1GE/WoRULk52YAH3zwwcmv09LSuPzyy5u9fttttzFnzhy2b9/OpEmTmDt3ruc1dZQ2VWg/BbVIiCK1GUBxcTFjxoyhurqajIwMFi5cyIwZM8jOzmbo0KF8/PHHPPjgg83e8/7775OXlwdAfn4+L730UlhrCidtqtB+an2IhChSmwEsXrz4O8dKS0ubfb9z585m32dlZbF8+XImTpzICy+8wK5du8JaUzhpU4X20x21SIiCvBnATffNZsq0/0e38/6Dea+9CwnBvQcL8u8xqBTUIiEK6mYAyypqeLyijuSiWaRNmU/DRd/nWPfUwPZ8g/p7DDIFtUiIJg5PZ3bhENKTkzAgPTmJ2YVDfB+tMHdVNQdrPwfAueN89ecldB82PrA936D+HoMsuH8+EgmgIGwG8O2JOkeGFHG8vo5vtr4KwFkXf5/uQ/ID3fMNwu8xmiioRaLMtx82XjpnHTW1dfTMvbbZcfV8Y4daHyJRLpSe77KKGi6ds44LZ7zKpXPWBbZ/LS3THbVIlGtrI90TE0xOjF0+McHk1PdKsCmoRWJAaz3f1iaYKKijg1ofIjFOE0yin4JaJMYFbYJJQ0MDw4cPZ8KECb6cPxopqEViXNAmmMyfP59Bgwb5cu5opaAWiXFBmmCye/duXn31VW677baInzua6WGiSBwIygSTu+66i4cffphvvvnG71Kiiu6oRSQiVqxYQWpqKiNHjvS7lKijoBaRiHjrrbd45ZVXyMzM5MYbb2TdunXcfPPNfpcVFbRnoohE3IYNG/j1r3/NihUr/C4lMFrbM1F31CIiAaeHiSIScVdccQVXXHGF32VEDQW1iPhOu5K3TkEtIr7SolFtU49aRHylXcnbpqAWEV9p0ai2KahFxFdBWzQqiBTUIuKroC0aFUR6mCgivmprhxoJMajNbDwwH0gA/tc5N8fTqkQkrgRl0aigarP1YWYJwOPAVcBgoNjMBntdmIiINAqlR30J8KFz7mPn3FFgCXBtG+8REZEwCSWo04Fdp3y/u+lYM2Z2u5mVm1n5/v37w1WfiEjcC9uoD+fcAudcrnMuNyUlJVwfKyIS90IJ6hrg/FO+z2g6JiIiEdDmetRm1hV4HxhLY0C/A9zknHuvlffsBw4BB8JXalTpja493sTrdYOuPVzXfoFzrsV2RJvD85xzx8zsTmAVjcPznm4tpJvek2Jm5adbBDvW6drj79rj9bpB1x6Jaw9pHLVz7jXgNY9rERGRFmgKuYhIwHkZ1As8/Oyg07XHn3i9btC1e86TzW1FRCR81PoQEQk4BbWISMB5GtRmNtfM/m5m75rZy2aW7OX5gsTMrjez98zsuJnF/NAlMxtvZtVm9qGZzfC7nkgxs6fNbJ+ZVfldS6SZ2flmtt7M/tb07/pUv2uKBDM708w2m9m2puue5fU5vb6jXg1kO+eG0jhpZqbH5wuSKqAQ2Oh3IV6L8xUWnwHG+12ET44B9zrnBgOjgf+Ok3/u/wJ+4JwbBuQA481stJcn9DSonXNvOOeONX37No3Tz+OCc26Hcy5edueM2xUWnXMbgS/8rsMPzrm9zrmtTV9/A+yghQXbYo1rdLDp28SmvzwdlRHJHnUJ8HoEzyeRE9IKixK7zCwTGA781edSIsLMEsysEtgHrHbOeXrdnd6Ky8zWAOe18NLPnXPLm37m5zT+Men5zp4vSEK5dpFYZ2ZnAy8Bdznnvva7nkhwzjUAOU3P3V42s2znnGfPKTod1M65/2ztdTObAkwAxroYG7Td1rXHEa2wGKfMLJHGkH7eOVfmdz2R5pyrNbP1ND6n8CyovR71MR6YDlzjnDvs5bnEV+8A/c3sQjM7A7gReMXnmsRjZmbAQmCHc+5//K4nUsws5cQINjNLAvKBv3t5Tq971L8FegCrzazSzH7n8fkCw8wmmdluYAzwqpmt8rsmrzQ9MD6xwuIOYGlbKyzGCjNbDPwFGGBmu82s1O+aIuhS4L+AHzT9911pZlf7XVQEpAHrzexdGm9SVjvnVnh5Qk0hFxEJOM1MFBEJOAW1iEjAKahFRAJOQS0iEnAKahGRgFNQi4gEnIJaRCTg/j8No8evHXVlQAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "max_samples = 20\n",
    "labels = range(1, max_samples+1)\n",
    "\n",
    "data, labels_true = datasets.make_blobs(n_samples=max_samples, centers=[[1,1],[0,5],[2,8]], cluster_std=0.7,\n",
    "                            random_state=0)\n",
    "\n",
    "df = pd.DataFrame(data, columns=['X', 'Y'])\n",
    "\n",
    "plt.scatter(df.X, df.Y)\n",
    "\n",
    "\n",
    "for label, x, y in zip(labels, df.X, df.Y):\n",
    "    plt.annotate(\n",
    "        label,\n",
    "        xy=(x, y), xytext=(-3, 3),\n",
    "        textcoords='offset points', ha='right', va='bottom')\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    },
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD/CAYAAAD/qh1PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbfElEQVR4nO3df5QV5Z3n8fdHwLDGMEJolQEadEJoiRpMeiVZk4irIhJHzPEXjFHGE6c9Schk50fO6O6OZjFnMjPZM7NJ1CgngqJRURNHhrQaM2pMYnRoM4wodhsk/oCB9UcTARUN5rt/VLVbNvf2rXtvQTfF53XOPd31VD3PfW7dut966nmeW1cRgZmZldd+g10BMzPbvRzozcxKzoHezKzkHOjNzErOgd7MrOQc6M3MSq5moJc0UdIDktZKelLSlytsI0nfkrRO0uOSPpJZt0DSr9LHgqJfgJmZDUy15tFLGgeMi4hfSnof8BhwRkSszWwzB/gSMAeYAXwzImZIGgN0Ae1ApHk/GhFbdsurMTOzXdRs0UfEpoj4Zfr/NuApYHy/zeYCyyLxCHBQeoI4BbgvInrT4H4fMLvQV2BmZgMaXs/GkiYDxwCP9ls1Hnghs7whTauWPqCxY8fG5MmT66mamdk+7bHHHns5Iloqrcsd6CUdCHwf+G8RsbWoymXK7wA6AFpbW+nq6ir6KczMSkvSc9XW5Zp1I2kESZD/XkT8oMImG4GJmeUJaVq19F1ExOKIaI+I9paWiiclMzNrQJ5ZNwKuA56KiH+ostkK4IJ09s3HgFcjYhNwLzBL0mhJo4FZaZqZme0hebpujgPOB9ZIWp2m/XegFSAirgE6SWbcrANeBy5M1/VKugJYleZbFBG9hdXezMxqqhnoI+JngGpsE8AXq6xbAixpqHZmZtY0fzPWzKzkHOjNzErOgd7MrOQc6M3MSq6ub8aa2d7h5kef567VFb+yYnupudPH80czWhvK6xa9WQndtXojazcV/gV2GyRrN21t6sTtFr1ZSU0bN4rlF398sKthBTj32l80ld8tejOzknOgNzMrOQd6M7OSc6A3Mys5B3ozs5JzoDczKzkHejOzknOgNzMrOQd6M7OSc6A3Mys5B3ozs5Krea8bSUuA04AXI+LICuu/ApyXKe8IoCX9vdhngW3A28DOiGgvquJmZpZPnhb99cDsaisj4hsRMT0ipgOXAj/p9wPgJ6TrHeTNzAZBzUAfEQ8BvbW2S80HbmmqRmZmVqjC+uglHUDS8v9+JjmAH0l6TFJHUc9lZmb5FXk/+j8Eft6v2+YTEbFR0sHAfZK60yuEXaQngg6A1tbGfkXFysm/llS/vh8dafY+5vuaZn7FaSgrctbNPPp120TExvTvi8CdwLHVMkfE4ohoj4j2lpaWAqtlezv/WlL9po0bxbRxowa7GnuVZn/FaSgrpEUv6feA44HPZtLeC+wXEdvS/2cBi4p4Ptv3+NeSbHcr89VPnumVtwAzgbGSNgCXAyMAIuKadLPPAD+KiNcyWQ8B7pTU9zw3R8Q9xVXdzMzyqBnoI2J+jm2uJ5mGmU1bD3y40YqZmVkx/M1YM7OSc6A3Mys5B3ozs5JzoDczKzkHejOzknOgNzMrOQd6M7OSc6A3Mys5B3ozs5JzoDczKzkHejOzknOgNzMrOQd6M7OSc6A3Mys5B3ozs5JzoDczKzkHejOzknOgNzMruZqBXtISSS9KeqLK+pmSXpW0On1cllk3W1KPpHWSLimy4mZmlk+eFv31wOwa2/w0Iqanj0UAkoYBVwGnAtOA+ZKmNVNZMzOrX81AHxEPAb0NlH0ssC4i1kfEW8CtwNwGyjEzsyYU1Uf/cUn/LuluSR9K08YDL2S22ZCmmZnZHjS8gDJ+CUyKiO2S5gD/BEyptxBJHUAHQGtrawHVMjMzKKBFHxFbI2J7+n8nMELSWGAjMDGz6YQ0rVo5iyOiPSLaW1pamq2WmZmlmg70kg6VpPT/Y9MyXwFWAVMkHSZpf2AesKLZ5zMzs/rU7LqRdAswExgraQNwOTACICKuAc4CPi9pJ/AGMC8iAtgpaSFwLzAMWBIRT+6WV2FmZlXVDPQRMb/G+iuBK6us6wQ6G6uamZkVwd+MNTMrOQd6M7OSc6A3Myu5IubR2x5286PPc9fqqjNVS2ftpq0AnHvtLwa5JnvG3Onj+aMZ/i6JFcct+r3QXas3vhP89gXTxo1i2rhRg12NPWLtpq371Enc9gy36PdS08aNYvnFHx/saljB9pWrFtuz3KI3Mys5B3ozs5JzoDczKzkHejOzknOgNzMrOQd6M7OSc6A3Mys5B3ozs5JzoDczKzkHejOzknOgNzMrOQd6M7OSqxnoJS2R9KKkJ6qsP0/S45LWSHpY0ocz655N01dL6iqy4mZmlk+eFv31wOwB1v8aOD4ijgKuABb3W39CREyPiPbGqmhmZs3I8+PgD0maPMD6hzOLjwATCqiXmZkVpOg++s8Bd2eWA/iRpMckdRT8XGZmlkNhPzwi6QSSQP+JTPInImKjpIOB+yR1R8RDVfJ3AB0Ara3+GTUzs6IU0qKXdDTwXWBuRLzSlx4RG9O/LwJ3AsdWKyMiFkdEe0S0t7S0FFEtMzOjgBa9pFbgB8D5EfF0Jv29wH4RsS39fxawqNnnM7N925blt7F15crCy31z7AkAPHf+dwove9RppzH63HMKLzevmoFe0i3ATGCspA3A5cAIgIi4BrgMeD9wtSSAnekMm0OAO9O04cDNEXHPbngNZrYP2bpyJTu6uxnZ1lZoud98+YFCy+uzo7sbYGgH+oiYX2P9RcBFFdLXAx/eNYeZWXNGtrUx6cZlg12NXJ47/4LBroK/GWtmVnYO9GZmJedAb2ZWcg70ZmYl50BvZlZyDvRmZiXnQG9mVnIO9GZmJedAb2ZWcg70ZmYl50BvZlZyDvRmZiXnQG9mVnIO9GZmJedAb2ZWcg70ZmYl50BvZlZyDvRmZiXX9I+DW05dS2HNHcWUtXlu8nfp14op76izoP3CYsoysyEnV4te0hJJL0p6osp6SfqWpHWSHpf0kcy6BZJ+lT4WFFXxvc6aO2DzmkKKWt56F8tb7yqkLDavKe4EZGZDUt4W/fXAlUC1X+M9FZiSPmYA3wFmSBoDXA60AwE8JmlFRGxpptJ7rUOPggt/ONi1eLelnx7sGpjZbparRR8RDwG9A2wyF1gWiUeAgySNA04B7ouI3jS43wfMbrbSZmaWX1GDseOBFzLLG9K0aum7kNQhqUtS10svvVRQtczMbMjMuomIxRHRHhHtLS0tg10dM7PSKCrQbwQmZpYnpGnV0s3MbA8pKtCvAC5IZ998DHg1IjYB9wKzJI2WNBqYlaaZmdkekmvWjaRbgJnAWEkbSGbSjACIiGuATmAOsA54HbgwXdcr6QpgVVrUoogYaFDXzMwKlivQR8T8GusD+GKVdUuAJfVXzczKYsvy29i6cmUhZe3o7gbgufMvKKS8UaedxuhzzymkrKFqyAzGmll5bV258p0A3ayRbW2MbGsrpKwd3d2FnYCGMt8Cwcz2iJFtbUy6sdp3LgdHUVcFQ51b9GZmJedAb2ZWcg70ZmYl50BvZlZyDvRmZiXnQG9mVnKeXmlWoNufvp3O9Z0N5+/pPR6AC+9Z3FQ95hw+h7M/eHZTZVh5ONCbFahzfSc9vT1MHTO1ofzHHPOTpuvQ09sD4EBv73CgNyvY1DFTWTp76aA9/4X3+Pd/7d3cR29mVnIO9GZmJedAb2ZWcg70ZmYl58FYs4xmp0d29ya34m1mQNRTI61obtGbZfRNj2xU25g22sY0fq/0nt6epk40ZpW4RW/Wz2BOj/TUSNsdcrXoJc2W1CNpnaRLKqz/R0mr08fTkn6TWfd2Zt2KAutuZmY51GzRSxoGXAWcDGwAVklaERFr+7aJiD/LbP8l4JhMEW9ExPTCamxmZnXJ03VzLLAuItYDSLoVmAusrbL9fODyYqpnVp/BHkz1QKoNRXm6bsYDL2SWN6Rpu5A0CTgMuD+TPFJSl6RHJJ3RaEXN8hjMwVQPpNpQVfRg7Dzgjoh4O5M2KSI2SjocuF/Smoh4pn9GSR1AB0Bra2vB1bJ9yWANpnog1YaqPC36jcDEzPKENK2SecAt2YSI2Jj+XQ88yLv777PbLY6I9ohob2lpyVEtMzPLI0+gXwVMkXSYpP1Jgvkus2cktQGjgV9k0kZLek/6/1jgOKr37ZuZ2W5Qs+smInZKWgjcCwwDlkTEk5IWAV0R0Rf05wG3RkRksh8BXCvpdyQnlb/NztYxM7PdL1cffUR0Ap390i7rt/zVCvkeBo5qon5mZtYkfzPWhpxmpkh6eqTZrnyvGxtympki6emRZrtyi96GpMGYIunpkVZWbtGbmZWcA72ZWck50JuZlZz76G23q3cWTaMzZzxjxqwyt+htt6t3Fk0jM2c8Y8asOrfobY/Y3bNoPGPGrDq36M3MSs6B3sys5BzozcxKzn30lXQthTV3FFvm5seTv0s/XWy5R50F7e6fNrPq3KKvZM0dsHlNsWUeenTyKNLmNcWfkMysdNyir+bQo+DCHw52LQZW9NWBmZWSW/RmZiXnQG9mVnIO9GZmJZcr0EuaLalH0jpJl1RY/8eSXpK0On1clFm3QNKv0seCIitvZma11RyMlTQMuAo4GdgArJK0osKPfC+PiIX98o4BLgfagQAeS/NuKaT2ZmZWU55ZN8cC6yJiPYCkW4G5QP9AX8kpwH0R0ZvmvQ+YDdzSWHVzKGIOfFFz3j3H3cyGgDxdN+OBFzLLG9K0/s6U9LikOyRNrDNvcYqYA1/EnHfPcTezIaKoefT/DNwSEW9Kuhi4Afiv9RQgqQPoAGhtbW2uNkNhDrznuJvZEJGnRb8RmJhZnpCmvSMiXomIN9PF7wIfzZs3U8biiGiPiPaWlpY8dTczsxzyBPpVwBRJh0naH5gHrMhuIGlcZvF04Kn0/3uBWZJGSxoNzErTzMxsD6nZdRMROyUtJAnQw4AlEfGkpEVAV0SsAP5U0unATqAX+OM0b6+kK0hOFgCL+gZmG1ZrsDXvQKoHSs1sH5Grjz4iOoHOfmmXZf6/FLi0St4lwJIm6vhufYOthx5VeX2eQdS+wVoHejPbB+ydNzVrdrDVA6Vmtg/xLRDMzErOgd7MrOQc6M3MSs6B3sys5PbOwdjBlud+OnmmeXqKp5ntAQ70jag1xRNqT/P0FE/bi21ZfhtbV67Mvf2O7m4Anjv/grqeZ9RppzH63HPqymO7cqBvlKd42j5s68qV7OjuZmRbW67t826X1XdycKBvngO9mTVkZFsbk25cttvKr7f1b9V5MNbMrOQc6M3MSs6B3sys5BzozcxKzoOxZraLWtMn80yX9NTIocMtejPbRd/0yWpGtrUNOGVyR3d3XfPsbfdyi97MKmpm+qSnRg4tbtGbmZWcW/RmVlpFjDXA3j/ekKtFL2m2pB5J6yRdUmH9n0taK+lxSf8iaVJm3duSVqePFf3zmpntLs2ONUA5xhtqtuglDQOuAk4GNgCrJK2IiLWZzf4NaI+I1yV9Hvh74Nx03RsRMb3YapuZ5dPsrRrKMN6Qp0V/LLAuItZHxFvArcDc7AYR8UBEvJ4uPgJMKLaaZmbWqDyBfjzwQmZ5Q5pWzeeAuzPLIyV1SXpE0hn1V9HMzJpR6GCspM8C7cDxmeRJEbFR0uHA/ZLWRMQzFfJ2AB0Ara2tRVbLzGyflifQbwQmZpYnpGnvIukk4H8Ax0fEm33pEbEx/bte0oPAMcAugT4iFgOLAdrb2yP/S7DBdPvTt9O5vnPAbbp7k8GwC++p/iMrcw6fw9kfPLvQuplZIk/XzSpgiqTDJO0PzAPeNXtG0jHAtcDpEfFiJn20pPek/48FjgOyg7i2l+tc30lPb8+A27SNaaNtTPWZDT29PTVPFmbWuJot+ojYKWkhcC8wDFgSEU9KWgR0RcQK4BvAgcDtkgCej4jTgSOAayX9juSk8rf9ZutYCUwdM5Wls5c2nH+glr6ZNS9XH31EdAKd/dIuy/x/UpV8DwMD/LCqmZntbr4FgplZyTnQm5mVnAO9mVnJOdCbmZWcA72ZWck50JuZlZwDvZlZyTnQm5mVnAO9mVnJOdCbmZWcA72ZWck50JuZlZwDvZlZyTnQm5mVnAO9mVnJOdCbmZWcA72ZWck50JuZlVyuQC9ptqQeSeskXVJh/XskLU/XPyppcmbdpWl6j6RTCqy7mZnlUDPQSxoGXAWcCkwD5kua1m+zzwFbIuIDwD8Cf5fmnQbMAz4EzAauTsszM7M9JE+L/lhgXUSsj4i3gFuBuf22mQvckP5/B3CiJKXpt0bEmxHxa2BdWp6Zme0heQL9eOCFzPKGNK3iNhGxE3gVeH/OvGZmthspIgbeQDoLmB0RF6XL5wMzImJhZpsn0m02pMvPADOArwKPRMRNafp1wN0RcUeF5+kAOtLFqUBPcy/NzGyfMikiWiqtGJ4j80ZgYmZ5QppWaZsNkoYDvwe8kjMvABGxGFicoz5mZlaHPF03q4Apkg6TtD/J4OqKftusABak/58F3B/JpcIKYF46K+cwYArwr8VU3czM8qjZoo+InZIWAvcCw4AlEfGkpEVAV0SsAK4DbpS0DuglORmQbncbsBbYCXwxIt7eTa/FzMwqqNlHb2Zmezd/M9bMrOQc6M3MSs6B3sys5IZ0oJe0UFKXpDclXZ9J/5ik+yT1SnpJ0u2SxtVR7jxJT0l6TdIzkj7ZQB0mSwpJ2zOPv875/A9K2pHJV/d3BtLn75S0RdJmSVemU1vreh3punPS/bFN0lpJZzRQxkXpPY22S7pH0u/XU4akaWn6lvTx4wq32shTjwMkXS3pZUmvSnqo2j7J5Nne7/G2pG/XypfJ/x5J10l6Lt2HqyWdmjd/ppybJG2StFXS05IuqreMTFlT0mPsphrbVXs/9pd0h6Rn0+N8Zh3PXfX9aSaPpMvSupxUYd2A74GkEyV1S3pd0gOSJtVThzz5q9T5CEn3p8fiOkmfaXRfSDqv33H6ero/PlqrzCEd6IH/AL4GLOmXPppkzv1kYBKwDViap0BJJ5Pci+dC4H3Ap4D1DdShz0ERcWD6uCJPHVILM/mm1pGvz9XAi8A4YDpwPPCFAbav+DokjQduAv4cGAV8BbhZ0sF1lDET+BuSW16MAX4N3FJPPdL0s9L8Y0mm5t5aZxmQHBdjgCPSv39WpYx3ZN6HA4FDgTeA22vlyxhO8g3w40m+Q/I/gduUublfTl8HJkfEKOB04Gt5PsRVXEUyNbqWgfblz4DPApvrfO5an5m680j6A+BsYFOV/FXfA0ljgR8Af01yTHQBy/PWoY78/es8HLgLWJnm6wBukvTBGlkr1iMivtfvWP0CSez6Za26EBFD/pG+6OsHWP8RYFvOsh4GPtdsHUhOMgEMb6CsB4GLmtwnTwFzMsvfAK5t4HXMAF7st81LwMfrKON/A1dlln8/3Td/0Mh7SvKh/SLwep2vpQ3YCoxqYr8uSD88avL9eRw4s4n8U0mC2jkN5J0H3EbyzfSbcuYZ6P3YAMxsoB4Dfm7ryQPcA8wBngVOquc9IAmwD2fS30tyMm/LeVzVlT+z3ZHA9uyxBPwIuKKI/Qc8AFyep6yh3qLP61PAk7U2UnLnzHagJb2M2qCky+M/NfHcz6XlLE3P/Hl9Pe1e+Hk9l8UZ/4fky2gHpK3yU0k+DPXqAp6SdLqkYUq6bd4k+ZDUQxX+P7Leykj6DbAD+DbJVUI9jgWeA/5Xum/XSDqzzjIWAMsi/SQ1QtIhwAfJcUxWyHu1pNeBbpJA31ln/lHAIpIrtFKQdDbwZkTk3hf93oMPAf/ety4iXgOeSdPzaDb/u6pGA5+LXQpJuo4+BSzLs/1eH+glHQ1cRtLlUMshwAiSLoJPknR5HENymVevl4H/TNJ19FGSbqDv5cz7V8DhJDd4Wwz8c3ppWo+HSA60rSQtri7gn+osg0i+wLYMuJkkwN8MXJwezHndA5wj6ej0pHkZSYv+gAbqcxDJpfdC4N/qzD6B5EP0KslVxULgBklH5MmcfniO5//fibVukkaQHAc3RER3vfkj4gskx9InSboL3qyziCuA6yK979TeTtL7SE74X64jT//34ECSYyLrVZL9nEej+XtIule/ImmEpFkkx1fdn4sKLgB+GsldgWvaqwO9pA8AdwNfjoif5sjyRvr32xGxKSJeBv6B5JKwLhGxPSK6ImJnRPxfkqAyKz0wa+V9NCK2RXL75huAn9dTB0n7kQTXH5BcRo4lGbf4u3pfRzqw9ffATGB/kgPxu5Km5y0jIn4MXA58n+TS+lmScZOGgk16krkGWFZlrKCaN4DfAl+LiLci4ickl7ezcuY/H/hZ3g9Pf+n7ciPwFsnx0JCIeDsifkZy4vp8Hc8/HTiJ5DchyuKrwI0R8Wyejau8B9tJxp+yRpEco3k0lD8ifgucAXyaZJzjL0i61Io4CV9AHQ2SvTbQp62vH5P0d92YJ09EbCHZydnL8qK+GtxXTiP7NHh310ctY4BW4Mr0ZPEKyWB03Scskquah9KT1u8iYhXwKEnAyC0iroqIKRFxCEnAHw480UB9+uxH0vKp57bWlbqb6nl/6/rwZEkSya1ADiHpm/9tI+X0Mxyo50pvJsnY0fOSNgN/CZwpqfZg3dB1IvCnSmaWbSa5SeJtkv6q/4YDvAdPAh/ObPdekv2at2ut4fwR8XhEHB8R74+IU0iu5Ju635ek40iuWHe5C3A1QzrQSxouaSTJPXaGSRqZpo0H7icJdNfUWexS4EuSDpY0mmRWxsoG6jBD0lRJ+0l6P/At4MGI6H+J17+8gySdkinnPJK+ttz96+mVyK+Bz6dlHETSt1y1X73a6yCZmfHJvha8pGNIug12KWuAfTFS0pFKtJJ0R30zPbHmLeNkScek4wSjSK60tpAMOud9LQ8BzwOXptscB5xAcp+mAUn6LyQnlXpm22R9h2Smzx9GxBu1Nq7w/AcrmfZ7YLoPTgHmA/9SRzGLSQLQ9PRxDfBDoOpPeA6wL/umLI5MN90/XVezQTJQmQ3kOZGkO67vNf0HcDHJrKL+qr0HdwJHSjozfY7LgMf7d60NUIdc+au8rqPTcg6Q9Jcks+Sub3Bf9FkAfD8i8l6RDO1ZNySXbdHv8VWSboIguaR655GzzBEkUxN/Q3I59S1gZAN1mE8SbF8jGTRbBhya4/lbSILrtrQOjwAnN7BvppPM3tlCMl5wG3BIva8jXbeQ5Ne/tpHMOPmLOvfFQSQnhtfSffp1YFidZZxNMgC5nWTWzw+Boxt4LR8CfpHWZS3wmZz781qSLoJGjtNJaR129Dsmz6ujjBbgJ+kxsRVYA/xJAZ+fAWfd1NiXz1ZYN7nRz20Reagy66bWe0ByhdpN0r33YKXXUWNf1Mxf5XV9g+Qzup2km/kDzew/YGR6jJxYz7Hgm5qZmZXckO66MTOz5jnQm5mVnAO9mVnJOdCbmZWcA72ZWck50JuZlZwDvZlZyTnQm5mVnAO9mVnJ/T/UwskTedsgJgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "linked = linkage(df, method='single', metric='euclidean')\n",
