{
"cells": [
{
"cell_type": "markdown",
"id": "d2a08ef6",
"metadata": {},
"source": [
"# LIME explanations"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "767b003e",
"metadata": {},
"outputs": [],
"source": [
"import trustyai\n",
"\n",
"trustyai.init()"
]
},
{
"cell_type": "markdown",
"id": "e194eb56",
"metadata": {},
"source": [
"## Simple example\n",
"\n",
"We start by defining our black-box model, typically represented by\n",
"\n",
"$$\n",
"f(\\mathbf{x}) = \\mathbf{y}\n",
"$$\n",
"\n",
"Where $\\mathbf{x}=\\{x_1, x_2, \\dots,x_m\\}$ and $\\mathbf{y}=\\{y_1, y_2, \\dots,y_n\\}$.\n",
"\n",
"Our example toy model, in this case, takes an all-numerical input $\\mathbf{x}$ and return a $\\mathbf{y}$ of either `true` or `false` if the sum of the $\\mathbf{x}$ components is within a threshold $\\epsilon$ of a point $\\mathbf{C}$, that is:\n",
"\n",
"$$\n",
"f(\\mathbf{x}, \\epsilon, \\mathbf{C})=\\begin{cases}\n",
"\\text{true},\\qquad \\text{if}\\ \\mathbf{C}-\\epsilon<\\sum_{i=1}^m x_i <\\mathbf{C}+\\epsilon \\\\\n",
"\\text{false},\\qquad \\text{otherwise}\n",
"\\end{cases}\n",
"$$\n",
"\n",
"This model is provided in the `TestUtils` module. We instantiate with a $\\mathbf{C}=500$ and $\\epsilon=1.0$."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fd02e320",
"metadata": {},
"outputs": [],
"source": [
"from trustyai.utils import TestUtils\n",
"\n",
"center = 10.0\n",
"epsilon = 2.0\n",
"\n",
"model = TestUtils.getSumThresholdModel(center, epsilon)"
]
},
{
"cell_type": "markdown",
"id": "e4a15f8b",
"metadata": {},
"source": [
"Next we need to define a **goal**.\n",
"If our model is $f(\\mathbf{x'})=\\mathbf{y'}$ we are then defining our $\\mathbf{y'}$ and the counterfactual result will be the $\\mathbf{x'}$ which satisfies $f(\\mathbf{x'})=\\mathbf{y'}$.\n",
"\n",
"We will define our goal as `true`, that is, the sum is withing the vicinity of a (to be defined) point $\\mathbf{C}$. The goal is a list of `Output` which take the following parameters\n",
"\n",
"- The feature name\n",
"- The feature type\n",
"- The feature value (wrapped in `Value`)\n",
"- A confidence threshold, which we will leave at zero (no threshold)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bf3f4232",
"metadata": {},
"outputs": [],
"source": [
"from trustyai.model import output\n",
"\n",
"decision = \"inside\"\n",
"goal = [output(name=decision, dtype=\"bool\", value=True, score=0.0)]"
]
},
{
"cell_type": "markdown",
"id": "64349c3e",
"metadata": {},
"source": [
"We will now define our initial features, $\\mathbf{x}$. Each feature can be instantiated by using `FeatureFactory` and in this case we want to use numerical features, so we'll use `FeatureFactory.newNumericalFeature`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d688a7c8",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"from trustyai.model import feature\n",
"\n",
"features = [feature(name=f\"x{i+1}\", dtype=\"number\", value=random.random()*10.0) for i in range(3)]"
]
},
{
"cell_type": "markdown",
"id": "a562ef68",
"metadata": {},
"source": [
"As we can see, the sum of of the features will not be within $\\epsilon$ (1.0) of $\\mathbf{C}$ (500.0). As such the model prediction will be `false`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "48212d3f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature x1 has value 8.824930054798465\n",
"Feature x2 has value 4.246070534263824\n",
"Feature x3 has value 5.512117711918773\n",
"\n",
"Features sum is 18.583118300981063\n"
]
}
],
"source": [
"feature_sum = 0.0\n",
"for f in features:\n",
" value = f.value.as_number()\n",
" print(f\"Feature {f.name} has value {value}\")\n",
" feature_sum += value\n",
"print(f\"\\nFeatures sum is {feature_sum}\")"
]
},
{
"cell_type": "markdown",
"id": "13001554",
"metadata": {},
"source": [
"We execute the model on the generated input and collect the output"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0a45c0e0",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from org.kie.kogito.explainability.model import PredictionInput, PredictionOutput\n",
"\n",
"goals = model.predictAsync([PredictionInput(features)]).get()"
]
},
{
"cell_type": "markdown",
"id": "324cefdf",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"We wrap these quantities in a `SimplePrediction`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8bb2aac1",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from trustyai.model import simple_prediction\n",
"\n",
"\n",
"prediction = simple_prediction(input_features=features, outputs=goals[0].outputs)"
]
},
{
"cell_type": "markdown",
"id": "9bb631f9",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"We can now instantiate the **explainer** itself.\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "115fa89c",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"SLF4J: Failed to load class \"org.slf4j.impl.StaticLoggerBinder\".\n",
"SLF4J: Defaulting to no-operation (NOP) logger implementation\n",
"SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.\n"
]
}
],
"source": [
"from trustyai.explainers import LimeExplainer\n",
"\n",
"explainer = LimeExplainer(samples=10)"
]
},
{
"cell_type": "markdown",
"id": "7cd8b2b4",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"We generate the **explanation** as a _dict : decision --> saliency_.\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b34e26d7",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"explanation = explainer.explain(prediction, model)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "9f8671f0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" inside_features \n",
" inside_score \n",
" inside_value \n",
" inside_confidence \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" x1 \n",
" 0.583312 \n",
" 8.824930 \n",
" 0.0 \n",
" \n",
" \n",
" 1 \n",
" x2 \n",
" 0.000000 \n",
" 4.246071 \n",
" 0.0 \n",
" \n",
" \n",
" 2 \n",
" x3 \n",
" 0.804062 \n",
" 5.512118 \n",
" 0.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" inside_features inside_score inside_value inside_confidence\n",
"0 x1 0.583312 8.824930 0.0\n",
"1 x2 0.000000 4.246071 0.0\n",
"2 x3 0.804062 5.512118 0.0"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"explanation.as_dataframe()"
]
},
{
"cell_type": "markdown",
"id": "d32e4272",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"We inspect the saliency scores assigned by LIME to each feature"
]
},
{
"cell_type": "markdown",
"id": "6c53fcc5",
"metadata": {},
"source": [
"We generate the saliency graph with the builtin method `plot(decision)`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "59ddb1d4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAN6CAYAAADGtcsXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDMElEQVR4nO3de5RVdf34/9cZYMC4eQGEAAEveckbivoRTRAjSzOt/IiKZKJopUvNbvrRAsMAi0+iXSzvRqJCaZpRmgQqaomIn7yQeYEy8ZpJoDVcZn//6Mf8HGeQOQPM8Do+HmvNcs0++5z9PmdeM2ucJ/vsUlEURQAAAAAAAGziqlp7AQAAAAAAAE0hagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAMB7TKlUiqFDh7b2Mtbb4sWLo1QqxWc/+9nWXsp6u/HGG2PgwIHRuXPnKJVKcfbZZ7/r/uPGjYtSqRRz5sxpkfVFRPTv3z/69+/f5P0r6esDAMCmQ9QAAGCTUSqVolQqNWnf/v37R6lUisWLFze6vVQqxe9+97u13v+kk06q22/cuHH1blvzB+N3+6iEKJDBe+G1fvDBB2PkyJGxbNmy+PznPx9jx46Nj370o629LAAA2CS1be0FAADAxtC2bdu46qqrYtiwYQ1u++c//xnTp0+Ptm3bxqpVq9b6GEOGDFnrH9TL+RfrbBy9e/eOhQsXRteuXVt7KevlV7/6VRRFET/5yU9i8ODBTbrPGWecEccee2xss802G3l1/79Zs2a12LEAAGBtRA0AACrSxz/+8bjlllvi73//e2y11Vb1brvhhhvirbfeik9+8pNx6623rvUxhg4d2uAsDjYd7dq1i5122qm1l7HelixZEhER73//+5t8n27dukW3bt021pIatd1227Xo8QAAoDHefgoAgIo0ZsyYqKmpialTpza47corr4y+ffu22Fv8vPXWWzFx4sTYc889o2PHjtGpU6fYf//948Ybb6y33x/+8Ieorq6ObbfdNpYuXVrvthdffDG23nrr6NSpU/zpT3+q2z506NAolUpRU1MTF1xwQQwYMCDat28f2223XVx44YWxYsWKJq1xyZIl8c1vfjMOOOCA6NmzZ1RXV8f73//+OP744+PJJ59ssP/br5ewePHiOPbYY6Nbt27RoUOHGDRoUNxxxx0N7rN06dL4zne+E8OGDYs+ffpEdXV1dO/ePT7xiU/Egw8+WG/f6667ru6tyO655556b/21JjS92zUbXnzxxTj99NOjf//+dcf51Kc+FfPnz2+w75pjXXfddTF79uwYOnRodO7cObp06RKHH354LFy4sEmv4Rq1tbXxox/9KPbZZ5/o1KlTdOzYMfbZZ5+4/PLLo7a2tsFxr7322oiIGDBgQN1zfOfbqr3T2q6psebtul577bU49dRTo1evXtG+ffv44Ac/WHectyuKIq6//voYPHhwdO/ePTp06BB9+/aNQw89NG6++eZ6+67tmhrLli2Lc845J/r06RMdOnSInXbaKb773e/We67v1NTvCQAAeCdnagAAUJGGDx8e/fv3j6uuuqreRZfnz58fCxYsiLFjx0ZV1cb/Nz5vvPFGDBs2LBYsWBB77bVXjB49Ompra+POO++M448/Pp544om46KKLIiJiv/32iwkTJsRXvvKVGDNmTEyfPj0i/vNH8pEjR8Yrr7wS1113XaNnJxxzzDExb968OProo6Ndu3Zx2223xbhx4+Lhhx+O22+/fZ3XKrn33ntj0qRJcfDBB8enP/3p6NSpUzz99NPxs5/9LG6//fa4//77Y4899mhwv7/85S+x7777xrbbbhujRo2K119/PW6++eY48sgj4+67746DDz64bt+FCxfG+eefHwcddFAcfvjhscUWW8Rf//rXuP322+PXv/51/PKXv6wLTXvuuWeMHTs2LrzwwujXr1+9cLGua2wsWrQoDjzwwFiyZEkMGzYsjjvuuHj++edjxowZ8atf/Sp+/vOfx8c//vEG97vjjjvitttui4997GPxuc99Lp588smYOXNmzJs3L5588skmnxkxatSomDZtWvTt2zdOOeWUKJVKceutt8YXvvCFmDt3btxwww31nuMvfvGL+L//+78466yzYvPNN4+IqPtvc7zxxhtxwAEHRHV1dRx99NFRU1MTM2bMiNGjR0dVVVWceOKJdfuef/75MXHixBgwYEAcc8wx0bVr13jxxRdj3rx5MWPGjBgxYsS7HqumpiYOOeSQmDdvXuyxxx4xcuTIeOONN2L8+PFxzz33rHV9Tf2eAACABgoAANhERETR1F9R+/XrV0REsWjRoka3r1y5shg/fnwREcUDDzxQd/tpp51WVFVVFX/5y1+KK6+8soiIYuzYsfUeY+zYsUVEFEOGDCnGjh3b6MeDDz7YpHWeeOKJRUQUF198cb3t//rXv4pDDz20KJVKxYIFC+q219bWFocddlgREcWPfvSjoiiKYty4cUVEFJ/5zGcaPP6QIUOKiCh22GGH4vXXX6/3+P/1X/9VRETxk5/8pN591jy3t3v55ZeLf/7znw0e/9FHHy06duxYfPSjH623fdGiRXVfr3HjxtW77Te/+U0REcXHPvaxetvfeOON4tVXX21wjOeff77o1atXsdNOOzW4rbG1vnMNJ554Yr3tH/nIR4qIKC666KJ62++///6iTZs2xZZbblksW7asbvu1115bRETRpk2b4u677653n3PPPbfRr9/aTJs2rYiIYuDAgfWOsXz58mLvvfcuIqK44YYb6t1nzYy8c5bfzZoZnT17dr3ta74mJ598crFq1aq67U888UTRpk2bYuedd663/5Zbbln07t27ePPNNxsc451fq379+hX9+vWrt+1b3/pWERHFpz71qWL16tV125977rliiy22aPTrU+73BAAAvJ23nwIAoGKddNJJ0aZNm7jyyisjIuLNN9+MadOmxaGHHtqkCyzfc889ceGFFzb68fvf/36d9//73/8eP/3pT2PQoEHx1a9+td5tHTp0iIsvvjiKoohp06bVbS+VSnH99ddH79694+yzz44f/OAHMX78+Nhxxx3jhz/84VqP9fWvfz222GKLeo8/ceLEiIi45ppr1rnWHj16ROfOnRts32OPPWLYsGExe/bsWLlyZYPb+/XrFxdccEG9bWte34ceeqje9q5duzZ6tkOfPn3i6KOPjj/96U/x17/+dZ1rfTd/+9vf4q677optttmmwWs+ePDgOO644+L111+PW265pcF9jz322DjkkEPqbTv11FMjIho8l7VZ81pPmjQpOnXqVLe9Y8eOcfHFF0dExFVXXdX0J9QM73vf++K73/1utGnTpm7bLrvsEgcccEAsXLgwli9fXm//du3a1dt3jaacmXLttddGVVVVfPvb36535tOAAQPizDPPbLB/c74nAADg7bz9FAAAFat3795x2GGHxfTp0+PSSy+N6dOnx7Jly2LMmDFNuv/YsWPX60Lh8+bNi9WrV9e7DsTbrYkE77xmQ7du3WLatGkxbNiwOOOMM6JDhw5x8803R8eOHdd6rCFDhjTYduCBB0abNm1iwYIFTVrvr371q/jRj34UDz/8cLz22muxatWqere/9tpr0atXr3rb9txzz0b/IN63b98G18mIiLj//vvj0ksvjQcffDBeeeWVBtf8eOGFF5oUnNZmzXP90Ic+FO3atWtw+7Bhw+KnP/1pLFiwID7zmc/Uu23QoEGNPo+IiH/84x9NOv4jjzwSVVVVjb5F1pAhQ8r6ejTXDjvsEF26dGmw/e3PZU1wGTlyZHzve9+LXXbZJY455pgYMmRI7L///tG1a9d1HmfZsmXxzDPPRN++fRu9iPjQoUPjwgsvrLetud8TAACwhqgBAEBFGzNmTPzyl7+MadOmxbXXXhs9e/aMI444okWO/fe//z0i/vOH3Hnz5q11v3f+y/mIiH333Te22WabWLRoURx88MGNXs/i7bbeeusG29q2bRvdunWLV155ZZ1rvfTSS+Pss8+OLbbYIoYPHx7bbLNNvO9974tSqVR3zYeampoG91vbtR/atm3b4ELRt956axx99NHRoUOHGD58eGy33XbRsWPHqKqqijlz5sQ999zT6DHKseYC6++ML2us2f7GG280uK2x59K27X/+l2n16tVNPv6WW24Z1dXVjT5WU78e6+PdviYR9Z/LJZdcEttuu21ce+21MWnSpJg0aVK0bds2DjvssPjf//3f2H777dd6nDWvdWOzFxHRs2fPBtvW53sCAAAiRA0AACrcYYcdFr17946LLroo/va3v8V5551X98fdjW3Nv3b/4he/GN/97nfLuu9ZZ50VixYtim7dusWvf/3ruOGGG2LkyJFr3f/ll19ucIbDqlWr4rXXXmv0X+2/c79x48ZFz54945FHHmkQBBo746I5vv71r0d1dXU8/PDDsfPOO9e77bTTTlvrhaXLseY1f+mllxq9/cUXX6y334bWtWvXeP3112PlypUNzhRp6tejJbVp0ybOPvvsOPvss+OVV16JuXPnxk033RQzZsyIJ554Ip544olo3759o/dd8xq+/PLLjd7e2Ndgfb4nAAAgIsI1NQAAqGht2rSJ0aNHx9/+9rcolUpxyimntNix991336iqqor77ruvrPtNnz49rrjiijjooIPikUceie7du8fnPve5ePrpp9d6n8aCwNy5c2P16tUxcODAdz3ea6+9Fm+88UYMHjy4QdBYvnx5PPLII2Wtf22eeeaZ2GWXXRoEjdra2pg7d26j96mqqmryWRIRUfdc586d2+DtsyIiZs+eHRERe+21V5MfsxwDBw6M2trauPfeexvcdu+998bq1as32rHXV48ePeJTn/pUTJ8+PYYNGxbPPvtsPP7442vdv3PnzrH99tvHCy+8EM8++2yD2+fMmdNgW3O/JwAAYA1RAwCAinfmmWfGrbfeGnfeeWdsu+22LXbcHj16xMiRI+Phhx+O8ePHN/rH+WeffTYWLVpU9/lzzz0XY8aMia222iqmTZsWffv2jeuvvz7efPPNGDFixFrfnmn8+PH1rvvw73//O84777yI+M8F09e1zve9730xf/78em/7s3LlyjjrrLPitddeK+t5r03//v3j6aefjiVLltRtK4oixo0bF08++WSj99lqq63i+eefb/Ix+vTpE8OHD4/FixfHlClT6t32hz/8IaZNmxZbbLFFfPKTn2zWc1iX0aNHR0TEeeedF2+99Vbd9rfeeivOPffciIg4+eSTN8qxy1VTUxP3339/g+0rV66M119/PSL+c9Hxd3PSSSdFbW1tfO1rX6v3dmOLFi2Kyy67rMH+zfmeAACAt/P2UwAAbHI++9nPrvW2H/7wh+v8Q+s7devWLY466qiy1zFnzpy1Xih88803j7PPPnudj/H9738/nn766fjGN74RU6dOjQMPPDC23nrrWLJkSSxcuDDmzZsXN954YwwYMCBWrlwZxx57bPzzn/+M22+/PXr37h0RER/72MfiS1/6UkyePDm+/OUvx/e+970Gx9l5553jgx/8YBx99NHRrl27uO222+LZZ5+Nww8/PEaNGvWua6yqqoozzzwzJk2aFLvttlsceeSRsWLFipg9e3a8/vrrcfDBB9ed4bA+vvjFL8bnPve5GDhwYHz605+Odu3axf333x9PPvlkHHHEEfHLX/6ywX0OOeSQuOmmm+KII46IvfbaK9q1axcHHXRQHHTQQWs9zo9+9KM44IAD4itf+UrcddddMWjQoHj++edjxowZUVVVFddee2107tx5vZ9PY44//vi47bbbYvr06fHBD34wjjrqqLrrkixatChGjBjxrm8j1pL+9a9/xYEHHhjbb7997L333tGvX7/497//Hb/97W9j4cKF8YlPfKLBWTXv9KUvfSl+8YtfxM9//vPYa6+94tBDD4033ngjpk+fHgcddFDcfvvtDe5TzvcEAAC8k6gBAMAm5/rrr1/rbVOmTCk7ajTXPffcs9brPPTr169JUaNLly5xzz33xBVXXBHTpk2Ln//85/Hvf/87tt5669hhhx3ikksuieHDh0dExLnnnhvz5s2LM888s8HFzCdMmBD33ntvfP/7349hw4Y1ONNg+vTpMX78+LjhhhtiyZIl0bt37xg3blyce+65USqV1rnO8ePHR/fu3eOqq66KH//4x9G1a9cYPnx4XHTRRTF27Nh13r8pTjvttGjfvn1MmTIlrr/++thss83iQx/6UFx77bXx85//vNGocemll0apVIpZs2bFzJkzo7a2NsaOHfuuUWPbbbeNhx9+OC666KKYOXNmzJkzJ7p06RIf/ehH4/zzz4999tlngzyftbnxxhtjyJAhcc0118SPf/zjiPhPdPrSl74Un//85zfqscvRsWPHuPjii2P27NnxwAMPxC9+8Yvo3LlzbLfddnH55ZfXnXXybtq3bx933313jBs3Lm6++ea49NJLo3///nHBBRfEJz/5yUajRjnfEwAA8E6loiiK1l4EAADQPEOHDo177rkn/FoPAAC8F7imBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKbimBgAAAAAAkIIzNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUmjb2gtYm1deeSVWrFjR2suADaZUKkXv3r3jhRdeiKIoWns5sEGYayqV2aZSmW0qldmmUpltKpG5plKZ7fXXrl272Hrrrde53yYbNVauXClqUFFKpVJERKxYscIPNiqGuaZSmW0qldmmUpltKpXZphKZayqV2W453n4KAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEpFURStvYjGDPv9yfHHZX9u7WUAAAAAAMB6e2i761t7CZu06urq6NOnzzr3c6YGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJDCBo0ac+fOjQMOOCC22mqr2GyzzWKnnXaKSy65ZEMeAgAAAAAAeI9quyEfrGPHjnHGGWfE7rvvHh07doy5c+fGaaedFh07doxTTz11Qx4KAAAAAAB4jynrTI1XX301evbsGRMmTKjb9sADD0R1dXXMmjUrBg4cGMcdd1x88IMfjP79+8cJJ5wQhx56aNx3330bfOEAAAAAAMB7S1lRo3v37nHNNdfEuHHj4uGHH45ly5bFqFGj4owzzohDDjmkwf4LFiyIBx54IIYMGbLBFgwAAAAAALw3lf32U4cddliMGTMmRo4cGYMGDYqOHTvGxIkT6+3Tp0+fePXVV2PVqlUxbty4OOWUU9b6eDU1NVFTU1P3eVVVVXTq1KncZQEAAAAAwCarVCq19hI2aU19fZp1TY3JkyfHrrvuGjNmzIj58+dH+/bt691+3333xfLly+P3v/99nHvuubH99tvHcccd1+hjTZw4MS688MK6zwcOHBiPPPJIc5YFAAAAAACbpAEDBrT2EipCqSiKotw7Pf7447HPPvvEypUr49Zbb40jjjhirftedNFFMXXq1HjqqacavX1tZ2oM+/3J8cdlfy53aQAAAAAAsMmZt/1PWnsJm7Tq6uro3bv3Ovcr+0yNFStWxAknnBAjRoyIHXfcMU455ZR47LHHokePHo3uX1tbWy9avFP79u0bnOkBAAAAAACVpBnnF7ynNPX1KTtqnH/++bF06dK47LLLolOnTjFz5swYPXp03HHHHfGDH/wgttlmm9hpp50iIuLee++NyZMnx5lnnlnuYQAAAAAAAOopK2rMmTMnpkyZErNnz44uXbpERMTUqVNjjz32iMsvvzxqa2vjvPPOi0WLFkXbtm1ju+22i4svvjhOO+20jbJ4AAAAAADgvaNZ19RoCa6pAQAAAABApXhou+tbewmbtOrq6ujTp88696tqgbUAAAAAAACsN1EDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAUSkVRFK29iMa88MILUVNT09rLgA2mVCrFgAEDYtGiRbGJfttB2cw1lcpsU6nMNpXKbFOpzDaVyFxTqcz2+quuro4+ffqscz9nagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJDCBo0at9xySwwfPjy6d+8eXbp0if333z/uvPPODXkIAAAAAADgPWqDRo177703hg8fHjNnzoz58+fHwQcfHEcccUQsWLBgQx4GAAAAAAB4Dyorarz66qvRs2fPmDBhQt22Bx54IKqrq2PWrFkxZcqU+OpXvxr77LNP7LDDDjFhwoTYYYcd4pe//OUGXzgAAAAAAPDe0racnbt37x7XXHNNHHXUUfGRj3wkdtxxxxg1alScccYZccghhzTYv7a2NpYtWxZbbrnlBlswAAAAAADw3lRW1IiIOOyww2LMmDExcuTIGDRoUHTs2DEmTpzY6L6TJ0+O5cuXxzHHHLPWx6upqYmampq6z6uqqqJTp05RKpWiVCqVuzzYZK2ZZ3NNJTHXVCqzTaUy21Qqs02lMttUInNNpTLb66+pr12pKIqi3Af/17/+Fbvuums8//zzMX/+/Nhtt90a7DNt2rQYM2ZM3HbbbfHhD394rY81bty4uPDCC+s+HzhwYDzyyCPlLgkAAAAAAKhwzYoajz/+eOyzzz6xcuXKuPXWW+OII46od/tNN90Uo0ePjhkzZsThhx/+ro+1tjM1lixZUm87ZFcqlaJ///6xePHiaMa3HWySzDWVymxTqcw2lcpsU6nMNpXIXFOpzPb6q66ujt69e69zv7LffmrFihVxwgknxIgRI2LHHXeMU045JR577LHo0aNHRETceOONMXr06LjpppvWGTQiItq3bx/t27dvsL0oCl98KpLZphKZayqV2aZSmW0qldmmUpltKpG5plKZ7eZr6utWdtQ4//zzY+nSpXHZZZdFp06dYubMmTF69Oi44447Ytq0aXHiiSfGpZdeGvvtt1+89NJLERGx2WabRdeuXcs9FAAAAAAAQJ2qcnaeM2dOTJkyJaZOnRpdunSJqqqqmDp1atx3331x+eWXxxVXXBGrVq2K008/PXr16lX3cdZZZ22s9QMAAAAAAO8RZZ2pMXTo0Fi5cmW9bf3794+lS5dGRMTnP//5DbcyAAAAAACAtynrTA0AAAAAAIDWImoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKQgagAAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKbRt7QWszajnvxF/XPbn1l4GbFjPtPYCYCMw11Qqs02lMttUKrPNRvTQdte39hIAgP+PMzUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBQ2WNR48cUX4/jjj48PfOADUVVVFWefffaGemgAAAAAAIANFzVqamqie/fuccEFF8Qee+yxoR4WAAAAAAAgIsqIGq+++mr07NkzJkyYULftgQceiOrq6pg1a1b0798/Lr300vjMZz4TXbt23SiLBQAAAAAA3rvaNnXH7t27xzXXXBNHHXVUfOQjH4kdd9wxRo0aFWeccUYccsghG3ONAAAAAAAATY8aERGHHXZYjBkzJkaOHBmDBg2Kjh07xsSJE9drATU1NVFTU1P3eVVVVXTq1Gm9HhMAAABgQymVSq163NY6PmwM5ppKZbbXX1Nfu7KiRkTE5MmTY9ddd40ZM2bE/Pnzo3379mUv7u0mTpwYF154Yd3nAwcOjEceeWS9HhMAAABgQxkwYECrHr9///6tenzYGMw1lcpsb3xlR41nn302lixZErW1tbF48eLYbbfd1msB5513Xpxzzjl1n1dVbbBrlwMAAACst0WLFrXKcUulUvTv3z8WL14cRVG0yhpgQzPXVCqzvf6qq6ujd+/e69yvrKixYsWKOOGEE2LEiBGx4447ximnnBKPPfZY9OjRo9kLbd++/Xqf7QEAAACwsbT2H6eKomj1NcCGZq6pVGa7+Zr6upUVNc4///xYunRpXHbZZdGpU6eYOXNmjB49Ou64446IiHj00UcjImL58uXx6quvxqOPPhrV1dWxyy67lLd6AAAAAACAd2hy1JgzZ05MmTIlZs+eHV26dImIiKlTp8Yee+wRl19+eXz+85+PgQMH1u0/f/78mDZtWvTr1y8WL168wRcOAAAAAAC8tzQ5agwdOjRWrlxZb1v//v1j6dKldZ87rQYAAAAAANhYXJUbAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEihbWsvYG2m9v1m1NTUtPYyYIMplUoxYMCAWLRoURRF0drLgQ3CXFOpzDaVymxTqcw2AMB7hzM1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASEHUAAAAAAAAUhA1AAAAAACAFEQNAAAAAAAgBVEDAAAAAABIQdQAAAAAAABSEDUAAAAAAIAURA0AAAAAACAFUQMAAAAAAEhB1AAAAAAAAFIQNQAAAAAAgBREDQAAAAAAIAVRAwAAAAAASKFtay9gbdq