
Neural Networks: History and foundation

 Amor Ben Tanfous

Aimen Zerroug

Artificial and Natural Intelligence Toulouse Institute (ANITI)
March 22, 2021

Course Intro
Symbolic AI

Neural Networks

Computer Vision

NLP

Audio

DL & Neuroscience

Course Intro
Symbolic AI

Neural Networks

Computer Vision

NLP

Audio

DL & Neuroscience

Image
Classification

Unsupervised
learning

Detection
Segmentation

Visual
Reasoning

Basics RNNs for NLP Attention
Transformers

History and Foundations

History and Foundations

Sound & Speech Processing

CNNs & brains Spiking NNs Brain
Decoding

Course Intro
Symbolic AI

Neural Networks

Computer Vision

NLP

Audio

DL & Neuroscience

Image
Classification

Unsupervised
learning

Detection
Segmentation

Visual
Reasoning

Basics RNNs for NLP Attention
Transformers

History and Foundations

History and Foundations

Sound & Speech Processing

CNNs & brains Spiking NNs Brain
Decoding

Outline

Session 1

● History of neural networks
● Artificial neurons - Perceptrons
● Multi-layer perceptrons (MLPs)
● Optimization and objective functions
● Gradient descent and Back-propagation

Session 2

● How to design neural networks
● Choosing the architecture (CNN, RNN)
● Choosing the loss function
● Training a neural network
● Practical examples

Image source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.

Neural networks milestones

The beginning of Neural nets (1940s-1960s)

Artificial neuron: McCulloch & Pitt's neuron model (1943)

Model of an artificial neuronSchematic of a biological neuron

The beginning of Neural nets (1940s-1960s)

Artificial neuron: McCulloch & Pitt's neuron model (1943)

Schematic of a biological neuron

● An artificial neuron could solve linear logical problems: AND, OR, NOT

0 0 0

0 1 0

1 0 0

1 1 1

0 0 0

0 1 1

1 0 1

1 1 1

0 1

1 0

AND OR NOT

Single-layer neuron examples

Perceptron: A learning algorithm for the neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para.

● Automatic learning of weights

● Supervised learning of binary classifiers

● Could recognize letters and numbers

The Perceptron Learning Algorithm

Compute output (prediction)

Compute error

Update parameters

The first AI winter

Minsky and Papert (1969) show that the perceptron can’t even solve the XOR problem

⇒ Kills research on neural nets for the next 15-20 years

Multilayer perceptrons (1980’s)

 Solution to the XOR problem: Multilayer perceptrons

● Composed of: input layer, hidden layer(s) and an output layer.

● Each node (of hidden and output layers) is a neuron that uses a nonlinear activation

function.

● It can distinguish data that is not linearly separable.

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Linear_separability

● New problem: MLPs are hard to train!

Can add more layers to increase capacity of the network

Multilayer perceptrons (1980’s)

● New problem: MLPs are hard to train!

 ⇒ Solution: The Backpropagation algorithm

Can add more layers to increase capacity of the network

Multilayer perceptrons (1980’s)

The Backpropagation algorithm

Rumelhart, Hinton, and Williams (1986) introduced Backpropagation to train MLPs

Principle: Computing the gradient of the cost function w.r.t the weights of the network

Neural Network learning as optimization

● Mapping a set of inputs to a set of outputs from training data

● Learning is cast as an optimization problem to make good enough predictions

● Training with gradient descent

Cost functions

● A cost function is a measure of error between predictions and true values

Cost functions

● A cost function is a measure of error between predictions and true values

● Guides the training process to find a set of weights that minimizes its value

Some examples:

Gradient Descent

● Finding minimum of the cost function

● Negative gradient - points in the direction where the function decreases most rapidly

● Calculate new weights:

● Minimization through gradient descent requires computing the gradient

● Backpropagation: way to compute the gradient by applying the chain rule

How Backpropagation works

How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

2) Calculate the total error w.r.t desired outputs

How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

2) Calculate the total error w.r.t desired outputs

3) Backward pass:

a) Compute partial derivatives of

the error w.r.t each weight

by applying the chain rule

b) Update weights:

● batch GD, stochastic, or mini-batch?
● SGD in DL generally refers to mini-batch GD