    "dendrogram(linked, labels=labels, orientation='top', distance_sort='descending', show_leaf_counts=True)\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD7CAYAAABzGc+QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU9ElEQVR4nO3dfZRtdX3f8fdHrpagEiSMoKBeYxQ1QCGZxhiXQgsq0VTM8qFYNYZqcSUlsamJiWkjtrpqUrOSGB+id6mA4jOaapVQH5GYGOqoyFUerEEkKDeMReXBB9R8+8feJOM4M+ecffbcmd/l/Vpr1sycs397f/c5+3z2b//OPvukqpAktecOW12AJGkYA1ySGmWAS1KjDHBJapQBLkmN2rE3F3bIIYfUzp079+YiJal5n/zkJ79aVQurb9+rAb5z506Wlpb25iIlqXlJvrTW7Q6hSFKjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhq1Vz/II6325ouv4d2XfHmry5D+0SnHHs6/fci9t7qMqdgD15Z69yVf5rLrbtzqMiQALrvuxqY6FPbAteUefI8DeduzH7rVZUj8m9d8fKtLmIk9cElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJatTEAE/y+iTXJ/nsGvc9N0klOWRzypMkrWeaHvjZwMmrb0xyL+BRwDUj1yRJmsLEAK+qi4Ab1rjrj4HnATV2UZKkyQaNgSc5BfhyVX1mimlPT7KUZGl5eXnI4iRJa5g5wJMcAPwu8IJppq+qXVW1WFWLCwsLsy5OkrSOIT3w+wH3BT6T5GrgCOBTSQ4bszBJ0sZmvh54Ve0G7n7b/32IL1bVV0esS5I0wTSnEb4F+DhwZJJrkzxz88uSJE0ysQdeVU+ZcP/O0aqRJE3NT2JKUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjZrmS41fn+T6JJ9dcdtLk1yR5NIkf57koE2tUpL0Q6bpgZ8NnLzqtg8AR1XVMcDngeePXJckaYKJAV5VFwE3rLrt/VX1vf7fvwGO2ITaJEkbGGMM/N8Bf7HenUlOT7KUZGl5eXmExUmSYM4AT/Kfge8Bb1pvmqraVVWLVbW4sLAwz+IkSSvsGNowyS8DvwCcWFU1WkWSpKkMCvAkJwPPA46vqm+OW5IkaRrTnEb4FuDjwJFJrk3yTOAVwF2BDyS5JMmrN7lOSdIqE3vgVfWUNW5+3SbUIkmagZ/ElKRGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqGm+E/P1Sa5P8tkVtx2c5ANJ/m//+26bW6YkabVpeuBnAyevuu13gA9V1f2BD/X/S5L2ookBXlUXATesuvkU4Jz+73OAx49bliRpkqFj4IdW1XX933uAQ9ebMMnpSZaSLC0vLw9cnCRptbnfxKyqAmqD+3dV1WJVLS4sLMy7OElSb2iA/32SewD0v68fryRJ0jSGBvh7gGf0fz8DePc45UiSprVj0gRJ3gKcAByS5FrgTOD3gbcneSbwJeDJm1mkprR0Fuw+b6urmM2eU7rfZ714a+uY1dFPhMXTtroK3c5NDPCqeso6d504ci2a1+7zYM9uOOzora5kam+7d4MHb3t2d78NcG2xiQGuxhx2NJz2vq2uYt921mO3ugIJ8KP0ktQsA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaNVeAJ/mNJJ9L8tkkb0my/1iFSZI2NjjAkxwO/DqwWFVHAfsBp45VmCRpY/MOoewAfiTJDuAA4CvzlyRJmsbgAK+qLwN/CFwDXAd8o6rev3q6JKcnWUqytLy8PLxSSdIPmGcI5W7AKcB9gXsCd07ytNXTVdWuqlqsqsWFhYXhlUqSfsA8QygnAV+squWq+i7wLuDnxilLkjTJPAF+DfCzSQ5IEuBE4PJxypIkTTLPGPjFwHnAp4Dd/bx2jVSXJGmCHfM0rqozgTNHqkWSNAM/iSlJjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVFzBXiSg5Kcl+SKJJcneehYhUmSNjbXd2ICLwMuqKonJrkTcMAINUmSpjA4wJP8KPAI4JcBqupW4NZxypIkTTLPEMp9gWXgrCSfTvLaJHdePVGS05MsJVlaXl6eY3GSpJXmCfAdwE8Bf1ZVxwG3AL+zeqKq2lVVi1W1uLCwMMfiJEkrzRPg1wLXVtXF/f/n0QW6JGkvGBzgVbUH+LskR/Y3nQhcNkpVkqSJ5j0L5deAN/VnoFwFnDZ/SZKkacwV4FV1CbA4TimSpFn4SUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUXMHeJL9knw6yXvHKEiSNJ0xeuDPAS4fYT6SpBnMFeBJjgAeC7x2nHIkSdOatwf+J8DzgH9Yb4IkpydZSrK0vLw85+IkSbcZHOBJfgG4vqo+udF0VbWrqharanFhYWHo4iRJq8zTA38Y8LgkVwNvBf5VknNHqUqSNNHgAK+q51fVEVW1EzgV+HBVPW20yiRJG/I8cElq1I4xZlJVFwIXjjEvSdJ07IFLUqMMcElq1ChDKJrD0lmw+7xx5rXn0u73WY8dZ34ARz8RFk8bb36SRmMPfKvtPg/27B5nXocd0/2MZc/u8XYukkZnD3w7OOxoOO19W13FDxuzJy9pdPbAJalRBrgkNcoAl6RGGeCS1CjfxJTUrHd8/h2cf9X5o83vyhuOB+C0C3aNNs/H/PhjeNIDnjTa/FYywCU16/yrzufKG67kyIOPHGV+xx330VHmc5srb7gSwACXpLUcefCRnHXyWVtdxppOu2BzPwTnGLgkNcoAl6RGGeCS1CjHwNWWMS/+NdRmXDRsVl5kTNgDV2vGvPjXUGNfNGxWXmRMPXvgas92vfjX3uJFxtQb3ANPcq8kH0lyWZLPJXnOmIVJkjY2Tw/8e8Bzq+pTSe4KfDLJB6rqspFqkyRtYHAPvKquq6pP9X/fBFwOHD5WYZKkjY3yJmaSncBxwMVr3Hd6kqUkS8vLy2MsTpLECG9iJrkL8E7gP1bVjavvr6pdwC6AxcXFmnd5kvY9Qy9KdcUNVwDDP7K+mRea2hvmCvAkd6QL7zdV1bvGKWmb2qzzjzfznGLPFVYjhl6U6oEHP3DwMjf7QlN7w+AATxLgdcDlVfVH45W0Td12/vFhR4873806n/i2c6UNcDVib1+UarMvNLU3zNMDfxjwdGB3kkv62363qsa7OO9209L5x54rLO3zBgd4VX0MyIi1SJJm4EfpJalRBrgkNcoAl6RGeTErba1ZT88cetqlp1RqH2QPXFtr1svDDrmUq5df1T7KHri23mafnrldT6kc+uGweT/85dHIPsMeuLRVhn45xTxfKOHRyD5l3+6Bj/nx97E/8m4vSLD3Pxy2XY9GNMi+3QMf8+u3xvwaLXtBkkbQVg986BkLs9rs3rG9IEkjaCvAZ72g1JAesxeBGtekne40Q1MtDDcNGa4bMizXwmOhvaatAIfb7xkLrZq00520k21lhzrkapVDToeE7f9YaK9pL8DVnnl2ui3tUO1caC8zwCWNasi36wz5Zp3Wv01nDAb4Zri9jPtKaxjy7TqzfrPOvvBtOmPYPgE+zZtArQTf7WXcV1rHZn+7zr7wbTpj2D4BPs2bQC0F3+1l3Fe3O5OGSKYZDnH4YxzbJ8Bh/jeBDD5p000aIpk0HLIvDX9s9c5sewW4tF35vsYPmGeIZF8a/tjqndlcAZ7kZOBlwH7Aa6vq9+eZn7Rt+b6G1rGVO7PBAZ5kP+CVwCOBa4FPJHlPVV02V0XSduX7Gtpm5rmY1c8AX6iqq6rqVuCtwCnjlCVJmiRVNaxh8kTg5Kp6Vv//04GHVNUZq6Y7HTi9//dI4Mrh5UrS7dJ9qmph9Y2b/iZmVe0Cdm32ciTp9maeIZQvA/da8f8R/W2SpL1gngD/BHD/JPdNcifgVOA945QlSZpk8BBKVX0vyRnA/6Y7jfD1VfW50SqTJG1o8JuYkqSttW9/J6Yk7cMMcElqlAEuSY3akgBPckaSpSTfSXL2itt3JqkkN6/4+b0p53lhkm+vaDfzB4b65Z+f5GtJ9iR5RZJ13+jdYD1+NskHktyQZDnJO5LcY4Y6Tk1yeZJbkvxtkodPmH7NOvr7ntzP66YklyV5/Azr8dRVz8U3++fnp2es4YAkr0ry1STfSHLRFI/BP0vyuiRf6mu/JMnPT2q3xnzOTXJdkhuTfD7JsyZMv9F6PCvJF/rH4oIk95xlHkke3N/+tf7ng0kePMU63Lzq5/tJXj7dI7Dm/O7fv1bOnTDdeutxpyTnJbm63x5OmGHZ6z6+87RJ8oK+lpOmnOeDkny43x6/kOQXJ0y/4faY5MQkV/SvkY8kuc8s6zFN+7VsVQ/8K8CLgdevc/9BVXWX/udFM8z3jBXtpv86kH/yKuB64B7AscDxwK9uMP1663E3ug8v7QTuA9wETHW1mySPBP4AOA24K/AI4KoJzdasI8nhwLnAfwIOBH4LeHOSu0/TvqretOLxvAvdY3EV8Klpa+jtAg4GHtT//o0J6wPdGVJ/R/cc/CjwX4C3J9k5RduVXgLsrKoDgccBL15rB7TCeo/lCcB/p7tcxMHAF4G3zDKP/vYn9u0PoTvt9q2TVmDVc3AY8C3gHZPabeCVdKcBT7LRc/ox4GnAnhmXPem1P3ObJPcDngRcN83M0nXK3g28l+65OB04N8kDNmi27vaY5BDgXcDv9fNbAt427XrM0P6HVdWW/fQrc/aK/3cCBewYMK8LgWfNWc/lwGNW/P9S4DWzrsca9/8UcNOUNfw18MyRHs+HANevmmYZeOjA9fgIcOaMNTwQuBE4cITt5VLgCXO0P5LuRf7kAY/lHwKvXPH/Pftt9X5Dtgu6QPgPwDdnXIdn0O1EM/AxOBV4O/BC4Nwh29Wq+64FThhQx4bb2ixtgAuAxwBXAydNMZ+jgJtXPobA+4EXDdke6XYAf73i9jvT7WQfOOW2NVP7lT/bdQz8S0muTXJWv3ea1kv6w/S/muWwboU/AU7tD/kPB36ebuOY1yOAiefIp7vC4yKw0B/WXZtuGOdHBi53Cbg8yeOS7Jdu+OQ7dBveTPpDukcAb5ix6c8AXwL+a//c7E7yhAHLPxR4AFM8jmu0fVWSbwJX0AX4bN+4u2JWa/x91IB6vg58G3g5Xa9+Fs8A3lD9K33