Neural Networks: History and foundation

Amor Ben Tanfous

Aimen Zerroug

Artificial and Natural Intelligence Toulouse Institute (ANITI)
March 22, 2021

Université
Féederale

Toulouse
Midi-Pyrenées

Course Intro

Symbolic Al
Neural Networks
Computer Vision
NLP

Audio

DL & Neuroscience

Course Intro

Symbolic Al
Neural Networks
Computer Vision
NLP

Audio

DL & Neuroscience

History and Foundations

History and Foundations

Image Unsupervised
Classification learning
Basics RNNs for NLP

Sound & Speech Processing

CNNs & brains Spiking NNs

Detection
Segmentation

Attention
Transformers

Brain
Decoding

Visual
Reasoning

Course Intro

Symbolic Al
® Neural Networks
Computer Vision
NLP

Audio

DL & Neuroscience

History and Foundations

® History and Foundations

Image Unsupervised
Classification learning
Basics RNNs for NLP

Sound & Speech Processing

CNNs & brains Spiking NNs

Detection
Segmentation

Attention
Transformers

Brain
Decoding

Visual
Reasoning

Outline

Session 1

History of neural networks

Artificial neurons - Perceptrons
Multi-layer perceptrons (MLPs)
Optimization and objective functions
Gradient descent and Back-propagation

Session 2

How to design neural networks
Choosing the architecture (CNN, RNN)
Choosing the loss function

Training a neural network

Practical examples

Neural networks milestones

Electronic Brain

Perceptron

F. Rosenblatt

B. Widrow - M. Hoff

ADALINE

A

Golden Age

XOR
Problem

A

Dark Age (“Al Winter”)

Multi-layered
Perceptron
(Backpropagation)

A

1960

1970

1980

D. Rumelhart - G. Hinton - R. Wiliams

Deep Neural Network

1990

V. Vapnik - C. Cortes

(Pretraining)

A

S. McCulloch - W. Pitts
XAND Y XORY NOT X
+1 +] 2 +1 +1 - -1
/0N / 1\ |
X Y + X Y +! X

Foward Activity ==

«—— Backward Error

« Adjustable Weights
« Weights are not Learned

» Learnable Weights and Threshold

+ XOR Problem

+ Solution to nonlinearly separable problems
« Big computation, local optima and overfitting « Kernel function: Human Intervention

« Limitations of learning prior knowledge

Image source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.

« Hierarchical feature Learning

The beginning of Neural nets (1940s-1960s)

Artificial neuron: McCulloch & Pitt's neuron model (1943)

Input Layer
; g Input Weights

Dendrite . wi
Synapse
Cell body(Soma) - w2
w4
Image source: Wikimedia Commons .

Summing function

Schematic of a biological neuron Model of an artificial neuron

Activation function

The beginning of Neural nets (1940s-1960s)

Artificial neuron: McCulloch & Pitt's neuron model (1943)

Dendrite
Synapse
Cell body(Soma)

Schematic of a biological neuron

Input Layer

Input Weights Activation function

Summing function

0 of t> Z?:O W; T;

output =
Hpu {1 otherwise

Single-layer neuron examples

e An artificial neuron could solve linear logical problems: AND, OR, NOT

AND Ti T2 Qut OR 1 T2 Qut NOT 1 Out
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0

Perceptron: A learning algorithm for the neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para.

e Automatic learning of weights

e Supervised learning of binary classifiers

e Could recognize letters and numbers

-, ‘
o0 ®
[Input ® e o
'
‘ ’ ,// Q ' ‘
P
,’
S e ®

Feedback

The Perceptron Learning Algorithm

Let D = (<331,y1>, <$2,y2>7 Tt <mn,yn>) = (Rm X {07 1})n

1. Initialise w; with random small values
2. For every training epoch:
For every sample (z;, y;) € D :

(a) 9 := o(x; X w) +«— Compute output (prediction)
(b)err :== (yi — 9;) +——— Compute error
(c)w := w + err X x;

Update parameters

Error

@ output

Net input Activation
function function

Perceptron rule.