1axdFUbT2MmCDKZVKERFRXV1ttqkY5ppKZbapVGabSmW2qVRmm0pkrqlUZnv9tWvXrkn7lYpN7BVeuXJlkxcPAAAAAAC8d2xybz/1r3/9K44//vhYvnx5ay8FNqjly5fHXnvtZbapKOaaSmW2qVRmm0pltqlUZptKZK6pVGa75WxyUSMi4sYbb4za2trWXgZsULW1tbFgwQKzTUUx11Qqs02lMttUKrNNpTLbVCJzTaUy2y1nk4waAAAAAAAA7yRqAAAAAAAAKWxyUaN9+/YxduzYaN++fWsvBTYos00lMtdUKrNNpTLbVCqzTaUy21Qic02lMtstp1QURdHaiwAAAAAAAFiXTe5MDQAAAAAAgMaIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApNAqUeMHP/hB9O/fPzp06BD77bdfPPTQQ++6/4wZM2KnnXaKDh06xG677RYzZ85soZVCecqZ7SeeeCI+/elPR//+/aNUKsWUKVNabqFQhnLm+sorr4wPfehDscUWW8QWW2wRH/7wh9f5Mx5aSzmzfcstt8SgQYNi8803j44dO8aee+4ZU6dObcHVQtOV+7v2GjfddFOUSqU46qijNu4CoZnKme3rrrsuSqVSvY8OHTq04Gqhacr9mf3GG2/E6aefHr169Yr27dvHBz7wAX8jYZNUzmwPHTq0wc/sUqkUhx9+eAuuGJqm3J/bU6ZMiR133DE222yz6Nu3b3zxi1+Mf//73y202srV4lHj5ptvjnPOOSfGjh0bjzzySOyxxx5x6KGHxiuvvNLo/g888EAcd9xxcfLJJ8eCBQviqKOOiqOOOioef/zxFl45vLtyZ/utt96KbbfdNiZNmhQ9e/Zs4dVC05Q713PmzInjjjsuZs+eHQ8++GD07ds3PvKRj8QLL7zQwiuHd1fubG+55ZZx/vnnx4MPPhh//OMf46STToqTTjop7rzzzhZeOby7cmd7jcWLF8eXv/zl+NCHPtRCK4XyNGe2u3TpEi+++GLdx1/+8pcWXDGsW7lzvWLFihg+fHgsXrw4fvazn8VTTz0VV155ZfTu3buFVw7vrtzZvuWWW+r9vH788cejTZs28d///d8tvHJ4d+XO9rRp0+Lcc8+NsWPHxsKFC+Pqq6+Om2++Of7nf/6nhVdegYoWtu+++xann3563eerV68u3v/+9xcTJ05sdP9jjjmmOPzww+tt22+//YrTTjtto64TylXubL9dv379iksuuWQjrg6aZ33muiiKYtWqVUXnzp2L66+/fmMtEZplfWe7KIpi4MCBxQUXXLAxlgfN1pzZXrVqVTF48ODiqquuKk488cTiyCOPbIGVQnnKne1rr7226Nq1awutDpqn3Lm+/PLLi2233bZYsWJFSy0RmmV9f9e+5JJLis6dOxfLly/fWEuEZil3tk8//fRi2LBh9badc845xQEHHLBR1/le0KJnaqxYsSLmz58fH/7wh+u2VVVVxYc//OF48MEHG73Pgw8+WG//iIhDDz10rftDa2jObMOmbkPM9VtvvRUrV66MLbfccmMtE8q2vrNdFEXMmjUrnnrqqTjooIM25lKhLM2d7W9+85vRo0ePOPnkk1timVC25s728uXLo1+/ftG3b9848sgj44knnmiJ5UKTNGeub7/99th///3j9NNPj6233jp23XXXmDBhQqxevbqllg3rtCH+P/Lqq6+OY489Njp27Lixlglla85sDx48OObPn1/3FlXPPfdczJw5Mw477LAWWXMla9uSB3vttddi9erVsfXWW9fbvvXWW8ef/vSnRu/z0ksvNbr/Sy+9tNHWCeVqzmzDpm5DzPXXvva1eP/7398gTkNrau5sL126NHr37h01NTXRpk2b+OEPfxjDhw/f2MuFJmvObM+dOzeuvvrqePTRR1tghdA8zZntHXfcMa655prYfffdY+nSpTF58uQYPHhwPPHEE9GnT5+WWDa8q+bM9XPPPRe/+93vYuTIkTFz5sx45pln4gtf+EKsXLkyxo4d2xLLhnVa3/+PfOihh+Lxxx+Pq6++emMtEZqlObN9/PHHx2uvvRYHHnhgFEURq1atis997nPefmoDaNGoAcB7x6RJk+Kmm26KOXPmuDAnFaFz587x6KOPxvLly2PWrFlxzjnnxLbbbhtDhw5t7aVBsyxbtixGjRoVV155ZXTr1q21lwMb1P777x/7779/3eeDBw+OnXfeOX784x/H+PHjW3Fl0Hy1tbXRo0ePuOKKK6JNmzax9957xwsvvBDf+c53RA0qxtVXXx277bZb7Lvvvq29FFhvc+bMiQkTJsQPf/jD2G+//eKZZ56Js846K8aPHx9f//rXW3t5qbVo1OjWrVu0adMmXn755XrbX3755bVeKLlnz55l7Q+toTmzDZu69ZnryZMnx6RJk+Luu++O3XfffWMuE8rW3NmuqqqK7bffPiIi9txzz1i4cGFMnDhR1GCTUe5sP/vss7F48eI44ogj6rbV1tZGRETbtm3jqaeeiu22227jLhqaYEP8rt2uXbsYOHBgPPPMMxtjiVC25sx1r169ol27dtGmTZu6bTvvvHO89NJLsWLFiqiurt6oa4amWJ+f2W+++WbcdNNN8c1vfnNjLhGapTmz/fWvfz1GjRoVp5xySkRE7LbbbvHmm2/GqaeeGueff35UVbXolSEqSou+ctXV1bH33nvHrFmz6rbV1tbGrFmz6v0rmrfbf//96+0fEfHb3/52rftDa2jObMOmrrlz/e1vfzvGjx8fv/nNb2LQoEEtsVQoy4b6mV1bWxs1NTUbY4nQLOXO9k477RSPPfZYPProo3Ufn/jEJ+Lggw+ORx99NPr27duSy4e12hA/t1evXh2PPfZY9OrVa2MtE8rSnLk+4IAD4plnnqkL0BERf/7zn6NXr16CBpuM9fmZPWPGjKipqYkTTjhhYy8Tytac2X7rrbcahIs1Ybooio232PeClr4y+U033VS0b9++uO6664onn3yyOPXUU4vNN9+8eOmll4qiKIpRo0YV5557bt3+999/f9G2bdti8uTJxcKFC4uxY8cW7dq1Kx577LGWXjq8q3Jnu6ampliwYEGxYMGColevXsWXv/zlYsGCBcXTTz/dWk8BGih3ridNmlRUV1cXP/vZz4oXX3yx7mPZsmWt9RSgUeXO9oQJE4q77rqrePbZZ4snn3yymDx5ctG2bdviyiuvbK2nAI0qd7bf6cQTTyyOPPLIFlotNF25s33hhRcWd955Z/Hss88W8+fPL4499tiiQ4cOxRNPPNFaTwEaKHeu//rXvxadO3cuzjjjjOKpp54q7rjjjqJHjx7FRRdd1FpPARrV3N9HDjzwwGLEiBEtvVxosnJne+zYsUXnzp2LG2+8sXjuueeKu+66q9huu+2KY445prWeQsVo8WtqjBgxIl599dX4xje+ES+99FLsueee8Zvf/KbuIit//etf6xWswYMHx7Rp0+KCCy6I//mf/4kddtghfvGLX8Suu+7a0kuHd1XubC9ZsiQGDhxY9/nkyZNj8uTJMWTIkJgzZ05LLx8aVe5cX3755bFixYo4+uij6z3O2LFjY9y4cS25dHhX5c72m2++GV/4whfib3/7W2y22Wax0047xU9/+tMYMWJEaz0FaFS5sw1ZlDvb//jHP2LMmDHx0ksvxRZbbBF77713PPDAA7HLLru01lOABsqd6759+8add94ZX/ziF2P33XeP3r17x1lnnRVf+9rXWuspQKOa8/vIU089FXPnzo277rqrNZYMTVLubF9wwQVRKpXiggsuiBdeeCG6d+8eRxxxRHzrW99qradQMUpF4VwXAAAAAABg0+efaQEAAAAAACmIGgAAAAAAQAqiBgAAAAAAkIKoAQAAAAAApCBqAAAAAAAAKYgaAAAAAABACqIGAAAAAACQgqgBAAAAAACkIGoAAAAAAAApiBoAAAAAAEAKogYAAAAAAJCCqAEAAAAAAKTw/wCIBgDne56vNgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"explanation.plot(decision)"
]
},
{
"cell_type": "markdown",
"id": "169d975c",
"metadata": {},
"source": [
"## Using Python models\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "5511214d",
"metadata": {},
"source": [
"We will now show how to use a custom Python model with TrustyAI LIME implementation.\n",
"\n",
"The model will be an XGBoost one trained with the `credit-bias` dataset.\n",
"\n",
"For convenience, the model is pre-trained and serialised with `joblib` so that for this example we simply need to deserialised it."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "754a7737",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n",
" colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,\n",
" importance_type='gain', interaction_constraints='',\n",
" learning_rate=0.07, max_delta_step=0, max_depth=8,\n",
" min_child_weight=1, missing=nan, monotone_constraints='()',\n",
" n_estimators=200, n_jobs=12, num_parallel_tree=1, random_state=27,\n",
" reg_alpha=0, reg_lambda=1, scale_pos_weight=0.9861206227457426,\n",
" seed=27, subsample=1, tree_method='exact', validate_parameters=1,\n",
" verbosity=None)\n"
]
}
],
"source": [
"import joblib\n",
"\n",
"xg_model = joblib.load(\"models/credit-bias-xgboost.joblib\")\n",
"print(xg_model)"
]
},
{
"cell_type": "markdown",
"id": "986b8eb7",
"metadata": {},
"source": [
"This model has as a single **output** a boolean `PaidLoan`, which will predict whether a certain loan applicant will repay the loan in time or not. The model is slightly more complex than the previous examples, with **input** features:\n",
"\n",
"|Input feature | Type | Note |\n",
"|----------------------|---------|-------------|\n",
"|`NewCreditCustomer` |boolean ||\n",
"|`Amount` |numerical||\n",
"|`Interest` |numerical||\n",
"|`LoanDuration` |numerical|In months|\n",
"|`Education` |numerical|Level (1, 2, 3..)|\n",
"|`NrOfDependants` |numerical|Integer|\n",
"|`EmploymentDurationCurrentEmployer`|numerical|Integer (years)|\n",
"|`IncomeFromPrincipalEmployer`|numerical||\n",
"|`IncomeFromPension` |numerical||\n",
"|`IncomeFromFamilyAllowance`|numerical||\n",
"|`IncomeFromSocialWelfare`|numerical||\n",
"|`IncomeFromLeavePay`|numerical||\n",
"|`IncomeFromChildSupport`|numerical||\n",
"|`IncomeOther`|numerical||\n",
"|`ExistingLiabilities`|numerical|integer|\n",
"|`RefinanceLiabilities`|numerical|integer|\n",
"|`DebtToIncome`|numerical||\n",
"|`FreeCash`|numerical||\n",
"|`CreditScoreEeMini`|numerical|integer|\n",
"|`NoOfPreviousLoansBeforeLoan`|numerical|integer|\n",
"|`AmountOfPreviousLoansBeforeLoan`|numerical||\n",
"|`PreviousRepaymentsBeforeLoan`|numerical||\n",
"|`PreviousEarlyRepaymentsBefoleLoan`|numerical||\n",
"|`PreviousEarlyRepaymentsCountBeforeLoan`|numerical|integer|\n",
"|`Council_house`|boolean||\n",
"|`Homeless`|boolean||\n",
"|`Joint_ownership`|boolean||\n",
"|`Joint_tenant`|boolean||\n",
"|`Living_with_parents`|boolean||\n",
"|`Mortgage`|boolean||\n",
"|`Other`|boolean||\n",
"|`Owner`|boolean||\n",
"|`Owner_with_encumbrance`|boolean||\n",
"|`Tenant`|boolean||\n",
"|`Entrepreneur`|boolean||\n",
"|`Fully`|boolean||\n",
"|`Partially`|boolean||\n",
"|`Retiree`|boolean||\n",
"|`Self_employed`|boolean||\n",
"\n",
"We will start by testing the model with an input we are quite sure (from the original data) that will be predicted as `false`:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "33ed8c2f",
"metadata": {},
"outputs": [],
"source": [
"x = [[False,2125.0,20.97,60,4.0,0.0,6.0,0.0,301.0,0.0,53.0,0.0,0.0,0.0,8,6,26.29,10.92,1000.0,1.0,500.0,590.95,0.0,0.0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0]]"
]
},
{
"cell_type": "markdown",
"id": "806f119b",
"metadata": {},
"source": [
"We can see that this application will be rejected with a probability of $\\sim77\\%$:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "ebf11020",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0.7770493 0.22295067]]\n",
"Paid loan is predicted as: [False]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"print(xg_model.predict_proba(np.array(x)))\n",
"print(f\"Paid loan is predicted as: {xg_model.predict(np.array(x))}\")"
]
},
{
"cell_type": "markdown",
"id": "6a09b584",
"metadata": {},
"source": [
"We will now prepare the XGBoost model to be used from the TrustyAI counterfactual engine.\n",
"\n",
"To do so, we simply need to first create a prediction function which takes:\n",
"\n",
"- A list of `PredictionInput` as inputs\n",
"- A list of `PredictionOutput` as outputs\n",
"\n",
"If these two conditions are met, the actual inner working of this method can be anything (including calling a XGBoost Python model for prediction as in our case):"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "995adddc",
"metadata": {},
"outputs": [],
"source": [
"from org.kie.kogito.explainability.model import PredictionInput, PredictionOutput\n",
"\n",
"def predict(inputs):\n",
" values = [_feature.value.as_obj() for _feature in inputs[0].features]\n",
" result = xg_model.predict_proba(np.array([values]))\n",
" false_prob, true_prob = result[0]\n",
" if false_prob > true_prob:\n",
" _prediction = (False, false_prob)\n",
" else:\n",
" _prediction = (True, true_prob)\n",
" _output = output(name=\"PaidLoan\", dtype=\"bool\", value=_prediction[0], score=_prediction[1])\n",
" return [PredictionOutput([_output])]"
]
},
{
"cell_type": "markdown",
"id": "811d2e6c",
"metadata": {},
"source": [
"Once the prediction method is created, we wrap in a `PredictionProvider` class.\n",
"\n",
"This class takes care of all the JVM's asynchronous plumbing for us."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "5dfde4d2",
"metadata": {},
"outputs": [],
"source": [
"from trustyai.model import Model\n",
"\n",
"cb_model = Model(predict)"
]
},
{
"cell_type": "markdown",
"id": "45ddc56a",
"metadata": {},
"source": [
"We will now express the previous inputs (`x`) in terms of `Feature`s, so that we might use it for the counterfactual search:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "358ce263",
"metadata": {},
"outputs": [],
"source": [
"def make_feature(name, _value):\n",
" if isinstance(_value, bool):\n",
" return feature(name=name, dtype=\"bool\", value=_value)\n",
" else:\n",
" return feature(name=name, dtype=\"number\", value=_value)\n",
"\n",
"features = [make_feature(p[0], p[1]) for p in [(\"NewCreditCustomer\", False),\n",
" (\"Amount\", 2125.0),\n",
" (\"Interest\", 20.97),\n",
" (\"LoanDuration\", 60.0),\n",
" (\"Education\", 4.0),\n",
" (\"NrOfDependants\", 0.0),\n",
" (\"EmploymentDurationCurrentEmployer\", 6.0),\n",
" (\"IncomeFromPrincipalEmployer\", 0.0),\n",
" (\"IncomeFromPension\", 301.0),\n",
" (\"IncomeFromFamilyAllowance\", 0.0),\n",
" (\"IncomeFromSocialWelfare\", 53.0),\n",
" (\"IncomeFromLeavePay\", 0.0),\n",
" (\"IncomeFromChildSupport\", 0.0),\n",
" (\"IncomeOther\", 0.0),\n",
" (\"ExistingLiabilities\", 8.0),\n",
" (\"RefinanceLiabilities\", 6.0),\n",
" (\"DebtToIncome\", 26.29),\n",
" (\"FreeCash\", 10.92),\n",
" (\"CreditScoreEeMini\", 1000.0),\n",
" (\"NoOfPreviousLoansBeforeLoan\", 1.0),\n",
" (\"AmountOfPreviousLoansBeforeLoan\", 500.0),\n",
" (\"PreviousRepaymentsBeforeLoan\", 590.95),\n",
" (\"PreviousEarlyRepaymentsBefoleLoan\", 0.0),\n",
" (\"PreviousEarlyRepaymentsCountBeforeLoan\", 0.0),\n",
" (\"Council_house\", False),\n",
" (\"Homeless\", False),\n",
" (\"Joint_ownership\", False),\n",
" (\"Joint_tenant\", False),\n",
" (\"Living_with_parents\", False),\n",
" (\"Mortgage\", False),\n",
" (\"Other\", False),\n",
" (\"Owner\", False),\n",
" (\"Owner_with_encumbrance\", True),\n",
" (\"Tenant\", True),\n",
" (\"Entrepreneur\", False),\n",
" (\"Fully\", False),\n",
" (\"Partially\", False),\n",
" (\"Retiree\", True),\n",
" (\"Self_employed\", False)]]"
]
},
{
"cell_type": "markdown",
"id": "e82cb625",
"metadata": {},
"source": [
"We can confirm now, with the newly created `PredictionProvider` model that this input will lead to a `false` `PaidLoan` prediction:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "8a370f7d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Output{value=false, type=boolean, score=0.7835956811904907, name='PaidLoan'}'"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction = cb_model.predictAsync([PredictionInput(features)]).get()\n",
"prediction[0].outputs[0].toString()"
]
},
{
"cell_type": "markdown",
"id": "a61f25e5",
"metadata": {},
"source": [
"We generate a prediction to be passed to the LIME explainer"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "3bb1be05",
"metadata": {},
"outputs": [],
"source": [
"prediction_obj = simple_prediction(input_features=features, outputs=prediction[0].outputs)"
]
},
{
"cell_type": "markdown",
"id": "de1cf07f",
"metadata": {},
"source": [
"We execute the LIME explainer on the XGBoost model and prediction"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "f4918cbd",
"metadata": {},
"outputs": [],
"source": [
"cb_explainer = LimeExplainer(samples=100, perturbations=2, seed=23, normalise_weights=False)\n",
"cb_explanation = cb_explainer.explain(prediction_obj, cb_model)"
]
},
{
"cell_type": "markdown",
"id": "549406d8",
"metadata": {},
"source": [
"We output the top 2 most important features for the prediction outcome"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "cc585f63",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FeatureImportance{feature=Feature{name='Education', type=number, value=4.0}, score=3.282586466080571, confidence= +/-0.0}\n",
"FeatureImportance{feature=Feature{name='NrOfDependants', type=number, value=0.0}, score=-1.864816175288724, confidence= +/-0.0}\n"
]
}
],
"source": [
"for f in cb_explanation.map()['PaidLoan'].getTopFeatures(2):\n",
" print(f)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "49f49b52",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" PaidLoan_features \n",
" PaidLoan_score \n",
" PaidLoan_value \n",
" PaidLoan_confidence \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" NewCreditCustomer \n",
" -1.605224 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 1 \n",
" Amount \n",
" 0.484565 \n",
" 2125.00 \n",
" 0.0 \n",
" \n",
" \n",
" 2 \n",
" Interest \n",
" 0.165306 \n",
" 20.97 \n",
" 0.0 \n",
" \n",
" \n",
" 3 \n",
" LoanDuration \n",
" -0.768934 \n",
" 60.00 \n",
" 0.0 \n",
" \n",
" \n",
" 4 \n",
" Education \n",
" 3.282586 \n",
" 4.00 \n",
" 0.0 \n",
" \n",
" \n",
" 5 \n",
" NrOfDependants \n",
" -1.864816 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 6 \n",
" EmploymentDurationCurrentEmployer \n",
" 1.196610 \n",
" 6.00 \n",
" 0.0 \n",
" \n",
" \n",
" 7 \n",
" IncomeFromPrincipalEmployer \n",
" 0.812697 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 8 \n",
" IncomeFromPension \n",
" -0.300951 \n",
" 301.00 \n",
" 0.0 \n",
" \n",
" \n",
" 9 \n",
" IncomeFromFamilyAllowance \n",
" -1.560764 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 10 \n",
" IncomeFromSocialWelfare \n",
" -0.010848 \n",
" 53.00 \n",
" 0.0 \n",
" \n",
" \n",
" 11 \n",
" IncomeFromLeavePay \n",
" -0.129406 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 12 \n",
" IncomeFromChildSupport \n",
" 1.094789 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 13 \n",
" IncomeOther \n",
" 0.945468 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 14 \n",
" ExistingLiabilities \n",
" -0.147790 \n",
" 8.00 \n",
" 0.0 \n",
" \n",
" \n",
" 15 \n",
" RefinanceLiabilities \n",
" 0.578735 \n",
" 6.00 \n",
" 0.0 \n",
" \n",
" \n",
" 16 \n",
" DebtToIncome \n",
" 0.562596 \n",
" 26.29 \n",
" 0.0 \n",
" \n",
" \n",
" 17 \n",
" FreeCash \n",
" -1.241136 \n",
" 10.92 \n",
" 0.0 \n",
" \n",
" \n",
" 18 \n",
" CreditScoreEeMini \n",
" 1.528180 \n",
" 1000.00 \n",
" 0.0 \n",
" \n",
" \n",
" 19 \n",
" NoOfPreviousLoansBeforeLoan \n",
" 0.443888 \n",
" 1.00 \n",
" 0.0 \n",
" \n",
" \n",
" 20 \n",
" AmountOfPreviousLoansBeforeLoan \n",
" -0.881605 \n",
" 500.00 \n",
" 0.0 \n",
" \n",
" \n",
" 21 \n",
" PreviousRepaymentsBeforeLoan \n",
" -1.143805 \n",
" 590.95 \n",
" 0.0 \n",
" \n",
" \n",
" 22 \n",
" PreviousEarlyRepaymentsBefoleLoan \n",
" 0.162419 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 23 \n",
" PreviousEarlyRepaymentsCountBeforeLoan \n",
" 1.095744 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 24 \n",
" Council_house \n",
" -0.724558 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 25 \n",
" Homeless \n",
" -0.492904 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 26 \n",
" Joint_ownership \n",
" 1.584465 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 27 \n",
" Joint_tenant \n",
" 0.420845 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 28 \n",
" Living_with_parents \n",
" -0.875883 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 29 \n",
" Mortgage \n",
" -1.583980 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 30 \n",
" Other \n",
" -0.253131 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 31 \n",
" Owner \n",
" 0.159048 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 32 \n",
" Owner_with_encumbrance \n",
" -0.080871 \n",
" 1.00 \n",
" 0.0 \n",
" \n",
" \n",
" 33 \n",
" Tenant \n",
" 0.844265 \n",
" 1.00 \n",
" 0.0 \n",
" \n",
" \n",
" 34 \n",
" Entrepreneur \n",