G5R4I/De6I7J9QpInAd+pqqHP6T/Oihmey1Xb408Cn7ntvqq6Bfjb/vZpDG6/3QL8q8C/oBt2+Gm6IYQ3Tdn2t4EfBw6nO2T/X/2h1SwuonvQbqTrWSwB/3PGefyAJMcAL6AbvpjkUOCOdIfZD6cbxjmO7nBtZlX1fbrAfTNdcL8ZeHa/gczql4C/rKovztjuCLoXxjfoeq1nAOckedC0M0hyR7rt4JyqumLG5VNVv0q3LT2c7lD1O7POg25H/uQkx/Q71BfQ9cAPGFDPQXSH4WcAn562Xb8TPR44Z9Zl9l4EvK6qrh3YfltJcle6HeBzZmx6Jd1Q6W8luWOSR9E9rlM9l2tsj3eh275X+gbdNjeNwe23VYBX1c1VtVRV36uqv6fbwB/VP1GT2l5cVTdV1Xeq6hzgr+gOq6aS5A50L9J30R3CHEI3lv0HQ9aln+dPAH8BPKeq/nKKJt/qf7+8qq6rqq8Cf8QM67Fq+ScB/wM4AbgT3Ub62iTHDpjdLzEsOL4FfBd4cVXdWlUfpRuKedQ0jfvn5Y3ArXTbwyBV9f2q+hjdDuVXBrT/IHAm8E66Q/Wr6d7bGBSG/U701cAb1nhPYj1PBz42YCdK/5yfBPzxrG23sRcCb6yqq2dpVFXfBR4PPJZuDP+5dMNKE5/LdbbHm+neY1rpQLrtYxqD22+rAF/DbYeJQ+osfvCQd5KDgXsDr+h3Av+P7o3HoeF5H+CDdONqb5ymTVV9jW4jWnl4PM9HZY8FLup3iv9QVZ8ALqZ7IU8tycPoes8bfKfYutYarplqnZIEeB3dkckT+hfevHYAsx6ZAVBVr6yq+1fVoXRBvgP47By13IGu13f4lNMP3YlCtxPfCVyTZA/wm8ATkqz1hnQrTgR+Pd0ZY3voLq739iS/PalhVV1aVcdX1Y9V1aPpjt7/z0ZtNtgePwf88xXT3ZluG5t2uG9w+606jXBHkv3prqGyX5L9+9sekuTIJHdI8mPAnwIXVtXqw4vV8zsoyaNXzOepdOO1U49f973dLwK/0s/jILrxxnXHizdYj8OBD9PtDF49bQ29s4BfS3L3JHejO2PjvRs1WK8OujMNHn5bjzvJcXTDCJdO2f42zwDeWVXr9gg2mMdFwDXA8/tpHgb8S7pr6EzyZ3RnrvzrqvrWpInXqOnu6U7JvEv/HsCjgacAH5p1PfrfR6Vzb7phupf1O91p5/HIJMf1tRxId3T1Nbo3zyety8/RBf3Qs0920YXCsf3Pq4H3AY/eYJnrbhfpTqvbv5/0Tv19EztMU2xrs7Q5kW547rZ1+grwbLqzbCbVcUw/nwOS/CbdmWdnT2i23vb458BRSZ7Q1/kC4NLVw30brMdU7dc067vHY/zQHfrUqp8X0r24vgjcQvdm0xuAw6aY3wJdWN0EfB34G+CRA+o6lu5slq/Rjce/HTh0wHqc2f9988qfKWu4I93pjF+nO7z7U2D/IY9nf98ZwBf6x+Yq4Lkztt+/r+XEOWr4SeDj/fN6GfCLUzwO9+nn8e1Vj+NTZ3g+F4CP9vXfCOwG/v3AbfMguh3fLf3z8hJgvxnn8SS6N1Jvpjsb6H3AMVOuy2vohgvGfA1ueBbKhOf06jXu2znlctec57xtmPIslH7al9K9zm+mG+b8iXm2R7qj2ivohgwvXOuxmPB4Tmy/1o8Xs5KkRm33MXBJ0joMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGvX/ARVGx6+NeHrjAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "linked = linkage(df, method='ward', metric='euclidean')\n",
    "dendrogram(linked, labels=labels, orientation='top', distance_sort='descending', show_leaf_counts=True)\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD7CAYAAABDld6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATOklEQVR4nO3de7BdZXnH8e8DgSJghMiRKAjxRhAJgqaiMlxaUBBa0QEs1lszpTgqSq1atVPBVqZOq2O94SUjRhBQIdrSSppaq4iopR6UcpQQR8NFMKmhIBBA8PL0j3cdOR7O2XvtW86b5PuZOXOSvdf77mfvs/Zvvetda68dmYkkqV7bzXUBkqTODGpJqpxBLUmVM6glqXIGtSRVbt4oOt1jjz1y0aJFo+hakrZK11xzze2ZOTbTfSMJ6kWLFjE+Pj6KriVpqxQRN892n1MfklQ5g1qSKmdQS1LlDGpJqpxBLUmVM6glqXIGtSRVzqCWpMqN5AMv2vpcfPUtXHbtbXNdhtSTEw/eiz8+dJ+5LmNgjqjVymXX3sb16++e6zKk1q5ff/dWM7hwRK3WDnjsfD736ufMdRlSK3/08W/NdQlD44hakipnUEtS5QxqSaqcQS1JlTOoJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqnEEtSZVrFdQR8caI+H5EfC8iPhMRO426MElS0TWoI2Iv4A3A0sw8ENgeOHXUhUmSirZTH/OAR0TEPGBn4CejK0mSNFXXoM7M24D3ArcA64G7MvNL05eLiNMjYjwixjdu3Dj8SiVpG9Vm6mN34ETgCcDjgF0i4uXTl8vM5Zm5NDOXjo2NDb9SSdpGtZn6OAa4MTM3ZuYvgC8Azx1tWZKkSW2C+hbg2RGxc0QEcDSwZrRlSZImtZmjvhpYCXwHmGjaLB9xXZKkRqsvt83Ms4GzR1yLJGkGfjJRkipnUEtS5QxqSaqcQS1JlTOoJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqnEEtSZUzqCWpcga1JFXOoJakyhnUklQ5g1qSKmdQS1LlDGpJqpxBLUmVM6glqXIGtSRVzqCWpMoZ1JJUOYNakipnUEtS5QxqSaqcQS1JlTOoJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqnEEtSZUzqCWpcga1JFXOoJakyrUK6ojYLSJWRsQNEbEmIp4z6sIkScW8lst9AFidmSdHxI7AziOsacs1vgImVs51FaOx4cTye8U5c1vHqCw5GZYum+sqpBl1DeqIeBRwBPAnAJn5IPDgaMvaQk2shA0TsHDJXFcydJ/b57K5LmF0NkyU3wa1KtVmRP0EYCOwIiKeDlwDnJmZ905dKCJOB04H2GeffYZd55Zj4RJYdvlcV6FerDhhriuQOmozRz0PeAbw0cw8BLgXeNv0hTJzeWYuzcylY2NjQy5TkrZdbYL6VuDWzLy6+f9KSnBLkjaDrkGdmRuAH0fE4uamo4HrR1qVJOk32p718XrgouaMj3WAR10kaTNpFdSZeS2wdLSlSJJm4icTJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqnEEtSZUzqCWpcga1JFXOoJakyhnUklQ5g1qSKmdQS1LlDGpJqpxBLUmVM6glqXIGtSRVzqCWpMoZ1JJUOYNakipnUEtS5QxqSaqcQS1JlTOoJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqnEEtSZUzqCWpcga1JFXOoJakyhnUklQ5g1qSKmdQS1LlWgd1RGwfEd+NiC+OsiBJ0m/rZUR9JrBmVIVIkmbWKqgjYm/gBOAToy1HkjRd2xH1+4G/BH492wIRcXpEjEfE+MaNG4dRmySJFkEdEX8A/DQzr+m0XGYuz8ylmbl0bGxsaAVK0rauzYj6MOCFEXET8Fng9yPiwpFWJUn6ja5BnZlvz8y9M3MRcCrwlcx8+cgrkyQBnkctSdWb18vCmXkFcMVIKpG01bv0B5eyat2qzfJYa+84EoBlq5dvlsc7/onHc8p+p4yk756CWpIGsWrdKtbesZbFCxaP/LEOOeRrI3+MSWvvWAtgUEvaOixesJgVx62Y6zKGatnqZSPt3zlqSaqcQS1JlTOoJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqnEEtSZUzqCWpcga1JFXOoJakyhnUklQ5g1qSKmdQS1Ll/OKA8RUwsXI4fW24rvxeccJw+gNYcjIsHe1FySXVzaCeWAkbJmDhksH7WnjQ4H1MtWGi/DaoH67mDawbVw2ZQQ0lpJddPtdVPNwwR+Zbm1o3sG5cNQIGtbZcNW5g3bhqBDyYKEmVM6glqXIGtSRVzqCWpMoZ1JJUOYNakipnUEtS5QxqSaqcQS1JlTOoJalyBrUkVc6glqTKGdSSVDmDWpIqZ1BLUuUMakmqXNcvDoiIxwMXAHsCCSzPzA+MujBJc+/SH1zKqnWrhtbfDXfcAMCy1cP7Bpzjn3g8p+x3ytD6q1GbEfUvgTdl5gHAs4HXRcQBoy1LUg1WrVvF2jvWDq2//Rfsz/4L9h9af2vvWDvUDUmtuo6oM3M9sL759z0RsQbYC7h+xLVJqsDiBYtZcdyKuS5jRsMcmdespznqiFgEHAJcPcN9p0fEeESMb9y4cUjlSZJaB3VE7Ap8HvjzzLx7+v2ZuTwzl2bm0rGxsWHWKEnbtFZBHRE7UEL6osz8wmhLkiRN1TWoIyKA84A1mfm+0ZckSZqq68FE4DDgFcBERFzb3PZXmVnPodbxFTCxsr+2G64rv1ec0HvbJSfD0m3jYIakudPmrI+rgNgMtfRvYiVsmICFS3pvu/Cg/h5zw0T5bVBLGrE2I+otw8IlsOzyzfd4/YzAJakPfoRckipnUEtS5QxqSaqcQS1JlTOoJalyBrUkVW7rOT1PkkagzTW521xne5DrZjuilqQO2lyTu9t1tge9brYjaknqYtBrcg963WxH1JJUOYNakipnUEtS5QxqSaqcQS1JlfOsD2kb0OZc4Jm0OT+4k0HOHdZDHFFL24A25wLPpNv5wZ0Meu6wHuKIWqM3yFelzWaQr1DrZCv+erVBzwXu1aDnDushjqg1epNflTZMCw/q/2vUZrNhYvgbFGkIHFFr89jcX5XWD79eTZVyRC1JlXNEre4GnWMe1nzyVjx/LHXiiFrdDTrHPIz5ZOePtQ1zRK125nqO2fnjbVK387/bnue9pZ/PbVBLW5h+PrzSzwdXagi3yfO/Fy9YPOP9bc7xnjx/fK6fyyAMamkL0y28ZtLrh1ZqCre5vhZ0DeoL6n4OXPVzsMoDU9qCjfrDK1tDuG1N6juY2M+Bq14PVnlgStIWpL4RNYz+wJUHpiRtQeobUUuSfkudI2ptPm2OCbQ5BuCcvzQyBvW2bvKYwMIlsy/Tbf5/8pjCIEHdbYPR9oCxGwxthQxqDX5MYBhz/t02GG0OFg9jgyFVaPMHtSMnzaaGDYZUoc0f1I6cHuJGS1ILczP14cipcKOlGXh9C03nHPVcc6Olaby+haYzqKUKeX0LTeUHXiSpcq2COiKOi4i1EfHDiHjbqIuSJD2ka1BHxPbAucALgAOAl0bEAaMuTJJUtBlRPwv4YWauy8wHgc8CJ462LEnSpMjMzgtEnAwcl5mnNf9/BXBoZp4xbbnTgdOb/y4G1g6/XEnaau2bmWMz3TG0sz4yczmwfFj9SZKKNlMftwGPn/L/vZvbJEmbQZug/jbwlIh4QkTsCJwK/Mtoy5IkTeo69ZGZv4yIM4B/B7YHPpmZ3x95ZZIkoMXBREnS3PKTiZJUOYNakipnUEtS5UYa1BFxRkSMR8QDEfGpKbfvGBErI+KmiMiIOGqQ/gZtExFnNXUc07LPp0bEVyLirub6Jy/usvzvRMR5EXFzRNwTEddGxAum3H90RNwQEfdFxFcjYt9enkeb9p36iIhnR8R/RMQdEbExIi6NiMe2eS2a9qdGxJqIuDcifhQRh3dZfrY6FjV/h01Tft7RsoYrIuLnU9r19IGr5rFXRcSdEbEhIj4cER0Ptnd4Hi+b9hzua57XM9v20dx3WrN+bYqI1RHxuB5qOKC5/c7m58ttLv0wre5NEfGriPhQt3Yd+ntK83e5sMtynV6HnSPiIxFxe/Oeu7LlY3d83/VRx0ua9fyeiLg+Il7Uso4LI2J9RNwdET+IiNPatJtq1CPqnwDnAJ+c4b6rgJcDG4bUX19tIuJJwCnA+jadNW/ey4AvAgson8a8MCL269BsHvBj4EjgUcBfA5c04bAH8AXgHU1/48Dn2j6PHtrP2gewO+XDSouAfYF7gFbX2IyI5wF/DywDHgkcAazr0qzb33G3zNy1+XlXmzoaZ0xpN/PFnGf3EeCnwGOBgyl/q9d2aTPj88jMi6bUsWvTzzrgO237iDJ4+TvK5RoWADcCn2nbvrn95KbtHpRTaj/b5fkwre6FwP3Apd3adXAu5RTfbjqtE8spz+Opze83tnzsWd93vdYREXsBFwJ/AcwH3gJcHBGPaVHHu4FFmTkfeCFwzkwb7Y4yc+Q/zRP/1Cz33QocNaz+em0DrAaOB24CjmnRz4HAJpozZprbvgS8q8d6rgNOogT9N6fcvgvlzbF/m+fRa/s2rx/wDOCels/jm8CfDmO9oGwoEpjXR19XAKcNsI6uAY6f8v/3AB8fxvoIfBU4u8fX4r3AuVP+/7jmtXlSrzVQAut1wH09viavomxgopd2U9qfClwCvBO4sM91Yn/gbmB+v3/baf1fB5zURx2HAj+dtsxG4Dk9Pv5iyqDwJb2026bnqCPiFOCBzJz9e49adkUJ8LaPuyewH/B94GnA/0zel5n3Aj9qbm9j0PYzOaKpraMoV1ZcCow1u+i3NlMGjxjgsQFubvpa0ewxtPXuZvf4G9FyOm2K9wOnNrvZe1GuFrm6xz4eJso01BHABf00n+Hfrdez5vF/Bvwc+BBlhN6LVwEXZJMwPT7ufOBvKSPQQTwLuBn4m+ZvOxERJ/XT0bT3Xa/GgTUR8cKI2L6Z9niAEvxtHvsjEXEfcAMlqHvKnG02qCPikZQV98wem66l7CK/JSJ2iIjnU3atdm75uDsAFwHnZ+YNwK7AXdMWu4syjdDGoO2n13cQcBZl166bPYEdKLvYh1OmDA6h7GL243bgdynTL8+kPIeLWrZ9K/BEYC/KrvK/NtNabV1J2bjdTdnLGwf+uYf2s3kl8PXMvLHHdquBl0TEQc2G7yzKiLrVejYpM3ej7PafAXy3bbtmA3MkcH4vjzfFu4DzMvPWPttP2puycbqLsldxBnB+RDy1l05meN/1JDN/RdnYXkwJ6IuBVzcDozbtX0tZnw+nTFU+0Mvjb7NBTdkd+3Rm3tRLo8z8BfAi4ATK/PqbKLt3XVfIiNgO+DTwIGWFgzKNMn/aovMp88RtDNp+an1PBv4NODMzv96iyf3N7w9l5vrMvB14H2UqqWeZuSkzxzPzl5n5v5TX6PnNRrVb26sz857MfCAzzwe+0baO5u+ymvIG2oUyp7s7Ze59UK+kj7DLzC8DZwOfp0zL3UT5m/YcfE2YfAy4oOWcKsArgKv62MAQEQcDxwD/2GvbGdwP/AI4JzMfzMyvUaaSnt9DPTO973oS5USDfwCOAnakbMQ+0TzXVjLzV5l5FWXj85peHn9bDuqjgTdEOcK/gXLhqUsi4q3dGmbmdZl5ZGY+OjOPpYzk/rtTm4gI4DzKKPSkJvCh7IY9fcpyuwBPov3u2aDtJ9vtC3yZMtf+6TZtMvNOSnBM3TUe5kddJ/vqZz1NfnvqoJMFwD7Ah5ug/z/KwdS+NjiTIuIwyihwZT/tM/PczHxKZu5JCex5wPf6LGc7ymh8r5bL97WBaRxFOd5wS/PeejNwUkTMdDC1m5mmFlqvYx3ed706GLiyGUj8OjO/DVxN2SD1ah7lPdraqE/PmxcRO1GuEbJ9ROzUnDUxeerMTs2iOzb3dXxjdeqvjzZHU3apDm5+fgK8mnKUutvzOqjpZ+eIeDPlTIFPdWn2UcpR6z/MzPun3P5PwIERcVJT51nAddN3zzo8j1btO/XRzMl+hRJUH+v2/KdZAbw+Ih4TEbtTjsh/sVODDnUcGhGLI2K7iHg08EHgisycPrUzvb/dIuLYKf28jDIv3GqOudkTuBF4TdN+N8r8bMf5xxbr46uAz2fmrHs3HV6LnSLiwCj2oUznfKDZOLZp/7yIOKSZT51P2dO5k3LQtKOIeC4l0Ps922M5JYgObn4+BlwOHNvhMWd7La8EbgHe3ixzGPB7lGsPtTHb+67XOr4NHD45go6IQyjTGN3WkcdEOX111+ZvcSzwUuA/W9ZfDONIaocjnO+kbP2m/ryzue+mGe5b1G9/g7ah5VkfzbLvoaz0myhTBU/usvy+zeP+vGkz+fOy5v5jKAcZ7qecvfCw16HLa9m1fac+KLvYOa22TS1fix0op7b9jDIV9EFgp37+JpQV+EbgXsoBlwuAhS1qGKO8ke5p6vgv4Hk9rqsHN6/dnZS58kuAPQdYv3dqajm6z9diN0oI3Nu8ru8Gtu+h/SnNOrGJcnbC5cBBLV+Lj1OmBYeZAx3P+ujyWj4N+FbzWlwPvLjl43Z83/VRxxnAD5v1bB3wppbr5teadeFuYAL4s15fQy/KJEmV25bnqCVpi2BQS1LlDGpJqpxBLUmVM6glqXIGtSRVzqCWpMoZ1JJUuf8HNYMCkEToBIYAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "linked = linkage(df, method='complete', metric='euclidean')\n",
    "dendrogram(linked, labels=labels, orientation='top', distance_sort='descending', show_leaf_counts=True)\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD7CAYAAABDld6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATqUlEQVR4nO3df5BdZX3H8c+HJBQVUoysBINhi8pGJJHoFmopPxSBGFp/DMRC/TUZaRw1LW3VWmcqYmXKWDvWqljIiAuIqCRqaWFN1Qoi/kAXRVYgy2AMFsyW0KBJEFHw2z+ec+FmvXfvOffH3ieb92tmZ5O95zz3e+45+7nPec5z7joiBADI1z79LgAAMD2CGgAyR1ADQOYIagDIHEENAJmb24tGDzrooBgcHOxF0wAwK91yyy0PRMRAo8d6EtSDg4MaGxvrRdMAMCvZvqfZYwx9AEDmCGoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADLXkxtegEauuvknuubW+/pdBjCtVxy9SH927OJ+l7EbetSYMdfcep/u2Lqj32UATd2xdUeWnQl61JhRRx4yX59904v6XQbQ0J9e8q1+l9AQPWoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0AmSt1C7ntLZJ2SnpM0qMRMdzLogAAT6jyWR8vjogHelYJAKAhhj4AIHNlgzokfcn2LbbXNFrA9hrbY7bHtm3b1r0KAWAvVzao/ygiXiDpZZLeavuEqQtExLqIGI6I4YGBga4WCQB7s1JBHRH3Fd/vl/QFScf0sigAwBNaBrXtp9g+oPZvSadK+mGvCwMAJGVmfRws6Qu2a8tfFREbe1oVAOBxLYM6IjZLev4M1AIAaIDpeQCQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0AmSsd1Lbn2P6+7Wt7WRAAYHdVetTnSrqzV4UAABorFdS2D5V0uqSP97YcAMBUZXvUH5L0t5J+02wB22tsj9ke27ZtWzdqAwCoRFDb/mNJ90fELdMtFxHrImI4IoYHBga6ViAA7O3K9KiPk/Ry21skfUbSS2xf2dOqAACPaxnUEfGuiDg0IgYlnSXpqxHx2p5XBgCQxDxqAMje3CoLR8QNkm7oSSUAgIboUQNA5ghqAMhcpaEPZGZsRBrf0O8qypt8Rfo+ckF/6yhr6ZnS8Op+VwEQ1Hu08Q3S5Li0cGm/Kynls4uv6XcJ5U2Op+8ENTJAUO/pFi6VVl/X7ypmn5HT+10B8DjGqAEgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcy2D2vZ+tr9j+we2b7f93pkoDACQzC2xzCOSXhIRu2zPk3ST7S9GxLd7XBsAQCWCOiJC0q7iv/OKr+hlUQCAJ5Qao7Y9x/atku6X9OWIuLnBMmtsj9ke27ZtW5fLBIC9V6mgjojHIuJoSYdKOsb2UQ2WWRcRwxExPDAw0OUyAWDvVWnWR0T8TNL1klb0pBoAwG8pM+tjwPaBxb+fJOkUSZt6XBcAoFBm1schki63PUcp2K+OiGt7WxYAoKbMrI/bJC2fgVoAAA1wZyIAZI6gBoDMEdQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSuzC3k6LaxEWl8Q+ftTN6Wvo+c3lk7S8+Uhld3Xg+AnqBH3Q/jG6TJ8c7bWbgsfXVicrw7bxoAeoYedb8sXCqtvq7fVXTeGwfQc/SoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyBxBDQCZI6gBIHMtg9r2M21fb/sO27fbPncmCgMAJGX+FNejkt4WEd+zfYCkW2x/OSLu6HFtANDQ+rvWa3TzaNfbndh+oiRp9cZ1XW975eErteqIVW2t2zKoI2KrpK3Fv3favlPSIkkENYC+GN08qontExpaMNTVdpcv/1pX26uZ2D4hSb0L6nq2ByUtl3Rzg8fWSFojSYsXL26rGAAoa2jBkEZWjPS7jFJWb1zd0fqlLyba3l/S5yT9VUTsmPp4RKyLiOGIGB4YGOioKADAE0oFte15SiH9qYj4fG9LAgDUKzPrw5IulXRnRHyw9yUBAOqV6VEfJ+l1kl5i+9bia2WP6wIAFMrM+rhJkmegFgBAA9yZCACZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOYq/XHbvdrYiDS+oTttTd6Wvo+c3p32lp4pDXf2xzOz083Xux3d3kftmo37FpUR1GWNb5Amx6WFSztva+GyztuomRxP32fbL3M3X+92dHMftWuW7dv1d63X6ObRrrS1afsmSZ3/de+alYev1KojVnWlrV4gqKtYuFRafV2/q9hdv3t8vZTj6z2TZtm+Hd08qontExpaMNRxW0sWLOlCRcnE9glJIqgBQJKGFgxpZMVIv8vYTbd65b3ExUQAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADLHPGr0Xju3g7d7Cze3XGMWokeN3qvdDl7FwmXVb+OeHO/v54MAPUKPGjNjJm4Hn2W3XAM1LXvUtj9h+37bP5yJggAAuysz9HGZpBU9rgMA0ETLoI6IGyVtn4FaAAANdG2M2vYaSWskafHixd1qFtizdfIHEDr94wXMgJk1ujbrIyLWRcRwRAwPDAx0q1lgz9bOjJeadma+1DADZlZh1gfQa/34AwjMgJlVmEcNAJkrMz3v05K+JWnI9r2239j7sgAANS2HPiLi7JkoBADQ2Owco+7kSnsznV6Bb4Yr8wBamJ1j1J1caW+mkyvwzXBlHkAJs7NHLfXnSntVXJkHUMLsDWrMnFZDTWWHjRgGAhqanUMfmFmthprKDBsxDAQ0lV+PuhsXArt14Y8eXnmdDjXtKcNAVY9P/gACuiC/HnU3LgR248IfPTw0UvX45A8goAvy61FLeVwI3FN6eJh5vT4+OfYwRX49agDAbghqAMgcQQ0AmSOoASBzBDUAZC7PWR8Asrf+rvUa3TxaevlN2zdJklZvrDY/fOXhK7XqiFWV1pltZj6oud0YmBVGN49qYvuEhhYMlVp+yYIllZ9jYvuEJBHUM/6MtRsGFi5t/HiZmwNqNxwQ1EBfDS0Y0siKkZ61X7X3PVv1Z+hjb7ndGAC6YO8coy7zeQ1lhmAYfgEwA/bOWR9lPq+h1Wc08HkMAGbI3tmjlhh+AaZRZkZHmVkczNjojr2zRw1gWrUZHdNZsmDJtDM5JrZPVJq+h+b23h41gGl1OqMjlxkbrc4O9oQzA3rUAGa1VmcHe8KZAT1qoIbZQLNWJ2cHOZwZ0KMGapgNhEzRowbqMRsIGaJHDQCZI6gBIHMENQBkjqAGgMyVCmrbK2xP2L7b9t/1uigAwBNaBrXtOZIukvQySUdKOtv2kb0uDACQlOlRHyPp7ojYHBG/kvQZSa/obVkAgBpHxPQL2GdKWhER5xT/f52kYyNi7ZTl1khaU/x3SNL0n+gCAKh3WEQMNHqgaze8RMQ6Seu61R4AICkz9HGfpGfW/f/Q4mcAgBlQJqi/K+k5tn/P9r6SzpL0H70tCwBQ03LoIyIetb1W0n9JmiPpExFxe88rAwBIKnExEQDQX9yZCACZI6gBIHMENQBkrqdBbXut7THbj9i+rO7nf2D7y7a3295me73tQyq0e5btO20/ZPtHto9vo4ZB22F7V93Xu0s+/w22f1m3XuWbe4rnH7X9oO1J2x+13fTibrPtKB57dfF67LR9h+1XVmnD9mumvA6/KF6bF1as48m2P2b7Ads/t31jidfhd2xfavueov5bbb+s1XoN2rnS9lbbO2zfZfucFstPtx3nFJ9rs8v2RtvPqNKG7SOLnz9YfH2lzMcuTNkHu2w/Zvsj5V6B32rrOcUxemWJZZttx762N9jeUhwPJ1V4/qavbyfr2D6vqOWlDR6b9liyfbLtTcXxfb3tw6rUUGb9JjU/1/ZXi9+Ju22/qsx69Xrdo/6ppAskfWLKz5+qdHPMoKTDJO2UVOoPmtk+RdL7Ja2WdICkEyRtbqOGmgMjYv/i631laiisrVtvqMJ6NR+TdL+kQyQdLelESW+ZZvmG22F7kaQrJf2NpPmS3iHpKttPL9tGRHyqblv2L+rYLOl7ZdsorJO0QNJzi+9/Pc321MyV9D9K2/+7kv5e0tW2B0usW+9CSYMRMV/SyyVd0OiNpk6z1/MkSf+o9DEJCyT9WNKnq7RR/PzMYv2DlKazfqbVBkzZBwslPSxpfav1mrhIaWptGdPt05skvVbSZMXnb/V7V3kd28+StErS1ibrNz2WbB8k6fOS3q20X8YkfbZsDRXWn1rzXEnXSLq2WG+NpCttH9Fq3d1ERM+/ig2/bJrHXyBpZ8m2vinpjZ3WoPQmEZLmttHWDZLO6fA1uVPSyrr/f0DSJW1sx7GS7p+yzDZJL+pgf1wv6T0V61giaYek+V04Xm6TdEYH6w8p/TK/uo3X858lXVT3/2cUx8mz2nk9lcLjrZJ+UXEb3qD0Zuk2tv8sSVdLOl/SlRXWm2477pV0Uhu1THusVVlH0kZJKyVtkfTSKseSUkB+s+7nT1F6I1xS8riotH7dckdJ2lW/HyV9SdL7qrwmuYxRnyCp5dxsp0/yG5Y0UJxC3Os0ZPCkDp77nqKdkeJds6wLi1P8b1Q5JazzIUlnFcMFi5Q+nXBjG+2MSbrT9sttz3Ea9nhE6QCtrDidO0HSFRVXPUbSPZLeW7wu47bPaOP5D5Z0hEocDw3W/ZjtX0japBTUo1XbqDXV4N9HtVHPzyT9UtJHlHrpVbxB0hVR/GZXeM75kv5B6Qxr1rC9StIjEVF6n045lp4n6Qe1xyLiIUk/Kn5eRqfr71aaKh5PfQ9q28sknad0yt7KwZLmKZ1WHq80ZLBc6RSnqgck/b7S0MsLlYZRPlVy3XdKOlzSIqXT/f8sTsuquFFpJ+9Q6q2MSfr3im0oIh5TCtWrlAL6KklvKg6kdrxe0tcj4scV1ztU6eD7uVIvdK2ky20/t2wDtucp7YPLI2JTxedXRLxFaT8er3Sa+kjVNpTeLF9te1nRAThPqUf95DbqOVDpFHytpO+XXa94szxR0uVVn1PS+yRdGhH3trFulmwfoPRGd26FdaYeS/srHZv1fq50vJTR7voTSkOc77A9z/apSvu20vHU16C2/WxJX5R0bkR8vcQqDxffPxIRWyPiAUkfVDodqiQidkXEWEQ8GhH/q/TLdGpxULRa9+aI2BkRj0TE5ZK+UaUG2/soBcLnlU6hDlIat39/1e0oLqr8k6STJO2rdBB83PbRVdsqvF7tBcTDkn4t6YKI+FVEfE1pCOXUMisXr8knJf1KaV+0JSIei4iblN443tzG+l+R9B5Jn1M6xd6idA2lreAr3jAvlnRFk+sGjbxO0k1V3yyLff5SSf9Sqcj8nS/pkxGxpczCTY6lXUrXcOrNV9q3ZbS1fkT8WtIrJZ2uNM7/NqVhqUrHU9+Cuug1fEVprOaTZdaJiAeVNrD+dLBbt1bW2mnnNQntfrrcygJJiyV9tAj7/1O6mFr5DUfprOLG4k3nNxHxXUk3K/3CVmL7OKXe8IY26mg01FJq39i2pEuVzpjOKA7uTs2VVPUsR5IUERdFxHMi4mClwJ4r6Ycd1LKPUg9qUcnl232zPEnp2stPbE9KerukM2w3uii8JzlZ0l86zY6aVPqQuKttv3PqgtMcS7dLen7dck9ROj7KDrG1vX5E3BYRJ0bE0yLiNKWz8e+UfF5JvZ+eN9f2fkqfETLH9n7FzxZJ+qpSUF1csdkRSX9h++m2n6o0s+DaNmo41vaQ7X1sP03ShyXdEBFTT2+mtneg7dPq2nmN0phu6fHl4kzgx5LeXLRxoNKYZNNx5WbboXRl//haD9r2cqVT/99qa5o2at4g6XMR0bSXME0bN0r6iaR3FcscJ+nFSp8R08q/Kc0U+ZOIeLjVwg1qerrTlM39i3H60ySdLem/q25H8f0oJ4uVhrb+tegklG3jFNvLi1rmK531Pah0AbnVtvyhUqC3M9tjnVJ4HF18XSzpOkmntXjOpseF05S3/YpF9y0ea9kpKXGsVVnnZKVhtdp2/VTSm5RmtkzV7Fj6gqSjbJ9RPMd5km6bOsQ2TQ2l1m+yXcuKdp5s++1KM70ua7Xebqpexa149fZ8pV5V/df5SqeWoXQ68fhXyTbnKU1t+5nSqcSHJe3XRg1nK4XlQ0oXnq6QtLDE8w8ohePOooZvSzqljdfmaKXZIw8qjZdfLengqttRPLZW0t1FTZslva2NNvYrtufkdvZp8djzJH2reE3vkPSqEq/DYUUbv5xyPLymwms5IOlrRf07JI1L+vM2j80Dld7kHiqOrwslzanYxiqlC5q7lGbgXCdpWcltuUTpNL9bv38tZ3202KdbGjw22Embna6jJrM+Wh1LSmeZm5SG6W5otB0tXouW6zfZrg8o/Z7vUhrqfXbVfcmHMgFA5vo+6wMAMD2CGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSOoAaAzP0/bggO9X4Gqf8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "linked = linkage(df, method='average', metric='euclidean')\n",
    "dendrogram(linked, labels=labels, orientation='top', distance_sort='descending', show_leaf_counts=True)\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD7CAYAAABDld6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATDklEQVR4nO3df7BcZX3H8feXBIqKKUauBIOQopKIQKGmUssgVERiaP0xEAv112SkcbRpaavWOlMVK1OntWOtitWMGEBAJWhLCzGtVhDxB3JRJAK5DEawKCmhASGIqPjtH+dcvbnszZ6zdzf75N73a+bOzc3uefa7Z89+9jnPefacyEwkSeXaY9gFSJJ2zqCWpMIZ1JJUOINakgpnUEtS4eYOotH99tsvFy1aNIimJWlGuuGGG+7NzJFOtw0kqBctWsTo6OggmpakGSki7pzqNoc+JKlwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuEMakkqnEEtSYUbyBdepN3VJdd9n8tv/MGwy9AQvfSohfzRMQcNu4wd2KOWJrj8xh9wy90PDLsMDcktdz9Q5Ae1PWppksMOmMenX/+8YZehIfjDj35t2CV0ZI9akgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuH8Crn6YqaczGj8PB+lfpW4jRJPLqTe2KNWX8yUkxkddsA8Djtg3rDLmLZSTy6k3tijVt94MqNyzIQ9Av2KPWpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUuMZBHRFzIuJbEXHFIAuSJO2oTY/6LODWQRUiSeqsUVBHxIHAKcDHBluOJGmypj3q9wN/BfxiqjtExKqIGI2I0a1bt/ajNkkSDYI6In4fuCczb9jZ/TJzTWYuzcylIyMjfStQkma7Jj3qY4GXRMQdwKeAF0TERQOtSpL0S12DOjPflpkHZuYi4HTgi5n5qoFXJkkCnEctScVrdZrTzLwauHoglUiSOrJHLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwc4ddwIwwuhY2XjbsKoZry0ur32vPGW4dw3TEabB05bCr0AxkUPfDxstgy0ZYcMSwKxmaTx90+bBLGK4tG6vfBrUGwKDulwVHwMorh12FhmXtKcOuQDNY1zHqiNg7Ir4REd+OiJsj4l27ojBJUqVJj/oR4AWZuT0i9gSujYjPZebXB1ybJIkGQZ2ZCWyv/9yz/slBFiVJ+pVG0/MiYk5E3AjcA3w+M6/rcJ9VETEaEaNbt27tc5mSNHs1CurMfDQzjwIOBJ4bEYd3uM+azFyamUtHRkb6XKYkzV6tvvCSmfcDVwHLBlKNJOkxmsz6GImIfet/Pw44Cdg04LokSbUmsz4OAC6IiDlUwX5pZl4x2LIkSeOazPq4CTh6F9QiSerAkzJJUuEMakkqnEEtSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAa1JBVu7rALkKS21t22jvWb1/e93bFtxwOwcsOavre9/JDlrDh0RU/LGtSSdjvrN69nbNsYi+cv7mu7Rx/9pb62N25s2xiAQS1pdlk8fzFrl60ddhmNrNywclrLO0YtSYUzqCWpcAa1JBXOoJakwnUN6oh4WkRcFRG3RMTNEXHWrihMklRpMuvj58CbMvObEfFE4IaI+Hxm3jLg2iRJNOhRZ+bdmfnN+t8PArcCCwddmCSp0mqMOiIWAUcD1w2kGknSYzQO6ojYB/gM8OeZ+UCH21dFxGhEjG7durWfNUrSrNYoqCNiT6qQvjgzP9vpPpm5JjOXZubSkZGRftYoSbNak1kfAZwH3JqZ7xt8SZKkiZr0qI8FXg28ICJurH+WD7guSVKt6/S8zLwWiF1QiySpA7+ZKEmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