The first Al winter

Minsky and Papert (1969) show that the perceptron can’t even solve the XOR problem
\{ ¢ \ WA Ry

and or xor
1| = H 1| + + 1l + -
- -
. a A s
o — — i 0 T & + 0 - + Expanded Edition
> > > -
0 1 0 1 0 1

Perceptrons

= Kills research on neural nets for the next 15-20 years

Multilayer perceptrons (1980’s)

Solution to the XOR problem: Multilayer perceptrons

e Composed of: input layer, hidden layer(s) and an output layer.

e Each node (of hidden and output layers) is a neuron that uses a nonlinear activation

function.

e It can distinguish data that is not linearly seg

-
R

-
-

output layer
input layer
hidden layer

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Linear_separability

Multilayer perceptrons (1980’s)

Can add more layers to increase capacity of the network

output layer
input layer input layer
hidden layer

e New problem: MLPs are hard to train!

hidden layer 1 hidden layer 2

Multilayer perceptrons (1980’s)

Can add more layers to increase capacity of the network

output layer
input layer
hidden layer

5
S\
;‘;.

output layer

b
ire
o§

input layer
hidden layer 1 hidden layer 2

e New problem: MLPs are hard to train!

= Solution: The Backpropagation algorithm

The Backpropagation algorithm

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

Rumelhart, Hinton, and Williams (1986) introduced Backpropagation to train MLPs

Principle: Computing the gradient of the cost function w.r.t the weights of the network

Neural Network learning as optimization

e Mapping a set of inputs to a set of outputs from training data

e Learning is cast as an optimization problem to make good enough predictions

e Training with gradient descent

input

output

fo(z)

Training Loss

0.06 -
0.05 -
rd
3§ 0.04 4
0.03

0.02 1

0 20 40 60 80 100
Epoch #

Cost functions

e A cost function is a measure of error between predictions and true values

Output
dependent
variable

Predicts output

Predicted
value
Cost
function
Actual

value

Cost functions

e A cost function is a measure of error between predictions and true values
e Guides the training process to find a set of weights that minimizes its value

Starting
fx) A / Point

B\
N\,

Some examples:

° [lteration 3
n ‘

1 A
MAE=—2 Vi — Vil
‘i'ﬂ!,rlediclted vIaue alc(uall valie

test set

\ Iteration 4

Convergence

n
2
MSE = Z)’i—yz) HH———+++HH
| 1=l| T
redlcted vaue ac(ual value

test set Final

Value

Gradient Descent

Finding minimum of the cost function C'

Negative gradient VC' points in the direction where the function decreases most rapidly

Calculate new weights: W™ =W — n VC

w1

w2

9C 7
ow1
el
ow,

COCSOSIISHLFs
19502020205 %0.205 %
S “:': SESIGKE

]

4 lll

L 10004
’l'l':'
$5%

O S SSSSSSS oS5 TA SRR
2oy <
SO “.o..o,o,l',’l'f" KRS

A SRR
O AR
9 ""' {7 00,

How Backpropagation works

e Minimization through gradient descent requires computing the gradient

e Backpropagation: way to compute the gradient by applying the chain rule

Data propagation direction —

— Error propagation direction

How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

Q. B
Input x Q-» Q S output 'y
e Ot ©

How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

2) Calculate the total error w.r.t desired outputs

Q. @
Input x Q-» Q S output 'y
e Ot ©

How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

2) Calculate the total error w.r.t desired outputs
d

3) Backward pass: awy (error term of the output layer)

(compute gradient) 853) = g3 — y

O

I(W) = “)b” 1)

a) Compute partial derivatives of

OO
i dE
the error w.r.t each weight T ‘?
by applying the chain rule Input x Q Q output y <= target y
O
b) Update weights: O O -
w; = w; — ’I]dif:’]

ag(z®)
@) = (w@)\ g3 ,29\Z)
5@ = (W) s e

(error term of the hidden layer)