" 1.417670 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 35 \n",
" Fully \n",
" -0.036086 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 36 \n",
" Partially \n",
" -0.815799 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
" 37 \n",
" Retiree \n",
" -0.386546 \n",
" 1.00 \n",
" 0.0 \n",
" \n",
" \n",
" 38 \n",
" Self_employed \n",
" -1.528299 \n",
" 0.00 \n",
" 0.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PaidLoan_features PaidLoan_score PaidLoan_value \\\n",
"0 NewCreditCustomer -1.605224 0.00 \n",
"1 Amount 0.484565 2125.00 \n",
"2 Interest 0.165306 20.97 \n",
"3 LoanDuration -0.768934 60.00 \n",
"4 Education 3.282586 4.00 \n",
"5 NrOfDependants -1.864816 0.00 \n",
"6 EmploymentDurationCurrentEmployer 1.196610 6.00 \n",
"7 IncomeFromPrincipalEmployer 0.812697 0.00 \n",
"8 IncomeFromPension -0.300951 301.00 \n",
"9 IncomeFromFamilyAllowance -1.560764 0.00 \n",
"10 IncomeFromSocialWelfare -0.010848 53.00 \n",
"11 IncomeFromLeavePay -0.129406 0.00 \n",
"12 IncomeFromChildSupport 1.094789 0.00 \n",
"13 IncomeOther 0.945468 0.00 \n",
"14 ExistingLiabilities -0.147790 8.00 \n",
"15 RefinanceLiabilities 0.578735 6.00 \n",
"16 DebtToIncome 0.562596 26.29 \n",
"17 FreeCash -1.241136 10.92 \n",
"18 CreditScoreEeMini 1.528180 1000.00 \n",
"19 NoOfPreviousLoansBeforeLoan 0.443888 1.00 \n",
"20 AmountOfPreviousLoansBeforeLoan -0.881605 500.00 \n",
"21 PreviousRepaymentsBeforeLoan -1.143805 590.95 \n",
"22 PreviousEarlyRepaymentsBefoleLoan 0.162419 0.00 \n",
"23 PreviousEarlyRepaymentsCountBeforeLoan 1.095744 0.00 \n",
"24 Council_house -0.724558 0.00 \n",
"25 Homeless -0.492904 0.00 \n",
"26 Joint_ownership 1.584465 0.00 \n",
"27 Joint_tenant 0.420845 0.00 \n",
"28 Living_with_parents -0.875883 0.00 \n",
"29 Mortgage -1.583980 0.00 \n",
"30 Other -0.253131 0.00 \n",
"31 Owner 0.159048 0.00 \n",
"32 Owner_with_encumbrance -0.080871 1.00 \n",
"33 Tenant 0.844265 1.00 \n",
"34 Entrepreneur 1.417670 0.00 \n",
"35 Fully -0.036086 0.00 \n",
"36 Partially -0.815799 0.00 \n",
"37 Retiree -0.386546 1.00 \n",
"38 Self_employed -1.528299 0.00 \n",
"\n",
" PaidLoan_confidence \n",
"0 0.0 \n",
"1 0.0 \n",
"2 0.0 \n",
"3 0.0 \n",
"4 0.0 \n",
"5 0.0 \n",
"6 0.0 \n",
"7 0.0 \n",
"8 0.0 \n",
"9 0.0 \n",
"10 0.0 \n",
"11 0.0 \n",
"12 0.0 \n",
"13 0.0 \n",
"14 0.0 \n",
"15 0.0 \n",
"16 0.0 \n",
"17 0.0 \n",
"18 0.0 \n",
"19 0.0 \n",
"20 0.0 \n",
"21 0.0 \n",
"22 0.0 \n",
"23 0.0 \n",
"24 0.0 \n",
"25 0.0 \n",
"26 0.0 \n",
"27 0.0 \n",
"28 0.0 \n",
"29 0.0 \n",
"30 0.0 \n",
"31 0.0 \n",
"32 0.0 \n",
"33 0.0 \n",
"34 0.0 \n",
"35 0.0 \n",
"36 0.0 \n",
"37 0.0 \n",
"38 0.0 "
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cb_explanation.as_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d7052b9f",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAN6CAYAAADGtcsXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhV5f7//9cC2YwqgyiIw0bEoY4DhnYcQdPEPKVlaWY5azkcJae0MqUc0nLIzKEspLLMJuvjkKUnHNBKc2gQTRFyiFJTSzQ3COv3hz/3tx2oqLC34PNxXVyXa7rv91rbtwt5c9+3YZqmKQAAAAAAAAAAgBucm6sDAAAAAAAAAAAAKAyKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEoKgBAAAAAAAAAABKBIoaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAcBMwDEOxsbGuDuO6ZWRkyDAM9e7d29WhXLd3331XUVFRKlu2rAzDUHx8vEvjudq/I8nJyTIMQxMnTiy2mAAAAP6JogYAAAAAlzIMQ4ZhFOpcq9UqwzCUkZFR4H7DMPS///3vktf36dPHft4/fxA7ceJE+7FLfZWGokBJcDM86y1btqhHjx46ffq0Bg0apAkTJiguLu6y1yxevDjf30lPT0+Fh4erd+/e2r17t5Oiv7zevXvLMAwtXrzY1aEAAIBSqIyrAwAAAACAolKmTBktWrRIbdq0yXfszz//1LJly1SmTBmdP3/+km3ExMRc8gfqVqu1iCLFtQoLC1NqaqrKly/v6lCuy8qVK2Wapt588001a9bsqq5t0KCBOnfuLEn6448/lJycrKSkJC1btkz/+9//9O9///uaYkpNTZWPj881XQsAAOAsFDUAAAAAlBr/+c9/9NFHH+n3339XUFCQw7ElS5bo7Nmzuvfee/Xxxx9fso3Y2Fim07mBeXh4qE6dOq4O47r98ssvkqTKlStf9bUNGzZ0+Dtqmqb69OmjpKQkjRs3Tl9++eU1xVQanisAACj9mH4KAAAAQKkxYMAA2Ww2vfXWW/mOvfbaa6pateoVp/gpKmfPntXUqVPVsGFD+fr6ys/PT02bNtW7777rcN7XX38ti8WiGjVq6I8//nA4lpmZqUqVKsnPz0979uyx74+NjZVhGLLZbHr66acVHh4uT09PRUREKCEhQdnZ2YWK8ZdfftGzzz6r5s2bKyQkRBaLRZUrV9ZDDz1U4FRGf1/PIiMjQw8++KAqVKggLy8vRUdHa8WKFfmu+eOPP/TCCy+oTZs2qlKliiwWi4KDg3XPPfdoy5YtDudenF5JktavX+8wzdLFH+Jfbk2NzMxMDRkyRFar1d7Pfffdp2+//TbfuRf7Wrx4sb788kvFxsaqbNmyKleunDp27KjU1NRCPcOL8vLytGDBAjVu3Fh+fn7y9fVV48aNNX/+fOXl5eXrNzExUZIUHh5uv8d/TqtWWIZhaPDgwZKkb775RtLVPfe/t1PQKKXffvtN/fr1U6VKleTt7a2GDRsqKSnpmmItyLp16xQXF6fAwEB5enqqVq1aGjt2bL58kKRvv/1Ww4cPV4MGDRQYGCgvLy9FRkZq5MiROnnyZL7zi/pzBgAArkdRAwAAAECp0a5dO1mtVi1atMhh/7fffqsdO3aob9++cnMr/v8GnTp1Si1atNCTTz4pd3d39e3bV7169dKxY8f00EMP6emnn7afe/vtt2vKlClKT0/XgAED7Pvz8vLUo0cPHT16VK+88kqBv0XftWtXvfHGG7r77rs1dOhQ+w//u3TpItM0rxjnhg0b9Pzzz8vf319dunTR448/rn//+9/64IMP1KRJE+3atavA637++Wc1adJEGRkZeuSRR9StWzf98MMP6tSpU75RAqmpqXrqqafk5uamjh07asSIEWrXrp3+97//qVWrVvrss8/s5zZs2FATJkyQJFWvXl0TJkywf11pjY309HRFR0dr3rx5ioiI0MiRI9W+fXutXLlSzZo1K7DgIkkrVqzQnXfeqXLlyumxxx5Ty5YttWrVKsXExOj48eNXfIYXPfLIIxo0aJB+++039e/fXwMHDtSxY8c0ePBgPfLII/nusUGDBpKk4cOH2+/R39+/0P3908XP+2JR6Gqe++UcP35czZo10xtvvKFatWopPj5eDRs21GOPPaZZs2Zdc7wXLVy4UO3atVNKSoo6d+6sxx9/XIGBgZo2bZqaNWumU6dOOZz/2muvaenSpapdu7b69OmjQYMGKTQ0VDNnzlTz5s11+vTpAvspqs8ZAADcAEwAAAAAcCFJZmH/a1K9enVTkpmenl7g/pycHPO5554zJZmbN2+2H3/00UdNNzc38+effzZfe+01U5I5YcIEhzYmTJhgSjJjYmLMCRMmFPi1ZcuWQsXZq1cvU5I5bdo0h/1//fWX2b59e9MwDHPHjh32/Xl5eeZdd91lSjIXLFhgmqZpTpw40ZRk9uzZM1/7MTExpiQzMjLSPHHihEP7//73v01J5ptvvulwzcV7+7vffvvN/PPPP/O1v3PnTtPX19eMi4tz2J+enm7/vCZOnOhw7LPPPjMlmR06dHDYf+rUKfPYsWP5+jh06JAZGhpq1qlTJ9+xgmL9Zwy9evVy2H/nnXeaksxJkyY57E9JSTHd3d3NwMBA8/Tp0/b9iYmJpiTT3d3dXLt2rcM1Y8eOLfDzu5R33nnHlGRGRUU59JGVlWXedtttpiRzyZIlDtdc/Dvyz7/Ll3Mx5n/ee15entmzZ09TktmmTRvTNIvuuQ8YMMCUZMbHxzvs37p1q1mmTJkCc+nivSUmJl72fjIyMkyLxWKWLVvWTE1NdTg2aNAgU5I5YMCAfNecP38+X1uLFi0yJZnPP/+8w/6i/JwBAMCNgaIGAAAAAJcq6qLG4cOHTXd3d7NPnz6maV74wXLZsmXtP2y/UlHjcl+zZs26YozHjx833d3dzejo6AKP79y505Rkjh492mH/sWPHzLCwMNPLy8ucO3eu6e7ubtauXdvMysrK18bFosY/CxemaZpffvmlKcmMjY112H+5QkFB7r77btPT09PMzs6277tYUKhevXqBP1iuVq2aGRQUVOg+/vvf/5qSzJ9//rnQsRZU1Dh06JApyaxWrZpDvBc9/PDDpiQzKSnJvu/iD7t79OiR7/wDBw6YkswuXboU6j7atm1rSjLXrFmT79jatWtNSWbr1q0d9l9PUaNBgwb2Qlt8fLzZsGFDU5Lp7e1dqMJbYZ97dna26ePjY5YtW9Y8depUvnYu3sO1FjUmTZpkSjLHjRuX79iJEyfMsmXLml5eXua5c+eueE95eXlmuXLl8j3novycAQDAjYGFwgEAAACUKmFhYbrrrru0bNkyvfTSS1q2bJlOnz7tMLXT5UyYMOG6FgrfunWrcnNzHdaB+LucnBxJyjeXf4UKFfTOO++oTZs2Gjp0qLy8vPTee+/J19f3kn3FxMTk29eiRQu5u7trx44dhYp35cqVWrBggbZt26bjx4/r/PnzDsePHz+u0NBQh30NGzaUu7t7vraqVq1a4HoNKSkpeumll7RlyxYdPXo035ofR44cUbVq1QoVb0Eu3mvLli3l4eGR73ibNm309ttva8eOHerZs6fDsejo6ALvQ1KBazQUZPv27XJzcytwiqyYmJir+jwKY9euXfapwTw8PBQaGqpHHnlEY8eO1S233GI/73qf+549e3T27Fm1bNlS5cuXz3c8Njb2utbW2L59u6QLn88/BQQEKCoqShs2bNCePXvs03Xl5ORo4cKFWrp0qXbv3q0//vjDYc2SI0eOFNhXUXzOAADgxkBRAwAAAECpM2DAAP3f//2f3nnnHSUmJiokJER33323U/r+/fffJV0obmzduvWS52VlZeXb16RJE1WrVk3p6elq3bq1/Qe5l1KpUqV8+8qUKaMKFSro6NGjV4z1pZdeUnx8vAICAtSuXTtVq1ZNPj4+MgxDy5cv165du2Sz2fJdd6m1H8qUKePwA2ZJ+vjjj3X//ffLy8tL7dq1U0REhHx9feXm5qbk5GStX7++wD6uxsUFpf9ZfLno4v5/rs8gFXwvZcpc+K9ybm5uofsPDAyUxWIpsK3Cfh6F1atXLy1evPiy5xTFc7/4XAv6eyZJISEh1xT/P9u/ms+tW7du+vjjj1WjRg116tRJISEh8vT0lCTNnj37kvdUFJ8zAAC4MVDUAAAAAFDq3HXXXQoLC9OkSZN0+PBhjRs3zv4DzOJ28TfaH3/8cc2cOfOqrh0+fLjS09NVoUIFrV69WkuWLFGPHj0uef5vv/2W7zftz58/r+PHj6tcuXKX7ev8+fOaOHGiQkJCtH379nw/WC5oxMW1GD9+vCwWi7Zt26a6des6HHv00Ue1fv366+7j4jP/9ddfCzyemZnpcF5RK1++vE6cOKGcnJx8I0UK+3kUtaJ47hef12+//Vbg8Us978L6++d266235jv+z89t27Zt+vjjj9W2bVutXr3aIafz8vI0ffr064oHAACUDG6uDgAAAAAAipq7u7v69u2rw4cPyzAM9e/f32l9N2nSRG5ubtq4ceNVXbds2TK9+uqratWqlbZv367g4GA99thj2rdv3yWvKegH05s2bVJubq6ioqIu29/x48d16tQpNWvWLF9BIysryz410PXav3+/brnllnw/WM/Ly9OmTZsKvMbNze2qfnv+4r1u2rQp3/RZkvTll19Kkho1alToNq9GVFSU8vLytGHDhnzHNmzYoNzc3GLr+1Ku5bn/U506deTj46OdO3faR1X8XXJy8nXFePFzK6idU6dOaefOnfLy8rLfw/79+yVJ99xzT74i5TfffKO//vrruuIBAAAlA0UNAAAAAKXSsGHD9PHHH2vNmjWqUaOG0/qtWLGievTooW3btum5554r8IfzaWlpSk9Pt28fOHBAAwYMUFBQkN555x1VrVpVSUlJOnPmjLp163bJKXWee+45h/UAzp07p3HjxkmS+vTpc8U4fXx89O233zpMhZWTk6Phw4fr+PHjV3Xfl2K1WrVv3z798ssv9n2maWrixInavXt3gdcEBQXp0KFDhe6jSpUqateunTIyMjR79myHY19//bXeeecdBQQE6N57772me7iSvn37SpLGjRuns2fP2vefPXtWY8eOlST169evWPq+lGt57v/k4eGhHj166PTp0/nWh9m2bZuWLFlyXTE+/PDD8vDw0Msvv2wvWFw0fvx4/fnnn3r44Yft00tZrVZJ+YsgR48e1ZAhQ64rFgAAUHIw/RQAAACAG0Lv3r0veWzevHny8fG5qvYqVKigzp07X3UcycnJl1wo3N/fX/Hx8VdsY+7cudq3b5+eeeYZvfXWW2rRooUqVaqkX375Rampqdq6daveffddhYeHKycnRw8++KD+/PNPffrppwoLC5MkdejQQSNHjtSLL76oUaNG6eWXX87XT926dXXrrbfq/vvvl4eHhz755BOlpaWpY8eOeuSRRy4bo5ubm4YNG6bnn39e9erVU6dOnZSdna0vv/xSJ06cUOvWre0jHK7H448/rscee0xRUVHq0qWLPDw8lJKSot27d+vuu+/W//3f/+W75o477tDSpUt19913q1GjRvLw8FCrVq3UqlWrS/azYMECNW/eXKNHj9bnn3+u6OhoHTp0SO+//77c3NyUmJiosmXLXvf9FOShhx7SJ598omXLlunWW29V586d7euSpKenq1u3bpedRqw4XMtzL8iUKVO0bt06zZ49W9u2bVOLFi2UmZmp9957T3fddZc+/fTTS167aNGiS47meOihh3TnnXdq9uzZGjJkiBo1aqSuXbsqODhY69ev15YtW1SnTh1NmzbNfk3jxo3VvHlzffTRR2rWrJlatGih3377TatXr1bt2rVVuXLlq3pGAACgZKKoAQAAAOCGkJSUdMljs2fPvuqixrVav379JdcbqF69eqGKGuXKldP69ev16quv6p133tGHH36oc+fOqVKlSoqMjNSsWbPUrl07SdLYsWO1detWDRs2LN9i5lOmTNGGDRs0d+5ctWnTJt9Ig2XLlum5557TkiVL9MsvvygsLEwTJ07U2LFjZRjGFeN87rnnFBwcrEWLFmnhwoUqX7682rVrp0mTJmnChAlXvL4wHn30UXl6emr27NlKSkqSt7e3WrZsqcTERH344YcF/nD9pZdekmEYWrdunVatWqW8vDxNmDDhskWNGjVqaNu2bZo0aZJWrVql5ORklStXTnFxcXrqqafUuHHjIrmfS3n33XcVExOjN954QwsXLpR0oeg0cuRIDRo0qFj7Lsi1PPeCVKhQQSkpKXryySf1f//3f9q2bZtq166t+fPny2q1XraokZKSopSUlAKPNWzYUHfeeacGDx6smjVr6sUXX9SHH36os2fPqmrVqho9erSefPJJhwW+3d3d9emnn+rpp5/WqlWrNGfOHIWFhal///56+umndcstt1zVMwIAACWTYZqm6eogAAAAAACFFxsbq/Xr14v/zgEAAOBmw5oaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoERgTQ0AAAAAAAAAAFAiMFIDAAAAAAAAAACUCBQ1AAAAAAAAAABAiUBRAwAAAAAAAAAAlAgUNQAAAAAAAAAAQIlQxtUBAIAr/fbbb8rJySn2fgzDUFhYmI4cOSLTNIu9PwDkHeAq5B7gfOQd4HzkHeAa5F7p5uHhoUqVKl3xPIoaAG5qOTk5ys7OLvZ+DMOQJGVnZ/PSBZyEvANcg9wDnI+8A5yPvANcg9yDxPRTAAAAAAAAAACghKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEoKgBAAAAAAAAAABKBIoaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEoKgBAAAAAAAAAABKBIoaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEoKgBAAAAAAAAAABKBIoaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEoKgBAAAAAAAAAABKBIoaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEoKgBAAAAAAAAAABKBIoaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGgAAAAAAAAAAoESgqAEAAAAAAAAAAEoEihoAAAAAAAAAAKBEKOPqAAAAuFEERES4OgQUsZOS/F0dBHAzMk1XRwAAAACglGKkBgAAAAAAAAAAKBEoagA3iIkTJ6phw4b59lWqVEmGYWj58uUuiaswYmNjFR8f7+ow1Lt3b3Xu3NnVYQAAAAAAAAAoJhQ1gCJy7NgxDRo0SNWqVZOnp6dCQkLUvn17paSkXFN7qampSkhI0MKFC5WZmakOHToUccQAAAAAAAAAULKwpgZQRLp06aLs7GwlJSWpRo0a+u2337Ru3Tr9/vvv19ReWlqaJKlTp04yDKMoQwUAAAAAAACAEomRGkAROHXqlDZu3Khp06apdevWql69upo0aaJx48bpnnvusZ/Tv39/BQcHq1y5cmrTpo127dpVYHsTJ07U3XffLUlyc3MrdFFj0aJFqlu3rry8vFSnTh3NmzfPfiwjI0OGYWjZsmVq2bKlvL291bhxY/3000/aunWroqOj5efnpw4dOujYsWP26y5O6ZSQkGCP/bHHHlN2dvYl4zh58qR69uypgIAA+fj4qEOHDtq3b58k6cyZMypXrpw++OADh2uWL18uX19fnT59WpJ06NAhde3aVf7+/goMDFSnTp2UkZFhPz83N1cjRoyQv7+/goKCNGbMGJksSgoAAAAAAACUaozUAIqAn5+f/Pz8tHz5cv373/+Wp6dnvnMeeOABeXt7a/Xq1SpfvrwWLlyoO+64Qz/99JMCAwMdzh01apSsVqv69OmjzMzMQsWwZMkSPfPMM5o7d66ioqK0Y8cODRgwQL6+vurVq5f9vAkTJmj27NmqVq2a+vbtq4ceekhly5bVSy+9JB8fH3Xt2lXPPPOM5s+fb79m3bp18vLyUnJysjIyMtSnTx8FBQVp8uTJBcbSu3dv7du3T59++qnKlSunJ554QnfddZd2794tX19fPfjgg0pMTNT9999vv+bidtmyZZWTk6P27duradOm2rhxo8qUKaNJkyYpLi5O3333nSwWi2bMmKHFixfrjTfeUN26dTVjxgx9/PHHatOmTYEx2Ww22Ww2+7abm5v8/PxkGIZTRsJc7INRNwCAmwXvPMB5+F4TcD7yDnANcq90K+znapj8ajNQJD788EMNGDBAf/31lxo1aqSYmBg9+OCDql+/vjZt2qSOHTvq6NGjDgWPmjVrasyYMRo4cKAmTpyo5cuXa+fOnZIujFy49957Cz36oGbNmnruuefUvXt3+75JkyZp1apV2rx5szIyMhQeHq5FixapX79+kqSlS5eqe/fuWrdunb0Y8Pzzz2vx4sXas2ePpAsFiv/7v//ToUOH5OPjI0lasGCBRo8erT/++ENubm6KjY1Vw4YNNXv2bO3bt0+1atVSSkqKmjVrJkn6/fffVbVqVSUlJemBBx7QN998o2bNmunQoUMKDQ3V0aNHFRYWprVr1yomJkZvv/22Jk2apNTUVPs/ZtnZ2fL399fy5ct15513qnLlynr88cc1evRoSdL58+cVHh6u2267rcBF1SdOnKiEhAT7dlRUlLZv316oZ4ubx0m+KQKAIhHAfzEAAAAAFBNGagBFpEuXLurYsaM2btyor776SqtXr9b06dO1aNEinTlzRllZWQoKCnK45q+//rKvnXE9zpw5o7S0NPXr108DBgyw7z9//rzKly/vcG79+vXtf65UqZIkqV69eg77jh496nBNgwYN7AUNSWratKmysrJ06NAhVa9e3eHc1NRUlSlTRrfffrt9X1BQkGrXrq3U1FRJUpMmTXTrrbcqKSlJY8eO1dtvv63q1aurVatWkqRdu3Zp//79Klu2rEPb586dU1pamv744w9lZmY69FGmTBlFR0dfsgg0btw4jRgxwr7t5nZh9r0jR45cdiqtomIYhqxWqzIyMpgm6wbm7+oAAKAU4Z0HOA/fawLOR94BrkHulW4Wi0VhYWFXPI+iBlCEvLy81K5dO7Vr107jx49X//79NWHCBA0ePFihoaFKTk7Od42/v/9195uVlSVJeu211xx+0C9J7u7uDtseHh72P18cBfHPfXl5edcd05X0799fr7zyisaOHavExET16dPHHk9WVpZuu+02LVmyJN91wcHB19Sfp6dngdOCmabp1Jegs/sDAMBVeOcBzkfeAc5H3gGuQe6VToX9TFkoHChGt9xyi86cOaNGjRrp119/VZkyZVSzZk2HrwoVKlx3P5UqVVLlypV14MCBfO2Hh4dfd/u7du3SX3/9Zd/+6quv5Ofnp6pVq+Y7t27dujp//ry+/vpr+77ff/9de/fu1S233GLf9/DDD+vnn3/WnDlztHv3bod1Pxo1aqR9+/apYsWK+e6nfPnyKl++vEJDQx36OH/+vL799tvrvlcAAAAAAAAANy6KGkAR+P3339WmTRu9/fbb+u6775Senq73339f06dPV6dOndS2bVs1bdpUnTt31ueff66MjAxt3rxZTz31lLZt21YkMSQkJGjq1KmaM2eOfvrpJ33//fdKTEzUzJkzr7vt7Oxs9evXT7t379aqVas0YcIEDR061D6F099FRkaqU6dOGjBggDZt2qRdu3bp4YcfVlhYmDp16mQ/LyAgQPfdd59Gjx6tO++8U1WqVLEf69GjhypUqKBOnTpp48aNSk9PV3JysoYNG6bDhw9LkoYPH67nn39ey5cv1549ezR48GCdOnXquu8VAAAAAAAAwI2L6aeAIuDn56fbb79ds2bNUlpamnJyclS1alUNGDBATz75pAzD0KpVq/TUU0+pT58+OnbsmEJCQtSqVSv7uhbXq3///vLx8dELL7yg0aNHy9fXV/Xq1VN8fPx1t33HHXcoMjJSrVq1ks1mU/fu3TVx4sRLnp+YmKjhw4frP//5j7Kzs9WqVSutWrXKYZorSerXr5/eeecd9e3b12G/j4+PNmzYoCeeeEL33XefTp8+rbCwMN1xxx0qV66cJGnkyJHKzMxUr1695Obmpr59++ree+/VH3/8cd33CwAAAAAAAODGZJhMPgbgMnr37q1Tp05p+fLlRd72W2+9pccff1y//PKLLBZLkbdfGIcPH3baQuHh4eFKT09nzscbWEBEhKtDAIBSIcA0eecBTsT3moDzkXeAa5B7pZvFYnGYzeVSGKkBwOnOnj2rzMxMPf/883r00UddVtAAAAAAAAAAULJQ1ABKCD8/v0seW716tVq2bOnEaK7P9OnTNXnyZLVq1Urjxo1zdTiA3cm0NFeHgCLEb/AArmEYhgJcHQQAAACAUouiBlBC7Ny585LHwsLCiq3fxYsXF3mbEydOvOyaHAAAAAAAAABQEIoaQAlRs2ZNV4cAAAAAAAAAAC7l5uoAAAAAAAAAAAAACoORGgAAALhpBUREuDqE0ol1bAAAAAAUE0ZqAAAAAAAAAACAEoGiBgCnio2NVXx8vKvDAAAAAAAAAFACUdQAUKDevXvLMAwZhiEPDw+Fh4drzJgxOnfuXKGuT05OlmEYOnXqlMP+jz76SM8991wxRAwAAAAAAACgtGNNDQCXFBcXp8TEROXk5Ojbb79Vr169ZBiGpk2bds1tBgYGXvZ4dna2LBbLNbcPAAAAAAAAoPRipAaAS/L09FRISIiqVq2qzp07q23btvriiy8kSXl5eZo6darCw8Pl7e2tBg0a6IMPPpAkZWRkqHXr1pKkgIAAGYah3r17S8o//ZTVatVzzz2nnj17qly5cho4cKAkadOmTWrZsqW8vb1VtWpVDRs2TGfOnLFfZ7PZNGrUKIWFhcnX11e33367kpOTi/+hAAAAAAAAAHAZihoACuWHH37Q5s2b7aMopk6dqjfffFMLFizQjz/+qMcff1wPP/yw1q9fr6pVq+rDDz+UJO3du1eZmZl66aWXLtn2iy++qAYNGmjHjh0aP3680tLSFBcXpy5duui7777Te++9p02bNmno0KH2a4YOHaotW7Zo6dKl+u677/TAAw8oLi5O+/btK94HAQAAAAAAAMBlmH4KwCWtWLFCfn5+On/+vGw2m9zc3DR37lzZbDZNmTJFa9euVdOmTSVJNWrU0KZNm7Rw4ULFxMTYp5mqWLGi/P39L9tPmzZtNHLkSPt2//791aNHD/uIjsjISM2ZM0cxMTGaP3++jh49qsTERB08eFCVK1eWJI0aNUqfffaZEhMTNWXKlHx92Gw22Ww2+7abm5v8/Pzs64YUt4t9OKMvABeQd4BrkXuA8/DOA5yPvANcg9wr3Qr7uVLUAHBJrVu31vz583XmzBnNmjVLZcqUUZcuXfTjjz/q7NmzateuncP52dnZioqKuup+oqOjHbZ37dql7777TkuWLLHvM01TeXl5Sk9P14EDB5Sbm6tatWo5XGez2RQUFFRgH1OnTlVCQoJ9OyoqStu3b1dYWNhVx3s9rFarU/sDQN7h8k66OoBSjNwDnI+8A5yPvANcg9y7uVHUAHBJvr6+qlmzpiTpjTfeUIMGDfT666/rX//6lyRp5cqV+YoCnp6e19TP32VlZenRRx/VsGHD8p1brVo1fffdd3J3d9e3334rd3d3h+N+fn4F9jFu3DiNGDHCvu3mdmH2vSNHjig7O/uqY75ahmHIarUqIyNDpmkWe38AyDsUjr+rAyjFyD3AeXjnAc5H3gGuQe6VbhaLpVC/gExRA0ChuLm56cknn9SIESP0008/ydPTUwcPHlRMTEyB519ceyM3N/eq+2rUqJF2795tL6j8U1RUlHJzc3X06FG1bNmyUG16enoWWHAxTdOpL0Fn9weAvANchdwDnI+8A5yPvANcg9wrnQr7mbJQOIBCe+CBB+Tu7q6FCxdq1KhRevzxx5WUlKS0tDRt375dL7/8spKSkiRJ1atXl2EYWrFihY4dO6asrKxC9/PEE09o8+bNGjp0qHbu3Kl9+/bpk08+sS8UXqtWLfXo0UM9e/bURx99pPT0dH3zzTeaOnWqVq5cWSz3DgAAAAAAAMD1GKkBoNDKlCmjoUOHavr06UpPT1dwcLCmTp2qAwcOyN/fX40aNdKTTz4pSQoLC1NCQoLGjh2rPn36qGfPnlq8eHGh+qlfv77Wr1+vp556Si1btpRpmoqIiFC3bt3s5yQmJmrSpEkaOXKkjhw5ogoVKujf//63/vOf/xTHrQMAAAAAAAC4ARgm43QA3MQOHz7stDU1wsPDlZ6ezvBIwEnIOxRGQESEq0MolQJMk9wDnIh3HuB85B3gGuRe6WaxWFSlSpUrnsf0UwAAAAAAAAAAoERg+ikAAADctE6mpbk6hFLHMAwFuDoIAAAAAKUWIzUAAAAAAAAAAECJQFEDAAAAAAAAAACUCBQ1AAAAAAAAAABAicCaGgAAAC4UEBHh6hCAomearo4AAAAAQCnFSA0AAAAAAAAAAFAiUNQAAAAAAAAAAAAlAkUNAMUuIyNDhmFo586dhb6md+/e6ty5s307NjZW8fHxRR4bAAAAAAAAgJKDogZwE+vdu7cMw5BhGLJYLKpZs6aeffZZnT9//rra/HsxQpKqVq2qzMxM/etf/7rOiAEAAAAAAADczFgoHLjJxcXFKTExUTabTatWrdKQIUPk4eGhcePGXVU7ubm5MgyjwGPu7u4KCQkpinABAAAAAAAA3MQYqQHc5Dw9PRUSEqLq1atr0KBBatu2rT799FPNnDlT9erVk6+vr6pWrarBgwcrKyvLft3ixYvl7++vTz/9VLfccos8PT3Vt29fJSUl6ZNPPrGPAElOTs43/VRubq769eun8PBweXt7q3bt2nrppZcKHfOzzz5b4KiPhg0bavz48df9TAAAAAAAAADcmBipAcCBt7e3fv/9d7m5uWnOnDkKDw/XgQMHNHjwYI0ZM0bz5s2zn3v27FlNmzZNixYtUlBQkEJDQ/XXX3/pzz//VGJioiQpMDBQv/zyi0MfeXl5qlKlit5//30FBQVp8+bNGjhwoEJDQ9W1a9crxti3b18lJCRo69ataty4sSRpx44d+u677/TRRx8VeI3NZpPNZrNvu7m5yc/Pz158KW4X+3BGXwAuIO8A1yL3AOfhnQc4H3kHuAa5V7oV9nOlqAFAkmSaptatW6c1a9bov//9r8Oi3FarVZMmTdJjjz3mUNTIycnRvHnz1KBBA/s+b29v2Wy2y0435eHhoYSEBPt2eHi4tmzZomXLlhWqqFGlShW1b99eiYmJ9qJGYmKiYmJiVKNGjQKvmTp1qkOfUVFR2r59u8LCwq7YX1GyWq1O7Q/AjZ93J10dAFBMbvTcA0oj8g5wPvIOcA1y7+ZGUQO4ya1YsUJ+fn7KyclRXl6eHnroIU2cOFFr167V1KlTtWfPHv355586f/68zp07p7Nnz8rHx0eSZLFYVL9+/Wvq95VXXtEbb7yhgwcP6q+//lJ2drYaNmxY6OsHDBigvn37aubMmXJzc9M777yjWbNmXfL8cePGacSIEfZtN7cLs+8dOXJE2dnZ13QPV8MwDFmtVmVkZMg0zWLvD0DJyTt/VwcAFJMbPfeA0qSkvPOA0oS8A1yD3CvdLBZLoX4BmaIGcJNr3bq15s+fL4vFosqVK6tMmTLKyMjQf/7zHw0aNEiTJ09WYGCgNm3apH79+ik7O9te1PD29r6m4X5Lly7VqFGjNGPGDDVt2lRly5bVCy+8oK+//rrQbdx9993y9PTUxx9/LIvFopycHN1///2XPN/T01Oenp759pum6dSXoLP7A0DeAa5C7gHOR94BzkfeAa5B7pVOhf1MKWoANzlfX1/VrFnTYd+3336rvLw8zZgxwz6iYdmyZYVqz2KxKDc397LnpKSkqFmzZho8eLB9X1pa2lXFXaZMGfXq1UuJiYmyWCx68MEH5e3tfVVtAAAAAAAAAChZKGoAyKdmzZrKycnRyy+/rLvvvlspKSlasGBBoa61Wq1as2aN9u7dq6CgIJUvXz7fOZGRkXrzzTe1Zs0ahYeH66233tLWrVsVHh5+VXH2799fdevWlXShUAIAAAAAAACgdHNzdQAAbjwNGjTQzJkzNW3aNP3rX//SkiVLNHXq1EJdO2DAANWuXVvR0dEKDg4usNjw6KOP6r777lO3bt10++236/fff3cYtVFYkZGRatasmerUqaPbb7/9qq8HAAAAAAAAULIYJpOPASihTNNUZGSkBg8e7LAI+NU4fPiw0xYKDw8PV3p6OnM+Ak5SUvIuICLC1SEARS7ANG/43ANKk5LyzgNKE/IOcA1yr3SzWCyqUqXKFc