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Outline

Session 1

● History of neural networks 
● Artificial neurons - Perceptrons
● Multi-layer perceptrons (MLPs)
● Optimization and objective functions
● Gradient descent and Back-propagation

Session 2

● How to design neural networks
● Choosing the architecture (CNN, RNN)
● Choosing the loss function
● Training a neural network
● Practical examples



Image source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.

Neural networks milestones



The beginning of Neural nets (1940s-1960s)
  

Artificial neuron: McCulloch & Pitt's neuron model (1943)

Model of an artificial neuronSchematic of a biological neuron
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● An artificial neuron could solve linear logical problems: AND, OR, NOT 
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Single-layer neuron examples



Perceptron: A learning algorithm for the neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para. 

● Automatic learning of weights 

● Supervised learning of binary classifiers

● Could recognize letters and numbers



The Perceptron Learning Algorithm

Compute output (prediction)

Compute error

Update parameters



The first AI winter 

Minsky and Papert (1969) show that the perceptron can’t even solve the XOR problem

⇒  Kills research on neural nets for the next 15-20 years



Multilayer perceptrons (1980’s)

  Solution to the XOR problem: Multilayer perceptrons

● Composed of: input layer, hidden layer(s) and an output layer.

● Each node (of hidden and output layers) is a neuron that uses a nonlinear activation 

function.

● It can distinguish data that is not linearly separable.

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Linear_separability


● New problem: MLPs are hard to train!

Can add more layers to increase capacity of the network

Multilayer perceptrons (1980’s)



● New problem: MLPs are hard to train!

 ⇒   Solution: The Backpropagation algorithm

Can add more layers to increase capacity of the network

Multilayer perceptrons (1980’s)



The Backpropagation algorithm

Rumelhart, Hinton, and Williams (1986) introduced Backpropagation to train MLPs

Principle: Computing the gradient of the cost function w.r.t the weights of the network



Neural Network learning as optimization

● Mapping a set of inputs to a set of outputs from training data

● Learning is cast as an optimization problem to make good enough predictions

● Training with gradient descent 



Cost functions

● A cost function is a measure of error between predictions and true values



Cost functions

● A cost function is a measure of error between predictions and true values

● Guides the training process to find a set of weights that minimizes its value

Some examples:



Gradient Descent

● Finding minimum of the cost function 

● Negative gradient -       points in the direction where the function decreases most rapidly

● Calculate new weights: 



● Minimization through gradient descent requires computing the gradient

● Backpropagation: way to compute the gradient by applying the chain rule

How Backpropagation works



How Backpropagation works

1) Forward pass: propagate data through the network to get predictions



How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

2) Calculate the total error w.r.t desired outputs



How Backpropagation works

1) Forward pass: propagate data through the network to get predictions

2) Calculate the total error w.r.t desired outputs

3) Backward pass: 

a) Compute partial derivatives of 

the error w.r.t each weight         

by applying the chain rule

b) Update weights: 



● batch GD,  stochastic, or mini-batch?
● SGD in DL generally refers to mini-batch GD

Stochastic GD

Mini-batch GD

Batch GD

Training with Gradient descent and BP



Some useful resources

http://neuralnetworksanddeeplearning.com/chap1.html

https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a

https://towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec#.ekc89166m

https://people.idsia.ch//~juergen/who-invented-backpropagation.html

http://neuralnetworksanddeeplearning.com/chap1.html
https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a
https://towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec#.ekc89166m
https://people.idsia.ch//~juergen/who-invented-backpropagation.html


Training a neural network
Data

Task

Architecture

Loss function

Optimization

prediction backpropagation gradient descent

Data Samples 
and Labels

Input and output



Training a neural network
Data

Task

0
Digit

Classification

Handwritten 
Digit Dataset

Architecture

Loss function

Optimization

prediction backpropagation gradient descent



How to choose the architecture

Multi-layer perceptrons MLPs are the standard 
solution for data with simple structure (ex. tabular 
data).

Source: playground.tensorflow.org

W1

b1

x,y

b2 b3

W2 W3

blue, orange

http://playground.tensorflow.org/


How to choose the architecture

What’s important ?

- Generalization
- Fitting the data distribution
- Fitting unseen examples

- Efficiency
- Memory (how large is the model ?)
- Time (how long does it take to train ?)
- Data (how many training samples does it need ?) 

train testtest

model

data



How to choose the architecture

Do MLPs work for all types of data ? Yes, but not efficiently

imagestime 
sequences

text graphs

Inductive bias : an architectural assumption or constraint



Convolutional Neural Network (CNN)

Local Connectivity

Hierarchical Processing

face!no face

Weight sharing
Convolution



Recurrent neural networks (RNN)

MLP

MLP

MLP

Input

Hidden [t-1]

Hidden [t]



How to choose the loss

The choice of the loss is crucial !

What’s important in the loss design?

- Adaptability to the problem (correlates with 
performance metrics)

- Continuous and differentiable
- Numerically stable

Categorical (discrete) ContinuousLabel :

Examples : Cross Entropy
Hinge Loss

Mean Square Error (L2)
Mean Absolute Error (L1)

Cross Entropy



Training and Evaluation

Training: optimization of the model

Evaluation: testing generalization

Metrics: Loss and accuracy 

Models with the highest accuracy are state of the art (SOTA)

prediction

backpropagation

gradient descent

Training

prediction

Evaluation

Imagenet Benchmark on paperswithcode.com

http://paperswithcode.com


SGD in DL generally refers to mini-batch GD

Epoch: one pass through the dataset

Training

prediction

backpropagation

gradient descent

Training

Stochastic GD

Mini-batch GD

Batch GD



How many iterations/epochs ? 

The validation set is used for early stopping

Test set ≠ validation set

Training Stochastic GD

Mini-batch GD

Batch GD

Iterations / Epochs

generalization error



Training and Evaluation

Training

prediction

Evaluation
prediction

backpropagation

gradient descent

Epoch

prediction

Validation

validation settraining set test set



How to find the learning rate ? 

Training



Loss landscapes are not easy to navigate for optimizers

Ideas:

- Use the gradient history of previous timesteps to inform GD 
in future timesteps

- Adapt the learning rate to each parameter

Adam optimizer is an extension of SGD which makes use of 
these two ideas. It is currently the most used optimizer in DL 
after SGD.

Optimizers

This is a 2 parameter example!
Imagine millions



Regularization

Additional constraints to reduce overfitting

Dropout: stochastically dropping weights during inference

Early stopping: stopping the training as soon as the validation loss starts increasing

Weight penalties (weight decay): L1 norm (Lasso) / L2 norm (ridge). Terms added to the loss.

Data augmentations: artificially boosting the number of training samples

Smaller weight 
values

Sparse 
weights



Hyperparameters

All parameters and settings that are set before training:

- Architectural choices: types and number of layers, size of each layer
- Losses/regularization: weights, additional constants
- Optimization: batch size, learning rate, iterations/epochs, schedule

Hyperparameter search. Another optimization problem ?

- Often done manually.
- When resources are available, large scale search is possible



The machine learner pipeline

1. Understanding the data and the task
2. Set up the end-to-end training/evaluation skeleton

a. a basic architecture 
b. a standard loss
c. Standard optimization pipeline

3. Complexify one thing at a time
4. Regularize
5. Tune Hyperparameters



Practical examples
With this formula you can do all of this

This was 5 years ago 



Go to notebook