Training with Gradient descent and BP

e batch GD, stochastic, or mini-batch? Stochastic en_

e SGD in DL generally refers to mini-batch GD Mini-batch GD

J

.
Batch GD

Initial

Weight \

Incremental

/ Gradient

Cost

Minimum Cost
Derivative of Cost

>

Some useful resources

http://neuralnetworksanddeeplearning.com/chap1.html

https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a

https://towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec#.ekc89166m

https://people.idsia.ch//~juergen/who-invented-backpropagation.html

http://neuralnetworksanddeeplearning.com/chap1.html
https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a
https://towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec#.ekc89166m
https://people.idsia.ch//~juergen/who-invented-backpropagation.html

Training a neural network

Data Architecture

Data Samples
and Labels

{(z1,91), (2,32), ...}

Task
Loss function
Input and output loss = dif f(prediction, label)
Ti — Y
Optimization
prediction backpropagation gradient descent

f |

Training a neural network

D Architecture
ata
f Cy s, c ’
. feature maps feature maps Iayz . Fg
Handwntten , s 16@ 10x 10 16@)7(57 0 layer Output
] feature maps feature maps B
Dlglt Dataset Input 6@28x28 6@14x14
00000060e o232
S A |
222232 2> =
333333395 = B
H#rqa4494y Convolutions | = Rl Gaussian
555855555 \ Subsampling Convolutions Subsampling connection connection - connection
b6 bbb6cbb B /
72773527
¥3 57888 P ¢ .
71994934 Loss function

-

J

o S Cross-Entropy
TQ s k N

c
foh = Sog OB = =3 tlog(f())

Optimization

Digit

Classification

prediction backpropagation gradient descent

i |

How to choose the architecture

Multi-layer perceptrons MLPs are the standard
solution for data with simple structure (ex. tabular
data).

W, W,
Xy W, blue, orange
M % HHHHH L = R EE
qp
CITTTTTT]
4r 4r
b, CIITITTTT] 11
b, b,

+

:
gl

899RE000;

+ — 3 HIDDEN LAYERS

3t
i

y

-
-

%
}

OUTPUT

Test loss 0.501
Training loss 0.515

http://playground.tensorflow.org/

How to choose the architecture

What's important ? g 9 3
uﬂ DB un
- Generalization . 80 = . .s 2% 8
e . . . a8 2]
- Fitting the data distribution e TV L\
- Fitting unseen examples > > >
Underfitting Balanced Overfitting
- Efficiency ,
. e Ex; L E();lpect_edlst o
- Memory (how large is the model ?) P ey
- Time (how long does it take to train ?) £ Pe RS "
- Data (how many training samples does it need ?) E 05 oy
= 04 =
2 Reality \&_\W—"
0.3
0.2

1 10 20 30 40 50 60

Model Size (ResNet18 Width)

How to choose the architecture

Do MLPs work for all types of data ? Yes, but not efficiently

text time images
sequences

Inductive bias : an architectural assumption or constraint

Convolutional Neural Network (CNN)

[Receptive fields size| | Features | no face face!
IT A ' faces
V4 objects I
/T\ + | om -
V2 4 |:| shapes
// \\ d
edges
Vi \P‘ and lines
visual field

Local Connectivity

Hierarchical Processing Weight sharing

Convolution

Recurrent neural networks (RNN)

| am a student

? 2 9 9

Input MLP

MLP |+—— Hidden [t]

Hidden [t-1] MLP

How to choose the loss

The choice of the loss is crucial !
What'’s important in the loss design?

- Adaptability to the problem (correlates with
performance metrics)

- Continuous and differentiable

- Numerically stable

/‘T\

© o} ®e .0
e o ° o ® o -
: o0 ©
@ @ 3 L J
0.~‘l@“-.._. s L B e
@ ® o
® » o ® - ® 9
@ e .
Classification Regression
Label : Categorical (discrete) Continuous
Examples : Cross Entropy Mean Square Error (L2)
Hinge Loss Mean Absolute Error (L1)
pUT * T -HoT
N " "cl §o¢ﬂ : ';ﬁwf'
s
Y ;4
caossoy| 10
2.0 O-} E”‘\'ﬂov‘,
o D
)
%t i 0.0
l.o Y 0.2 D(i L)
o. o.l 0.0