9j+ikAJdKxY8e0dOlS/frrr+rTp4+rwwEAAAAAAADgBBQ1AJRIFStWVIUKFfTqq68qICDA1eEAwDU7mZbm6hCAImUYhngzAwAAACguFDUAlEgMMQQAAAAAAABuPiwUDgAAAAAAAAAASgSKGgAAAAAAAAAAoERg+ikAAAAAVyUgIuLyJzBNJAAAAIBiwkgNAAAAAAAAAABQIlDUAHBDio2NVXx8vH3barVq9uzZLosHAAAAAAAAgOtR1ABQbHr37i3DMPJ97d+/39WhAQAAAAAAACiBWFMDQLGKi4tTYmKiw77g4GAXRQMAAAAAAACgJGOkBoBi5enpqZCQEIevfv36qXPnzg7nxcfHKzY2tlBt9u3bV//5z38c9uXk5KhixYp6/fXXiyhyAAAAAAAAADcaRmoAKHH69++vVq1aKTMzU6GhoZKkFStW6OzZs+rWrVuB19hsNtlsNvu2m5ub/Pz87FNiFbeLfTijLwAXkHeAa5F7gPPwzgOcj7wDXIPcK90K+7lS1ABQrFasWCE/Pz/7docOHeTr63tdbTZr1ky1a9fWW2+9pTFjxkiSEhMT9cADDzj09XdTp05VQkKCfTsqKkrbt29XWFjYdcVytaxWq1P7A0DeAcXhZCHOIfcA5yPvAOcj7wDXIPdubhQ1ABSr1q1ba/78+fZtX19fjRs37rrb7d+/v1599VWNGTNGv/32m1avXq3//e9/lzx/3LhxGjFihH3bze3C7HtHjhxRdnb2dcdzJYZhyGq1KiMjQ6ZpFnt/AMg7oDj5F+Iccg9wHt55gPORd4BrkHulm8ViKdQvIFPUAFCsfH19VbNmTYd9bm5u+V48OTk5V9Vuz549NXbsWG3ZskWbN29WeHi4WrZsecnzPT095enpmW+/aZpOfQk6uz8A5B3gKuQe4HzkHeB85B3gGuRe6VTYz5SiBgCnCw4O1g8//OCwb+fOnfLw8Ch0G0FBQercubMSExO1ZcsW9enTp6jDBAAAAAAAAHCDcXN1AABuPm3atNG2bdv05ptvat++fZowYUK+Ikdh9O/fX0lJSUpNTVWvXr2KIVIAAAAAAAAANxKKGgCcrn379ho/frzGjBmjxo0b6/Tp0+rZs+dVt9O2bVuFhoaqffv2qly5cjFECgAAAAAAAOBGwvRTAIrN4sWLL3ksISFBCQkJlzyenJzssJ2RkZHvnDNnzujkyZPq16/fNUYIAAAAAAAAoCShqAGgxMnLy9Px48c1Y8YM+fv765577nF1SAAAAAAAAACcgKIGgBLn4MGDCg8PV5UqVbR48WKVKcM/ZQAAONPJtLRLHjMMQwFOjAUAAADAzYWfBAIocaxWq0zTdHUYAAAAAAAAAJyMhcIBAAAAAAAAAECJQFEDAAAAAAAAAACUCEw/BQAAAKBIVfiipatDAG4++10dwM3nm4gkV4cAAMBNiZEaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSKGoAT9e7dW4Zh5PuKi4sr1PXJyckyDEOnTp0q3kABAAAAAAAA4AbEmhqAk8XFxSkxMdFhn6enZ5H2kZ2dLYvFUqRtOqPtonCjxwcAAAAAAADg2jFSA3AyT09PhYSEOHwFBARIkgzD0KJFi3TvvffKx8dHkZGR+vTTTyVJGRkZat26tSQpICBAhmGod+/ekqTY2FgNHTpU8fHxqlChgtq3by9J+uGHH9ShQwf5+fmpUqVKeuSRR3T8+HF7LBevGzp0qMqXL68KFSpo/PjxMk3Tfo7VatVzzz2nnj17qly5cho4cKAkadOmTWrZsqW8vb1VtWpVDRs2TGfOnHG4bsqUKerbt6/Kli2ratWq6dVXX3V4FocOHVLXrl3l7++vwMBAderUSRkZGQ7xxcfHO1zTuXNn+31fLj4AAAAAAAAApQ9FDeAGk5CQoK5du+q7777TXXfdpR49eujEiROqWrWqPvzwQ0nS3r17lZmZqZdeesl+XVJSkiwWi1JSUrRgwQKdOnVKbdq0UVRUlLZt26bPPvtMv/32m7p27erQX1JSksqUKaNvvvlGL730kmbOnKlFixY5nPPiiy+qQYMG2rFjh8aPH6+0tDTFxcWpS5cu+u677/Tee+9p06ZNGjp0qMN1M2bMUHR0tHbs2KHBgwdr0KBB2rt3ryQpJydH7du3V9myZbVx40alpKTIz89PcXFxys7Ovqpn9s/4AAAAAAAAAJROTD8FONmKFSvk5+fnsO/JJ5/Uk08+KenCuhvdu3eXJE2ZMkVz5szRN998o7i4OAUGBkqSKlasKH9/f4c2IiMjNX36dPv2pEmTFBUVpSlTptj3vfHGG6patap++ukn1apVS5JUtWpVzZo1S4ZhqHbt2vr+++81a9YsDRgwwH5dmzZtNHLkSPt2//791aNHD/soisjISM2ZM0cxMTGaP3++vLy8JEl33XWXBg8eLEl64oknNGvWLH355ZeqXbu23nvvPeXl5WnRokUyDEOSlJiYKH9/fyUnJ+vOO+8s9DP9Z3wFsdlsstls9m03Nzf5+fnZ1zUpbhf7cEZfAC4g7wDXIOcA3Cz49+7mxveagGuQe6VbYT9XihqAk7Vu3Vrz58932HexWCFJ9evXt//Z19dX5cqV09GjR6/Y7m233eawvWvXLn355Zf5CiiSlJaWZi9q/Pvf/3b4B6Np06aaMWOGcnNz5e7uLkmKjo7O1/Z3332nJUuW2PeZpqm8vDylp6erbt26+e7FMAyFhITY72XXrl3av3+/ypYt69D2uXPnlJaWdsX7/bt/xleQqVOnKiEhwb4dFRWl7du3Kyws7Kr6ul5Wq9Wp/QEg7wCX2OfqAACg+IWHh7s6BNwA+F4TcA1y7+ZGUQNwMl9fX9WsWfOSxz08PBy2DcNQXl5eodr9u6ysLN19992aNm1avnNDQ0MLGe2l23700Uc1bNiwfOdWq1bN/ufL3UtWVpZuu+02h8LIRcHBwZIujKb4+/oe0oVpq64UX0HGjRunESNG2Lfd3C7MvnfkyJGrnu7qWhiGIavVqoyMjHz3BKB4kHeAa/BbcwBuFunp6a4OAS7E95qAa5B7pZvFYinULyBT1ABKEIvFIknKzc294rmNGjXShx9+KKvVqjJlLp3qX3/9tcP2V199pcjISPsojUu1vXv37ssWZwoT33vvvaeKFSuqXLlyBZ4THByszMxM+3Zubq5++OEH+4LpV8PT01Oenp759pum6dSXoLP7A0DeAQCA4sH3F5D4XhNwFXKvdCrsZ8pC4YCT2Ww2/frrrw5fx48fL9S11atXl2EYWrFihY4dO6asrKxLnjtkyBCdOHFC3bt319atW5WWlqY1a9aoT58+DkWRgwcPasSIEdq7d6/effddvfzyyxo+fPhl43jiiSe0efNmDR06VDt37tS+ffv0ySef5Fso/HJ69OihChUqqFOnTtq4caPS09OVnJysYcOG6fDhw5IurJWxcuVKrVy5Unv27NGgQYN06tSpQvcBAAAAAAAAoHShqAE42WeffabQ0FCHrxYtWhTq2rCwMCUkJGjs2LGqVKnSZYsIlStXVkpKinJzc3XnnXeqXr16io+Pl7+/v33qJUnq2bOn/vrrLzVp0kRDhgzR8OHDNXDgwMvGUb9+fa1fv14//fSTWrZsqaioKD3zzDOqXLly4R6CJB8fH23YsEHVqlXTfffdp7p166pfv346d+6cfeRG37591atXL/Xs2VMxMTGqUaPGNY3SAAAAAAAAAFA6GCbjdICbVmxsrBo2bKjZs2e7OhSXOXz4sNPW1AgPD1d6ejrDIwEnIe8A1zAMQ43393R1GABQ7L6JSHJ1CHAhvtcEXIPcK90sFouqVKlyxfMYqQEAAAAAAAAAAEoEFgoHAAAAUKSOt9vIb88BTsRvrQIAgJsJRQ3gJpacnOzqEAAAAAAAAACg0Jh+CgAAAAAAAAAAlAgUNQAAAAAAAAAAQInA9FMAAAAAilSFL1q6OgTAKb6JSHJ1CAAAADcdRmoAAAAAAAAAAIASgaIGAAAAAAAAAAAoEShqALgkwzAu+zVx4kRXhyjpQpzLly93dRgAAAAAAAAAihlragC4pMzMTPuf33vvPT3zzDPau3evfZ+fn58rwgIAAAAAAABwk2KkBoBLCgkJsX+VL19ehmE47Fu6dKnq1q0rLy8v1alTR/PmzbNfm5GRIcMw9NFHH6l169by8fFRgwYNtGXLFvs5v//+u7p3766wsDD5+PioXr16evfddx1iiI2N1bBhwzRmzBgFBgYqJCTEYYSI1WqVJN17770yDMO+DQAAAAAAAKD0oagB4JosWbJEzzzzjCZPnqzU1FRNmTJF48ePV1JSksN5Tz31lEaNGqWdO3eqVq1a6t69u86fPy9JOnfunG677TatXLlSP/zwgwYOHKhHHnlE33zzjUMbSUlJ8vX11ddff63p06fr2Wef1RdffCFJ2rp1qyQpMTFRmZmZ9m0AAAAAAAAApQ/TTwG4JhMmTNCMGTN03333SZLCw8O1e/duLVy4UL169bKfN2rUKHXs2FGSlJCQoFtvvVX79+9XnTp1FBYWplGjRtnP/e9//6s1a9Zo2bJlatKkiX1//fr1NWHCBElSZGSk5s6dq3Xr1qldu3YKDg6WJPn7+yskJOSS8dpsNtlsNvu2m5ub/Pz87OuDFLeLfTijLwAXkHeAa5BzuJncKH/feecBzkfeAa5B7pVuhf1cKWoAuGpnzpxRWlqa+vXrpwEDBtj3nz9/XuXLl3c4t379+vY/h4aGSpKOHj2qOnXqKDc3V1OmTNGyZct05MgRZWdny2azycfH55JtXGzn6NGjVxXz1KlTlZCQYN+OiorS9u3bFRYWdlXtXC+mxwKcj7wDXGCfqwMAnCM8PNzVITjgnQc4H3kHuAa5d3OjqAHgqmVlZUmSXnvtNd1+++0Ox9zd3R22PTw87H++WG3Ny8uTJL3wwgt66aWXNHv2bNWrV0++vr6Kj49Xdnb2Jdu42M7FNgpr3LhxGjFihH3bze3C7HsXiynF7eJ6HxkZGTJNs9j7A0DeAa7Cb83hZpKenu7qECTxzgNcgbwDXIPcK90sFkuhfgGZogaAq1apUiVVrlxZBw4cUI8ePa65nZSUFHXq1EkPP/ywpAvFjp9++km33HLLVbXj4eGh3Nzcy57j6ekpT0/PfPtN03TqS9DZ/QEg7wAAxedGe7/wzgOcj7wDXIPcK50K+5lS1ABwTRISEjRs2DCVL19ecXFxstls2rZtm06ePOkwIuJyIiMj9cEHH2jz5s0KCAjQzJkz9dtvv111UcNqtWrdunVq3ry5PD09FRAQcC23BAAAAAAAAOAG5+bqAACUTP3799eiRYuUmJioevXqKSYmRosXL76qeYWffvppNWrUSO3bt1dsbKxCQkLUuXPnq45lxowZ+uKLL1S1alVFRUVd9fUAAAAAAAAASgbDZJwOgJvY4cOHnbamRnh4uNLT0xkeCTgJeQe4hmEYary/p6vDAJzim4gkV4cgiXce4ArkHeAa5F7pZrFYVKVKlSuex0gNAAAAAAAAAABQIlDUAAAAAAAAAAAAJQILhQMAAAAoUsfbbWRKAAAAAADFgpEaAAAAAAAAAACgRKCoAQAAAAAAAAAASgSmnwIAAAAgSQqIiCiahph2CgAAAEAxYaQGAAAAAAAAAAAoEShqAAAAAAAAAACAEoGiBm5aGRkZMgxDO3fuvOx5sbGxio+Pd0pMNxqr1arZs2e7OgwAAAAAAAAAkERRA/+/Q4cOqW/fvqpcubIsFouqV6+u4cOH6/fff3d1aMWmatWqyszM1L/+9S9JUnJysgzD0KlTp1wbGAAAAAAAAACgQBQ1oAMHDig6Olr79u3Tu+++q/3792vBggVat26dmjZtqhMnTrg6REmSaZo6f/58kbXn7u6ukJAQlSlTpsjahJSTk+PqEAAAAAAAAACUUhQ1oCFDhshisejzzz9XTEyMqlWrpg4dOmjt2rU6cuSInnrqKc2dO9c+okGSli9fLsMwtGDBAvu+tm3b6umnn5YkTZw4UQ0bNtRbb70lq9Wq8uXL68EHH9Tp06ft5+fl5Wnq1KkKDw+Xt7e3GjRooA8++MB+/OLIidWrV+u2226Tp6enNm3adMn7+OOPP+Tu7q5t27bZ2w8MDNS///1v+zlvv/22qlatKslx+qmMjAy1bt1akhQQECDDMNS7d2+HWMeMGaPAwECFhIRo4sSJhX6+p06dUv/+/RUcHKxy5cqpTZs22rVrl/14YZ/V9OnTVbNmTXl6eqpatWqaPHmyw3P6+wiTnTt3yjAMZWRkSJIWL14sf39/rVixQrVr15aPj4/uv/9+nT17VklJSbJarQoICNCwYcOUm5vrEP/p06fVvXt3+fr6KiwsTK+88orDccMwNH/+fN1zzz3y9fXV5MmTlZubq379+tk/29q1a+ull15yuK53797q3LmzXnzxRYWGhiooKEhDhgxxKIrYbDY98cQTqlq1qjw9PVWzZk29/vrr9uM//PCDOnToID8/P1WqVEmPPPKIjh8/XujPBgAAAAAAAEDJwq+o3+ROnDihNWvWaPLkyfL29nY4FhISoh49eui9997T+vXrNWzYMB07dkzBwcFav369KlSooOTkZD322GPKycnRli1bNHbsWPv1aWlpWr58uVasWKGTJ0+qa9euev755+0/jJ86darefvttLViwQJGRkdqwYYMefvhhBQcHKyYmxt7O2LFj9eKLL6pGjRoKCAi45L2UL19eDRs2VHJysqKjo/X999/LMAzt2LFDWVlZ8vPz0/r16x3avqhq1ar68MMP1aVLF+3du1flypVzeB5JSUkaMWKEvv76a23ZskW9e/dW8+bN1a5duys+4wceeEDe3t5avXq1ypcvr4ULF+qOO+7QTz/9pMDAwEI9q3Hjxum1117TrFmz1KJFC2VmZmrPnj1X7Pvvzp49qzlz5mjp0qU6ffq07rvvPt17773y9/fXqlWrdODAAXXp0kXNmzdXt27d7Ne98MILevLJJ5WQkKA1a9Zo+PDhqlWrlsO9T5w4Uc8//7xmz56tMmXKKC8vT1WqVNH777+voKAgbd68WQMHDlRoaKi6du1qv+7LL79UaGiovvzyS+3fv1/dunVTw4YNNWDAAElSz549tWXLFs2ZM0cNGjRQenq6vWhx6tQptWnTRv3799esWbP0119/6YknnlDXrl31v//9L9/922w22Ww2+7abm5v8/PxkGIYMw7iqZ3ktLvbhjL4AXEDeAa5F7gHOwzsPcD7yDnANcq90K/TnauKm9tVXX5mSzI8//rjA4zNnzjQlmb/++qsZFBRkvv/++6ZpmmbDhg3NqVOnmiEhIaZpmuamTZtMDw8P88yZM6ZpmuaECRNMHx8f888//7S3NXr0aPP22283TdM0z507Z/r4+JibN2926K9fv35m9+7dTdM0zS+//NKUZC5fvrzQ9zNixAizY8eOpmma5uzZs81u3bqZDRo0MFevXm2apmnWrFnTfPXVV03TNM309HRTkrljxw6H/k6ePOnQZkxMjNmiRQuHfY0bNzafeOKJK8azceNGs1y5cua5c+cc9kdERJgLFy40TfPKz+rPP/80PT09zddee63APgqKe8eOHaYkMz093TRN00xMTDQlmfv377ef8+ijj5o+Pj7m6dOn7fvat29vPvroo/bt6tWrm3FxcQ79devWzezQoYN9W5IZHx9/xWcxZMgQs0uXLvbtXr16mdWrVzfPnz9v3/fAAw+Y3bp1M03TNPfu3WtKMr/44osC23vuuefMO++802HfoUOHTEnm3r17850/YcIEU5L9Kyoq6ooxAwBwszkhFckXAAAAABQXRmpA0oX1Ki7HMAy1atVKycnJatu2rXbv3q3Bgwdr+vTp2rNnj9avX6/GjRvLx8fHfo3ValXZsmXt26GhoTp69Kgkaf/+/Tp79my+kQ7Z2dmKiopy2BcdHV3o+4iJidHrr7+u3NxcrV+/XnfeeadCQkKUnJys+vXra//+/YqNjS10exfVr1/fYfvv93I5u3btUlZWloKCghz2//XXX0pLS7NvX+5Zpaamymaz6Y477rjquP/Ox8dHERER9u1KlSrJarXKz8/PYd8/76tp06b5tmfPnu2wr6DP6JVXXtEbb7yhgwcP6q+//lJ2drYaNmzocM6tt94qd3d3+3ZoaKi+//57SRem0HJ3dy9wZI104dl++eWXDvFflJaWplq1ajnsGzdunEaMGGHfdnO7MPvekSNHlJ2dXWAfRckwDFmtVmVkZFwx3wAUDfIOuHr+RdgWuQc4D+88wPnIO8A1yL3SzWKxKCws7IrnUdS4ydWsWVOGYSg1NVX33ntvvuOpqakKCAhQcHCwYmNj9eqrr2rjxo2KiopSuXLl7IWOgqZ18vDwcNg2DEN5eXmSpKysLEnSypUr8/1F9fT0dNj29fUt9P20atVKp0+f1vbt27VhwwZNmTJFISEhev7559WgQQNVrlxZkZGRhW6vMPdyOVlZWQoNDVVycnK+Y/7+/oVq/5/Tgv3TxR/O//0f8oIW6y6oj2u9r3/652e0dOlSjRo1SjNmzFDTpk1VtmxZvfDCC/r666+vGFNh7zsrK0t33323pk2blu9YaGhovn2enp75/m5JF56bM1+Czu4PAHkHuAq5BzgfeQc4H3kHuAa5VzoV9jOlqHGTCwoKUrt27TRv3jw9/vjjDj9I/vXXX7VkyRL17NlThmEoJiZG8fHxev/99+2jHWJjY7V27VqlpKRo5MiRhe73lltukaenpw4ePHjJ38S/Fv7+/qpfv77mzp0rDw8P1alTRxUrVlS3bt20YsWKy/ZlsVgkKd9C2dejUaNG+vXXX1WmTBlZrdZraiMyMlLe3t5at26d+vfvn+94cHCwJCkzM9O+5sjOnTuvNeR8vvrqq3zbdevWvew1KSkpatasmQYPHmzf9/eRKYVRr1495eXlaf369Wrbtm2+440aNdKHH34oq9WqMmX4pwwAAAAAAAC4Gbi5OgC43ty5c2Wz2dS+fXtt2LBBhw4d0meffaZ27dopLCzMvlh1/fr1FRAQoHfeecehqLF8+XLZbDY1b9680H2WLVtWo0aN0uOPP66kpCSlpaVp+/btevnll5WUlHRd9xMbG6slS5bYCxiBgYGqW7eu3nvvvcsWNapXry7DMLRixQodO3bMPprkerRt21ZNmzZV586d9fnnnysjI0ObN2/WU089pW3bthWqDS8vLz3xxBMaM2aM3nzzTaWlpemrr77S66+/LunCaJuqVatq4sSJ2rdvn1auXKkZM2Zcd+wXpaSkaPr06frpp5/0yiuv6P3339fw4cMve01kZKS2bdumNWvW6KefftL48eO1devWq+rXarWqV69e6tu3r5YvX6709HQlJydr2bJlkqQhQ4boxIkT6t69u7Zu3aq0tDStWbNGffr0KdLCFAAAAAAAAIAbB0UN2H8AXaNGDXXt2lUREREaOHCgWrdurS1btigwMFDShamBWrZsKcMw1KJFC0kXCh3lypVTdHT0VU0TJUnPPfecxo8fr6lTp6pu3bqKi4vTypUrFR4efl33ExMTo9zcXIe1M2JjY/Pt+6ewsDAlJCRo7NixqlSpkoYOHXpdcUgXntmqVavUqlUr9enTR7Vq1dKDDz6on3/+WZUqVSp0O+PHj9fIkSP1zDPPqG7duurWrZt97QsPDw+9++672rNnj+rXr69p06Zp0qRJ1x37RSNHjtS2bdsUFRWlSZMmaebMmWrfvv1lr3n00Ud13333qVu3brr99tv1+++/O4zaKKz58+fr/vvv1+DBg1WnTh0NGDBAZ86ckSRVrlxZKSkpys3N1Z133ql69eopPj5e/v7+9im5AAAAAAAAAJQuhsnkYwBuYocPH3baQuHh4eFKT09nzkfAScg74OoFREQUTTumSe4BTsQ7D3A+8g5wDXKvdLNYLKpSpcoVz+PXmQEAAAAAAAAAQInA6rooUW699Vb9/PPPBR5buHChevTo4dR4lixZokcffbTAY9WrV9ePP/7o1HgAAACux8m0tOtuwzAMBRRBLAAAAABQEIoaKFFWrVqlnJycAo9dzRoVReWee+7R7bffXuAxDw8PJ0cDAAAAAAAAAKUbRQ2UKNWrV3d1CA7Kli2rsmXLujoMAAAAAAAAALgpsKYGAAAAAAAAAAAoERipAQAAAKBIVfiipatDsPsmIsnVIQAAAAAoQozUAAAAAAAAAAAAJQJFDQAAAAAAAAAAUCJQ1ABQaIcOHVLfvn1VuXJlWSwWVa9eXcOHD9fvv//u6tAAAAAAAAAA3AQoagAolAMHDig6Olr79u3Tu+++q/3792vBggVat26dmjZtqhMnTrg6REmSaZo6f/68q8MAAAAAAAAAUAwoagAolCFDhshisejzzz9XTEyMqlWrpg4dOmjt2rU6cuSInnrqKc2dO1f/+te/7NcsX75chmFowYIF9n1t27bV008/LUmaOHGiGjZsqLfeektWq1Xly5fXgw8+qNOnT9vPz8vL09SpUxUeHi5vb281aNBAH3zwgf14cnKyDMPQ6tWrddttt8nT01ObNm1ywhMBAAAAAAAA4GxlXB0AgBvfiRMntGbNGk2ePFne3t4Ox0JCQtSjRw+99957Wr9+vYYNG6Zjx44pODhY69evV4UKFZScnKzHHntMOTk52rJli8aOHWu/Pi0tTcuXL9eKFSt08uRJde3aVc8//7wmT54sSZo6darefvttLViwQJGRkdqwYYMefvhhBQcHKyYmxt7O2LFj9eKLL6pGjRoKCAjIdw82m002m82+7ebmJj8/PxmGIcMwivqR5XOxD2f0BeAC8g5wjRst5260eIDiwDsPcD7yDnANcq90K+znSlEDwBXt27dPpmmqbt26BR6vW7euTp48qYoVKyowMFDr16/X/fffr+TkZI0cOVIvvfSSJOmbb75RTk6OmjVrZr82Ly9PixcvVtmyZSVJjzzyiNatW6fJkyfLZrNpypQpWrt2rZo2bSpJqlGjhjZt2qSFCxc6FDWeffZZtWvX7pL3MHXqVCUkJNi3o6KitH37doWFhV37g7kGVqvVqf0BIO8Al9jn6gD+n/DwcFeHADgN7zzA+cg7wDXIvZsbRQ0AhWaa5mWPG4ahVq1aKTk5WW3bttXu3bs1ePBgTZ8+XXv27NH69evVuHFj+fj42K+xWq32goYkhYaG6ujRo5Kk/fv36+zZs/mKFdnZ2YqKinLYFx0dfdnYxo0bpxEjRti33dwuzL535MgRZWdnX/baomAYhqxWqzIyMq74HAEUDfIOcI0b7bfm0tPTXR0CUOx45wHOR94BrkHulW4Wi6VQv4BMUQPAFdWsWVOGYSg1NVX33ntvvuOpqakKCAhQcHCwYmNj9eqrr2rjxo2KiopSuXLl7IWO9evXO4yukCQPDw+HbcMwlJeXJ0nKysqSJK1cuTLfP2ienp4O276+vpe9B09Pz3zXSBcKNc58CTq7PwDkHXCzI/9xM+GdBzgfeQe4BrlXOhX2M2WhcABXFBQUpHbt2mnevHn666+/HI79+uuvWrJkibp16ybDMBQTE6Pdu3fr/fffV2xsrCQpNjZWa9euVUpKin1fYdxyyy3y9PTUwYMHVbNmTYevqlWrFuEdAgAAAAAAACgJKGoAKJS5c+fKZrOpffv22rBhgw4dOqTPPvtM7dq1U1hYmH1h7/r16ysgIEDvvPOOQ1Fj+fLlstlsat68eaH7LFu2rEaNGqXHH39cSUlJSktL0/bt2/Xyyy8rKSmpOG4TAAAAAAAAwA2MogaAQomMjNS2bdtUo0YNde3aVRERERo4cKBat26tLVu2KDAwUNKF6aNatmwpwzDUokULSRcKHeXKlVN0dPQVp4n6p+eee07jx4/X1KlTVbduXcXFxWnlypUs+gkAAAAAAADchAyTyccA3MQOHz7stIXCw8PDlZ6ezpyPgJOQd4BrGIahxvt7ujoMu28iGN2J0o93HuB85B3gGuRe6WaxWFSlSpUrnsdIDQAAAAAAAAAAUCKUcXUAAAAAAEqX4+028ttzAAAAAIoFIzUAAAAAAAAAAECJQFEDAAAAAAAAAACUCBQ1AAAAAAAAAABAicCaGgAAAIATBUREuDqE4sdaGgAAAACKCSM1AAAAAAAAAABAiUBRA4DLLF68WP7+/q4OAwAAAAAAAEAJQVEDwHU7dOiQ+vbtq8qVK8tisah69eoaPny4fv/9d/s5VqtVs2fPdl2QAAAAAAAAAEo8ihoArsuBAwcUHR2tffv26d1339X+/fu1YMECrVu3Tk2bNtWJEyecHlNOTo7T+wQAAAAAAABQ/ChqALguQ4YMkcVi0eeff66YmBhVq1ZNHTp00Nq1a3XkyBE99dRTio2N1c8//6zHH39chmHIMAyHNtasWaO6devKz89PcXFxyszMdDi+aNEi1a1bV15eXqpTp47mzZtnP5aRkSHDMPTee+8pJiZGXl5eWrJkiVPuHQAAAAAAAIBzlXF1AABKrhMnTmjNmjWaPHmyvL29HY6FhISoR48eeu+997Rv3z41bNhQAwcO1IABAxzOO3v2rF588UW99dZbcnNz08MPP6xRo0bZCxNLlizRM888o7lz5yoqKko7duzQgAED5Ovrq169etnbGTt2rGbMmKGoqCh5eXkV/80DAAAAAAAAcDqKGgCu2b59+2SapurWrVvg8bp16+rkyZPKzc2Vu7u7ypYtq5CQEIdzcnJytGDBAkVEREiShg4dqmeffdZ+fMKECZoxY4buu+8+SVJ4eLh2796thQsXOhQ14uPj7ecUxGazyWaz2bfd3Nzk5+dX4MiR4nCxD2f0BeAC8g5wLXIPcB7eeYDzkXeAa5B7pVthP1eKGgCum2ma13ytj4+PvaAhSaGhoTp69Kgk6cyZM0pLS1O/fv0cRnicP39e5cuXd2gnOjr6sv1MnTpVCQkJ9u2oqCht375dYWFh1xz7tbBarU7tDwB5hxvPSVcH4CTkHuB85B3gfOQd4Brk3s2NogaAa1azZk0ZhqHU1FTde++9+Y6npqYqICBAwcHBl2zDw8PDYdswDHuRJCsrS5L02muv6fbbb3c4z93d3WHb19f3srGOGzdOI0aMsG+7uV1YUujIkSPKzs6+7LVFwTAMWa1WZWRkXFcRCEDhkXe4Ufm7OgAnIfcA5+GdBzgfeQe4BrlXulkslkL9AjJFDQDXLCgoSO3atdO8efP0+OOPO6yr8euvv2rJkiXq2bOnDMOQxWJRbm7uVbVfqVIlVa5cWQcOHFCPHj2uK1ZPT095enrm22+aplNfgs7uDwB5B7gKuQc4H3kHOB95B7gGuVc6FfYzdSvmOACUcnPnzpXNZlP79u21YcMGHTp0SJ999pnatWunsLAwTZ48WdKFYYEbNmzQkSNHdPz48UK3n5CQoKlTp2rOnDn66aef9P333ysxMVEzZ84srlsCAAAAAAAAcIOiqAHgukRGRmrbtm2qUaOGunbtqoiICA0cOFCtW7fWli1bFBgYKEl69tlnlZGRoYiIiMtOR/VP/fv316JFi5SYmKh69eopJiZGixcvVnh4eHHdEgAAAAAAAIAblGEyTgfATezw4cNOW1MjPDxc6enpDI8EnIS8w40qICLC1SEUuwDTJPcAJ+KdBzgfeQe4BrlXulksFlWpUuWK5zFSAwAAAAAAAAAAlAgsFA4AAAA40cm0NFeHUKwMw1CAq4MAAAAAUGoxUgMAAAAAAAAAAJQIFDUAAAAAAAAAAECJQFEDAAAAAAAAAACUCKypAQAolQIiIlwdAm4AJyX5uzoI4GZkmq6OAAAAAEApxUgNAAAAAAAAAABQIlDUAAAAAAAAAAAAJQJFDaAU6t27twzD0GOPPZbv2JAhQ2QYhnr37n1dfUycOFENGza8rjYAAAAAAAAA4GpQ1ABKqapVq2rp0qX666+/7PvOnTund955R9WqVbvmdk3T1Pnz54siRAAAAAAAAAC4KhQ1gFKqUaNGqlq1qj766CP7vo8++kjVqlVTVFSUfZ/NZtOwYcNUsWJFeXl5qUWLFtq6dav9eHJysgzD0OrVq3XbbbfJ09NTb7/9thISErRr1y4ZhiHDMLR48WJJ0p49e9SiRQt5eXnplltu0dq1a2UYhpYvX25v84knnlCtWrXk4+OjGjVqaPz48crJyXGIf9KkSapYsaLKli2r/v37a+zYsflGhixatEh169aVl5eX6tSpo3nz5hXdAwQAAAAAAABww6GoAZRiffv2VWJion37jTfeUJ8+fRzOGTNmjD788EMlJSVp+/btqlmzptq3b68TJ044nDd27Fg9//zzSk1NVbt27TRy5EjdeuutyszMVGZmprp166bc3Fx17txZPj4++vrrr/Xqq6/qqaeeyhdX2bJltXjxYu3evVsvvfSSXnvtNc2aNct+fMmSJZo8ebKmTZumb7/9VtWqVdP8+fMd2liyZImeeeYZTZ48WampqZoyZYrGjx+vpKSkonh0AAAAAAAAAG5AZVwdAIDi8/DDD2vcuHH6+eefJUkpKSlaunSpkpOTJUlnzpzR/PnztXjxYnXo0EGS9Nprr+mLL77Q66+/rtGjR9vbevbZZ9WuXTv7tp+fn8qUKaOQkBD7vs8++0xpaWlKTk627588ebLDdZL09NNP2/9stVo1atQoLV26VGPGjJEkvfzyy+rXr5+9APPMM8/o888/V1ZWlv26CRMmaMaMGbrvvvskSeHh4dq9e7cWLlyoXr165XsWNptNNpvNvu3m5iY/Pz/7SJPidrEPZ/QFAMCNgHce4Dx8rwk4H3kHuAa5V7oV9nOlqAGUYsHBwerYsaMWL14s0zTVsWNHVahQwX48LS1NOTk5at68uX2fh4eHmjRpotTUVIe2oqOjr9jf3r17VbVqVYdCR5MmTfKd995772nOnDlKS0tTVlaWzp8/r3Llyjm0M3jwYIdrmjRpov/973+SLhRj0tLS1K9fPw0YMMB+zvnz51W+fPkCY5s6daoSEhLs21FRUdq+fbvCwsKueF9FyWq1OrW/m9lJVwcAADc53nmA85F3gPORd4BrkHs3N4oaQCnXt29fDR06VJL0yiuvXHM7vr6+RRLPli1b1KNHDyUkJKh9+/YqX768li5dqhkzZhS6jYsjNl577TXdfvvtDsfc3d0LvGbcuHEaMWKEfdvN7cLse0eOHFF2dvbV3sZVMwxDVqtVGRkZMk2z2PuD5O/qAADgJsc7D3AevtcEnI+8A1yD3CvdLBZLoX4BmaIGUMrFxcUpOztbhmGoffv2DsciIiJksViUkpKi6tWrS5JycnK0detWxcfHX7Zdi8Wi3Nxch321a9fWoUOH9Ntvv6lSpUqS5LDouCRt3rxZ1atXd1hr4+L0WH9vZ+vWrerZs6d939/bqVSpkipXrqwDBw6oR48eV3gCF3h6esrT0zPfftM0nfoSdHZ/AAC4Cu88wPnIO8D5yDvANci90qmwnylFDaCUc3d3t08l9c9RDL6+vho0aJBGjx6twMBAVatWTdOnT9fZs2fVr1+/y7ZrtVqVnp6unTt3qkqVKipbtqzatWuniIgI9erVS9OnT9fp06ft62dcnBMvMjJSBw8e1NKlS9W4cWOtXLlSH3/8sUPb//3vfzVgwABFR0erWbNmeu+99/Tdd9+pRo0a9nMSEhI0bNgwlS9fXnFxcbLZbNq2bZtOnjzpMCIDAAAAAAAAQOnh5uoAABS/cuXKOaxZ8XfPP/+8unTpokceeUSNGjXS/v37tWbNGgUEBFy2zS5duiguLk6tW7dWcHCw3n33Xbm7u2v58uXKyspS48aN1b9/f/uIDC8vL0nSPffco8cff1xDhw5Vw4YNtXnzZo0fP96h7R49emjcuHEaNWqUGjVqpPT0dPXu3dvehiT1799fixYtUmJiourVq6eYmBgtXrxY4eHh1/OoAAAAAAAAANzADJNxOgCKUUpKilq0aKH9+/crIiLimttp166dQkJC9NZbbxVhdNLhw4edtqZGeHi40tPTGR7pJAHX8fcNAHB9AkyTdx7gRHyvCTgfeQe4BrlXulksFlWpUuWK5zH9FIAi9fHHH8vPz0+RkZHav3+/hg8frubNm19VQePs2bNasGCB2rdvL3d3d7377rtau3atvvjii2KMHAAAAAAAAMCNjqIGgCJ1+vRpPfHEEzp48KAqVKigtm3basaMGVfVhmEYWrVqlSZPnqxz586pdu3a+vDDD9W2bdtiihoAAAAAAABASUBRA0CR6tmzp3r27HldbXh7e2vt2rVFFBFuVifT0lwdAlyMYcmAaxiGocuvzAUAAAAA146FwgEAAAAAAAAAQIlAUQMAAAAAAAAAAJQIFDUAAAAAAAAAAECJwJoaAAAARSQgIsLVIQA3BtaxAQAAAFBMGKkBAAAAAAAAAABKBIoaKHUMw9Dy5csLfb7VatXs2bOLLZ7rVZj76d27tzp37uyUeAAAAAAAAADAVZh+CiVS7969derUqQJ/2J+ZmamAgIBCt7V161b5+voWYXRF6+/3k5GRofDwcO3YsUMNGzZ0bWBOdLnPGwAAAAAAAMDNg6IGSp2QkJCrOj84OLiYIikaV3s/N4rc3FwZhiE3NwaEAQAAAAAAACga/LQRpc7fp2tq1qyZnnjiCYfjx44dk4eHhzZs2CAp//RThmFo0aJFuvfee+Xj46PIyEh9+umnDm18+umnioyMlJeXl1q3bq2kpCQZhqFTp05dNjbTNBUcHKwPPvjAvq9hw4YKDQ21b2/atEmenp46e/ZsvvsJDw+XJEVFRckwDMXGxjq0/+KLLyo0NFRBQUEaMmSIcnJyLhvPRVarVc8995y6d+8uX19fhYWF6ZVXXnE4Z+bMmapXr558fX1VtWpVDR48WFlZWfbjixcvlr+/vz799FPdcsst8vT01MGDB2Wz2TRq1CiFhYXJ19dXt99+u5KTk/Ndt2bNGtWtW1d+fn6Ki4tTZmamJGnixIlKSkrSJ598IsMwZBiGkpOTlZ2draFDhyo0NFReXl6qXr26pk6dWqj7BQAAAAAAAFAyMVIDpVqPHj00ffp0Pf/88zIMQ5L03nvvqXLlymrZsuUlr0tISND06dP1wgsv6OWXX1aPHj30888/KzAwUOnp6br//vs1fPhw9e/fXzt27NCoUaMKFY9hGGrVqpWSk5N1//336+TJk0pNTZW3t7f27NmjOnXqaP369WrcuLF8fHzyXf/NN9+oSZMmWrt2rW699VZZLBb7sS+//FKhoaH68ssvtX//fnXr1k0NGzbUgAEDChXbCy+8oCeffFIJCQlas2aNhg8frlq1aqldu3aSJDc3N82ZM0fh4eE6cOCABg8erDFjxmjevHn2Ns6ePatp06Zp0aJFCgoKUsWKFTV06FDt3r1bS5cuVeXKlfXxxx8rLi5O33//vSIjI+3Xvfjii3rrrbfk5uamhx9+WKNGjdKSJUs0atQopaam6s8//1RiYqIkKTAwUHPmzNGnn36qZcuWqVq1ajp06JAOHTp0yfuz2Wyy2Wz2bTc3N/n5+dkLJcXtYh/O6AvABeQd4FrkHuA8vPMA5yPvANcg90q3wn6uFDVQqnXt2lXx8fHatGmTvYjxzjvvqHv37pdNkt69e6t79+6SpClTpmjOnDn65ptvFBcXp4ULF6p27dp64YUXJEm1a9fWDz/8oMmTJxcqptjYWC1cuFCStGHDBkVFRSkkJETJycmqU6eOkpOTFRMTU+C1F6fKCgoKyjctVUBAgObOnSt3d3fVqVNHHTt21Lp16wpd1GjevLnGjh0rSapVq5ZSUlI0a9Yse1EjPj7efq7VatWkSZP02GOPORQ1cnJyNG/ePDVo0ECSdPDgQSUmJurgwYOqXLmyJGnUqFH67LPPlJiYqClTptivW7BggSIiIiRJQ4cO1bPPPitJ8vPzk7e3t2w2m8M9Hzx4UJGRkWrRooUMw1D16tUve39Tp05VQkKCfTsqKkrbt29XWFhYoZ5PUbFarU7tD4Bz8+6k03oCbny88wDnI+8A5yPvANcg925uFDVQqgUHB+vOO+/UkiVL1LJlS6Wnp2vLli32osKl1K9f3/5nX19flStXTkePHpUk7d27V40bN3Y4v0mTJoWOKSYmRsOHD9exY8e0fv16xcbG2osa/fr10+bNmzVmzJiruMsLbr31Vrm7u9u3Q0ND9f333xf6+qZNm+bb/vu0XGvXrtXUqVO1Z88e/fnnnzp//rzOnTuns2fP2keVWCwWh2f3/fffKzc3V7Vq1XJo22azKSgoyL7t4+NjL2hcjP3i876U3r17q127dqpdu7bi4uL0n//8R3feeeclzx83bpxGjBhh37641seRI0eUnZ192b6KgmEYslqtysjIkGmaxd4fANfknb9TegFKBt55gPPwvSbgfOQd4BrkXulmsVgK9QvIFDVQ6vXo0UPDhg3Tyy+/rHfeeUf16tVTvXr1LnuNh4eHw7ZhGMrLyyuSeOrVq6fAwECtX79e69ev1+TJkxUSEqJp06Zp69atysnJUbNmza663eKMOSMjQ//5z380aNAgTZ48WYGBgdq0aZP69eun7Oxse1HD29vbYQRMVlaW3N3d9e233zoUXKQLIzAuF/uVXkyNGjVSenq6Vq9erbVr16pr165q27atw3olf+fp6SlPT898+03TdOpL0Nn9ASDvAFch9wDnI+8A5yPvANcg90qnwn6mFDVQ6nXq1EkDBw7UZ599pnfeeUc9e/a8rvZq166tVatWOezbunVroa83DEMtW7bUJ598oh9//FEtWrSQj4+PbDabFi5cqOjoaPn6+hZ47cU1NHJzc6/9Bi7hq6++yrddt25dSdK3336rvLw8zZgxwz7CYdmyZVdsMyoqSrm5uTp69Ohl1zC5EovFUuA9lytXTt26dVO3bt10//33Ky4uTidOnFBgYOA19wUAAAAAAADgxkVRAyXWH3/8oZ07dzrs+/uURhf5+vqqc+fOGj9+vFJTU+1rZVyrRx99VDNnztQTTzyhfv36aefOnVq8eLGkwi9mExsbq5EjRyo6Oto+YqFVq1ZasmSJRo8efcnrKlasKG9vb3322WeqUqWKvLy8VL58+eu6n4tSUlI0ffp0de7cWV988YXef/99rVy5UpJUs2ZN5eTk6OWXX9bdd9+tlJQULViw4Ipt1qpVSz169FDPnj01Y8YMRUVF6dixY1q3bp3q16+vjh07Fio2q9WqNWvWaO/evQoKClL58uX18ssvKzQ0VFFRUXJzc9P777+vkJAQ+fv7X89jAAAAAAAAAHADc3N1AMC1Sk5OVlRUlMPX3xeC/rsePXpo165datmypapVq3Zd/YaHh+uDDz7QRx99pPr162v+/Pl66qmnJKnA6Y0KEhMTo9zcXMXGxtr3xcbG5tv3T2XKlNGcOXO0cOFCVa5cWZ06dbqeW3EwcuRIbdu2TVFRUZo0aZJmzpyp9u3bS5IaNGigmTNnatq0afrXv/6lJUuWaOrUqYVqNzExUT179tTIkSNVu3Ztde7cWVu3br2qz2HAgAGqXbu2oqOjFRwcrJSUFJUtW1bTp09XdHS0GjdurIyMDK1atco+kgQAAAAAAABA6WOYTD4GXLfJkydrwYIFOnTokKtDuSZWq1Xx8fGKj493dShOd/jwYactFB4eHq709HTmfAScxBV5FxAR4ZR+gBtdgGnyzgOciO81Aecj7wDXIPdKN4vFoipVqlzxPKafAq7BvHnz1LhxYwUFBSklJUUvvPCChg4d6uqwAAAAAAAAAKBUo6gBXIN9+/Zp0qRJOnHihKpVq6aRI0dq3LhxkqQOHTpo48aNBV735JNP6sknn3RmqNq4caM6dOhwyeNZWVlOjAYASreTaWmuDgFwOcMwFODqIAAAAACUWhQ1gGswa9YszZo1q8BjixYt0l9//VXgscDAwOIMq0DR0dH5FlT/p4yMDKfEAgAAAAAAAADXg6IGUMTCwsJcHYIDb29v1axZ09VhAAAAAAAAAMB1c3N1AAAAAAAAAAAAAIXBSA0AAAAARarCFy1dHcJN55uIJFeHAAAAADgFIzUAAAAAAAAAAECJQFEDKMGSk5NlGIZOnTrl6lAAAAAAAAAAoNhR1ABuML1791bnzp0LdW6zZs2UmZmp8uXLF0v7kpSRkSHDMLRz585CX+NshmFo+fLlrg4DAAAAAAAAQDFjTQ2gBLNYLAoJCXF1GAAAAAAAAADgFIzUAG5gNptNw4YNU8WKFeXl5aUWLVpo69at9uP/nH5q8eLF8vf315o1a1S3bl35+fkpLi5OmZmZkqSJEycqKSlJn3zyiQzDkGEYSk5OvmwM4eHhkqSoqCgZhqHY2Fj7sUWLFqlu3bry8vJSnTp1NG/ePPuxiyM8PvroI7Vu3Vo+Pj5q0KCBtmzZYj/n999/V/fu3RUWFiYfHx/Vq1dP7777rkP/sbGxGjZsmMaMGaPAwECFhIRo4sSJ9uNWq1WSdO+998owDPs2AAAAAAAAgNKHogZwAxszZow+/PBDJSUlafv27apZs6bat2+vEydOXPKas2fP6sUXX9Rbb72lDRs26ODBgxo1apQkadSoUeratau90JGZmalmzZpdNoZvvvlGkrR27VplZmbqo48+kiQtWbJEzzzzjCZPnqzU1FRNmTJF48ePV1JSksP1Tz31lEaNGqWdO3eqVq1a6t69u86fPy9JOnfunG677TatXLlSP/zwgwYOHKhHHnnE3udFSUlJ8vX11ddff63p06fr2Wef1RdffCFJ9iJPYmKiMjMzHYo+AAAAAAAAAEoXpp8CblBnzpzR/PnztXjxYnXo0EGS9Nprr+mLL77Q66+/rtGjRxd4XU5OjhYsWKCIiAhJ0tChQ/Xss89Kkvz8/OTt7S2bzVboaauCg4MlSUFBQQ7XTJgwQTNmzNB9990n6cKIjt27d2vhwoXq1auX/bxRo0apY8eOkqSEhATdeuut2r9/v+rUqaOwsDB7wUWS/vvf/2rNmjVatmyZmjRpYt9fv359TZgwQZIUGRmpuXPnat26dWrXrp09Pn9//8vek81mk81ms2+7ubnJz8/PPmKluF3swxl9AbiAvANcg5xzDZ77zY13HuB85B3gGuRe6VbYz5WiBnCDSktLU05Ojpo3b27f5+HhoSZNmig1NfWS1/n4+NgLGpIUGhqqo0ePFmlsZ86cUVpamvr166cBAwbY958/fz7fouX169d3iEWSjh49qjp16ig3N1dTpkzRsmXLdOTIEWVnZ8tms8nHx+eSbVzrPU2dOlUJCQn27aioKG3fvl1hYWFX1c71YnoswPnIO8AF9rk6gJvPxSlDcXPjnQc4H3kHuAa5d3OjqAGUMh4eHg7bhmHINM0i7SMrK0vShZEjt99+u8Mxd3f3S8Zzsdqal5cnSXrhhRf00ksvafbs2apXr558fX0VHx+v7OzsS7ZxsZ2LbRTWuHHjNGLECPu2m9uF2fcuFlOK28X1PjIyMor88wBQMPIOcA1+a8410tPTXR0CXIh3HuB85B3gGuRe6WaxWAr1C8gUNYAbVEREhCwWi1JSUlS9enVJF6aW2rp1q+Lj46+5XYvFotzc3Ks6X5LDNZUqVVLlypV14MAB9ejR45pjSUlJUadOnfTwww9LulDs+Omnn3TLLbdcVTseHh5XvCdPT095enrm22+aplNfgs7uDwB5B+DmwL9zkHjnAa5A3gGuQe6VToX9TClqADcoX19fDRo0SKNHj1ZgYKCqVaum6dOn6+zZs+rXr981t2u1WrVmzRrt3btXQUFBKl++fL6REH9XsWJFeXt767PPPlOVKlXk5eWl8uXLKyEhQcOGDVP58uUVFxcnm82mbdu26eTJkw4jIi4nMjJSH3zwgTZv3qyAgADNnDlTv/3221UXNaxWq9atW6fmzZvL09NTAQEBV3U9AAAAAAAAgJLBzdUBAHCUl5enMmUu1Buff/55denSRY888ogaNWqk/fv3a82aNdf1Q/sBAwaodu3aio6OVnBwsFJSUi57fpkyZTRnzhwtXLhQlStXVqdOnSRJ/fv316JFi5SYmKh69eopJiZGixcvvqr5nJ9++mk1atRI7du3V2xsrEJCQtS5c+ervqcZM2boiy++UNWqVRUVFXXV1wMAAAAAAAAoGQyTcTrADSUuLk41a9bU3LlzXR3KTeHw4cNOW1MjPDxc6enpDI8EnIS8A1zDMAw13t/T1WHcdL6JSHJ1CHAh3nmA85F3gGuQe6WbxWJRlSpVrngeIzWAG8TJkye1YsUKJScnq23btq4OBwAAAAAAAABuOKypAdwg+vbtq61bt2rkyJH2KZ6cYcqUKZoyZUqBx1q2bKnVq1c7LRYAAFA6HG+3kd+eAwAAAFAsKGoAN4iPP/7YJf0+9thj6tq1a4HHvL29nRwNAAAAAAAAAFwaRQ3gJhcYGKjAwEBXhwEAAAAAAAAAV8SaGgAAAAAAAAAAoERgpAYAAACAIlXhi5auDgG4+ex3dQC4EXwTkeTqEAAAKHaM1AAAAAAAAAAAACUCRQ2gGCQnJ8swDJ06dcrVodzwMjIyZBiGdu7ceclzFi9eLH9/f6fFBAAAAAAAAODGRFEDKKTevXurc+fOhTq3WbNmyszMVPny5Yul/ZtNt27d9NNPP7k6DAAAAAAAAAAuxpoaQDGwWCwKCQlxdRg3hJycHHl4eFxXG97e3vL29i6iiAAAAAAAAACUVIzUAK6BzWbTsGHDVLFiRXl5ealFixbaunWr/fg/p5+6OH3SmjVrVLduXfn5+SkuLk6ZmZmSpIkTJyopKUmffPKJDMOQYRhKTk6+Yhzff/+92rRpI29vbwUFBWngwIHKysqSJP3www9yc3PTsWPHJEknTpyQm5ubHnzwQfv1kyZNUosWLRxiXrdunaKjo+Xj46NmzZpp7969Dn1+8sknatSokby8vFSjRg0lJCTo/Pnz9uOGYWj+/Pm655575Ovrq8mTJ+vkyZPq0aOHgoOD5e3trcjISCUmJjq0e+DAAbVu3Vo+Pj5q0KCBtmzZYj/2z+mnJk6cqIYNG2rhwoWqWrWqfHx81LVrV/3xxx9XfGYAAAAAAAAASi6KGsA1GDNmjD788EMlJSVp+/btqlmzptq3b68TJ05c8pqzZ8/qxRdf1FtvvaUNGzbo4MGDGjVqlCRp1KhR6tq1q73QkZmZqWbNml02hjNnzqh9+/YKCAjQ1q1b9f7772vt2rUaOnSoJOnWW29VUFCQ1q9fL0nauHGjw7YkrV+/XrGxsQ7tPvXUU5oxY4a2bdumMmXKqG/fvvZjGzduVM+ePTV8+HDt3r1bCxcu1OLFizV58mSHNiZOnKh7771X33//vfr27avx48dr9+7dWr16tVJTUzV//nxVqFAhX7+jRo3Szp07VatWLXXv3t2hWPJP+/fv17Jly/R///d/+uyzz7Rjxw4NHjz4ss8MAAAAAAAAQMnG9FPAVTpz5ozmz5+vxYsXq0OHDpKk1157TV988YVef/11jR49usDrcnJytGDBAkVEREiShg4dqmeffVaS5OfnJ29vb9lstkJPW/XOO+/o3LlzevPNN+Xr6ytJmjt3ru6++25NmzZNlSpVUqtWrZScnKz7779fycnJ6tOnjxYtWqQ9e/YoIiJCmzdv1pgxYxzanTx5smJiYiRJY8eOVceOHXXu3Dl5eXkpISFBY8eOVa9evSRJNWrU0HPPPacxY8ZowoQJ9jYeeugh9enTx7598OBBRUVFKTo6WpJktVrz3c+oUaPUsWNHSVJCQoJuvfVW7d+/X3Xq1Cnw/i/ee1hYmCTp5ZdfVseOHTVjxowCn6HNZpPNZrNvu7m5yc/Pzz4yprhd7MMZfQG4gLwDXIOcAwDX4d9g5+F7TcA1yL3SrbCfK0UN4CqlpaUpJydHzZs3t+/z8PBQkyZNlJqaesnrfHx87AUNSQoNDdXRo0evOY7U1FQ1aNDAXtCQpObNmysvL0979+5VpUqVFBMTo1dffVXShVEZU6ZM0U8//aTk5GSdOHEi331IUv369R1ilKSjR4+qWrVq2rVrl1JSUhxGZuTm5urcuXM6e/asfHx8JMlevLho0KBB6tKli7Zv364777xTnTt3zjcS5VL9XqqoUa1aNXtBQ5KaNm1qv/eCihpTp05VQkKCfTsqKkrbt293aMMZCiroAChe5B3gAvtcHQAA3JzCw8NdHcJNh+81Adcg925uFDUAJ/nnYtmGYcg0zWLtMzY2VvHx8dq3b592796tFi1aaM+ePUpOTtbJkyfta2dcKs6L1dG8vDxJUlZWlhISEnTffffl68vLy8v+578XWiSpQ4cO+vnnn7Vq1Sp98cUXuuOOOzRkyBC9+OKLheq3KIwbN04jRoywb7u5XZh978iRI8rOzi6yfi7FMAxZrVZlZGQU++cO4ALyDnANfmsOAFwnPT3d1SHcNPheE3ANcq90s1gshfoFZIoawFWKiIiQxWJRSkqKqlevLunC1FJbt25VfHz8NbdrsViUm5tb6PPr1q2rxYsX68yZM/YiQkpKitzc3FS7dm1JUr169RQQEKBJkyapYcOG8vPzU2xsrKZNm6aTJ0/mW0/jSho1aqS9e/eqZs2aV3WdJAUHB6tXr17q1auXWrZsqdGjRzsUNa7WwYMH9csvv6hy5cqSpK+++srh3v/J09NTnp6e+fabpunUl6Cz+wNA3gEAgJsH3/M4H99rAq5B7pVOhf1MWSgcuEq+vr4aNGiQRo8erc8++0y7d+/WgAEDdPbsWfXr1++a27Varfruu++0d+9eHT9+XDk5OZc9v0ePHvLy8lKvXr30ww8/6Msvv9R///tfPfLII6pUqZKkC9XrVq1aacmSJfYCRv369WWz2bRu3Tr72hmF9cwzz+jNN99UQkKCfvzxR6Wmpmrp0qV6+umnr3jdJ598ov379+vHH3/UihUrVLdu3avq+58u3vuuXbu0ceNGDRs2TF27di30miQAAAAAAAAASh6KGkAh5eXlqUyZC4Obnn/+eXXp0kWPPPKIGjVqpP3792vNmjUKCAi45vYHDBig2rVrKzo6WsHBwUpJSbns+T4+PlqzZo1OnDihxo0b6/7779cdd9yhuXPnOpwXExOj3Nxce1HDzc1NrVq1kmEY+dbTuJL27dtrxYoV+vzzz9W4cWP9+9//1qxZs+wjVi7FYrFo3Lhxql+/vlq1aiV3d3ctXbr0qvr+p5o1a+q+++7TXXfdpTvvvFP169fXvHnzrqtNAAAAAAAAADc2w2ScDlAocXFxqlmzZr6iAZxv4sSJWr58uXbu3HndbR0+fNhpa2qEh4crPT2d4ZGAk5B3gGsYhqHG+3u6OgwAuCl9E5Hk6hBuGnyvCbgGuVe6WSwWValS5YrnMVIDuIKTJ09qxYoVSk5OVtu2bV0dDgAAAAAAAADctChqAFfQt29fPfbYYxo5cqQ6derktH6nTJkiPz+/Ar86dOjgtDgAAAAAAAAA4EbB9FPADerEiRM6ceJEgce8vb0VFhbm5IhKJ6afAkov8g5wDXIPcD7yDnA+8g5wDXKvdCvs9FNlnBALgGsQGBiowMBAV4cBAAAAAAAAADcMpp8CAAAAAAAAAAAlAiM1AAAAcMMKiIhwdQi4FkwFAAAAAKCYMFIDAAAAAAAAAACUCBQ1AAAAAAAAAABAiUBRA4BTWa1WzZ4929VhAAAAAAAAACiBKGoApUzv3r3VuXPnfPuTk5NlGIZOnTrl9JgAAAAAAAAAoChQ1AAAAAAAAAAAACUCRQ3gJvXhhx/q1ltvlaenp6xWq2bMmOFw3Gq1atKkSerZs6f8/PxUvXp1ffrppzp27Jg6deokPz8/1a9fX9u2bXO4btOmTWrZsqW8vb1VtWpVDRs2TGfOnLlkHKdOnVL//v0VHByscuXKqU2bNtq1a5f9+K5du9S6dWuVLVtW5cqV02233Wbv8+eff9bdd9+tgIAA+fr66tZbb9WqVauK8CkBAAAAAAAAuJGUcXUAAJzv22+/VdeuXTVx4kR169ZNmzdv1uDBgxUUFKTevXvbz5s1a5amTJmi8ePHa9asWXrkkUfUrFkz9e3bVy+88IKeeOIJ9ezZUz/++KMMw1BaWpri4uI0adIkvfHGGzp27JiGDh2qoUOHKjExscBYHnjgAXl7e2v16tUqX768Fi5cqDvuuEM//fSTAgMD1aNHD0VFRWn+/Plyd3fXzp075eHhIUkaMmSIsrOztWHDBvn6+mr37t3y8/MrsB+bzSabzWbfdnNzk5+fnwzDkGEYRfdwL+FiH87oC8AF5B3gWuQe4Dy88wDnI+8A1yD3SrfCfq6GaZpmMccCwIl69+6tt99+W15eXg77c3Nzde7cOZ08eVJDhgzRsWPH9Pnnn9uPjxkzRitXrtSPP/4o6cJIjZYtW+qtt96SJP36668KDQ3V+PHj9eyzz0qSvvrqKzVt2lSZmZkKCQlR//795e7uroULF9rb3bRpk2JiYnTmzBl5eXnJarUqPj5e8fHx2rRpkzp27KijR4/K09PTfk3NmjU1ZswYDRw4UOXKldPLL7+sXr165bvX+vXrq0uXLpowYcIVn8vEiROVkJBg346KitL27dsL80gBAC50kv+slEgB/BcDAAAAQDFhpAZQCrVu3Vrz58932Pf111/r4YcfliSlpqaqU6dODsebN2+u2bNnKzc3V+7u7pIuFA0uqlSpkiSpXr16+fYdPXpUISEh2rVrl7777jstWbLEfo5pmsrLy1N6errq1q3r0OeuXbuUlZWloKAgh/1//fWX0tLSJEkjRoxQ//799dZbb6lt27Z64IEHFBERIUkaNmyYBg0apM8//1xt27ZVly5dHGL+u3HjxmnEiBH2bTe3C7PvHTlyRNnZ2QVeU5QMw5DValVGRoaoJQPOQd6VDv6uDgDXjNwDnId3HuB85B3gGuRe6WaxWBQWFnbF8yhqAKWQr6+vatas6bDv8OHDV93OxWmepP83/KugfXl5eZKkrKwsPfrooxo2bFi+tqpVq5ZvX1ZWlkJDQ5WcnJzvmL+/v6QLIyweeughrVy5UqtXr9aECRO0dOlS3Xvvverfv7/at2+vlStX6vPPP9fUqVM1Y8YM/fe//83Xnqenp8NokItM03TqS9DZ/QEg7wBXIfcA5yPvAOcj7wDXIPdKp8J+phQ1gJtQ3bp1lZKS4rAvJSVFtWrVso/SuBaNGjXS7t278xVULnf+r7/+qjJlyshqtV7yvFq1aqlWrVp6/PHH1b17dyUmJuree++VJFWt+v+xd+fxNV37/8dfJyFzSGJKjAkSYp7HmmliulHUlCJqLlI1VmsIamjR0qu0l0poKVpKr5lUDKGmEFRqSBNTo1Slt6YkkvP7wy/76zRBFEnxfj4e5/Ho3nvttdZeey8n3Z+z1irGgAEDGDBgAGPGjGHBggWZBjVERERERERERETk2WeV0xUQkew3fPhwwsPDmTx5MqdOnWLx4sXMnTuXESNGPFa+o0ePZs+ePQwePJgjR45w+vRp1q5dy+DBgzNN37x5c+rWrUu7du3YsmUL8fHx7Nmzh3fffZeDBw9y69YtBg8eTEREBGfPniUyMpIDBw4Y01gNHTqUzZs3ExcXR1RUFNu3b88wxZWIiIiIiIiIiIg8PzRSQ+QFVK1aNVauXMn48eOZPHkyHh4eTJo0iaCgoMfKt1KlSuzYsYN3332XBg0aYDabKVWqFJ07d840vclkYsOGDbz77rv06tWLK1eu4O7uTsOGDSlUqBDW1tZcvXqVHj168Ouvv5I/f37at29vLPidmprKoEGDuHDhAnny5MHf35+PPvrosa5BRERERERERERE/rlMZk0+JiIvsAsXLmTbQuFeXl7ExcVpzkeRbKJ+93xwLVUqp6sgf4Or2ay+J5KN9J0nkv3U70Ryhvre883GxoaiRYs+NJ2mnxIRERERERERERERkWeCpp8SERERkX+sa7GxOV0FeUQmkwnXnK6EiIiIiIg8tzRSQ0REREREREREREREngkKaoiIiIiIiIiIiIiIyDNBQQ0REREREREREREREXkmaE0NERERkeeIa6lSOV0FETCbc7oGIiIiIiLynNJIDREREREREREREREReSYoqCHyggoLC8PFxcXYDgkJoUqVKlk6NygoiHbt2j2VeomIiIiIiIiIiIjcj4IaIk/BpUuXGDJkCCVLlsTW1pZixYrRtm1bwsPDc7pqhs6dO3Pq1KmcroaIiIiIiIiIiIhIlmlNDZEnLD4+nvr16+Pi4sKMGTOoWLEiKSkpbN68mUGDBvHTTz/ldBUBsLe3x97ePqerISIiIiIiIiIiIpJlGqkh8oS98cYbmEwm9u/fT4cOHfDx8aF8+fIMGzaMH374AYBz584REBCAk5MTefLkoVOnTvz6669GHplN7zR06FAaN25sbDdu3Jjg4GBGjRqFm5sb7u7uhISEWJyTmJhI//79KVSoEHZ2dlSoUIF169YBGaef+jtmzpyJh4cH+fLlY9CgQaSkpBjHrl27Ro8ePXB1dcXBwYGWLVty+vRp43hm013Nnj0bT09PYzsiIoJatWrh6OiIi4sL9evX5+zZs8bxtWvXUq1aNezs7ChZsiQTJ07kzp07j3VNIiIiIiIiIiIi8s+lkRoiT9Dvv//Opk2bmDJlCo6OjhmOu7i4kJaWZgQ0duzYwZ07dxg0aBCdO3cmIiLikcpbvHgxw4YNY9++fezdu5egoCDq169PixYtSEtLo2XLlvz55598+eWXlCpVihMnTmBtbf1ErnX79u14eHiwfft2zpw5Q+fOnalSpQp9+/YF7gZmTp8+zXfffUeePHkYPXo0rVq14sSJE+TOnfuh+d+5c4d27drRt29fvvrqK5KTk9m/fz8mkwmAXbt20aNHDz7++GMaNGhAbGws/fr1A2DChAkZ8ktKSiIpKcnYtrKywsnJCZPJZOT5NKWXkR1lichd6nciOUt9TyT76DtPJPup34nkDPW951tW76uCGiJP0JkzZzCbzZQtW/a+acLDwzl27BhxcXEUK1YMgCVLllC+fHkOHDhAzZo1s1xepUqVjBf43t7ezJ07l/DwcFq0aMG2bdvYv38/MTEx+Pj4AFCyZMnHuDpLrq6uzJ07F2tra8qWLUvr1q0JDw+nb9++RjAjMjKSevXqAbB06VKKFSvGmjVrePXVVx+a///+9z/++OMP2rRpQ6lSpQDw9fU1jk+cOJG3336bnj17Gtc2efJkRo0alWlQY9q0aUycONHYrlq1KlFRURQpUuSx2uFR3TsSRUSyx4vW767ldAVE/r8Xre+J/BOo34lkP/U7kZyhvvdiU1BD5Akym80PTRMTE0OxYsWMgAZAuXLlcHFxISYm5pGDGvfy8PDg8uXLABw5coSiRYsaAY0nrXz58hajPjw8PDh27Bhw9xpz5cpF7dq1jeP58uWjTJkyxMTEZCl/Nzc3goKC8PPzo0WLFjRv3pxOnTrh4eEBQHR0NJGRkUyZMsU4JzU1ldu3b3Pz5k0cHBws8hszZgzDhg0ztq2s7s6+d/HiRZKTkx/x6h+dyWTC09OT+Pj4LD0nIvL4XtR+55LTFRD5/160vieSk17U7zyRnKR+J5Iz1PeebzY2Nln6AbKCGiJPkLe3NyaT6bEXA7eyssrwD/O961Wk++s0TiaTibS0NICnvgj4g8rOiqxcY2hoKMHBwWzatIkVK1YwduxYtm7dSp06dbh+/ToTJ06kffv2GfK2s7PLsM/W1hZbW9sM+81mc7Z+CWZ3eSKifieSU9T3RLKf+p1I9lO/E8kZ6nvPp6zeUy0ULvIEubm54efnxyeffMKNGzcyHE9MTMTX15fz589z/vx5Y/+JEydITEykXLlyABQoUICEhASLc48cOfJIdalUqRIXLlzg1KlTj34hj8nX15c7d+6wb98+Y9/Vq1c5efKkxTVeunTJ4h+rzK6xatWqjBkzhj179lChQgWWLVsGQLVq1Th58iSlS5fO8EkfhSEiIiIiIiIiIiLPF735E3nCPvnkE1JTU6lVqxarVq3i9OnTxMTE8PHHH1O3bl2aN29OxYoVCQwMJCoqiv3799OjRw8aNWpEjRo1AGjatCkHDx5kyZIlnD59mgkTJnD8+PFHqkejRo1o2LAhHTp0YOvWrcTFxbFx40Y2bdr0NC7bgre3NwEBAfTt25fdu3cTHR3Na6+9RpEiRQgICACgcePGXLlyhQ8++IDY2Fg++eQTNm7caOQRFxfHmDFj2Lt3L2fPnmXLli2cPn3aWFdj/PjxLFmyhIkTJ/Ljjz8SExPD8uXLGTt27FO/PhEREREREREREckZCmqIPGElS5YkKiqKJk2aMHz4cCpUqECLFi0IDw9n/vz5mEwm1q5di6urKw0bNqR58+aULFmSFStWGHn4+fkxbtw4Ro0aRc2aNfnzzz/p0aPHI9dl1apV1KxZk65du1KuXDlGjRpFamrqk7zc+woNDaV69eq0adOGunXrYjab2bBhgzFtla+vL/PmzeOTTz6hcuXK7N+/nxEjRhjnOzg48NNPP9GhQwd8fHzo168fgwYNon///sDdNlq3bh1btmyhZs2a1KlTh48++ogSJUpky/WJiIiIiIiIiIhI9jOZNfmYiLzALly4kG0LhXt5eREXF6c5H0WyyYva71xLlcrpKojgaja/cH1PJCe9qN95IjlJ/U4kZ6jvPd9sbGwoWrToQ9NppIaIiIiIiIiIiIiIiDwTcuV0BUTkn8fJyem+xzZu3EiDBg2ysTYiIvIorsXG5nQV5AVnMplwzelKiIiIiIjIc0tBDRHJ4MiRI/c9VqRIkeyriIiIiIiIiIiIiMg9FNQQkQxKly6d01UQERERERERERERyUBraoiIiIiIiIiIiIiIyDNBIzVEREREROSJyr9V62+JZLszTz7L/aUWP/lMRURERB6TRmqIiIiIiIiIiIiIiMgz4R8f1AgLC8PFxSWnq/HEmEwm1qxZk9PVkBfMzZs36dChA3ny5MFkMpGYmJjTVRIRERERERERERF5ZI8U1AgKCsJkMmEymbCxsaF06dJMmjSJO3fuPK360blzZ06dOvXU8s9M+jX+9bN8+fJsrQdA48aNjfLt7Ozw8fFh2rRpmM3mbK/LP5mnpyezZ89+5PNWrVpF48aNyZs3L05OTlSqVIlJkybx+++/P/lKPkBISAhVqlTJsN/T09O4/9bW1hQuXJjevXtz7dq1R8p/8eLF7Nq1iz179pCQkEDevHmfUM0zioiIUOBEREREREREREREnopHHqnh7+9PQkICp0+fZvjw4YSEhDBjxowM6ZKTk59IBe3t7SlYsOATyetRhIaGkpCQYPFp167d387vcdqjb9++JCQkcPLkScaMGcP48eP59NNP/3Z+cte7775L586dqVmzJhs3buT48ePMmjWL6Ohovvjii5yunmHSpEkkJCRw7tw5li5dys6dOwkODn6kPGJjY/H19aVChQq4u7tjMpkeuR6pqamkpaU98nkiIiIiIiIiIiIiT8ojBzVsbW1xd3enRIkSDBw4kObNm/Pdd98RFBREu3btmDJlCoULF6ZMmTIAnD9/nk6dOuHi4oKbmxsBAQHEx8cDsGXLFuzs7DL8ovvNN9+kadOmQObTT82fP59SpUphY2NDmTJlLF5Ax8fHYzKZOHLkiLEvMTERk8lEREQEANeuXSMwMJACBQpgb2+Pt7c3oaGhFmW4uLjg7u5u8bGzswPg6tWrdO3alSJFiuDg4EDFihX56quvLM5v3LgxgwcPZujQoeTPnx8/P78Mbdm0aVMGDx5sse/KlSvY2NgQHh5u7HNwcDDavFevXlSqVImtW7cax5OSkhgxYgRFihTB0dGR2rVrG9d6bxuuWbMGb29v7Ozs8PPz4/z580aa2NhYAgICKFSoEE5OTtSsWZNt27YZxydNmkSFChUyXEOVKlUYN24cgPEMTJ06lUKFCuHi4mKM5Bk5ciRubm4ULVo0Q1s/6Bm5N9+ZM2fi4eFBvnz5GDRoECkpKUZbnz17lrfeessY1QBw9uxZ2rZti6urK46OjpQvX54NGzYAsH//fqZOncqsWbOYMWMG9erVw9PTkxYtWrBq1Sp69uxplP+4z1v6yIXw8HBq1KiBg4MD9erV4+TJk8b9mThxItHR0Ub9w8LCjPycnZ1xd3enSJEiNGnShJ49exIVFWXRhrt376ZBgwbY29tTrFgxgoODuXHjhtE+s2bNYufOnZhMJho3bgzc7Qc9evTA1dUVBwcHWrZsyenTpzM8N9999x3lypXD1taWc+fOPfR5e5iHlZvV/hUcHMyoUaNwc3PD3d2dkJCQLNdBREREREREREREnk2PvaaGvb29MQohPDyckydPsnXrVtatW0dKSgp+fn44Ozuza9cuIiMjcXJywt/fn+TkZJo1a4aLiwurVq0y8ktNTWXFihUEBgZmWt63337Lm2++yfDhwzl+/Dj9+/enV69ebN++Pct1HjduHCdOnGDjxo3ExMQwf/588ufPn+Xzb9++TfXq1Vm/fj3Hjx+nX79+dO/enf3791ukW7x4MTY2NkRGRmY6sqJPnz4sW7aMpKQkY9+XX35JkSJFjKDOvcxmM7t27eKnn37CxsbG2D948GD27t3L8uXLOXr0KK+++ir+/v4WL4pv3rzJlClTWLJkCZGRkSQmJtKlSxfj+PXr12nVqhXh4eEcPnwYf39/2rZty7lz5wB4/fXXiYmJ4cCBA8Y5hw8f5ujRo/Tq1cvY9/333/PLL7+wc+dOPvzwQyZMmECbNm1wdXVl3759DBgwgP79+3PhwgWAhz4j6bZv305sbCzbt29n8eLFhIWFGS/+V69eTdGiRY0RDQkJCQAMGjSIpKQkdu7cybFjx3j//fdxcnICYOnSpTg5OfHGG29keo/TA2lP4nlL9+677zJr1iwOHjxIrly5eP3114G7U6wNHz6c8uXLG/Xv3LlzpnlcvHiR//73v9SuXdvYFxsbi7+/Px06dODo0aOsWLGC3bt3GwGz1atX07dvX+rWrUtCQgKrV68G7gaLDh48yHfffcfevXsxm820atXKCBbB3efm/fffZ+HChfz4448ULFgwS8/bgzys3EfpX46Ojuzbt48PPviASZMmWQT7RERERERERERE5PljMj/C4gxBQUEkJiayZs0azGYz4eHhtGnThiFDhnDlyhU2bdrEuXPnjBfuX375Je+99x4xMTHGr+eTk5ONUQMvv/wyQ4cO5dixY8bIhC1btvCvf/2LS5cu4eLiQlhYGEOHDjVGc9SvX5/y5cvzn//8x6hXp06duHHjBuvXryc+Ph4vLy8OHz5srFGQmJiIq6sr27dvp3HjxvzrX/8if/78LFq0KPNG+f/rV1hbW1vsP3HiBMWLF8/0nDZt2lC2bFlmzpwJ3P0l+f/+978Mv6g3mUx8++23tGvXjtu3b1O4cGE+/fRTOnXqBEDlypVp3749EyZMMPLZs2cPNjY2JCcnk5KSgp2dHeHh4dSrV49z585RsmRJzp07R+HChY1ymjdvTq1atZg6dSphYWH06tWLH374wXgZ/tNPP+Hr68u+ffuoVatWptdUoUIFBgwYYLwcb9WqFZ6ensybNw+A4OBgjh07ZrzgDwoKIiIigp9//hkrq7vxsrJly1KwYEF27twJ3A1a5c2bl4ULF9KlS5csPSPp+cbGxhr3pFOnTlhZWRnrnHh6ejJ06FCGDh1q1L9SpUp06NDBaMt7tWrViosXLxIdHZ3ptad7Es9bREQETZo0Ydu2bTRr1gyADRs20Lp1a27duoWdnR0hISGsWbPGYsRH+nUlJCSQO3duUlNTuX37NrVr12bTpk1G4KVPnz5YW1vz2WefGeft3r2bRo0acePGDezs7Bg6dChHjhwxRlScPn0aHx8fIiMjqVevHnB3hESxYsVYvHgxr776qvHcHDlyhMqVKwNk6XlLv95r165lGGWVlXIzk1n/Sk1NZdeuXUaaWrVq0bRpU6ZPn55pHklJSRYBRCsrK5ycnLh48eITmy7vQUwmE56ensTHx2tNHJFson4nkjNMJhM1TnfP6WqIyBNwoPSSnK6CyD+W/tYUyRnqe883GxsbihQp8tB0uR4143Xr1uHk5ERKSgppaWl069aNkJAQBg0aRMWKFS1GEERHR3PmzBmcnZ0t8rh9+zaxsbEABAYGUqdOHX755RcKFy7M0qVLad26dYaXoeliYmLo16+fxb769eszZ86cLF/DwIED6dChA1FRUbz88su0a9fOeMGa7qOPPqJ58+YW+9Jf4qampjJ16lRWrlxpvBBNSkrCwcHBIn316tUfWA87Ozu6d+/OokWL6NSpE1FRURw/fpzvvvvOIl1gYCDvvvsu165dY8KECdSrV8+o77Fjx0hNTcXHx8finKSkJPLly2ds58qVi5o1axrbZcuWxcXFhZiYGGrVqsX169cJCQlh/fr1JCQkcOfOHW7dumWM1IC7a3u8/vrrfPjhh1hZWbFs2TI++ugji3LLly9vBDQAChUqZDFtlbW1Nfny5ePy5ctA1p6R9HzvDTJ5eHhw7NixB7ZvcHAwAwcOZMuWLTRv3pwOHTpQqVIlgCz/o/cknrd06WXD3foDXL58+b6BsnQjR44kKCgIs9nM+fPneeedd2jdujU7d+7E2tqa6Ohojh49ytKlS41zzGYzaWlpxMXF4evrm+l15cqVy2LER758+ShTpgwxMTHGPhsbG4t6Z/V5u5+slJvV/nVvveBum6Y/V5mZNm0aEydONLarVq1KVFRUlv6hfJI8PT2ztTwRUb8TyRFZG8ApIv9wXl5eOV0FkX88/a0pkjPU915sjxzUaNKkCfPnz8fGxobChQuTK9f/ZeHo6GiR9vr161SvXt3iZWu6AgUKAFCzZk1KlSrF8uXLGThwIN9++63FegKPKv2F+r0vre+dTgegZcuWnD17lg0bNrB161aaNWvGoEGDjF+BA7i7u1O6dOlMy5gxYwZz5sxh9uzZVKxYEUdHR4YOHZrh195/bY/M9OnThypVqnDhwgVCQ0Np2rQpJUqUsEiTN29eoy4rV66kdOnS1KlTh+bNm3P9+nWsra05dOhQhpEl6VMtZcWIESPYunUrM2fOpHTp0tjb29OxY0eLa2rbti22trZ8++232NjYkJKSQseOHS3yyZ07t8W2yWTKdF/6gtNZeUbul+/DFq3u06cPfn5+rF+/ni1btjBt2jRmzZrFkCFD8PHxYffu3aSkpGTI+1Fk5XnL7BrSR6VkZeHt/PnzG/ff29ub2bNnU7duXbZv3248A/3798908fCHBUwext7e3mJR8Sf1vD1IVvvXoz4TY8aMYdiwYcZ2+r3TSA2R55f6nUjOuPdvBxF5tsXFxeV0FUT+sfS3pkjOUN97vj21kRqOjo73fdn/V9WqVWPFihUULFiQPHny3DddYGAgS5cupWjRolhZWdG6dev7pvX19SUyMtJiIefIyEjKlSsH/N+L8ISEBKpWrQqQYUqf9HQ9e/akZ8+eNGjQgJEjR1oENR4kMjKSgIAAXnvtNeDui+lTp04ZdXgUFStWpEaNGixYsIBly5Yxd+7cB6Z3cnLizTffZMSIERw+fJiqVauSmprK5cuXadCgwX3Pu3PnDgcPHjSmmjp58iSJiYnGr/gjIyMJCgrilVdeAe6+vL53sW64O9qjZ8+ehIaGYmNjQ5cuXbC3t3/ka75XVp+Rh7GxsSE1NTXD/mLFijFgwAAGDBjAmDFjWLBgAUOGDKFbt258/PHHzJs3jzfffDPDeYmJibi4uDyx5+3v1j8z6cGEW7duAXfb8MSJE1nul3C3H925c4d9+/ZZTAN18uTJBz7HWX3eHqfcJ9m/7mVra4utrW2G/WazOVu/BLO7PBFRvxMREfm79P0p8nD6W1MkZ6jvPZ+yek8fe6HwBwkMDCR//vwEBASwa9cu4uLiiIiIIDg42FgoOj1dVFQUU6ZMoWPHjpm+eEw3cuRIwsLCmD9/PqdPn+bDDz9k9erVjBgxArj7y/I6deowffp0YmJi2LFjB2PHjrXIY/z48axdu5YzZ87w448/sm7dugxT9CQmJnLp0iWLz40bN4C7v5bfunUre/bsISYmhv79+/Prr7/+7Xbq06cP06dPx2w2G0GFB+nfvz+nTp1i1apV+Pj4EBgYSI8ePVi9ejVxcXHs37+fadOmsX79euOc3LlzM2TIEPbt28ehQ4cICgqiTp06RpDD29ub1atXc+TIEaKjo+nWrVumv3rv06cP33//PZs2bTIWun4cWX1GHsbT05OdO3dy8eJFfvvtNwCGDh3K5s2biYuLIyoqiu3btxv3uXbt2owaNYrhw4czatQo9u7dy9mzZwkPD+fVV19l8eLFwJN53rJa/7i4OI4cOcJvv/1msfbDn3/+yaVLl0hISGD//v2MHDmSAgUKGEGB0aNHs2fPHgYPHsyRI0c4ffo0a9euNdZCyYy3tzcBAQH07duX3bt3Ex0dzWuvvUaRIkUICAi473lZfd7g7lRVR44cMT7R0dFZKvdJ9y8RERERERERERF5fjzVoIaDgwM7d+6kePHitG/fHl9fX3r37s3t27ctfpVfunRpatWqxdGjRwkMDHxgnu3atWPOnDnMnDmT8uXL89lnnxEaGkrjxo2NNIsWLeLOnTtUr16doUOH8t5771nkYWNjw5gxY6hUqRINGzbE2traWHA6Xa9evfDw8LD4/Pvf/wZg7NixVKtWDT8/Pxo3boy7uzvt2rX72+3UtWtXcuXKRdeuXbGzs3toejc3N3r06EFISAhpaWmEhobSo0cPhg8fTpkyZWjXrh0HDhywmHrIwcGB0aNH061bN+rXr4+TkxMrVqwwjn/44Ye4urpSr1492rZti5+fH9WqVctQtre3N/Xq1aNs2bIW6yL8XVl9Rh5m0qRJxMfHU6pUKWP0RGpqKoMGDcLX1xd/f398fHyMRc4B3n//fZYtW8a+ffvw8/OjfPnyDBs2jEqVKhkjM57E85YVHTp0wN/fnyZNmlCgQAG++uor49j48ePx8PCgcOHCtGnTBkdHR7Zs2WKsYVGpUiV27NjBqVOnaNCgAVWrVmX8+PEWC3lnJjQ0lOrVq9OmTRvq1q2L2Wxmw4YND52OKyvPG0DDhg2pWrWq8UlfY+Zh5T7p/iUiIiIiIiIiIiLPD5NZ43RyXPrL+AMHDmQaSHhcYWFhDB06lMTExMfOy2w24+3tzRtvvGGxPoHIs+rChQvZtqaGl5cXcXFxGh4pkk3U70RyhslkouaZHjldDRF5AvaXWpzTVRD5x9LfmiI5Q33v+WZjY0PRokUfmu6R19SQJyclJYWrV68yduxY6tSp81QCGk/SlStXWL58OZcuXaJXr145XR0RERERERERERERecEoqJGDIiMjadKkCT4+PnzzzTc5XZ2HKliwIPnz5+c///kPrq6uOV0dEREREfmH+q3FLv16TiQb6VerIiIi8iJRUCMHNW7cOFv+4AwKCiIoKOix89EfxyIiIiIiIiIiIiKSk57qQuEiIiIiIiIiIiIiIiJPioIaIiIiIiIiIiIiIiLyTND0UyIiIiIi8kTl39ogp6tgYX+pxTldBREREREReUI0UkNERERERERERERERJ4JCmo8QWFhYbi4uOR0NZ4Yk8nEmjVrcroa8gT99NNP1KlTBzs7O6pUqZKlc4KCgmjXrt1TrZeIiIiIiIiIiIhIVjy3QY2goCBMJhMmkwkbGxtKly7NpEmTuHPnzlMrs3Pnzpw6deqp5Z+Z9Gv862f58uXZWg+Axo0bG+Xb2dnh4+PDtGnTMJvN2V6XfzJPT09mz56d5fTx8fEW9zb9eX7vvfceuW0nTJiAo6MjJ0+eJDw8/BFr/mj1PXLkyFPJX0RERERERERERF5cz/WaGv7+/oSGhpKUlMSGDRsYNGgQuXPnZsyYMRbpkpOTsbGxeezy7O3tsbe3f+x8HlVoaCj+/v4W+x5nxMjjtEffvn2ZNGkSSUlJfP/99/Tr1w8XFxcGDhz4t+sjd23bto3y5cuTlJTE7t276dOnDx4eHvTu3TvLecTGxtK6dWtKlCjxFGsqIiIiIiIiIiIi8nQ8tyM1AGxtbXF3d6dEiRIMHDiQ5s2b89133xnT6UyZMoXChQtTpkwZAM6fP0+nTp1wcXHBzc2NgIAA4uPjAdiyZQt2dnYkJiZalPHmm2/StGlTIPPpp+bPn0+pUqWwsbGhTJkyfPHFF8axzH7RnpiYiMlkIiIiAoBr164RGBhIgQIFsLe3x9vbm9DQUIsyXFxccHd3t/jY2dkBcPXqVbp27UqRIkVwcHCgYsWKfPXVVxbnN27cmMGDBzN06FDy58+Pn59fhrZs2rQpgwcPtth35coVbGxsLH7x7+DgYLR5r169qFSpElu3bjWOJyUlMWLECIoUKYKjoyO1a9c2rvXeNlyzZg3e3t7Y2dnh5+fH+fPnjTSxsbEEBARQqFAhnJycqFmzJtu2bTOOT5o0iQoVKmS4hipVqjBu3Djg/6ZUmjp1KoUKFcLFxcUYyTNy5Ejc3NwoWrRohrZ+0DNyb74zZ87Ew8ODfPnyMWjQIFJSUoy2Pnv2LG+99ZYx8gLg7NmztG3bFldXVxwdHSlfvjwbNmywKDtfvnxG2wYGBlK/fn2ioqIs0ixcuBBfX1/s7OwoW7Ys8+bNM46ZTCYOHTrEpEmTMJlMhISEAHDs2DGaNm2Kvb09+fLlo1+/fly/fj1D+6VLS0tj2rRpeHl5YW9vT+XKlfnmm2/um/6vkpKSCA4OpmDBgtjZ2fHSSy9x4MAB43hqaiq9e/c28i9Tpgxz5syxyONh7SwiIiIiIiIiIiLPp+c6qPFX9vb2JCcnAxAeHs7JkyfZunUr69atIyUlBT8/P5ydndm1axeRkZE4OTnh7+9PcnIyzZo1w8XFhVWrVhn5paamsmLFCgIDAzMt79tvv+XNN99k+PDhHD9+nP79+9OrVy+2b9+e5TqPGzeOEydOsHHjRmJiYpg/fz758+fP8vm3b9+mevXqrF+/nuPHj9OvXz+6d+/O/v37LdItXrwYGxsbIiMj+fTTTzPk06dPH5YtW0ZSUpKx78svv6RIkSJGUOdeZrOZXbt28dNPP1mM+hg8eDB79+5l+fLlHD16lFdffRV/f39Onz5tpLl58yZTpkxhyZIlREZGkpiYSJcuXYzj169fp1WrVoSHh3P48GH8/f1p27Yt586dA+D1118nJibG4kX54cOHOXr0KL169TL2ff/99/zyyy/s3LmTDz/8kAkTJtCmTRtcXV3Zt28fAwYMoH///ly4cAHgoc9Iuu3btxMbG8v27dtZvHgxYWFhhIWFAbB69WqKFi3KpEmTSEhIICEhAYBBgwaRlJTEzp07OXbsGO+//z5OTk73va8HDx7k0KFD1K5d29i3dOlSxo8fz5QpU4iJiWHq1KmMGzeOxYsXA5CQkED58uUZPnw4CQkJjBgxghs3buDn54erqysHDhzg66+/Ztu2bRkCWPeaNm0aS5Ys4dNPP+XHH3/krbfe4rXXXmPHjh33Pedeo0aNYtWqVSxevJioqChKly6Nn58fv//+O3A3aFK0aFG+/vprTpw4wfjx43nnnXdYuXKlRT4PamcRERERERERERF5Pj3X00+lM5vNhIeHs3nzZoYMGcKVK1dwdHRk4cKFxgv3L7/8krS0NBYuXGj8ej40NBQXFxciIiJ4+eWX6dKlC8uWLTOm+wkPDycxMZEOHTpkWu7MmTMJCgrijTfeAGDYsGH88MMPzJw5kyZNmmSp7ufOnaNq1arUqFEDuLsew1917doVa2tri30nTpygePHiFClShBEjRhj7hwwZwubNm1m5ciW1atUy9nt7e/PBBx/ctx7t27dn8ODBrF27lk6dOgF3R1Wkr12Sbt68eSxcuJDk5GRSUlKws7MjODjYuJbQ0FDOnTtH4cKFARgxYgSbNm0iNDSUqVOnAneDB3PnzjVe2C9evBhfX1/2799PrVq1qFy5MpUrVzbKnDx5Mt9++y3fffcdgwcPpmjRovj5+REaGkrNmjWBu/eyUaNGlCxZ0jjPzc2Njz/+GCsrK8qUKcMHH3zAzZs3eeeddwAYM2YM06dPZ/fu3XTp0oUVK1Y89BkBcHV1Ze7cuVhbW1O2bFlat25NeHg4ffv2xc3NDWtra5ydnXF3d7e4zx06dKBixYoAFvVMV69ePaysrIy27devHz169DCOT5gwgVmzZtG+fXsAvLy8OHHiBJ999hk9e/bE3d2dXLly4eTkZJS9YMECbt++zZIlS3B0dARg7ty5tG3blvfff59ChQpZ1CEpKYmpU6eybds26tata9R19+7dfPbZZzRq1Oi+zxDAjRs3mD9/PmFhYbRs2dKow9atW/n8888ZOXIkuXPnZuLEicY5Xl5e7N27l5UrVxrP3sPaOTNJSUkWQTkrKyucnJwsRsw8TellZEdZInKX+p1Izvgn9rl/Yp1EniR954lkP/U7kZyhvvd8y+p9fa6DGuvWrcPJyYmUlBTS0tLo1q0bISEhDBo0iIoVK1qMIIiOjubMmTM4Oztb5HH79m1iY2MBCAwMpE6dOvzyyy8ULlyYpUuX0rp16/uuXxETE0O/fv0s9tWvXz/DVDoPMnDgQDp06EBUVBQvv/wy7dq1o169ehZpPvroI5o3b26xLz1okJqaytSpU1m5ciUXL14kOTmZpKQkHBwcLNJXr179gfWws7Oje/fuLFq0iE6dOhEVFcXx48f57rvvLNIFBgby7rvvcu3aNSZMmEC9evWM+h47dozU1FR8fHwszklKSiJfvnzGdq5cuYxgBEDZsmVxcXEhJiaGWrVqcf36dUJCQli/fj0JCQncuXOHW7duGSM14O7aHq+//joffvghVlZWLFu2jI8++sii3PLly2Nl9X+DlQoVKmQxbZW1tTX58uXj8uXLQNaekfR87w0yeXh4cOzYsQe2b3BwMAMHDmTLli00b96cDh06UKlSJYs0K1aswNfXl5SUFI4fP86QIUNwdXVl+vTp3Lhxg9jYWHr37m3xUv/OnTvkzZv3vuXGxMRQuXJlI6ABd5/RtLQ0Tp48mSGocebMGW7evEmLFi0s9icnJ1O1atUHXiPcnTosJSWF+vXrG/ty585NrVq1iImJMfZ98sknLFq0iHPnznHr1i2Sk5OpUqWKRV6P2s7Tpk2zCJZUrVqVqKgoihQp8tB6P0mZBSZF5OlSvxPJAacfniQ7eXl55XQVRLKFvvNEsp/6nUjOUN97sT3XQY0mTZowf/58bGxsKFy4MLly/d/l3vsSF+5OaVS9enWWLl2aIZ8CBQoAULNmTUqVKsXy5csZOHAg33777WNNd5P+Qt1sNhv7/romQMuWLTl79iwbNmxg69atNGvWjEGDBjFz5kwjjbu7O6VLl860jBkzZjBnzhxmz55NxYoVcXR0ZOjQoRbTJUHG9shMnz59qFKlChcuXCA0NJSmTZtmWHA6b968Rl1WrlxJ6dKlqVOnDs2bN+f69etYW1tz6NChDCNLHjTV0l+NGDGCrVu3MnPmTEqXLo29vT0dO3a0uKa2bdtia2vLt99+i42NDSkpKXTs2NEin9y5c1tsm0ymTPelpaUBWXtG7pdveh7306dPH/z8/Fi/fj1btmxh2rRpzJo1iyFDhhhpihUrZrStr68vsbGxjBs3jpCQEGMNjAULFlhMSQVkaOvHkV7O+vXrMwQDbG1tn0gZy5cvZ8SIEcyaNYu6devi7OzMjBkz2Ldvn0W6R23nMWPGMGzYMGM7vf+lB/ueNpPJhKenJ/Hx8RZ9XkSeHvU7kZzxT/zVXFxcXE5XQeSp0neeSPZTvxPJGep7zzcbG5ss/QD5uQ5qODo63vdl/19Vq1aNFStWULBgQfLkyXPfdIGBgSxdupSiRYtiZWVF69at75vW19eXyMhIevbsaeyLjIykXLlywP+9CE9ISDB+5X7vouHpChQoQM+ePenZsycNGjRg5MiRFkGNB4mMjCQgIIDXXnsNuLtewalTp4w6PIqKFStSo0YNFixYwLJly5g7d+4D0zs5OfHmm28yYsQIDh8+TNWqVUlNTeXy5cs0aNDgvufduXOHgwcPGtNjnTx5ksTERHx9fY1rCgoK4pVXXgHuvmi/d7FuuDvao2fPnoSGhmJjY0OXLl2wt7d/5Gu+V1afkYexsbEhNTU1w/5ixYoxYMAABgwYwJgxY1iwYIFFUOOvrK2tuXPnDsnJyRQqVIjChQvz888/33eNl8z4+voSFhbGjRs3jMBWZGSkMSXXX5UrVw5bW1vOnTv30KmmMlOqVClj7Zb0gFhKSgoHDhxg6NChRvn16tUzpm0DLEbC/F22traZBl7MZnO2fglmd3kion4nIujfAHlh6DtPJPup34nkDPW951NW7+kLtVD4gwQGBpI/f34CAgLYtWsXcXFxREREEBwcbCwUnZ4uKiqKKVOm0LFjxwf+On3kyJGEhYUxf/58Tp8+zYcffsjq1auNNS7s7e2pU6cO06dPJyYmhh07djB27FiLPMaPH8/atWs5c+YMP/74I+vWrTNe7qdLTEzk0qVLFp8bN24Ad9fK2Lp1K3v27CEmJob+/fvz66+//u126tOnD9OnT8dsNhtBhQfp378/p06dYtWqVfj4+BAYGEiPHj1YvXo1cXFx7N+/n2nTprF+/XrjnNy5czNkyBD27dvHoUOHCAoKok6dOkaQw9vbm9WrV3PkyBGio6Pp1q1bpr/Q79OnD99//z2bNm3i9ddf/9vXnC6rz8jDeHp6snPnTi5evMhvv/0GwNChQ9m8eTNxcXFERUWxffv2DPf56tWrXLp0iQsXLrBx40bmzJlDkyZNjADLxIkTmTZtGh9//DGnTp3i2LFjhIaG8uGHHz7wmuzs7OjZsyfHjx9n+/btDBkyhO7du2eYegrA2dmZESNG8NZbb7F48WJiY2OJiori3//+t7EgebqTJ09y5MgRi4+NjQ0DBw5k5MiRbNq0iRMnTtC3b19u3rxprFXj7e3NwYMH2bx5M6dOnWLcuHEWi76LiIiIiIiIiIjIi0tBjf/PwcGBnTt3Urx4cdq3b4+vry+9e/fm9u3bFr/KL126NLVq1eLo0aMP/UV8u3btmDNnDjNnzqR8+fJ89tlnhIaG0rhxYyPNokWLuHPnDtWrV2fo0KG89957FnnY2NgwZswYKlWqRMOGDbG2tmb58uUWaXr16oWHh4fF59///jcAY8eOpVq1avj5+dG4cWPc3d1p167d326nrl27kitXLrp27Yqdnd1D07u5udGjRw9CQkJIS0sjNDSUHj16MHz4cMqUKUO7du04cOAAxYsXN85xcHBg9OjRdOvWjfr16+Pk5MSKFSuM4x9++CGurq7Uq1ePtm3b4ufnR7Vq1TKU7e3tTb169ShbtmyGKZn+jqw+Iw8zadIk4uPjKVWqlDFaJzU1lUGDBuHr64u/vz8+Pj7MmzfP4rzmzZvj4eGBp6cn/fr1o1WrVhbt0qdPHxYuXEhoaCgVK1akUaNGhIWFPXAOaQcHBzZv3szvv/9OzZo16dixI82aNXvgKJzJkyczbtw4pk2bZtR3/fr1Gcrp0qULVatWtfj8+uuvTJ8+nQ4dOtC9e3eqVavGmTNn2Lx5M66ursDdQFj79u3p3LkztWvX5urVqxajNkREREREREREROTFZTJrnI48gvSX8QcOHMg0kPC4wsLCGDp0KImJiY+dl9lsxtvbmzfeeMNiLQWRe124cCHb1tTw8vIiLi5OwyNFson6nUjOMJlM1DzTI6erYWF/qcUPTyTyDNN3nkj2U78TyRnqe883GxsbihYt+tB0z/WaGvLkpKSkcPXqVcaOHUudOnWeSkDjSbpy5QrLly/n0qVL9OrVK6erIyIiIiIiIiIiIiJPgIIakiWRkZE0adIEHx8fvvnmm5yuzkMVLFiQ/Pnz85///MeY1khEREREREREREREnm0KakiWNG7cOFuGdAUFBREUFPTY+Wj4mYiIiEjO+a3FLk0JICIiIiIiT4UWChcRERERERERERERkWeCghoiIiIiIiIiIiIiIvJMUFBDRERERERERERERESeCVpTQ0RERJ4a11KlcrT8a4BLjtZA5AWltTREREREROQp0UgNERERERERERERERF5Jiio8RwKCwvDxcUlp6sh/zBr1qyhdOnSWFtbM3To0JyujoiIiIiIiIiIiMgjU1DjKQsKCsJkMmEymbCxsaF06dJMmjSJO3fuPLUyO3fuzKlTp55a/plJv0aTyUSePHmoWbMma9euzdY6/NPFx8djMpk4cuRIls8JCwuzaFsnJyeqV6/O6tWrH7n8/v3707FjR86fP8/kyZMf+fxH0bhxYwVORERERERERERE5IlTUCMb+Pv7k5CQwOnTpxk+fDghISHMmDEjQ7rk5OQnUp69vT0FCxZ8Ink9itDQUBISEjh48CD169enY8eOHDt2LNvr8bzJkycPCQkJJCQkcPjwYfz8/OjUqRMnT57Mch7Xr1/n8uXL+Pn5UbhwYZydnf9WXZ7UMyoiIiIiIiIiIiLydyiokQ1sbW1xd3enRIkSDBw4kObNm/Pdd98RFBREu3btmDJlCoULF6ZMmTIAnD9/nk6dOuHi4oKbmxsBAQHEx8cDsGXLFuzs7EhMTLQo480336Rp06ZA5tNPzZ8/n1KlSmFjY0OZMmX44osvjGOZjSBITEzEZDIREREBwLVr1wgMDKRAgQLY29vj7e1NaGioRRkuLi64u7vj4+PD5MmTuXPnDtu3bzeOP+i6AKM9Jk6cSIECBciTJw8DBgyweJG+adMmXnrpJVxcXMiXLx9t2rQhNjbWON60aVMGDx5sUa8rV65gY2NDeHg4AJ6enrz33nv06NEDJycnSpQowXfffceVK1cICAjAycmJSpUqcfDgQYt8du/eTYMGDbC3t6dYsWIEBwdz48YN47inpydTp07l9ddfx9nZmeLFi/Of//zHOO7l5QVA1apVMZlMNG7cGICIiAhq1aqFo6MjLi4u1K9fn7NnzxrnmUwm3N3dcXd3x9vbm/feew8rKyuOHj1qpElKSmLEiBEUKVIER0dHateubdy7iIgII4jRtGlTi/u6atUqypcvj62tLZ6ensyaNcvimj09PZk8eTI9evQgT5489OvXL0tt8TAPK/eLL76gRo0aODs74+7uTrdu3bh8+bJxPCIiApPJRHh4ODVq1MDBwYF69eo9UqBHREREREREREREnj0KauQAe3t740V9eHg4J0+eZOvWraxbt46UlBT8/PxwdnZm165dREZG4uTkhL+/P8nJyTRr1gwXFxdWrVpl5JeamsqKFSsIDAzMtLxvv/2WN998k+HDh3P8+HH69+9Pr169LAIODzNu3DhOnDjBxo0biYmJYf78+eTPnz/TtHfu3OHzzz8HwMbGBuCh15UuPDycmJgYIiIi+Oqrr1i9ejUTJ040jt+4cYNhw4Zx8OBBwsPDsbKy4pVXXiEtLQ2APn36sGzZMpKSkoxzvvzyS4oUKWIEfQA++ugj6tevz+HDh2ndujXdu3enR48evPbaa0RFRVGqVCl69OiB2WwGIDY2Fn9/fzp06MDRo0dZsWIFu3fvzhBAmTVrFjVq1ODw4cO88cYbDBw40HjRvn//fgC2bdtGQkICq1ev5s6dO7Rr145GjRpx9OhR9u7dS79+/TCZTJm2bWpqKosXLwagWrVqxv7Bgwezd+9eli9fztGjR3n11Vfx9/fn9OnTFi/7V61aRUJCAvXq1ePQoUN06tSJLl26cOzYMUJCQhg3bhxhYWEWZc6cOZPKlStz+PBhxo0bl+W2uJ+slJuSksLkyZOJjo5mzZo1xMfHExQUlCGvd999l1mzZnHw4EFy5crF66+/ft9yk5KS+N///md8rl+/DlhOnfa0P9ldnj76/BM+IvLiyul/f/TR50X7qN/po0/2f9Tv9NEnZz7qe8/3J0vM8lT17NnTHBAQYDabzea0tDTz1q1bzba2tuYRI0aYe/bsaS5UqJA5KSnJSP/FF1+Yy5QpY05LSzP2JSUlme3t7c2bN282m81m85tvvmlu2rSpcXzz5s1mW1tb87Vr18xms9kcGhpqzps3r3G8Xr165r59+1rU69VXXzW3atXKbDabzXFxcWbAfPjwYeP4tWvXzIB5+/btZrPZbG7btq25V69e971OwGxnZ2d2dHQ0W1lZmQGzp6en+erVq1m+rp49e5rd3NzMN27cMNLMnz/f7OTkZE5NTc203CtXrpgB87Fjx8xms9l869Yts6urq3nFihVGmkqVKplDQkKM7RIlSphfe+01YzshIcEMmMeNG2fs27t3rxkwJyQkmM1ms7l3797mfv36WZS9a9cus5WVlfnWrVuZ5puWlmYuWLCgef78+WazOfN2vnr1qhkwR0REZHp9oaGhZsDs6OhotK2tra05NDTUSHP27FmztbW1+eLFixbnNmvWzDxmzBiz2ZzxfprNZnO3bt3MLVq0sDhn5MiR5nLlylm0Vbt27SzSZKUtGjVqZH7zzTczvaaslPtXBw4cMAPmP//802w2m83bt283A+Zt27YZadavX28GjDr81YQJE8yA8alatep9yxORJ+d30EcffV7Aj4iIiIiIyNOS60n8CksebN26dTg5OZGSkkJaWhrdunUjJCSEQYMGUbFiRWM0A0B0dDRnzpzJsObB7du3jWmWAgMDqVOnDr/88guFCxdm6dKltG7dOsOUU+liYmKMaYPS1a9fnzlz5mT5GgYOHEiHDh2Iiori5Zdfpl27dtSrV88izUcffUTz5s35+eefeeutt/j4449xc3PL8nUBVK5cGQcHB2O7bt26XL9+nfPnz1OiRAlOnz7N+PHj2bdvH7/99psxQuPcuXNUqFABOzs7unfvzqJFi+jUqRNRUVEcP36c7777zqLcSpUqGf9dqFAhACpWrJhh3+XLl3F3dyc6OpqjR4+ydOlSI43ZbCYtLY24uDh8fX0z5Gsy3Z026t5pk/7Kzc2NoKAg/Pz8aNGiBc2bN6dTp054eHgYaZydnYmKigLg5s2bbNu2jQEDBpAvXz7atm3LsWPHSE1NxcfHxyLvpKQk8uXLd9+yY2JiCAgIsNhXv359Zs+eTWpqKtbW1gDUqFHDIk1W2+Jxyj106BAhISFER0dz7do1i/tcrlw547x72zu9zS5fvkzx4sUzlDtmzBiGDRtmbFtZ3R2odvHixWxZK8RkMuHp6Ul8fLwxAkjkReCS0xUQkRyj7zyR7KO/NUWyn/qdSM5Q33u+2djYUKRIkYemU1AjGzRp0oT58+djY2ND4cKFyZXr/5rd0dHRIu3169epXr26xQvjdAUKFACgZs2alCpViuXLlzNw4EC+/fbbDFMGPYr0l7v3/kOQkpJikaZly5acPXuWDRs2sHXrVpo1a8agQYOYOXOmkcbd3Z3SpUtTunRpQkNDadWqFSdOnKBgwYJZuq6saNu2LSVKlGDBggUULlyYtLQ0KlSoYPFSuk+fPlSpUoULFy4QGhpK06ZNKVGihEU+uXPnNv47fVhTZvvSX6Zfv36d/v37ExwcnKFO975AvzeP9HzS87if0NBQgoOD2bRpEytWrGDs2LFs3bqVOnXqAHfvT+nSpY30lSpVYsuWLbz//vu0bduW69evG4GA9EBEOicnpweWnRWZPaNZaYu/68aNG/j5+eHn58fSpUspUKAA586dw8/PL0Pw4UH37K9sbW2xtbXNsN9sNmfrl2B2lyciIpJT9J0nkv3U70Syn/qdSM5Q33s+ZfWeKqiRDRwdHS1eSj9ItWrVWLFiBQULFiRPnjz3TRcYGMjSpUspWrQoVlZWtG7d+r5pfX19iYyMpGfPnsa+yMhI4xfv6UGFhIQEqlatCmCxaHi6AgUK0LNnT3r27EmDBg0YOXKkRVDjXrVq1aJ69epMmTKFOXPmZPm6oqOjuXXrFvb29gD88MMPODk5UaxYMa5evcrJkydZsGABDRo0AO4uWP1XFStWpEaNGixYsIBly5Yxd+7c+5aXVdWqVePEiRNZvo+ZSR+Rk5qamuFY1apVqVq1KmPGjKFu3bosW7bMCGpkxtramlu3bhnnpqamcvnyZaNdsiL9ubhXZGQkPj4+GYIj93rctnhYuT/99BNXr15l+vTpFCtWDCDDou0iIiIiIiIiIiLyYtJC4f8wgYGB5M+fn4CAAHbt2kVcXBwREREEBwdz4cIFi3RRUVFMmTKFjh07ZvoL9HQjR44kLCyM+fPnc/r0aT788ENWr17NiBEjgLsLl9epU4fp06cTExPDjh07GDt2rEUe48ePZ+3atZw5c4Yff/yRdevWPXSaoaFDh/LZZ59x8eLFLF9XcnIyvXv35sSJE2zYsIEJEyYwePBgrKyscHV1JV++fPznP//hzJkzfP/99xbTCd2rT58+TJ8+HbPZzCuvvPLQdn+Y0aNHs2fPHgYPHsyRI0c4ffo0a9euzfLi2AAFCxbE3t6eTZs28euvv/LHH38QFxfHmDFj2Lt3L2fPnmXLli2cPn3aom3NZjOXLl3i0qVLxMXF8Z///IfNmzcbUzj5+PgQGBhIjx49WL16NXFxcezfv59p06axfv36+9Zn+PDhhIeHM3nyZE6dOsXixYuZO3eu8Vw8bltcuXKFI0eOWHx+/fXXh5ZbvHhxbGxs+Pe//83PP//Md999x+TJk7PcziIiIiIiIiIiIvL8UlDjH8bBwYGdO3dSvHhx2rdvj6+vL7179+b27dsWIxxKly5NrVq1OHr0KIGBgQ/Ms127dsyZM4eZM2dSvnx5PvvsM0JDQ2ncuLGRZtGiRdy5c4fq1aszdOhQ3nvvPYs8bGxsGDNmDJUqVaJhw4ZYW1uzfPnyB5br7++Pl5cXU6ZMyfJ1NWvWDG9vbxo2bEjnzp3517/+RUhICHB3Gqbly5dz6NAhKlSowFtvvcWMGTMyLbtr167kypWLrl27Ymdn98B6ZkWlSpXYsWMHp06dokGDBlStWpXx48dTuHDhLOeRK1cuPv74Yz777DMKFy5MQEAADg4O/PTTT3To0AEfHx/69evHoEGD6N+/v3He//73Pzw8PPDw8MDX15dZs2YxadIk3n33XSNNaGgoPXr0YPjw4ZQpU4Z27dpx4MCBB04HVa1aNVauXMny5cupUKEC48ePZ9KkSQQFBT2Rtli2bJkxAiX9s2DBgoeWW6BAAcLCwvj6668pV64c06dPv++IIBEREREREREREXmxmMyafEz+IYKCgkhMTGTNmjWPnVd8fDylSpXiwIEDVKtW7fErJ8+tCxcuZNtC4V5eXsTFxWnOR3mhuJYqldNVEJEc4Go26ztPJBvpb02R7Kd+J5Iz1PeebzY2NhQtWvSh6bSmhjxXUlJSuHr1KmPHjqVOnToKaIiIiIiIiIiIiIg8RxTUkOdKZGQkTZo0wcfHh2+++SanqyMi8sK7FhubY2XrFzwiOcNkMuGa05UQEREREZHnloIa8o8RFhb22Hk0btxYL65EREREREREREREnlNaKFxERERERERERERERJ4JCmqIiIiIiIiIiIiIiMgzQdNPiYiIiDwm11KlcroKIv8smg5URERERESeEo3UEBERERERERERERGRZ4KCGi+4NWvWULp0aaytrRk6dGiO1sVkMrFmzZocrcPz6qeffqJOnTrY2dlRpUqVnK6OiIiIiIiIiIiIyN+ioAawd+9erK2tad26dU5X5ZE0btz4voGIxYsXU7NmTRwcHHB2dqZRo0asW7cuQ7r+/fvTsWNHzp8/z+TJk4mIiMBkMhmfQoUK0aFDB37++eenfDWQkJBAy5Ytn3o56YKCgmjXrl22lfeo4uPjLe6FjY0NpUuX5r333sP8iFM6TJgwAUdHR06ePEl4ePhTqvFdISEhCpyIiIiIiIiIiIjIU6GgBvD5558zZMgQdu7cyS+//JLT1XlsI0aMoH///nTu3JmjR4+yf/9+XnrpJQICApg7d66R7vr161y+fBk/Pz8KFy6Ms7OzcezkyZP88ssvfP311/z444+0bduW1NTUDGWZzWbu3LnzROrt7u6Ora3tE8nrebJt2zYSEhI4ffo0EydOZMqUKSxatOiR8oiNjeWll16iRIkS5MuX72/VIzk5+W+dJyIiIiIiIiIiIvKkvPBBjevXr7NixQoGDhxI69atCQsLM46lj1rYvHkzVatWxd7enqZNm3L58mU2btyIr68vefLkoVu3bty8edM4LykpieDgYAoWLIidnR0vvfQSBw4cMI6HhYXh4uJiUY81a9ZgMpmM7fRfu3/xxRd4enqSN29eunTpwp9//gncHWWwY8cO5syZY/ySPz4+nh9++IFZs2YxY8YMRowYQenSpfH19WXKlCkMHTqUYcOGcf78eSIiIowgRtOmTTGZTERERBjlFyxYEA8PDxo2bMj48eM5ceIEZ86cMdpk48aNVK9eHVtbW3bv3k1aWhrTpk3Dy8sLe3t7KleuzDfffANAWloaRYsWZf78+RbXfPjwYaysrDh79iyQcfqpY8eO0bRpU+zt7cmXLx/9+vXj+vXrxvHMRqq0a9eOoKAgY3vevHl4e3tjZ2dHoUKF6Nix432ehIx27NhBrVq1sLW1xcPDg7ffftsigLNp0yZeeuklXFxcyJcvH23atCE2NtY4nj7SYvXq1TRp0gQHBwcqV67M3r17jTRnz56lbdu2uLq64ujoSPny5dmwYYNFPfLly4e7uzslSpQgMDCQ+vXrExUVZZFm4cKF+Pr6YmdnR9myZZk3b55xzGQycejQISZNmoTJZCIkJCRL7Zs+kmXKlCkULlyYMmXKAHD+/Hk6deqEi4sLbm5uBAQEEB8fn+V2fVi5Bw4coEWLFuTPn5+8efPSqFGjDNdrMplYuHAhr7zyCg4ODnh7e/Pdd99luQ4iIiIiIiIiIiLybHrhgxorV66kbNmylClThtdee41FixZlmNonJCSEuXPnsmfPHuOF7uzZs1m2bBnr169ny5Yt/Pvf/zbSjxo1ilWrVrF48WKioqIoXbo0fn5+/P77749Ut9jYWNasWcO6detYt24dO3bsYPr06QDMmTOHunXr0rdvXxISEkhISKBYsWJ89dVXODk50b9//wz5DR8+nJSUFFatWkW9evU4efIkAKtWrSIhIYF69eplWg97e3vA8pf6b7/9NtOnTycmJoZKlSoxbdo0lixZwqeffsqPP/7IW2+9xWuvvcaOHTuwsrKia9euLFu2zCLfpUuXUr9+fUqUKJGhzBs3buDn54erqysHDhzg66+/Ztu2bQwePDjL7Xfw4EGCg4OZNGkSJ0+eZNOmTTRs2DBL5168eJFWrVpRs2ZNoqOjmT9/Pp9//jnvvfeeRR2HDRvGwYMHCQ8Px8rKildeeYW0tDSLvN59911GjBjBkSNH8PHxoWvXrkZwZNCgQSQlJbFz506OHTvG+++/j5OT0wOv6dChQ9SuXdvYt3TpUsaPH8+UKVOIiYlh6tSpjBs3jsWLFwN3p/UqX748w4cPJyEhgREjRmS5fcPDwzl58iRbt25l3bp1pKSk4Ofnh7OzM7t27SIyMhInJyf8/f2zNJIjK+X++eef9OzZk927d/PDDz/g7e1Nq1atjIBeuokTJ9KpUyeOHj1Kq1atCAwMfOQ+JiIiIiIiIiIiIs+WXDldgZz2+eef89prrwHg7+/PH3/8wY4dO2jcuLGR5r333qN+/foA9O7dmzFjxhAbG0vJkiUB6NixI9u3b2f06NHcuHGD+fPnExYWZqwPsWDBArZu3crnn3/OyJEjs1y3tLQ0wsLCjBEV3bt3Jzw8nClTppA3b15sbGxwcHDA3d3dOOfUqVOUKlUKGxubDPkVLlyYPHnycOrUKWxsbChYsCAAbm5uFnncKyEhgZkzZ1KkSBHKlCnDnj17AJg0aRItWrQA7o5MmTp1Ktu2baNu3boAlCxZkt27d/PZZ5/RqFEjAgMDmTVrFufOnaN48eKkpaWxfPlyxo4dm2m5y5Yt4/bt2yxZsgRHR0cA5s6dS9u2bXn//fcpVKjQQ9vv3LlzODo60qZNG5ydnSlRogRVq1Z96Hlwd4RHsWLFmDt3LiaTibJly/LLL78wevRoxo8fj5WVFR06dLA4Z9GiRRQoUIATJ05QoUIFY/+IESOM9VomTpxI+fLlOXPmDGXLluXcuXN06NCBihUrGu32V/Xq1cPKyork5GRSUlLo168fPXr0MI5PmDCBWbNm0b59ewC8vLw4ceIEn332GT179sTd3Z1cuXLh5ORk3OcFCxZkqX0dHR1ZuHCh8Tx9+eWXpKWlsXDhQmNkUWhoKC4uLkRERPDyyy8/sF2zcl+bNm1qcc5//vMfXFxc2LFjB23atDH2BwUF0bVrVwCmTp3Kxx9/zP79+/H398+07KSkJJKSkoxtKysrnJycjJFOT1t6GdlRlojcpX4nkrPU90Syj77zRLKf+p1IzlDfe75l9b6+0EGNkydPsn//fr799lsAcuXKRefOnfn8888tghqVKlUy/rtQoUI4ODhYvHwuVKgQ+/fvB+6OrkhJSTGCIAC5c+emVq1axMTEPFL9PD09Lda58PDw4PLlyw8971EXkc5M0aJFMZvN3Lx5k8qVK7Nq1SqLQEmNGjWM/z5z5gw3b940ghzpkpOTjSBClSpV8PX1ZdmyZbz99tvs2LGDy5cv8+qrr2ZafkxMDJUrVzZefAPUr1+ftLQ0Tp48maWgRosWLShRogQlS5bE398ff39/Y7qih4mJiaFu3boWHal+/fpcv36dCxcuULx4cU6fPs348ePZt28fv/32mzFC49y5cxZBjXufHw8PDwAuX75M2bJlCQ4OZuDAgWzZsoXmzZvToUMHi/QAK1aswNfXl5SUFI4fP86QIUNwdXVl+vTp3Lhxg9jYWHr37k3fvn2Nc+7cuUPevHkfeH1Zad+KFSta3Pfo6GjOnDlj8VwC3L5922Lqrccp99dff2Xs2LFERERw+fJlUlNTuXnzJufOnbPI6952cnR0JE+ePA/sH9OmTWPixInGdtWqVYmKiqJIkSIPrfeT5Onpma3liUj29LtrT70EkWePvvNEsp/6nUj2U78TyRnqey+2Fzqo8fnnn3Pnzh0KFy5s7DObzdja2losqJ07d27jv00mk8V2+r6/Tjn0IFZWVhkCDykpKRnS/Z1yfHx82L17N8nJyRlGa/zyyy/873//w8fH56F13LVrF3ny5KFgwYIZXmADFi+l09dDWL9+fYYXxPcu/B0YGGgENZYtW4a/v//fXrQaHt6Ozs7OREVFERERwZYtWxg/fjwhISEcOHAgw5omf0fbtm0pUaIECxYsoHDhwqSlpVGhQoUM0zD99fkBjPvYp08f/Pz8jGnMpk2bxqxZsxgyZIhxTrFixShdujQAvr6+xMbGMm7cOEJCQoy2X7BggcWUVADW1taPfY333me4e6+rV6/O0qVLM6QtUKDAY5cH0LNnT65evcqcOXMoUaIEtra21K1b94HtCg/vH2PGjGHYsGHGtpXV3dn3Ll68mC2LoJtMJjw9PYmPj38igUcRebjs7HcuTzV3kWeTvvNEso/+1hTJfup3IjlDfe/5ZmNjk6UfIL+wQY07d+6wZMkSZs2alWHKnHbt2vHVV19RtmzZR843feqnyMhIY62IlJQUDhw4YCxqXaBAAf78809u3LhhvDQ+cuTII5dlY2NDamqqxb4uXbrw8ccf89lnn1m8GAeYOXMmuXPnzjBtUma8vLyy/OK/XLly2Nracu7cORo1anTfdN26dWPs2LEcOnSIb775hk8//fS+aX19fQkLC7Noo8jISKysrIwFqwsUKEBCQoJxTmpqKsePH6dJkybGvly5ctG8eXOaN2/OhAkTcHFx4fvvvzemanpQ+atWrcJsNhuBiMjISJydnSlatChXr17l5MmTLFiwgAYNGgCwe/fuh7RU5ooVK8aAAQMYMGAAY8aMYcGCBRnu3b2sra25c+cOycnJFCpUiMKFC/Pzzz8TGBiY5TKz0r6ZqVatGitWrKBgwYLkyZMn6xf5COVGRkYyb948WrVqBdxdmPy333575LL+ytbW1iLIls5sNmfrl2B2lyci6nciOUV9TyT7qd+JZD/1O5Gcob73fMrqPX1hgxrr1q3j2rVr9O7dO8M0PR06dODzzz9nxowZj5yvo6MjAwcOZOTIkbi5uVG8eHE++OADbt68Se/evQGoXbs2Dg4OvPPOOwQHB7Nv3z7CwsIeuSxPT0/27dtHfHw8Tk5OuLm5UbduXd58801GjhxJcnIy7dq1IyUlhS+//JI5c+Ywe/ZsihUr9shlPYizszMjRozgrbfeIi0tjZdeeok//viDyMhI8uTJQ8+ePY361qtXj969e5Oamsq//vWv++YZGBjIhAkT6NmzJyEhIVy5coUhQ4bQvXt3Y2qkpk2bMmzYMNavX0+pUqX48MMPSUxMNPJYt24dP//8Mw0bNsTV1ZUNGzaQlpZm8dL+jz/+yBBQypcvH2+88QazZ89myJAhDB48mJMnTzJhwgSGDRuGlZUVrq6u5MuXj//85z94eHhw7tw53n777Uduu6FDh9KyZUt8fHy4du0a27dvx9fX1yLN1atXuXTpEnfu3OHYsWPMmTOHJk2aGEGFiRMnEhwcTN68efH39ycpKYmDBw9y7do1i5EJj9q+9ztvxowZBAQEMGnSJIoWLcrZs2dZvXo1o0aNomjRogDcunUrQ7s6OztnqVxvb2+++OILatSowf/+9z9GjhxpLFYvIiIiIiIiIiIiLzarnK5ATvn8889p3rx5pusOdOjQgYMHD3L06NG/lff06dPp0KED3bt3p1q1apw5c4bNmzfj6uoK3F2Y+8svv2TDhg1UrFiRr776ipCQkEcuZ8SIEVhbW1OuXDkKFChgrDkwe/Zs5s2bx1dffUWFChWoUaMGO3fuZM2aNQ8cAfA4Jk+ezLhx45g2bRq+vr74+/uzfv16vLy8LNIFBgYSHR3NK6+88sAX1Q4ODmzevJnff/+dmjVr0rFjR5o1a2YxLdjrr79Oz5496dGjB40aNaJkyZIWozRcXFxYvXo1TZs2xdfXl08//ZSvvvqK8uXLG2kiIiKoWrWqxWfixIkUKVKEDRs2sH//fipXrsyAAQPo3bu3sbC5lZUVy5cv59ChQ1SoUIG33nrrbwXBUlNTGTRokNFmPj4+zJs3zyJN8+bN8fDwwNPTk379+tGqVStWrFhhHO/Tpw8LFy4kNDSUihUr0qhRI8LCwjK0/aO27/3O27lzJ8WLF6d9+/b4+vrSu3dvbt++bTFy49SpUxnatX///lkq9/PPP+fatWtUq1aN7t27ExwcbCxqLyIiIiIiIiIiIi82k1njdETkBXbhwoVsW1PDy8uLuLg4DY8UySbZ2e9cS5V6qvmLPGtczWZ954lkI/2tKZL91O9Ecob63vPNxsbGmAnmQV7YkRoiIiIiIiIiIiIiIvJseWHX1BARERF5Uq7FxuZ0FUT+MUwmE645XQkREREREXluaaSGiIiIiIiIiIiIiIg8ExTUEBERERERERERERGRZ4KCGiIiIiIiIiIiIiIi8kzQmhoiIiIiIvJE5d/aIKerIMD+UotzugoiIiIiIk+cRmqIiIiIiIiIiIiIiMgzQUGNF9ylS5do0aIFjo6OuLi45GhdgoKCaNeuXY7W4XllNpvp168fbm5umEwmjhw5ktNVEhEREREREREREXlkCmr8gwQFBWEymZg+fbrF/jVr1mAymR4prx9//JFOnTpRoEABbG1t8fHxYfz48dy8edMi3UcffURCQgJHjhzh1KlTAHh6emIymTCZTDg6OlKtWjW+/vrrx7u4LJgzZw5hYWFPvZx0ERERmEwmEhMTs63MR9W4cWPjXphMJgoVKsSrr77K2bNnHymfTZs2ERYWxrp160hISKBChQpPqcYQHx+vwImIiIiIiIiIiIg8FQpq/MPY2dnx/vvvc+3atb+dxw8//EDt2rVJTk5m/fr1nDp1iilTphAWFkaLFi1ITk420sbGxlK9enW8vb0pWLCgsX/SpEkkJCRw+PBhatasSefOndmzZ0+m5d2b3+PImzdvjo8W+Sfq27cvCQkJ/PLLL6xdu5bz58/z2muvPVIesbGxeHh4UK9ePdzd3cmV69GX0zGbzdy5c+eRzxMRERERERERERF5UhTU+Idp3rw57u7uTJs27b5pVq1aRfny5bG1tcXT05NZs2YZx8xmM71798bX15fVq1dTq1YtSpQowauvvsp///tf9u7dy0cffQTcHZGxatUqlixZgslkIigoyMjH2dkZd3d3fHx8+OSTT7C3t+e///2vcd7kyZPp0aMHefLkoV+/fgDs3r2bBg0aYG9vT7FixQgODubGjRsAvPPOO9SuXTvDtVSuXJlJkyYBGaefSkpKIjg4mIIFC2JnZ8dLL73EgQMHjONhYWEZgiB/HdUSHR1NkyZNcHZ2Jk+ePFSvXp2DBw8+6BYYrl27Ro8ePXB1dcXBwYGWLVty+vRp4/jVq1fp2rUrRYoUwcHBgYoVK/LVV19Z5NG4cWOCg4MZNWoUbm5uuLu7ExISYhw3m82EhIRQvHhxbG1tKVy4MMHBwRZ5ODg44O7ujoeHB3Xq1GHw4MFERUVZpDl+/DgtW7bEycmJQoUK0b17d3777TejXYcMGcK5c+cwmUx4enpmqX3TR7Js3LiR6tWrY2try+7du0lLS2PatGl4eXlhb29P5cqV+eabb7LUplkpNzU1ld69exv5lylThjlz5ljkkf6szJw5Ew8PD/Lly8egQYNISUnJcj1ERERERERERETk2aOgxj+MtbU1U6dO5d///jcXLlzIcPzQoUN06tSJLl26cOzYMUJCQhg3bpwxbdORI0c4ceIEw4YNw8rK8vZWrlyZ5s2bGy/eDxw4gL+/P506dSIhISHDi+N0uXLlInfu3BYjMmbOnEnlypU5fPgw48aNIzY2Fn9/fzp06MDRo0dZsWIFu3fvZvDgwQAEBgayf/9+YmNjjTx+/PFHjh49Srdu3TItd9SoUaxatYrFixcTFRVF6dKl8fPz4/fff89yewYGBlK0aFEOHDjAoUOHePvtt8mdO3eWzg0KCuLgwYN899137N27F7PZTKtWrYwX57dv36Z69eqsX7+e48eP069fP7p3787+/fst8lm8eDGOjo7s27ePDz74gEmTJrF161bgboDqo48+4rPPPuP06dOsWbOGihUr3rdOv//+OytXrrQIECUmJtK0aVOqVq3KwYMH2bRpE7/++iudOnUC7k7rNWnSJIoWLUpCQoIRQMhq+7799ttMnz6dmJgYKlWqxLRp01iyZAmffvopP/74I2+99RavvfYaO3bsyFK7PqzctLQ0ihYtytdff82JEycYP34877zzDitXrrTIZ/v27cTGxrJ9+3YWL15MWFhYtk5fJiIiIiIiIiIiItnv0eegkafulVdeoUqVKkyYMIHPP//c4tiHH35Is2bNGDduHAA+Pj6cOHGCGTNmEBQUZKyL4evrm2nevr6+7N69G8BYb8Pe3h53d/dM0ycnJzNr1iz++OMPmjZtauxv2rQpw4cPN7b79OlDYGAgQ4cOBcDb25uPP/6YRo0aMX/+fMqXL0/lypVZtmyZUfelS5dSu3ZtSpcunaHcGzduMH/+fMLCwmjZsiUACxYsYOvWrXz++eeMHDnyoe0IcO7cOUaOHEnZsmWNemXF6dOn+e6774iMjKRevXpGfYsVK8aaNWt49dVXKVKkCCNGjDDOGTJkCJs3b2blypXUqlXL2F+pUiUmTJhglD937lzCw8Np0aIF586dw93dnebNm5M7d26KFy9ucS7AvHnzWLhwIWazmZs3b+Lj48PmzZuN43PnzqVq1apMnTrV2Ldo0SKKFSvGqVOn8PHxwdnZGWtra+M+P0r7Tpo0iRYtWgB3R1lMnTqVbdu2UbduXQBKlizJ7t27+eyzz2jUqNED2zUr5ebOnZuJEyca53h5ebF3715WrlxpBGoAXF1dmTt3LtbW1pQtW5bWrVsTHh5O3759My07KSmJpKQkY9vKygonJydjvZKnLb2M7ChLRO5SvxPJGepz/xy6Fy8OfeeJZD/1O5Gcob73fMvqfVVQ4x/q/fffp2nTphYvzQFiYmIICAiw2Fe/fn1mz55Namqqsc9sNj9W+aNHj2bs2LHcvn0bJycnpk+fTuvWrY3jNWrUsEgfHR3N0aNHWbp0qUUd0tLSiIuLw9fXl8DAQBYtWsS4ceMwm8189dVXDBs2LNPyY2NjSUlJoX79+sa+3LlzU6tWLWJiYrJ8HcOGDaNPnz588cUXNG/enFdffZVSpUo99LyYmBhy5cplMSIiX758lClTxig/NTWVqVOnsnLlSi5evEhycjJJSUk4ODhY5FWpUiWLbQ8PDy5fvgzAq6++yuzZsylZsiT+/v60atWKtm3bWqx5ERgYyLvvvgvAr7/+ytSpU3n55Zc5dOgQzs7OREdHs337dpycnDJcR2xsLD4+Ppnuz2r73nuvz5w5w82bN40gR7rk5GSqVq2aSUv+vXI/+eQTFi1axLlz57h16xbJyclUqVLFIq/y5ctjbW1tbHt4eHDs2LH7lj1t2jSLYEnVqlWJioqiSJEiD633k5Q+/ZeIZB/1O5EccPrhSeTp8/LyyukqSDbTd55I9lO/E8kZ6nsvNgU1/qEaNmyIn58fY8aMsVjr4mHSX2DHxMRk+pI5JiYm05fcfzVy5EiCgoKMNRr+GiVzdHS02L5+/Tr9+/fPsB4EQPHixQHo2rUro0ePJioqilu3bnH+/Hk6d+6c5Wv7KysrqwzBm7+uqRASEkK3bt1Yv349GzduZMKECSxfvpxXXnnlb5ebbsaMGcyZM4fZs2dTsWJFHB0dGTp0aIaF0/863ZXJZCItLQ2AYsWKcfLkSbZt28bWrVt54403mDFjBjt27DDOy5s3rzGapXTp0nz++ed4eHiwYsUK+vTpw/Xr12nbti3vv/9+hjp6eHg89nXee6+vX78OwPr16zMEA2xtbR+7LIDly5czYsQIZs2aRd26dXF2dmbGjBns27fPIt2D2jUzY8aMsQiipU/Plh6QetrS1zOJj49/7KCjiGSN+p1IztCv5v454uLicroKkk30nSeS/dTvRHKG+t7zzcbGJks/QFZQ4x9s+vTpVKlShTJlyhj7fH19iYyMtEgXGRmJj48P1tbWVKlShbJly/LRRx/RpUsXi3U1oqOj2bZt2wMXIU+XP3/+TKeFup9q1apx4sSJB55TtGhRGjVqxNKlS7l16xYtWrSgYMGCmaYtVaoUNjY2REZGUqJECeBuwOLAgQPGFFcFChTgzz//5MaNG8aL9yNHjmTIy8fHBx8fH9566y26du1KaGjoQ4Mavr6+3Llzh3379hnTT129epWTJ09Srlw54G67BwQE8NprrwF314I4deqUcTyr7O3tadu2LW3btmXQoEGULVuWY8eOUa1atUzTp49OuHXrFnC37VetWoWnp6fFCI8HyUr7ZqZcuXLY2tpy7ty5h0419XfLTZ/y64033jDOu3ctlr/L1tY208CL2WzO1i/B7C5PRNTvROTFpX/7Xjz6zhPJfup3IjlDfe/5lNV7qqDGP1jFihUJDAzk448/NvYNHz6cmjVrMnnyZDp37szevXuZO3cu8+bNA+5GKz///HNatGhBhw4dGDNmDO7u7uzbt4/hw4dTt27dB760/rtGjx5NnTp1GDx4MH369MHR0ZETJ06wdetW5s6da6QLDAxkwoQJJCcn89FHH903P0dHRwYOHMjIkSNxc3OjePHifPDBB9y8eZPevXsDULt2bRwcHHjnnXcIDg5m3759FgtF37p1i5EjR9KxY0e8vLy4cOECBw4coEOHDhZlHTt2DGdnZ2PbZDJRuXJlAgIC6Nu3L5999hnOzs68/fbbFClSxJj+y9vbm2+++YY9e/bg6urKhx9+yK+//vpIQY2wsDBSU1ONa/nyyy+xt7c3XvgD3Lx5k0uXLgF3p5+aPHkydnZ2vPzyywAMGjSIBQsW0LVrV0aNGoWbmxtnzpxh+fLlLFy40GKKpkdp38w4OzszYsQI3nrrLdLS0njppZf4448/iIyMJE+ePPTs2dNIe/LkyQznly9f/qHlent7s2TJEjZv3oyXlxdffPEFBw4c0PQJIiIiIiIiIiIioqDGP92kSZNYsWKFsV2tWjVWrlzJ+PHjmTx5Mh4eHkyaNMliiqp69erxww8/MHHiRFq2bMmff/5J8eLF6dmzJ2PGjHli0wTdq1KlSuzYsYN3332XBg0aYDabKVWqVIbppTp27MjgwYOxtramXbt2D8xz+vTppKWl0b17d/78809q1KjB5s2bcXV1BcDNzY0vv/ySkSNHsmDBApo1a0ZISAj9+vUD7o5ouHr1Kj169ODXX38lf/78tG/f3mJdBbg71de9rK2tuXPnDqGhobz55pu0adOG5ORkGjZsyIYNG4xpj8aOHcvPP/+Mn58fDg4O9OvXj3bt2vHHH39kud1cXFyYPn06w4YNIzU1lYoVK/Lf//6XfPnyGWkWLFjAggULgLuLY1eqVIkNGzYYI3gKFy5MZGQko0eP5uWXXyYpKYkSJUrg7+9vMVLnUdv3fiZPnkyBAgWYNm0aP//8My4uLlSrVo133nnHIl2XLl0ynHv+/PmHltu/f38OHz5M586dMZlMdO3alTfeeIONGzdmrVFFRERERERERETkuWUya5yOiLzALly4kG1ranh5eREXF6fhkSLZRP1OJGeYTCZqnumR09UQYH+pxTldBckm+s4TyX7qdyI5Q33v+WZjY0PRokUfmu7+P+MWERERERERERERERH5B1FQQ0REREREREREREREnglaU0NERERERJ6o31rs0pQAIiIiIiLyVGikhoiIiIiIiIiIiIiIPBMU1BARERERERERERERkWeCpp8SEREREZEnKv/WBjldBZEXz5mcroA8aftLLc7pKoiIiPwjaaSGiIiIiIiIiIiIiIg8ExTUEBERERERERERERGRZ4KCGiJPgclkYs2aNQDEx8djMpk4cuRIjtbpWRMUFES7du0e6Zx7211ERERERERERESePwpqyAvj0qVLDBkyhJIlS2Jra0uxYsVo27Yt4eHhT7XcYsWKkZCQQIUKFQCIiIjAZDKRmJhoke7KlSsMHDiQ4sWLY2tri7u7O35+fkRGRj7V+mVF48aNMZlMGT4DBgzIch4hISGYTCb8/f0zHJsxYwYmk4nGjRsb++bMmUNYWNgj1TMhIYGWLVs+0jkiIiIiIiIiIiLy7NBC4fJCiI+Pp379+ri4uDBjxgwqVqxISkoKmzdvZtCgQfz0008ZzklJSSF37tyPXba1tTXu7u4PTdehQweSk5NZvHgxJUuW5NdffyU8PJyrV68+dh3uJzk5GRsbmyyl7du3L5MmTbLY5+Dg8EjleXh4sH37di5cuEDRokWN/YsWLaJ48eIWafPmzftIeQNZamcRERERERERERF5dmmkhrwQ3njjDUwmE/v376dDhw74+PhQvnx5hg0bxg8//ADcnbpo/vz5/Otf/8LR0ZEpU6YAsHbtWqpVq4adnR0lS5Zk4sSJ3Llzx8j79OnTNGzYEDs7O8qVK8fWrVstyr53+qn4+HiaNGkCgKurKyaTiaCgIBITE9m1axfvv/8+TZo0oUSJEtSqVYsxY8bwr3/9y8grMTGR/v37U6hQIezs7KhQoQLr1q0zjq9atYry5ctja2uLp6cns2bNsqiLp6cnkydPpkePHuTJk4d+/foBsHv3bho0aIC9vT3FihUjODiYGzduWJzr4OCAu7u7xSdPnjzG8fPnz9OpUydcXFxwc3MjICCA+Ph4izwKFizIyy+/zOLFi419e/bs4bfffqN169YWaf86/VTjxo0JDg5m1KhRuLm54e7uTkhIiMU5mn5KRERERERERETk+aaRGvLc+/3339m0aRNTpkzB0dExw3EXFxfjv0NCQpg+fTqzZ88mV65c7Nq1ix49evDxxx/ToEEDYmNjjUDAhAkTSEtLo3379hQqVIh9+/bxxx9/MHTo0PvWpVixYqxatYoOHTpw8uRJ8uTJg729PY6Ojjg5ObFmzRrq1KmDra1thnPT0tJo2bIlf/75J19++SWlSpXixIkTWFtbA3Do0CE6depESEgInTt3Zs+ePbzxxhvky5ePoKAgI5+ZM2cyfvx4JkyYAEBsbCz+/v689957LFq0iCtXrjB48GAGDx5MaGholto4JSUFPz8/6taty65du8iVKxfvvfce/v7+HD161GI0yOuvv86oUaN49913gbujNAIDA7NUzuLFixk2bBj79u1j7969BAUFUb9+fVq0aPHQc5OSkkhKSjK2rayscHJyMqbSetrSy8iOskTkLvU7kZyhPici8mTo39N/Nv2tKZIz1Peeb1m9rwpqyHPvzJkzmM1mypYt+9C03bp1o1evXsb266+/zttvv03Pnj0BKFmyJJMnT2bUqFFMmDCBbdu28dNPP7F582YKFy4MwNSpU++7roO1tTVubm7A3VEL9wZUwsLC6Nu3L59++inVqlWjUaNGdOnShUqVKgGwbds29u/fT0xMDD4+PkZ90n344Yc0a9aMcePGAeDj48OJEyeYMWOGRVCjadOmDB8+3Nju06cPgYGBRjDG29ubjz/+mEaNGjF//nzs7OwAmDdvHgsXLrS4ns8++4zAwEBWrFhBWloaCxcuNP7xCQ0NxcXFhYiICF5++WXjnDZt2jBgwAB27txJ9erVWblyJbt372bRokUPujUAVKpUyQjGeHt7M3fuXMLDw7MU1Jg2bRoTJ040tqtWrUpUVBRFihR56LlPkqenZ7aWJyLqdyI54nROV0BE5Nnn5eWV01WQLNDfmiI5Q33vxaaghjz3zGZzltPWqFHDYjs6OprIyEhjKiqA1NRUbt++zc2bN4mJiaFYsWJGQAOgbt26f6ueHTp0oHXr1uzatYsffviBjRs38sEHH7Bw4UKCgoI4cuQIRYsWNQIafxUTE0NAQIDFvvr16zN79mxSU1ONER2ZXePRo0dZunSpsc9sNpOWlkZcXBy+vr4ABAYGGqMr0hUqVMjI48yZMzg7O1scv337NrGxsRb7cufOzWuvvUZoaCg///wzPj4+RuDmYf6azsPDg8uXL2fp3DFjxjBs2DBj28rq7ux7Fy9eJDk5OUt5PA6TyYSnpyfx8fGP9EyKyN+nfieSM/SrORGRJyMuLi6nqyAPoL81RXKG+t7zzcbGJks/QFZQQ5573t7emEymTBcD/6u/Tk91/fp1Jk6cSPv27TOkTR/B8CTZ2dnRokULWrRowbhx4+jTpw8TJkwgKCgIe3v7J1JGZtfYv39/goODM6S9d/HuvHnzUrp06UzzvH79OtWrV7cIjKQrUKBAhn2vv/46tWvX5vjx47z++utZrvtfF243mUykpaVl6VxbW9tMp/Uym83Z+iWY3eWJiPqdiIiIPJv098uzQX9riuQM9b3nU1bvqYIa8txzc3PDz8+PTz75hODg4Awv9RMTEy2mgbpXtWrVOHny5H1f5vv6+nL+/HkSEhLw8PAAMBYev5/09SVSU1MfWvdy5coZC19XqlSJCxcucOrUqUxHa/j6+hIZGWmxLzIyEh8fH2OURmaqVavGiRMn7nuNWVGtWjVWrFhBwYIFLRYPv5/y5ctTvnx5jh49Srdu3f52uSIiIiIiIiIiIvJiscrpCohkh08++YTU1FRq1arFqlWrOH36NDExMXz88ccPnC5q/PjxLFmyhIkTJ/Ljjz8SExPD8uXLGTt2LADNmzfHx8eHnj17Eh0dza5duzJM0fRXJUqUwGQysW7dOq5cucL169e5evUqTZs25csvv+To0aPExcXx9ddf88EHHxhTSjVq1IiGDRvSoUMHtm7dSlxcHBs3bmTTpk0ADB8+nPDwcCZPnsypU6dYvHgxc+fOZcSIEQ+sz+jRo9mzZw+DBw/myJEjnD59mrVr1zJ48GCLdDdv3uTSpUsWn2vXrgF3p6bKnz8/AQEB7Nq1i7i4OCIiIggODubChQuZlvv999+TkJBw34CSiIiIiIiIiIiIyF8pqCEvhJIlSxIVFUWTJk0YPnw4FSpUoEWLFoSHhzN//vz7nufn58e6devYsmULNWvWpE6dOnz00UeUKFECuLsuw7fffsutW7eoVasWffr0sVh/IzNFihRh4sSJvP322xQqVIjBgwfj5ORE7dq1+eijj2jYsCEVKlRg3Lhx9O3bl7lz5xrnrlq1ipo1a9K1a1fKlSvHqFGjjBEf1apVY+XKlSxfvpwKFSowfvx4Jk2aZLFIeGYqVarEjh07OHXqFA0aNKBq1aqMHz/eYp0QgAULFuDh4WHx6dq1KwAODg7s3LmT4sWL0759e3x9fenduze3b9++78gNR0dHBTRERERERERERETkkZjMmnxMRF5gFy5cyLaFwr28vIiLi9OcjyLZRP1OJGeYTCZqnumR09UQEXnm7S+1OKerIA+gvzVFcob63vPNxsaGokWLPjSdRmqIiIiIiIiIiIiIiMgzQQuFi4iIiIjIE/Vbi1369ZxINtKvVkVERORFopEaIiIiIiIiIiIiIiLyTFBQQ0REREREREREREREngkKaoiIiIiIiIiIiIiIyDNBa2qIiIgIrqVK5XQVnoprgEtOV0LkRaQ5/UVERERE5CnRSA0REREREREREREREXkmKKghIs+cxo0bM3To0JyuhoiIiIiIiIiIiGQzBTVEnmNBQUGYTKYMnzNnzjzVcletWkXjxo3JmzcvTk5OVKpUiUmTJvH7778/1XJFRERERERERETk+aaghshzzt/fn4SEBIuPl5eXRZrk5OQnVt67775L586dqVmzJhs3buT48ePMmjWL6OhovvjiiydWjoiIiIiIiIiIiLx4FNQQec7Z2tri7u5u8WnWrBmDBw9m6NCh5M+fHz8/PwCOHz9Oy5YtcXJyolChQnTv3p3ffvvNyCstLY1p06bh5eWFvb09lStX5ptvvjGO79+/n6lTpzJr1ixmzJhBvXr18PT0pEWLFqxatYqePXsCEBsbS0BAAIUKFcLJyYmaNWuybds2i3rPmzcPb29v7OzsKFSoEB07drQ4npaWxqhRo3Bzc8Pd3Z2QkJCn1IIiIiIiIiIiIiLyT5ErpysgIjlj8eLFDBw4kMjISAASExNp2rQpffr04aOPPuLWrVuMHj2aTp068f333wMwbdo0vvzySz799FO8vb3ZuXMnr732GgUKFKBRo0YsXboUJycn3njjjUzLdHFxAeD69eu0atWKKVOmYGtry5IlS2jbti0nT56kePHiHDx4kODgYL744gvq1avH77//zq5duzLUf9iwYezbt4+9e/cSFBRE/fr1adGiRaZlJyUlkZSUZGxbWVnh5ORkTMn1tKWXkR1liYiI/BPoO08k++hvTZHsp34nkjPU955vWb2vJrPZbH7KdRGRHBIUFMSXX36JnZ2dsa9ly5ZcuXKF//3vf0RFRRn733vvPXbt2sXmzZuNfRcuXKBYsWKcPHmSEiVK4ObmxrZt26hbt66Rpk+fPty8eZNly5bRqlUrLl68SHR09CPXtUKFCgwYMIDBgwezevVqevXqxYULF3B2ds6QtnHjxqSmploEOmrVqkXTpk2ZPn16pvmHhIQwceJEY7tq1aoW1y/yorumPwhF5Aly1f9iiIiIiIjIU6KRGiLPuSZNmjB//nxj29HRka5du1K9enWLdNHR0Wzfvh0nJ6cMecTGxpKSksLNmzczjIRITk6matWqAGQ1Rnr9+nVCQkJYv349CQkJ3Llzh1u3bnHu3DkAWrRoQYkSJShZsiT+/v74+/vzyiuv4ODgYORRqVIlizw9PDy4fPnyfcscM2YMw4YNM7atrO7Ovnfx4sUnuqbI/ZhMJjw9PYmPj89yO4lkJ5ecroCIPHf0nSeSffS3pkj2U78TyRnqe883GxsbihQp8tB0CmqIPOccHR0pXbp0pvvvdf36ddq2bcv777+fIa2HhwfHjx8HYP369Rn+cbG1tQXAx8eH3bt3k5KSQu7cue9bpxEjRrB161ZmzpxJ6dKlsbe3p2PHjkZwwdnZmaioKCIiItiyZQvjx48nJCSEAwcOGFNY/TV/k8lEWlrafcu0tbU16nkvs9mcrV+C2V2eiIhITtF3nkj2U78TyX7qdyI5Q33v+ZTVe6qFwkUEgGrVqvHjjz/i6elJ6dKlLT6Ojo6UK1cOW1tbzp07l+F4sWLFAOjWrRvXr19n3rx5mZaRmJgIQGRkJEFBQbzyyitUrFgRd3d34uPjLdLmypWL5s2b88EHH3D06FHi4+ONtT1ERERERERERETkxaSRGiICwKBBg1iwYAFdu3Zl1KhRuLm5cebMGZYvX87ChQtxdnZmxIgRvPXWW6SlpfHSSy/xxx9/EBkZSZ48eejZsye1a9dm1KhRDB8+nIsXL/LKK69QuHBhzpw5w6effspLL73Em2++ibe3N6tXr6Zt27aYTCbGjRtnMcpi3bp1/PzzzzRs2BBXV1c2bNhAWloaZcqUycEWEhERERERERERkZymoIaIAFC4cGEiIyMZPXo0L7/8MklJSZQoUQJ/f39j/YnJkydToEABpk2bxs8//4yLiwvVqlXjnXfeMfJ5//33qV69Op988gmffvopaWlplCpVio4dO9KzZ08APvzwQ15//XXq1atH/vz5GT16NP/73/+MPFxcXFi9ejUhISHcvn0bb29vvvrqK8qXL5+9jSIiIiIiIiIiIiL/KCazJh8TkRfYhQsXsm2hcC8vL+Li4jTno/wjuZYqldNVEJHniKvZrO88kWykvzVFsp/6nUjOUN97vtnY2FC0aNGHptOaGiIiIiIiIiIiIiIi8kzQ9FMiIiLCtdjYnK7CE6df8IjkDJPJhGtOV0JERERERJ5bGqkhIiIiIiIiIiIiIiLPBAU1RERERERERERERETkmaCghoiIiIiIiIiIiIiIPBO0poaIiIiIiDxR+bc2yOkqSDbbX2pxTldBRERERF4QGqkhIiIiIiIiIiIiIiLPBAU1RP6hQkJCqFKlSk5XQ0REREREREREROQfQ0ENkScsKCgIk8mEyWQid+7cFCpUiBYtWrBo0SLS0tKeeFnt2rUztsPCwoyy7/eJj4+/b35hYWG4uLg80TqKiIiIiIiIiIiIPCkKaog8Bf7+/iQkJBAfH8/GjRtp0qQJb775Jm3atOHOnTtPrdzOnTuTkJBgfOrWrUvfvn0t9hUrVuyplS8iIiIiIiIiIiLyNCmoIfIU2Nra4u7uTpEiRahWrRrvvPMOa9euZePGjYSFhQGQmJhInz59KFCgAHny5KFp06ZER0dnyOuzzz6jWLFiODg40KlTJ/744w/g7vRUixcvZu3atcYojH379uHu7m58bGxscHBwMLaTk5Np3749Tk5O5MmTh06dOvHrr7/e9zrSp8D64osv8PT0JG/evHTp0oU///zTSJOWlsYHH3xA6dKlsbW1pXjx4kyZMsU4fuzYMZo2bYq9vT358uWjX79+XL9+3TiePtpk6tSpFCpUCBcXFyZNmsSdO3cYOXIkbm5uFC1alNDQUIu6nT9/nk6dOuHi4oKbmxsBAQEPHIUiIiIiIiIiIiIizz4FNUSySdOmTalcuTKrV68G4NVXX+Xy5cts3LiRQ4cOUa1aNZo1a8bvv/9unHPmzBlWrlzJf//7XzZt2sThw4d54403ABgxYgSdOnUyRoUkJCRQr169+5aflpZGQEAAv//+Ozt27GDr1q38/PPPdO7c+YH1jo2NZc2aNaxbt45169axY8cOpk+fbhwfM2YM06dPZ9y4cZw4cYJly5ZRqFAhAG7cuIGfnx+urq4cOHCAr7/+mm3btjF48GCLMr7//nt++eUXdu7cyYcffsiECRNo06YNrq6u7Nu3jwEDBtC/f38uXLgAQEpKCn5+fjg7O7Nr1y4iIyNxcnLC39+f5OTkR7grIiIiIiIiIiIi8izJldMVEHmRlC1blqNHj7J7927279/P5cuXsbW1BWDmzJmsWbOGb775hn79+gFw+/ZtlixZQpEiRQD497//TevWrZk1axbu7u7Y29uTlJSEu7v7Q8sODw/n2LFjxMXFGVNQLVmyhPLly3PgwAFq1qyZ6XlpaWmEhYXh7OwMQPfu3QkPD2fKlCn8+eefzJkzh7lz59KzZ08ASpUqxUsvvQTAsmXLjGtwdHQEYO7cubRt25b333/fCH64ubnx8ccfY2VlRZkyZfjggw+4efMm77zzDvB/gZPdu3fTpUsXVqxYQVpaGgsXLsRkMgEQGhqKi4sLERERvPzyyxmuIykpiaSkJGPbysoKJycnY5TL05ZeRnaUJSJ3qd+J5Az1uReT7nvO0neeSPZTvxPJGep7z7es3lcFNUSykdlsxmQyER0dzfXr18mXL5/F8Vu3bhEbG2tsFy9e3AhoANStW5e0tDROnjyZpUDGvWJiYihWrJjFmhrlypXDxcWFmJiY+wY1PD09jYAGgIeHB5cvXzbyTEpKolmzZvcts3LlykZAA6B+/frGNaQHNcqXL4+V1f8NHCtUqBAVKlQwtq2trcmXL59RbnR0NGfOnLGoF9wNAt3bfveaNm0aEydONLarVq1KVFSURftmB09Pz2wtT0TU70RyxOmcroBkNy8vr5yugqDvPJGcoH4nkjPU915sCmqIZKOYmBi8vLy4fv06Hh4eREREZEjj4uKS7fV6kNy5c1tsm0wm0tLSALC3t39qZTyo3OvXr1O9enWWLl2aIa8CBQpkWsaYMWMYNmyYsZ0eRLl48WK2TFllMpnw9PQkPj4es9n81MsTEfU7kZyiX829mOLi4nK6Ci80feeJZD/1O5Gcob