4WbGxW1H18LGy4b3+Ftuqn6vPWV4NQAccRosnd5FNCWVZ2b0qDdeBls2Du/xFxxZ/QzTlo3D/bCSNDAzo0cNsOAIWHnlsKsYnmH35iUNzMzoUUvSDGZQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFW7mnOZUUtHW3baO9ZvX96WtTds2AbByQ38ulLH8kOWsOHRFX9oaBHvUknaJ9ZvXM7ZtrC9tLZm/hCXzl/SlrbFtY337ABkUe9Savfp5Cbd+X45thl5WbfH8xaxdtnbYZeygX73yQbJHrdmrn5dw6+fl2LysmiaxR63ZrcRLuHlZNU1ij1qSCmdQS1LhDGpJKpxBLUmFK+9gYi9TpnqZGjVDpz9JmnnK61H3MmWq7dQopz9J2o2U16OGwU+ZcvqTpN1IeT1qSdIOugZ1RHw8Iu6JiO/sioIkSTtq0qM+H1g24DokSVPoGtSZeQ2wbRfUIknqoG8HEyNiFbAK4KCDDupXs7PLdM7mNp2ztzlVUSpa3w4mZuaazFyamUtHRkb61ezsMp2zufV69janKkrFK3N63my2q8/m5lRFqXhOz5OkwjWZnvdJ4GvA4oi4KyJeN/iyJEnjug59ZOYZu6IQSVJnjlFr99DP6xuO6/d1Dsc5i0Z95hi1dg/9vL7huH5e53Ccs2g0APaotfso8fqGkzmLRgNgj1qSCmdQS1Lhdv3QR7eDQk0P8HjARtIsseuDevyg0IIjOt/e5ODO+EGl0oO67UyFXmchlP6h1Y8ZG/2aoVH6upI6GM7BxOkeFNpdDth0+1CarNdzdUDZ4dN2PXTSj9kZu8O6kjpw1segeVmxSgkzNnaXdSVN4sFESSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIK5zxqST1Zd9s61m9e3/j+m7ZtAmDlhnZfOFp+yHJWHLqi1TIzjT1qST1Zv3k9Y9vGGt9/yfwlLJm/pNVjjG0ba/VhMFPZo9b0eaKtWWvx/MWsXbZ2YO237X3PVPaoNX3drr7S5EoqXhlFmpI9avXHbDnRljQEBrVmjn4MwTj8ogI59KGZY7pDMA6/qFD2qDWzTGcIxuEXFcqglvQYTeZIN5kX7Rzo/nDoQ9JjNJkj3W1etHOg+8cetaSOpjtHupQ50N32DnaHPQN71JJmtG57B7vDnoE96l41ubK208GkIkxn76CEPQN71L3qNhUMnA4mqS/sUU+H38aTtAvYo5akwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFaxTUEbEsIsYi4vaI+OtBFyVJ+pWuQR0Rc4BzgRcDhwFnRMRhgy5MklRp0qN+LnB7Zm7OzJ8CnwJeOtiyJEnjIjN3foeI04BlmXlm/fergWMyc/Wk+60CVtV/LgaaX0deknRwZo50uqFvXyHPzDXAmn61J0mqNBn6+AHwtAl/H1j/nyRpF2gS1NcDz4yI34iIvYDTgX8fbFmSpHFdhz4y8+cRsRr4T2AO8PHMvHnglUmSgAYHEyVJw+U3EyWpcAa1JBXOoJakwg00qCNidUSMRsQjEXH+pNseHxEfjoh7I+JHEXFNg/Z+LSLOi4g7I+LBiLgxIl7csqaLIuLuiHggIm6LiDOn+TzOrM+Bsj0iNkTEU9u0ERGH1f9/X/3zhSZf0a8fb+LPoxHxwe5roGNbz4yIn0TERQ3uO9Xz+J2I+HxEbIuIrRGxLiIOaFHD6RFxa0Q8FBHfjYjjeqhhUUTkpPXy9oaPf3W9DsaXa/2Frfrx19ev45aI+FBETHnAvst29Yp6fTwYEbdExMvatBERr5y0Hn5cr5vntGhjr4i4LCLuqJc9ocW6mPK5TWeZiHhHXcsLO9y203yIiBMjYlO9Lq6KiIPb1NBk+SlqflZEfDGqnLs9Il7eZLmJBt2j/iFwDvDxDretAeYDz6p//0WD9uYC/wMcD/w68DfApRGxqEVN7wEWZeY84CXAOZ023kk6Po96w/07qq/Uzwe+B3yyTRv1/59WL78f1dTHT3V7Epm5z/gPsAB4GFjXbbkpnEs1DbOJqZ7Hk6he00XAwcCDQKPLPkfEScDfAyuBJwLPBzb3UMO4fSesn3c3qaG2esJyi1ssN+7DwD3AAcBRVNvpG3dy/6m2q4XARcBfAvOAtwCXRMRTmraRmRdP2kbeSLVOv9m0jdq1wKuALTt5Hp10e41aLxMRTwdWAHdPsfyU+RAR+wGfBd5O9V4bBT7dtIYWy0+ueS5wOXBFvdwq4KKIOLTbsjvIzIH/1E/8/Al/LwEeAOb1oe2bgFN7XHYx1Yv+ih6fxz8C5074+6lAAk9v2sak2+YCfwL8uOXzeC3VmzB6WAenA5cCZwMX9fqadrj9t4AHG7b1VeB1fdiuFtXrf24PbV0NnDnNbfFWYPmEv98LfLSH53EMcM+k+2wFnjeN1+Mq4J29vqbAXcAJ032NprMMsAFYDtwBvLBhWzcBp1IF5Fcn/P8TqDo3Sxq+Jq2Wn3C/w4HtE9+bwH8B726zToY1Rv1c4E7gXVENfWyMiFPbNhIR+wOHAq3mdUc15PJjYBNVUK9v+9gTm+vw78NbNxJxP/AT4INUvfQ2XgtcmPVW0OIx5wF/S9Vz67fn0+B1iersjEuBkXq38K56yOBx03jsO+t21tY9oabeU2+PX2mzmz/B+4HToxrWW0h1xskNPbQzCtwaES+JiDn1sMcjVKHTWr2L/nzgwl6WL0FErAAeyczG79VJ+fBs4Nvjt2XmQ8B36/9vYrrL71AaLTNiWEF9IFWhP6Lqha4GLoiIZzVtICL2BC4GLsjMTW0ePDPfSLWLfRzV7swjbZafYAPwiog4sg6Wd1D16B7ftqHM3Jdqd2018K2my9VvwuOBC9o+JvBu4LzMvKuHZXdW05FU6+ItDe6+P7An1fDPcVRDBkdT7ba2dS/w21RDL8+heo0vbrjsW4FDgIVUQzj/Ue9qt3EN1Rv3Aaoe6Cjwby3bIDMfpQrVS6i2zUuA19fh0IvXAF/OzO/1uPxQRcQTqTovZ7VYZnI+7EOVNxP9iGobaaLX5ceohsPeEhF7RsSLqN6vrTJiWEH9MPAz4JzM/Glmfolq1+xFTRaOiD2ATwA/pQq21jLz0cy8lupD4w09tvEF4J3AZ6h2x+6gGpvtKfjqN+JHgAunGI/s5NXAtW3fhBFxFPBC4J9aFdm93WcAnwPOyswvN1jk4fr3BzPz7sy8F3gf1S5uK5m5PTNHM/Pnmfm/VNvGi+o3erdlr8vMBzPzkcy8APhKmxrqbXID1Qf/E6iONzyJauy9lfpA2T8AJwB7Ub2xP1a/Zr14Db19kJfibOATmXlHkztPkQ/bqcb7J5pH9X5toqflM/NnwMuAU6jG+d9ENdTYKiOGFdSdduEa7bZHRADnUfXETq1XxHTMBdr2nH4pM8/NzGdm5v5UgT0X+M406tmD6tN2YcP79/omPIFqTPf7EbEFeDNwakR0OtjUSN27/wLV+NsnmiyTmfdRbbQTX/9+fV12vJ1etvNkx2GtbuYDBwEfqsP+/6gOprb+wKHaq7im/tD5RWZeD1xH9cHaSkQcS7XXelkPdZTiRODPoppJs4XqJHGXRsRbJ99xJ/lwM/CbE+73BKr3fdNh056Xz8ybMvP4zHxyZp5Mtef2jYaPCwx+et7ciNib6hwhcyJi7/oo6DXA94G31fc5Fvg9qvOJdPMvVDNF/iAzH+5250n1PCWqaWD71GN/JwNnAP/dy/Oofx8elYOodpn/uQ6fpm2cFBFH1/XMo+pN3kd1YKrb8/ldqkDvZbbHGqoN7aj65yPAlcDJXR5zquexEPgiVVB9pGUta4E/rV+fJ1HNALqihxqOiYjFEbFHRDwZ+ABwdWZO3mWd3N6+EXHyhHZeSTWm23h8ud4T+B7whrqNfamOHUw5rryT98f1wHHjPeiIOJpqWOgxbe2kjXGvBT6TmVP2/HbWRlRT3vau77pXfVvXD7AGdbVZ5kSqodKj6p8fAq+nmq002VT58K/A4RFxav0Y7wBumjxsupMaGi0/xfM6sm7n8RHxZqpZQed3W24HbY/itjx6ezZVz2Tiz9n1bc8GvgY8BNwCvLxBewfXbfyEaldk/OeVDesZAb4E3E81jrgR+ONenwewL9Wb5yGq3Zr3AHNatrGC6qDmdqoj+1cCRzZ8Ph+l2iXs12vVddbHTp7HO+t/T3xdtjd87D2pprbdX6/HDwB791DDGVRh+RDVQeILgQUNt4vrqXZj7we+DpzUwzo8imr2yH1U4+WXAvv3+P5YDdxe17QZeFMPbexdP58Tp/E+vaPDbYt63U76sQxTzPqgSz5Q7ZFsohpuu7rT8+iyLrouP8Xzem+9TWynGhZ8Rttty5MySVLh/Aq5JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXD/D1Y8636+15V5AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "linked = linkage(df, method='weighted', metric='euclidean')\n",
    "dendrogram(linked, labels=labels, orientation='top', distance_sort='descending', show_leaf_counts=True)\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD7CAYAAABDld6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAUKElEQVR4nO3de5RdZX3G8echCY0KKcSMJAaT1FvGSGKiU6ilXBS5CKno4q4GV1ZpWGpa2qq1rlURK6ssa5f1hkqWGG6iCVFLOyBVK4h4QQeNjISJC2NCwUwJTXQSJFHw1z/ePTAZz8zZ+8w5c96ZfD9rzZrL2fs9v33Onue8+93vPscRIQBAvg5qdwEAgNER1ACQOYIaADJHUANA5ghqAMjc1FY0OmvWrFiwYEErmgaASemee+55NCI6at3WkqBesGCBenp6WtE0AExKtreNdBtDHwCQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMteSCF6CWG+9+UDdvfLjdZQCjOnPpXL3xmHntLmM/9Kgxbm7e+LA2bR9odxnAiDZtH8iyM0GPGuNq0ZwZWnfxK9tdBlDTeVd9t90l1ESPGgAyR1ADQOZKDX3Y3ippt6QnJT0REV2tLAoA8LQqY9SviohHW1YJAKAmhj4AIHNlgzokfdX2PbZX1VrA9irbPbZ7duzY0bwKAeAAVzao/ywiXi7ptZLebvv44QtExJqI6IqIro6Omp8mAwBoQKmgjoiHi++PSPqypKNbWRQA4Gl1g9r2s2wfOvizpFMk/aTVhQEAkjKzPo6Q9GXbg8vfGBG3tbQqAMBT6gZ1RGyR9LJxqAUAUAPT8wAgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyFzpoLY9xfaPbHe3siAAwP6q9KgvkXR/qwoBANRWKqhtHynpDEmfaW05AIDhyvaoPyLp7yX9bqQFbK+y3WO7Z8eOHc2oDQCgEkFte7mkRyLintGWi4g1EdEVEV0dHR1NKxAADnRletTHSnqd7a2SviDp1bZvaGlVAICn1A3qiHhPRBwZEQsknS/pGxHx5pZXBgCQxDxqAMje1CoLR8Qdku5oSSUAgJroUQNA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkLlK86iRlxvvflA3b3y43WWUtmn7gCTpvKu+2+ZKyjlz6Vy98Zh57S