Cross Entropy

Training and Evaluation =

l
Single Dataset
Training: optimization of the model

.) o Training
Evaluation: testing generalization
Metrics: Loss and accuracy g prediction
Models with the highest accuracy are state of the art (SOTA) backpropagation
100 ¢
. et ey gradient descent
NASNET—A(G))——“.—J
C 80 Inception V3_._.——r.‘
% SPPNet—/‘
§ 70 *
- AlexNet
§ 60
SR Fus Evaluation
50
40
2012 2014 2016 2018 2020 predICtlon
Other models -e- State-of-the-art models

Imagenet Benchmark on paperswithcode.com

http://paperswithcode.com

Training

SGD in DL generally refers to mini-batch GD

Epoch: one pass through the dataset

Training

Y

prediction

I

backpropagation

I

gradient descent

Cost

H_J
Mini-batch GD

(& J

.
Batch GD

Initial
Weight

/ Gradient

/

Incremental

Step \
¥

s

Minimum Cost
Derivative of Cost

>

-

Training
Mini-batch GD
Batc; GD
How many iterations/epochs ?
The validation set is used for early stopping Accuracy vaning s
Test set # validation set generalization error

validation-set

Iterations / Epochs

o [-
I

I
Single Dataset

Training and Evaluation |
Single IIZ)ataset
Training @ @ g
training set validation set test set
Epoch Evaluation
" Prediction Validation >
l prediction
backpropagation prediction
'
gradieT_/

Training

How to find the learning rate ? i

0 60—n—

oL
00

Cost

Incremental

Initial

Weight \

l/ Gradient

1
1
1
1

Minimum Cost

a) min
E(w)
A
N = Ngpy
\/
h)min >
<)

Weight
E(wm)
'y
N = Ngpt /
b) (bmin -
E(w)
A n> 2 nopt
e
d) (“omin }

00

Loss landscapes are not easy to navigate for optimizers

oL
Optimizers 0« 0—n

Ideas:

Use the gradient history of previous timesteps to inform GD This is a 2 parameter example!
in future timesteps

Imagine millions
Adapt the learning rate to each parameter

w— SGD
- Momentum

. - NAG
Adam optimizer is an extension of SGD which makes use of — Adagrad
. ”""'/"':’:’"’l’/""/'/',’,;/ 7 — Adadelta
these two ideas. It is currently the most used optimizer in DL a o

55
after SGD. 0 ""’:':'3':""': SRR
$20.0:%%

%
(7
X

506K

Regularization

Additional constraints to reduce overfitting

Dropout: stochastically dropping weights during inference

(a) Standard Neural Net (b) After applying dropout.

Early stopping: stopping the training as soon as the validation loss starts increasing
Weight penalties (weight decay): L1 norm (Lasso) / L2 norm (ridge). Terms added to the loss.

Data augmentations: artificially boosting the number of training samples W, w,

(S (S
w P
VW - € i

Sparse Smaller weight
weights values

Hyperparameters

All parameters and settings that are set before training:

- Architectural choices: types and number of layers, size of each layer
- Losses/regularization: weights, additional constants
- Optimization: batch size, learning rate, iterations/epochs, schedule

Hyperparameter search. Another optimization problem ?

- Often done manually.
- When resources are available, large scale search is possible

°
°
° ®
X, 4] ® X5 o
® o
° ° ° ° i
X1 Xq

(a) Standard Grid Search (b) Random Search

The machine learner pipeline

1. Understanding the data and the task

2. Set up the end-to-end training/evaluation skeleton

a. a basic architecture
b. a standard loss
c. Standard optimization pipeline

3. Complexify one thing at a time
4. Regularize
5. Tune Hyperparameters

Practical examples

With this formula you can do all of this

Google DeepMind's

Al P haFo IJ d?2 DeepMind Al Reduces

. / >
(4
)

! Google Data Centre
Cooling Bill by 40%

This was 5 years ago

S}

Al Breakthrough in Biology

Go to notebook