Stochastic GD

Mini-batch GD

Batch GD

Training with Gradient descent and BP

Some useful resources

http://neuralnetworksanddeeplearning.com/chap1.html

https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a

https://towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec#.ekc89166m

https://people.idsia.ch//~juergen/who-invented-backpropagation.html

http://neuralnetworksanddeeplearning.com/chap1.html
https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a
https://towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec#.ekc89166m
https://people.idsia.ch//~juergen/who-invented-backpropagation.html

Training a neural network
Data

Task

Architecture

Loss function

Optimization

prediction backpropagation gradient descent

Data Samples
and Labels

Input and output

Training a neural network
Data

Task

0
Digit

Classification

Handwritten
Digit Dataset

Architecture

Loss function

Optimization

prediction backpropagation gradient descent

How to choose the architecture

Multi-layer perceptrons MLPs are the standard
solution for data with simple structure (ex. tabular
data).

Source: playground.tensorflow.org

W1

b1

x,y

b2 b3

W2 W3

blue, orange

http://playground.tensorflow.org/

How to choose the architecture

What’s important ?

- Generalization
- Fitting the data distribution
- Fitting unseen examples

- Efficiency
- Memory (how large is the model ?)
- Time (how long does it take to train ?)
- Data (how many training samples does it need ?)

train testtest

model

data

How to choose the architecture

Do MLPs work for all types of data ? Yes, but not efficiently

imagestime
sequences

text graphs

Inductive bias : an architectural assumption or constraint

Convolutional Neural Network (CNN)

Local Connectivity

Hierarchical Processing

face!no face

Weight sharing
Convolution

Recurrent neural networks (RNN)

MLP

MLP

MLP

Input

Hidden [t-1]

Hidden [t]

How to choose the loss

The choice of the loss is crucial !

What’s important in the loss design?

- Adaptability to the problem (correlates with
performance metrics)

- Continuous and differentiable
- Numerically stable

Categorical (discrete) ContinuousLabel :

Examples : Cross Entropy
Hinge Loss

Mean Square Error (L2)
Mean Absolute Error (L1)

Cross Entropy

Training and Evaluation

Training: optimization of the model

Evaluation: testing generalization

Metrics: Loss and accuracy

Models with the highest accuracy are state of the art (SOTA)

prediction

backpropagation

gradient descent

Training

prediction

Evaluation

Imagenet Benchmark on paperswithcode.com

http://paperswithcode.com

SGD in DL generally refers to mini-batch GD

Epoch: one pass through the dataset

Training

prediction

backpropagation

gradient descent

Training

Stochastic GD

Mini-batch GD

Batch GD

How many iterations/epochs ?

The validation set is used for early stopping

Test set ≠ validation set

Training Stochastic GD

Mini-batch GD

Batch GD

Iterations / Epochs

generalization error

Training and Evaluation

Training

prediction

Evaluation
prediction

backpropagation

gradient descent

Epoch

prediction

Validation

validation settraining set test set

How to find the learning rate ?

Training

Loss landscapes are not easy to navigate for optimizers

Ideas:

- Use the gradient history of previous timesteps to inform GD
in future timesteps

- Adapt the learning rate to each parameter

Adam optimizer is an extension of SGD which makes use of
these two ideas. It is currently the most used optimizer in DL
after SGD.

Optimizers

This is a 2 parameter example!
Imagine millions

Regularization

Additional constraints to reduce overfitting

Dropout: stochastically dropping weights during inference

Early stopping: stopping the training as soon as the validation loss starts increasing

Weight penalties (weight decay): L1 norm (Lasso) / L2 norm (ridge). Terms added to the loss.

Data augmentations: artificially boosting the number of training samples

Smaller weight
values

Sparse
weights

Hyperparameters

All parameters and settings that are set before training:

- Architectural choices: types and number of layers, size of each layer
- Losses/regularization: weights, additional constants
- Optimization: batch size, learning rate, iterations/epochs, schedule

Hyperparameter search. Another optimization problem ?

- Often done manually.
- When resources are available, large scale search is possible

The machine learner pipeline

1. Understanding the data and the task
2. Set up the end-to-end training/evaluation skeleton

a. a basic architecture
b. a standard loss
c. Standard optimization pipeline

3. Complexify one thing at a time
4. Regularize
5. Tune Hyperparameters

Practical examples
With this formula you can do all of this

This was 5 years ago

Go to notebook