4DoEc9kd288eGnwm8iWDRnhhbNmdHuMkrZtH1gQr0IYnKjRz3BLZozQ+sufmW7y5h0JkqvHwcGetQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0Amasb1Lan2/6+7R/bvs/2+8ejMABAMrXEMvskvToi9tieJuku21+JiO+1uDYAgEoEdUSEpD3Fr9OKr2hlUQCAp5Uao7Y9xfZGSY9I+lpE3F1jmVW2e2z37Nixo8llAsCBq1RQR8STEbFU0pGSjrZ9VI1l1kREV0R0dXR0NLlMADhwVZr1ERG/lHS7pNNaUg0A4PeUmfXRYfuw4udnSDpZUl+L6wIAFMrM+pgj6VrbU5SCfX1EdLe2LADAoDKzPu6VtGwcagEA1MCViQCQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQObKvCkTmq1nrdS7Yezt9J+Zvq+9fGztLD5b6lo59noAtARB3Q69G6T+Xmn24jE1s27ezWOvpb83fSeogWwR1O0ye7G08pZ2VyGtPaPdFQCogzFqAMgcQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOYIagDIHEENAJkjqAEgcwQ1AGSOoAaAzBHUAJA5ghoAMkdQA0DmCGoAyFzdoLb9PNu3295k+z7bl4xHYQCApMxHcT0h6R0R8UPbh0q6x/bXImJTi2sDgJp2rVuvge7upre7b9arJEnbVnyq6W3PWL5ch593bkPr1g3qiNguaXvx827b90uaK4mgBtAWA93d2tvXp+mdnU1t96OP3t7U9gbt7euTpNYF9VC2F0haJunuGretkrRKkubNm9dQMQBQ1vTOTs2//rp2l1HKthUXjmn90icTbR8i6YuS/iYiBobfHhFrIqIrIro6OjrGVBQA4Gmlgtr2NKWQ/lxEfKm1JQEAhioz68OSrpZ0f0R8uPUlAQCGKtOjPlbSCkmvtr2x+Dq9xXUBAAplZn3cJcnjUAsAoAauTASAzBHUAJA5ghoAMkdQA0DmCGoAyBxBDQCZI6gBIHMENQBkjqAGgMwR1ACQOYIaADJHUANA5ghqAMgcQQ0AmSOoASBzBDUAZI6gBoDM1f2EFxR61kq9G5rTVv+96fvaM5rT3uKzpa6VzWkLaJFd69ZroLu7KW3t7euTJG1bcWFT2puxfLkOP+/cprTVCvSoy+rdIPX3Nqet2UvSVzP09zbvBQRooYHu7qcCdqymd3ZqemdnU9ra29fXtBeQVqFHXcXsxdLKW9pdxf6a1SsHxsH0zk7Nv/66dpexn2b1yluJHjUAZI6gBoDMMfSBLN3005t065Zb23b/m3eeIElaeduattUgSac//3Sd8+Jz2loD2o+gRpZu3XKrNu/crIUzF7bl/pct+2Zb7neozTs3SxJBDYIa+Vo4c6HWnra23WW0zcrbmHKJhDFqAMgcQQ0AmSOoASBzjFGj5RqZwdG3M13BVnWcllkSmIzoUaPlBmdwVNE5s1OdM6tdIrx55+a2TukDWoUeNcbFeMzgYJYEJqu6PWrbn7X9iO2fjEdBAID9lRn6uEbSaS2uAwAwgrpBHRF3Sto5DrUAAGpo2slE26ts99ju2bFjR7OaBYADXtOCOiLWRERXRHR1dHQ0q1kAOOAx6wNoobG8C2Cjc8kHMad88mAeNdBCjcwhH9TIXPJBzCmfXOr2qG1/XtKJkmbZfkjS+yLi6lYXBkwW7XgXQOaUTy51gzoiLhiPQgAAtTH0AQCZI6gBIHOTc9ZHz1qpd0Nz2+y/N31fe0Zz2118ttTFeCKAkU3OoO7dIPX3SrMXN6/N2Uua19ag/t70fYIHdb0paGWnmTGdDKhtcga1lEJ65S3trmJ0ze6dt0m9D6ItM8WMD3IFRjZ5gxrjaqxT0CbKdLKqF7DwAQhoBk4mAhVUvYCFD0BAM+TXo27GicBmnfjjRB9qaPUFLBPl6ALjJ78e9eCJwLGYvWTsJ//6e5s/cwQAGpBfj1rK40TgJDnRB2Diy69HDQDYD0ENAJkjqAEgcwQ1AGQuz5OJALK3a916DXR3l15+b1+6+Gfbigsr3c+M5ct1+HnnVlpnshn/oK43T7rsHGjmOANtNdDdrb19fZreWe6CnrLLDTUY7gT1eKv3hkll5j9PkjczAia66Z2dmn/9dS1rv2rve7Jqz9DHWOdJj3WOc5mrH8v07OnVAxgHB+bJxDJXP9a7upErFwGMkwP3ZGK7e/UAUNKBG9QARlRmRkeZWRzM2GiOA3PoA8CoBmd0jGZ6Z+eoMzn29vVVmr6HkdGjBlDTWGd05DJjo97RwUQ4MqBHDWBSq3d0MBGODOhRA4UyH7NV5qO1+Bit/Izl6CCHIwN61EChzMds1ftoLT5GC61AjxoY4kD5kF5MLPSoASBzBDUAZI6gBoDMEdQAkLlSQW37NNubbT9g+x9aXRQA4Gl1g9r2FElXSnqtpEWSLrC9qNWFAQCSMj3qoyU9EBFbIuI3kr4g6czWlgUAGOSIGH0B+2xJp0XERcXvKyQdExGrhy23StKq4teFkka/cgAAMNT8iOiodUPTLniJiDWS1jSrPQBAUmbo42FJzxvy+5HF3wAA46BMUP9A0ots/5HtgyWdL+k/WlsWAGBQ3aGPiHjC9mpJ/yVpiqTPRsR9La8MACCpxMlEAEB7cWUiAGSOoAaAzBHUAJC5lga17dW2e2zvs33NkL//ie2v2d5pe4ftm2zPqdDu+bbvt/2Y7Z/ZPq6BGhbYDtt7hny9t+T932F775D1Kl/cU9z/rbZ32e63/QnbI57cHWk7itvOLR6P3bY32X59lTZsv2nY4/Dr4rF5RcU6nmn7k7Yftf0r23eWeBz+wPbVtrcV9W+0/dp669Vo5wbb220P2P6p7YvqLD/adlxUvK/NHtu32X5ulTZsLyr+vqv4+nqZt10Y9hzssf2k7Y+XewR+r60XFfvoDSWWHWk7Dra9wfbWYn84scL9j/j4jmUd25cWtbymxm2j7ku2T7LdV+zft9ueX6WGMuuPUPNLbH+j+J94wPYbyqw3VKt71L+QdLmkzw77++FKF8cskDRf0m5JpT5Ww/bJkj4oaaWkQyUdL2lLAzUMOiwiDim+PlCmhsLqIestrLDeoE9KekTSHElLJZ0g6W2jLF9zO2zPlXSDpL+TNEPSuyTdaPs5ZduIiM8N2ZZDijq2SPph2TYKayTNlPSS4vvfjrI9g6ZK+h+l7f9DSf8oab3tBSXWHeoKSQsiYoak10m6vNYLzRAjPZ4nSvpnpbdJmCnp55I+X6WN4u9nF+vPUprO+oV6GzDsOZgt6XFJN9VbbwRXKk2tLWO05/QuSW+W1F/x/uv931Vex/YLJJ0jafsI64+4L9meJelLkt6r9Lz0SFpXtoYK6w+veaqkmyV1F+utknSD7RfXW3c/EdHyr2LDrxnl9pdL2l2yre9I+oux1qD0IhGSpjbQ1h2SLhrjY3K/pNOH/P4hSVc1sB3HSHpk2DI7JL1yDM/H7ZLeV7GOTkkDkmY0YX+5V9JZY1h/odI/87kNPJ7/KunKIb8/t9hPXtDI46kUHm+X9OuK2/AWpRdLN7D950taL+kySTdUWG+07XhI0okN1DLqvlZlHUm3STpd0lZJr6myLykF5HeG/P1ZSi+EnSX3i0rrD1nuKEl7hj6Pkr4q6QNVHpNcxqiPl1R3brbTO/l1SeooDiEechoyeMYY7ntb0c7a4lWzrCuKQ/xvVzkkHOIjks4vhgvmKr074W0NtNMj6X7br7M9xWnYY5/SDlpZcTh3vKSqH9l8tKRtkt5fPC69ts9q4P6PkPRildgfaqz7Sdu/ltSnFNSNfsqsa/x8VAP1/FLSXkkfV+qlV/EWSddF8Z9d4T5nSPonpSOsScP2OZL2RUTp53TYvvRSST8evC0iHpP0s+LvZYx1/f1KU8X9qe1BbXuJpEuVDtnrOULSNKXDyuOUhgyWKR3iVPWopD9WGnp5hdIwyudKrvtuSc+XNFfpcP8/i8OyKu5UepIHlHorPZL+vWIbiognlUL1RqWAvlHSxcWO1IgLJX0rIn5ecb0jlXa+Xyn1QldLutb2S8o2YHua0nNwbUT0Vbx/RcTblJ7H45QOU/dVbUPpxfJc20uKDsClSj3qZzZQz2FKh+CrJf2o7HrFi+UJkq6tep+SPiDp6oh4qIF1s2T7UKUXuksqrDN8XzpEad8c6ldK+0sZja6/WWmI8122p9k+Rem5rbQ/tTWobb9Q0lckXRIR3yqxyuPF949HxPaIeFTSh5UOhyqJiD0R0RMRT0TE/yr9M51S7BT11r07InZHxL6IuFbSt6vUYPsgpUD4ktIh1CylcfsPVt2O4qTKv0g6UdLBSjvBZ2wvrdpW4UI1FhCPS/qtpMsj4jcR8U2lIZRTyqxcPCbXS/qN0nPRkIh4MiLuUnrheGsD639d0vskfVHpEHur0jmUhoKveMH8tKTrRjhvUMsKSXdVfbEsnvPXSPq3SkXm7zJJ10fE1jILj7Av7VE6hzPUDKXntoyG1o+I30p6vaQzlMb536E0LFVpf2pbUBe9hq8rjdVcX2adiNiltIFDDwebdWnlYDuNPCah/Q+X65kpaZ6kTxRh/39KJ1Mrv+AoHVXcWbzo/C4ifiDpbqV/2EpsH6vUG97QQB21hlpKPTe2LelqpSOms4qde6ymSqp6lCNJiogrI+JFEXGEUmBPlfSTMdRykFIPam7J5Rt9sTxR6dzLg7b7Jb1T0lm2a50UnkhOkvTXTrOj+pXeJG697XcPX3CUfek+SS8bstyzlPaPskNsDa8fEfdGxAkR8eyIOFXpaPz7Je9XUuun5021PV3pPUKm2J5e/G2upG8oBdWnKza7VtJf2X6O7cOVZhZ0N1DDMbYX2j7I9rMlfUzSHREx/PBmeHuH2T51SDtvUhrTLT2+XBwJ/FzSW4s2DlMakxxxXHmk7VA6s3/cYA/a9jKlQ//fa2uUNga9RdIXI2LEXsIobdwp6UFJ7ymWOVbSq5TeI6aeTynNFPnziHi83sI1anqO05TNQ4px+lMlXSDpv6tuR/H9KCfzlIa2Plp0Esq2cbLtZUUtM5SO+nYpnUCuty1/qhTojcz2WKMUHkuLr09LukXSqXXuc8T9wmnK2/Ri0YOL2+p2Skrsa1XWOUlpWG1wu34h6WKlmS3DjbQvfVnSUbbPKu7jUkn3Dh9iG6WGUuuPsF1LinaeafudSjO9rqm33n6qnsWtePb2MqVe1dCvy5QOLUPpcOKpr5JtTlOa2vZLpUOJj0ma3kANFyiF5WNKJ56ukzS7xP13KIXj7qKG70k6uYHHZqnS7JFdSuPl6yUdUXU7ittWS3qgqGmLpHc00Mb0YntOauQ5LW57qaTvFo/pJklvKPE4zC/a2Dtsf3hThceyQ9I3i/oHJPVK+ssG983DlF7kHiv2ryskTanYxjlKJzT3KM3AuUXSkpLbcpXSYX6z/v/qzvqo85xurXHbgrG0OdZ1NMKsj3r7ktJRZp/SMN0dtbajzmNRd/0RtutDSv/ne5SGel9Y9bnkTZkAIHNtn/UBABgdQQ0AmSOoASBzBDUAZI6gBoDMEdQAkDmCGgAyR1ADQOb+H+8WUGc6FUpoAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "linked = linkage(df, method='centroid', metric='euclidean')\n",
    "dendrogram(linked, labels=labels, orientation='top', distance_sort='descending', show_leaf_counts=True)\n",
    "\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}