73fLOxscnSD5AV1BDJJt9//z3Hjh3jrbfeomjRoly6dIlcuXI9MLJ87tw5fvnlFwoXLgzADz/8YEzRBHc7empqapbK9/X15fz585w/f94YrXHixAkSExMpV67c37omb29v7O3tCQ8Pp0+fPpmWGRYWxo0bN4zRGpGRkRbX8HdUq1aNFStWULBgQfLkyZOlc2xtbY2pvu5lNpuz9Uswu8sTEfU7EZHsoH9n/xn0nSeS/dTvRHKG+t7zKav3VAuFizwFSUlJXLp0iYsXLxIVFcXUqVMJCAigTZs29OjRg+bNm1O3bl3atWvHli1biI+PZ8+ePbz77rscPHjQyMfOzo6ePXsSHR3Nrl27CA4OplOnTsbUU56enhw9epSTJ0/y22+/kZKSct86NW/enIoVKxIYGEhUVBT79++nR48eNGrUiBo1avyt67Szs2P06NGMGjWKJUuWEBsbyw8//MDnn38OQGBgoHENx48fZ/v27QwZMoTu3bsbU0/9HYGBgeTPn5+AgAB27dpFXFwcERERBAcHG4uJi4iIiIiIiIiIyPNHQQ2Rp2DTpk14eHjg6emJv78/27dv5+OPP2bt2rVYW1tjMpnYsGEDDRs2pFevXvj4+NClSxfOnj1r8bK/dOnStG/fnlatWvHyyy9TqVIl5s2bZxzv27cvZcqUoUaNGhQoUIDIyMj71slkMrF27VpcXV1p2LAhzZs3p2TJkqxYseKxrnXcuHEMHz6c8ePH4+vrS+fOnY21LxwcHNi8eTO///47NWvWpGPHjjRr1oy5c+c+VpkODg7s3LmT4sWL0759e3x9fenduze3b9/O8sgNERERERERERERefaYzBqnIyIvsAsXLmTbmhpeXl7ExcVpeKRINlG/E8kZJpOJmmd65HQ1JJvtL7U4p6vwQtN3nkj2U78TyRnqe883GxsbihYt+tB0GqkhIiIiIiIiIiIiIiLPBC0ULiIiIiIiT9RvLXbp13MiIiIiIvJUaKSGiIiIiIiIiIiIiIg8ExTUEBERERERERERERGRZ4KCGiIiIiIiIiIiIiIi8kzQmhoiIiIiIvJE5d/aIKerIDlof6nFOV0FEREREXmOaaSGiIiIiIiIiIiIiIg8ExTUEPn/IiMjqVixIrlz56Zdu3ZERERgMplITEzM6ao9UWFhYbi4uDzSOZ6ensyePfuBaUwmE2vWrAEgPj4ek8nEkSNHALLcllkpR0RERERERERERF5cCmrIcyEoKAiTyYTJZCJ37tx4eXkxatQobt++neU8hg0bRpUqVYiLiyMsLIx69eqRkJBA3rx5n2LNn457Awx/1blzZ06dOvXEy0xISKBly5aZHvtrW94vsHLgwAH69ev3xOsmIiIiIiIiIiIizwetqSHPDX9/f0JDQ0lJSeHQoUP07NkTk8nE+++/n6XzY2NjGTBgAEWLFjX2ubu7P63q5hh7e3vs7e2feL4PaisbG5sstWWBAgWeZJVERERERERERETkOaORGvLcsLW1xd3dnWLFitGuXTuaN2/O1q1bAUhLS2PatGl4eXlhb29P5cqV+eabb4D/myrp6tWrvP7665hMJsLCwjJMmZQ+umDz5s34+vri5OSEv78/CQkJRh0OHDhAixYtyJ8/P3nz5qVRo0ZERUVZ1NNkMrFw4UJeeeUVHBwc8Pb25rvvvrNI8+OPP9KmTRvy5MmDs7MzDRo0IDY21ji+cOFCfH19sbOzo2zZssybNy/L7fTXURKxsbEEBARQqFAhnJycqFmzJtu2bctw3p9//knXrl1xdHSkSJEifPLJJxmu636jQ+5ty4iICHr16sUff/xhjK4JCQkBMk4/lZiYSJ8+fShQoAB58uShadOmREdHG8ejo6Np0qQJzs7O5MmTh+rVq3Pw4MEst4WIyP9j787Dqir3//8/NyqziiPgCA4oDigkJpqCpommHxwKUxPJsVNE5mwG4ZBaiUN5LE85ZZbZsdQ0zeGIR3FOUROOA4JTpJZaoYkK+/eHP9bXHag4wBZ8Pa5rXRdr7Xvd93utve+2rfe+71tEREREREREChclNaRI+umnn9i2bRu2trYATJ48mc8++4yPP/6YQ4cO8cYbb/Diiy+yefNmqlatSlpaGqVKlWLGjBmkpaXRo0ePXOu9cuUKU6dOZdGiRfz3v//l5MmTDB8+3Hj9zz//pG/fvmzdupUdO3ZQu3ZtOnbsyJ9//mlRz7hx4wgNDeXAgQN07NiR3r17c+HCBQDOnDlDq1atsLOz4z//+Q8//vgj/fr148aNGwAsXryY6Oho3nnnHZKSkpg0aRJRUVEsXLjwvu5Veno6HTt2ZOPGjezbt4/g4GA6d+7MyZMnLcq9//77NGrUiH379jF69Ghef/11I2l0L5o3b86MGTMoVaoUaWlppKWlWdzDWz3//POcO3eONWvW8OOPP+Ln58fTTz9t3KvevXtTpUoVdu/ezY8//sjo0aMpUaLEvd8EERERERERERERKRQ0/ZQUGatWrcLZ2ZkbN26QkZGBjY0Ns2bNIiMjg0mTJrFhwwYCAgIAqFGjBlu3bmXOnDkEBgbi5uaGyWSidOnSd5wm6fr163z88cfUrFkTgIiICMaPH2+83qZNG4vy//rXv3BxcWHz5s106tTJOB4eHk7Pnj0BmDRpEh988AG7du0iODiYf/7zn5QuXZolS5YYD+i9vLyMc99++21iY2Pp1q0bAJ6eniQmJjJnzhz69u17z/etUaNGNGrUyNifMGEC3377LStXriQiIsI43qJFC0aPHm3EEx8fz/Tp02nXrt09tWdra0vp0qUxmUx3vNdbt25l165dnDt3Djs7OwCmTp3K8uXL+fe//82gQYM4efIkI0aMoG7dugDUrl37tvVlZGSQkZFh7NvY2ODs7GyMFslv2W0URFsicpP6nYh1qM+JPgMFT995IgVP/U7EOtT3ira8vq9KakiR0bp1az766CMuX77M9OnTKV68ON27d+fQoUNcuXIlx8P3a9eu4evre09tODo6GgkNAHd3d86dO2fsnz17lrfeeou4uDjOnTtHZmYmV65cyTHqwcfHx/jbycmJUqVKGfUkJCTQsmXLXEccXL58meTkZPr378/AgQON4zdu3LjvBc3T09OJiYlh9erVpKWlcePGDf76668cMWcnhG7dv3WqqIdt//79pKenU65cOYvjf/31lzEV19ChQxkwYACLFi2ibdu2PP/88xbvz60mT57MuHHjjH1fX1/27t1L5cqV8+0acuPh4VGg7YmI+p2IVRy1dgBiTZ6entYO4bGl7zyRgqd+J2Id6nuPNyU1pMhwcnKiVq1aAMybN49GjRoxd+5cGjRoAMDq1atzPMDOHgGQV39PNJhMJsxms7Hft29ffvvtN2bOnEn16tWxs7MjICCAa9eu3bWerKwsgDsu4p2eng7AJ598wpNPPmnxWrFixe7pWrINHz6c9evXM3XqVGrVqoWDgwPPPfdcjpgLWnp6Ou7u7sTFxeV4LXtNkJiYGHr16sXq1atZs2YNb7/9NkuWLKFr1645zhkzZgxDhw419m1sbs6+d+bMmQK5VpPJhIeHB6mpqRafGRHJP+p3ItahX81JSkqKtUN47Og7T6Tgqd+JWIf6XtFma2ubpx8gK6khRZKNjQ1vvvkmQ4cO5ciRI9jZ2XHy5EkCAwPztd34+Hhmz55Nx44dATh16hS//vrrPdXh4+PDwoULuX79eo7kh6urK5UqVeL48eP07t37ocUcHh5uJALS09NJTU3NUW7Hjh059r29ve+rTVtbWzIzM+9Yxs/Pj19++YXixYvfMfvu5eWFl5cXb7zxBj179mT+/Pm5JjXs7OxyTWKZzeYC/RIs6PZERP1ORKSg6b+51qPvPJGCp34nYh3qe0VTXt9TJTWkyHr++ecZMWIEc+bMYfjw4bzxxhtkZWXx1FNP8fvvvxMfH0+pUqXuax2K26lduzaLFi2iSZMm/PHHH4wYMeKOIy9yExERwYcffsgLL7zAmDFjKF26NDt27KBp06bUqVOHcePGERkZSenSpQkODiYjI4M9e/Zw8eJFi5EID01hdQAAoU1JREFUKSkpJCQk5Igvt5i/+eYbOnfujMlkIioqyhg1cqv4+Hjee+89unTpwvr16/n6669ZvXr1PV1bNg8PD9LT09m4cSONGjXC0dERR0dHizJt27YlICCALl268N577+Hl5cXPP//M6tWr6dq1K/Xr12fEiBE899xzeHp6cvr0aXbv3k337t3vKyYRERERERERERF59CmpIUVW8eLFiYiI4L333iMlJYUKFSowefJkjh8/jouLC35+frz55psPtc25c+cyaNAg/Pz8qFq1KpMmTWL48OH3VEe5cuX4z3/+w4gRIwgMDKRYsWI0btyYFi1aADBgwAAcHR15//33GTFiBE5OTjRs2JAhQ4ZY1HNrgiPbli1bchybNm0a/fr1o3nz5pQvX55Ro0bxxx9/5Cg3bNgw9uzZw7hx4yhVqhTTpk2jffv293Rt2Zo3b87LL79Mjx49+O2333j77beJiYmxKGMymfj+++8ZO3YsL730EufPn8fNzY1WrVrh6upKsWLF+O233wgLC+Ps2bOUL1+ebt26WaybISIiIiIiIiIiIkWLyaxxOiLyGDt9+nSBranh6elJSkqKhkeKFBD1OxHrMJlM+B8Ls3YYYkW7ai60dgiPHX3niRQ89TsR61DfK9psbW2pUqXKXcvZFEAsIiIiIiIiIiIiIiIiD0xJDRERERERERERERERKRS0poaIiIiIiDxUv7bboikBREREREQkX2ikhoiIiIiIiIiIiIiIFApKaoiIiIiIiIiIiIiISKGgpIaIiIiIiIiIiIiIiBQKWlNDRERERKQIKVOzprVDAK2lISIiIiIi+UQjNUREREREREREREREpFBQUkPkPgUFBTFkyJD7Pj8uLg6TycSlS5ceWkx5YTKZWL58eZ7Lx8TE0Lhx4zuWCQ8Pp0uXLsb+3++Nh4cHM2bMeOB2RERERERERERE5PGm6afksRUeHs7ChQtzHG/fvj1r16696/nffPMNJUqUyFNbQUFBNG7c2OLBfvPmzUlLS6N06dJ5jjkvwsPDuXTp0m0TF2lpaZQpU+ahtjlz5kzMd5hmYvfu3Tg5ORn7JpOJb7/91iIRMnz4cF577bWHGpeIiIiIiIiIiIgULUpqyGMtODiY+fPnWxyzs7PL07lly5Z9oLZtbW1xc3N7oDruR360ebfETIUKFe5ah7OzM87Ozg8rJBERERERERERESmCNP2UPNbs7Oxwc3Oz2MqUKUNcXBy2trZs2bLFKPvee+9RsWJFzp49C+ScYmn27NnUrl0be3t7XF1dee6554CbIyc2b97MzJkzMZlMmEwmUlNTc0w/tWDBAlxcXPjhhx/w9vbG2dmZ4OBg0tLSjDZu3LhBZGQkLi4ulCtXjlGjRtG3b1+LEQ938/fpp0aNGoWXlxeOjo7UqFGDqKgorl+/nuO8OXPmULVqVRwdHQkNDeX33383Xvv79FN/d+v0Ux4eHgB07doVk8lk7Oc2/dSnn36Kt7c39vb21K1bl9mzZxuvXbt2jYiICNzd3bG3t6d69epMnjw5z/dBRERERERERERECh+N1BDJRXbCok+fPuzfv5/jx48TFRXF119/jaura47ye/bsITIykkWLFtG8eXMuXLhgJERmzpzJkSNHaNCgAePHjwdujlxITU3NUc+VK1eYOnUqixYtwsbGhhdffJHhw4ezePFiAN59910WL17M/Pnz8fb2ZubMmSxfvpzWrVvf97WWLFmSBQsWUKlSJQ4ePMjAgQMpWbIkI0eONMocO3aMpUuX8t133/HHH3/Qv39/XnnlFSOue7F7924qVqzI/PnzCQ4OplixYrmWW7x4MdHR0cyaNQtfX1/27dvHwIEDcXJyom/fvnzwwQesXLmSpUuXUq1aNU6dOsWpU6du225GRgYZGRnGvo2NDc7OzkaiKb9lt1EQbYnITep3ItalvidScPSdJ1Lw1O9ErEN9r2jL6/uqpIY81latWpVjyqM333yTN998k4kTJ7J+/XoGDRrETz/9RN++ffm///u/XOs5efIkTk5OdOrUiZIlS1K9enV8fX2Bm1Mz2dra4ujoeNepn65fv87HH39MzZo1AYiIiDASIQAffvghY8aMoWvXrgDMmjWL77///r6vH+Ctt94y/vbw8GD48OEsWbLEIqlx9epVPvvsMypXrmzE8eyzzxIbG3vP01llT0Xl4uJyx3PffvttYmNj6datGwCenp4kJiYyZ84c+vbty8mTJ6lduzZPPfUUJpOJ6tWr37HdyZMnM27cOGPf19eXvXv3GtdUULJHpohIwVG/k8fNRWsH8P9T3xMpeOp3IgVP/U7EOtT3Hm9KashjrXXr1nz00UcWx7LXyrC1tWXx4sX4+PhQvXp1pk+fftt62rVrR/Xq1alRowbBwcEEBwfTtWtXHB0d7ykeR0dHI6EB4O7uzrlz5wD4/fffOXv2LE2bNjVeL1asGE888QRZWVn31M6tvvrqKz744AOSk5NJT0/nxo0blCpVyqJMtWrVLB7+BwQEkJWVxeHDh/NljY7Lly+TnJxM//79GThwoHH8xo0bxvod4eHhtGvXjjp16hAcHEynTp145plnblvnmDFjGDp0qLFvY3Nz9r0zZ85w7dq1h34Nf5c91VZqauodF1UXkYdH/U4eVy7WDuD/p74nUnD0nSdS8NTvRKxDfa9os7W1zdMPkJXUkMeak5MTtWrVuu3r27ZtA+DChQtcuHABJyenXMuVLFmSvXv3EhcXx7p164iOjiYmJobdu3fj4uKS53hKlChhsW8ymfL1P9Dbt2+nd+/ejBs3jvbt21O6dGmWLFlCbGxsvrWZF+np6QB88sknPPnkkxavZU9X5efnR0pKCmvWrGHDhg2EhobStm1b/v3vf+dap52dXa6LwJvN5gL9Eizo9kRE/U7EWtT3RAqe+p1IwVO/E7EO9b2iKa/vqRYKF7mN5ORk3njjDePBet++fe84IqJ48eK0bduW9957jwMHDpCamsp//vMf4GaWMTMz84HiKV26NK6uruzevds4lpmZyd69e++7zm3btlG9enXGjh1LkyZNqF27NidOnMhR7uTJk/z888/G/o4dO7CxsaFOnTr31W6JEiXueD9cXV2pVKkSx48fp1atWhabp6enUa5UqVL06NGDTz75hK+++oply5Zx4cKF+4pJREREREREREREHn0aqSGPtYyMDH755ReLY8WLF6dMmTK8+OKLtG/fnpdeeong4GAaNmxIbGwsI0aMyFHPqlWrOH78OK1ataJMmTJ8//33ZGVlGQ/9PTw82LlzJ6mpqTg7OxtTXN2r1157jcmTJ1OrVi3q1q3Lhx9+yMWLF3MsovP777+TkJBgcaxcuXJUrVrV4ljt2rU5efIkS5Yswd/fn9WrV/Ptt9/maNfe3p6+ffsydepU/vjjDyIjIwkNDb3vqac8PDzYuHEjLVq0wM7OjjJlyuQoM27cOCIjIyldujTBwcFkZGSwZ88eLl68yNChQ5k2bRru7u74+vpiY2PD119/jZub2z2NjBEREREREREREZHCRUkNeaytXbsWd3d3i2N16tShV69enDhxglWrVgE317b417/+Rc+ePXnmmWdo1KiRxTkuLi588803xMTEcPXqVWrXrs2XX35J/fr1ARg+fDh9+/alXr16/PXXX6SkpNxXvKNGjeKXX34hLCyMYsWKMWjQINq3b29MyZQtLi7OWKg8W//+/fn0008tjv3f//0fb7zxBhEREWRkZPDss88SFRVFTEyMRblatWrRrVs3OnbsyIULF+jUqROzZ8++r2sAiI2NZejQoXzyySdUrlyZ1NTUHGUGDBiAo6Mj77//PiNGjMDJyYmGDRsyZMgQ4OaUX++99x5Hjx6lWLFi+Pv78/333xtrZYiIiIiIiIiIiEjRYzJr8jGRQisrKwtvb29CQ0OZMGGCtcMplE6fPl1gC4V7enqSkpKiOR9FCoj6nTyuytSsae0QKGM2q++JFCB954kUPPU7EetQ3yvabG1tqVKlyl3LaaSGSCFy4sQJ1q1bR2BgIBkZGcyaNYuUlBR69epl7dBERERERERERERE8p2SGiKFiI2NDQsWLGD48OGYzWYaNGjAhg0b8Pb2tnZoIiIi8oi4mJxs1fZNJhM5V8sSERERERF5OJTUEClEqlatSnx8vLXDEBEREREREREREbEKragrIiIiIiIiIiIiIiKFgpIaIiIiIiIiIiIiIiJSKGj6KREREREReajKr29p7RBECr1dNRdaOwQRERGRR5JGaoiIiIiIiIiIiIiISKGgpIaIWE1MTAyNGze2dhgiIiIiIiIiIiJSSCipIWIF4eHhdOnSxdphPBSHDh0iNDSUChUqYGdnh5eXF9HR0Vy5csWinMlkYvny5dYJUkRERERERERERIoEJTVE5L7t2LGDJ598kmvXrrF69WqOHDnCO++8w4IFC2jXrh3Xrl0r8JjMZjM3btwo8HZFREREREREREQk/ympIWJlQUFBREZGMnLkSMqWLYubmxsxMTEWZS5dusTgwYNxdXXF3t6eBg0asGrVKuP1ZcuWUb9+fezs7PDw8CA2NtbifA8PDyZOnEhYWBjOzs5Ur16dlStXcv78eUJCQnB2dsbHx4c9e/ZYnLd161ZatmyJg4MDVatWJTIyksuXLwM3kwf9+/fH29ubb775hqZNm1K9enWef/55vvvuO7Zv38706dON9gG6du2KyWQy9rMtWrQIDw8PSpcuzQsvvMCff/5pvJaVlcXkyZPx9PTEwcGBRo0a8e9//9t4PS4uDpPJxJo1a3jiiSews7Nj69at9/VeiIiIiIiIiIiIyKOtuLUDEBFYuHAhQ4cOZefOnWzfvp3w8HBatGhBu3btyMrKokOHDvz55598/vnn1KxZk8TERIoVKwbAjz/+SGhoKDExMfTo0YNt27bxyiuvUK5cOcLDw402pk+fzqRJk4iKimL69On06dOH5s2b069fP95//31GjRpFWFgYhw4dwmQykZycTHBwMBMnTmTevHmcP3+eiIgIIiIimD9/PgkJCSQmJvLFF19gY2OZH23UqBFt27blyy+/ZNSoUezevZuKFSsyf/58goODjdgBkpOTWb58OatWreLixYuEhoYyZcoU3nnnHQAmT57M559/zscff0zt2rX573//y4svvkiFChUIDAw06hk9ejRTp06lRo0alClTJsc9zsjIICMjw9i3sbHB2dkZk8mEyWR6KO/jnWS3URBtichN6nci1qE+J/Jw3Etf0neeSMFTvxOxDvW9oi2v76vJbDab8zkWEfmb8PBwLl26xPLlywkKCiIzM5MtW7YYrzdt2pQ2bdowZcoU1q1bR4cOHUhKSsLLyytHXb179+b8+fOsW7fOODZy5EhWr17NoUOHgJsjJVq2bMmiRYsA+OWXX3B3dycqKorx48cDN6eSCggIIC0tDTc3NwYMGECxYsWYM2eOUe/WrVsJDAzk8uXLrFixghdeeIF9+/blutj366+/zieffGKsrWEymfj2228t1hKJiYnh/fff55dffqFkyZJG7P/973/ZsWMHGRkZlC1blg0bNhAQEGCcN2DAAK5cucIXX3xBXFwcrVu3Zvny5YSEhNz2nsfExDBu3Dhj39fXl7179962vIiIiNy/8utbWjsEkULv13Zb7l5IRERE5DGkkRoijwAfHx+LfXd3d86dOwdAQkICVapUyTWhAZCUlJTjYX6LFi2YMWMGmZmZxqiIW9twdXUFoGHDhjmOnTt3Djc3N/bv38+BAwdYvHixUcZsNpOVlUVKSorFsQfh4eFhJDTA8tqPHTvGlStXaNeuncU5165dw9fX1+JYkyZN7tjOmDFjGDp0qLGfPbrkzJkzBbL2R/a0W6mpqQ98z0Qkb9TvRKxDv5oTeThu/Tf33eg7T6Tgqd+JWIf6XtFma2tL5cqV71pOSQ2RR0CJEiUs9k0mE1lZWQA4ODg89DayHzbkdiy73fT0dAYPHkxkZGSOuqpVq8bVq1eBm0mVvycYso/fLhFzu7iy47g1BoDVq1fn+A+anZ2dxb6Tk9Md27Gzs8txDtxMyhTkl2BBtyci6nciIlI43c93l77zRAqe+p2IdajvFU15fU+V1BB5xPn4+HD69GmOHDmSa5LA29ub+Ph4i2Px8fF4eXlZrF1xr/z8/EhMTKRWrVq5vt64cWPq1q3L9OnTeeGFFyzW1di/fz8bNmxg8uTJxrESJUqQmZl5TzHUq1cPOzs7Tp48abF+hoiIiIiIiIiIiDyebO5eRESsKTAwkFatWtG9e3fWr19PSkoKa9asYe3atQAMGzaMjRs3MmHCBI4cOcLChQuZNWsWw4cPf6B2R40axbZt24iIiCAhIYGjR4+yYsUKIiIigJsjKubOnUtiYiLdu3dn165dnDx5kq+//prOnTsTEBDAkCFDjPo8PDzYuHEjv/zyCxcvXsxTDCVLlmT48OG88cYbLFy4kOTkZPbu3cuHH37IwoULH+j6REREREREREREpPBRUkOkEFi2bBn+/v707NmTevXqMXLkSGPUg5+fH0uXLmXJkiU0aNCA6Ohoxo8fT3h4+AO16ePjw+bNmzly5AgtW7bE19eX6OhoKlWqZJRp3rw5O3bsoFixYnTo0IFatWoxZswY+vbty/r16y2me4qNjWX9+vVUrVo11+mqbmfChAlERUUxefJkvL29CQ4OZvXq1Xh6ej7Q9YmIiIiIiIiIiEjhYzJr8jEReYydPn26wBYK9/T0JCUlRXM+ihQQ9TsR6zCZTPgfC7N2GCKF3q6aeR+ZrO88kYKnfidiHep7RZutrS1VqlS5azmN1BARERERERERERERkUJBC4WLiIiIiMhD9Wu7Lfr1nIiIiIiI5AuN1BARERERERERERERkUJBSQ0RERERERERERERESkUlNQQEREREREREREREZFCQWtqiIiIiIjIQ1V+fUtrhyDy+Dn28KvcVXPhw69URERE5AFppIaIiIiIiIiIiIiIiBQKSmqIPKLCw8Pp0qXLHct4eHgwY8YMY99kMrF8+fLblk9NTcVkMpGQkPBQYhQREREREREREREpSEpqyF3l5eF6YRAUFITJZMqx3bhxo8BjMZvN/Otf/+LJJ5/E2dkZFxcXmjRpwowZM7hy5Uqe69m9ezeDBg16oFi+/fZbmjVrRunSpSlZsiT169dnyJAhD1RnQQsKCip0MYuIiIiIiIiIiMi9U1JDHisDBw4kLS3NYitePOfSMteuXcvXOPr06cOQIUMICQlh06ZNJCQkEBUVxYoVK1i3bl2e66lQoQKOjo73HcfGjRvp0aMH3bt3Z9euXfz444+88847XL9+/b7rLEj5/T6JiIiIiIiIiIjIo0VJDbknQUFBREZGMnLkSMqWLYubmxsxMTEWZS5dusTgwYNxdXXF3t6eBg0asGrVKuP1ZcuWUb9+fezs7PDw8CA2NtbifA8PDyZOnEhYWBjOzs5Ur16dlStXcv78eUJCQnB2dsbHx4c9e/ZYnLd161ZatmyJg4MDVatWJTIyksuXL1uUcXR0xM3NzWLLbnPChAmEhYVRqlQpY/RDfsS6dOlSFi9ezJdffsmbb76Jv78/Hh4ehISE8J///IfWrVtbtDF16lTc3d0pV64cr776qkXC4e/TT/3drl278PX1xd7eniZNmrBv3z6L17/77jtatGjBiBEjqFOnDl5eXnTp0oV//vOfRpncRuoMGTKEoKAgYz8oKIiIiAgiIiIoXbo05cuXJyoqCrPZbBHrhAkT6NmzJ05OTlSuXNmiHYCTJ08a961UqVKEhoZy9uxZ4/WYmBgaN27Mp59+iqenJ/b29oSHh7N582ZmzpxpjL5JTU297T0RERERERERERGRwktJDblnCxcuxMnJiZ07d/Lee+8xfvx41q9fD0BWVhYdOnQgPj6ezz//nMTERKZMmUKxYsUA+PHHHwkNDeWFF17g4MGDxMTEEBUVxYIFCyzamD59Oi1atGDfvn08++yz9OnTh7CwMF588UX27t1LzZo1CQsLMx6aJycnExwcTPfu3Tlw4ABfffUVW7duJSIiIs/XNXXqVBo1asS+ffuIiorKt1gXL15MnTp1CAkJyRGDyWSidOnSxv6mTZtITk5m06ZNLFy4kAULFuRo/3bS09Pp1KkT9erV48cffyQmJobhw4dblHFzc+PQoUP89NNPeb5Pt7Nw4UKKFy/Orl27mDlzJtOmTePTTz+1KPP+++8b93j06NG8/vrrFp+dkJAQLly4wObNm1m/fj3Hjx+nR48eFnUcO3aMZcuW8c0335CQkMDMmTMJCAiwGIVTtWrVB74eERERERERERERefTknHdH5C58fHx4++23AahduzazZs1i48aNtGvXjg0bNrBr1y6SkpLw8vICoEaNGsa506ZN4+mnnyYqKgoALy8vEhMTef/99wkPDzfKdezYkcGDBwMQHR3NRx99hL+/P88//zwAo0aNIiAggLNnz+Lm5sbkyZPp3bu3sa5C7dq1+eCDDwgMDOSjjz7C3t4egNmzZ1s8aB88eLAx+qJNmzYMGzbMeK137975EuvRo0epU6dOnu51mTJlmDVrFsWKFaNu3bo8++yzbNy4kYEDB9713C+++IKsrCzmzp2Lvb099evX5/Tp0/zjH/8wyrz22mts2bKFhg0bUr16dZo1a8YzzzxD7969sbOzy1OM2apWrcr06dMxmUzUqVOHgwcPMn36dItYW7RowejRo4Gb9zM+Pp7p06fTrl07Nm7cyMGDB0lJSTGSEp999hn169dn9+7d+Pv7AzennPrss8+oUKGCUa+tra0xCud2MjIyyMjIMPZtbGxwdnY2Rnfkt+w2CqItEblJ/U7EOtTnRIoO9WeR29O/NUWsQ32vaMvr+6qkhtwzHx8fi313d3fOnTsHQEJCAlWqVDESGn+XlJSUY4RCixYtmDFjBpmZmcaIjlvbcHV1BaBhw4Y5jp07dw43Nzf279/PgQMHWLx4sVHGbDaTlZVFSkoK3t7ewM1ExdixY40yLi4uxt9NmjQpkFhvnZLpburXr2+0Azfv9cGDB/N0blJSEj4+PkZCByAgIMCijJOTE6tXrzZGg+zYsYNhw4Yxc+ZMtm/ffk/rdTRr1sziPzwBAQHExsZa3Ku/tx8QEGBMn5WUlETVqlUtRlnUq1cPFxcXkpKSjKRG9erVLRIaeTV58mTGjRtn7Pv6+rJ3714qV658z3U9CA8PjwJtT0TU70Ss4qi1AxCRh8HT09PaIYg88vRvTRHrUN97vCmpIfesRIkSFvsmk4msrCwAHBwcHnob2Q/KczuW3W56ejqDBw8mMjIyR13VqlUz/i5dujS1atXKtU0nJ6cCidXLy4v//e9/91x3dl3Z9TxMNWvWpGbNmgwYMICxY8fi5eXFV199xUsvvYSNjU2ORIw1FxK/3/dpzJgxDB061Ni3sbk5+96ZM2cKZMFxk8mEh4cHqamp95TYEpH7p34nYh361ZxI0ZGSkmLtEEQeWfq3poh1qO8Vbba2tnn6AbKSGvJQ+fj4cPr0aY4cOZLraA1vb2/i4+MtjsXHx+Pl5WUxIuFe+fn5kZiYeNuExf3Ir1h79erFCy+8wIoVK3KMBDGbzfzxxx8W62rcL29vbxYtWsTVq1eN0Ro7duy463keHh44Ojoai6xXqFAhx5obCQkJORIuO3futNjfsWMHtWvXtrhXf29/x44dxigab29vTp06xalTp4zRGomJiVy6dIl69erdMWZbW1syMzPvWMbOzi7XKbXMZnOBfgkWdHsion4nIiJyv/T9KXJ3+remiHWo7xVNeX1PtVC4PFSBgYG0atWK7t27s379elJSUlizZg1r164FYNiwYWzcuJEJEyZw5MgRFi5cyKxZs3IsYH2vRo0axbZt24iIiCAhIYGjR4+yYsWKe1oo/O/yK9bQ0FB69OhBz549mTRpEnv27OHEiROsWrWKtm3bsmnTpgeqP1uvXr0wmUwMHDiQxMREvv/+e6ZOnWpRJiYmhpEjRxIXF0dKSgr79u2jX79+XL9+nXbt2gE31xrZs2cPn332GUePHuXtt9/OdWHxkydPMnToUA4fPsyXX37Jhx9+yOuvv25RJj4+nvfee48jR47wz3/+k6+//too07ZtWxo2bEjv3r3Zu3cvu3btIiwsjMDAwBxTg/2dh4cHO3fuJDU1lV9//TVfRrOIiIiIiIiIiIiI9SmpIQ/dsmXL8Pf3p2fPntSrV4+RI0cav6L38/Nj6dKlLFmyhAYNGhAdHc348eMtFt6+Hz4+PmzevJkjR47QsmVLfH19iY6OplKlSvddZ37FajKZ+OKLL5g2bRrLly8nMDAQHx8fYmJiCAkJoX379g9UfzZnZ2e+++47Dh48iK+vL2PHjuXdd9+1KBMYGMjx48cJCwujbt26dOjQgV9++YV169YZi5m3b9+eqKgoRo4cib+/P3/++SdhYWE52gsLC+Ovv/6iadOmvPrqq7z++usMGjTIosywYcPYs2cPvr6+TJw4kWnTphnXazKZWLFiBWXKlKFVq1a0bduWGjVq8NVXX931WocPH06xYsWoV68eFSpU4OTJk/d720REREREREREROQRZjJrnI6IPKCgoCAaN25sLPqdGw8PD4YMGcKQIUMKLK68OH36dIGtqeHp6UlKSoqGR4oUEPU7EeswmUz4H8v5AwgRKXx21Vxo7RBEHln6t6aIdajvFW22trZUqVLlruU0UkNERERERERERERERAoFLRQuIiIiIiIP1a/ttujXcyIFSL9aFRERkceJkhoi8sDi4uLuWiY1NTXf4xAREREREREREZGiTdNPiYiIiIiIiIiIiIhIoaCkhoiIiIiIiIiIiIiIFAqafkpEREREpAgrU7NmwTeqOf1FRERERCSfaKSGiIiIiIiIiIiIiIgUCkpqiIiIiIiIiIiIiIhIoaCkhoiIiIiIiIiIiIiIFApKaojVhYeH06VLF2uH8cCCgoIwmUw5ths3bhRoHHFxcZhMJi5dulSg7d4rDw8P4x45OTnh5+fH119/be2wRERERERERERE5BGmpIbIQzRw4EDS0tIstuLFi+cod+3aNStE9+gZP348aWlp7Nu3D39/f3r06MG2bdusHZaIiIiIiIiIiIg8opTUkEdKUFAQkZGRjBw5krJly+Lm5kZMTIxFmUuXLjF48GBcXV2xt7enQYMGrFq1ynh92bJl1K9fHzs7Ozw8PIiNjbU438PDg4kTJxIWFoazszPVq1dn5cqVnD9/npCQEJydnfHx8WHPnj0W523dupWWLVvi4OBA1apViYyM5PLlyxZlHB0dcXNzs9iy25wwYQJhYWGUKlWKQYMG5Wusd5KRkcHw4cOpXLkyTk5OPPnkk8TFxRmv//bbb/Ts2ZPKlSvj6OhIw4YN+fLLL43X//Wvf1GpUiWysrIs6g0JCaFfv37G/ooVK/Dz88Pe3p4aNWowbty4HKNWSpYsiZubG15eXvzzn//EwcGB7777jszMTPr374+npycODg7UqVOHmTNnGuf997//pUSJEvzyyy8W9Q0ZMoSWLVvm+V6IiIiIiIiIiIhI4ZLzJ+QiVrZw4UKGDh3Kzp072b59O+Hh4bRo0YJ27dqRlZVFhw4d+PPPP/n888+pWbMmiYmJFCtWDIAff/yR0NBQYmJijF/9v/LKK5QrV47w8HCjjenTpzNp0iSioqKYPn06ffr0oXnz5vTr14/333+fUaNGERYWxqFDhzCZTCQnJxMcHMzEiROZN28e58+fJyIigoiICObPn5+n65o6dSrR0dG8/fbb+Rrr3URERJCYmMiSJUuoVKkS3377LcHBwRw8eJDatWtz9epVnnjiCUaNGkWpUqVYvXo1ffr0oWbNmjRt2pTnn3+e1157jU2bNvH0008DcOHCBdauXcv3338PwJYtWwgLC+ODDz6gZcuWJCcnG4mc7Ov/u+LFi1OiRAmuXbtGVlYWVapU4euvv6ZcuXJs27aNQYMG4e7uTmhoKK1ataJGjRosWrSIESNGAHD9+nUWL17Me++9l2v9GRkZZGRkGPs2NjY4OzsbU2Dlt+w2CqItEblJ/U7EutT3RAqOvvNECp76nYh1qO8VbXl+X80iVta3b19zSEiI2Ww2mwMDA81PPfWUxev+/v7mUaNGmc1ms/mHH34w29jYmA8fPpxrXb169TK3a9fO4tiIESPM9erVM/arV69ufvHFF439tLQ0M2COiooyjm3fvt0MmNPS0sxms9ncv39/86BBgyzq3bJli9nGxsb8119/GbGXKFHC7OTkZGxDhw412uzSpUuBxLpp0yYzYL548WKO+3PixAlzsWLFzGfOnLE4/vTTT5vHjBmTo3y2Z5991jxs2DBjPyQkxNyvXz9jf86cOeZKlSqZMzMzjfomTZpkUceiRYvM7u7uFtc2ffp0s9lsNmdkZJgnTZpkBsyrVq3KNYZXX33V3L17d2P/3XffNXt7exv7y5YtMzs7O5vT09NzPf/tt982A8bm6+t72+sVEREpSi5AgW8iIiIiIiL5RSM15JHj4+Njse/u7s65c+cASEhIoEqVKnh5eeV6blJSEiEhIRbHWrRowYwZM8jMzDRGdNzahqurKwANGzbMcezcuXO4ubmxf/9+Dhw4wOLFi40yZrOZrKwsUlJS8Pb2BqB3796MHTvWKOPi4mL83aRJkwKJ9U4OHjxIZmZmjvuXkZFBuXLlAMjMzGTSpEksXbqUM2fOcO3aNTIyMnB0dDTK9+7dm4EDBzJ79mzs7OxYvHgxL7zwAjY2N2e0279/P/Hx8bzzzjvGOZmZmVy9epUrV64YdY0aNYq33nqLq1ev4uzszJQpU3j22WcB+Oc//8m8efM4efIkf/31F9euXaNx48ZGfeHh4bz11lvs2LGDZs2asWDBAkJDQ3Fycsr12seMGcPQoUON/exYs68xv5lMJjw8PEhNTcVsNud7eyKifieSzcVK7arviRQcfeeJFDz1OxHrUN8r2mxtbalcufJdyympIY+cEiVKWOybTCZj/QYHB4eH3kb2sKbcjmW3m56ezuDBg4mMjMxRV7Vq1Yy/S5cuTa1atXJt83YP2x92rHeSnp5OsWLF+PHHH42kSTZnZ2cA3n//fWbOnMmMGTNo2LAhTk5ODBkyxOLBf+fOnTGbzaxevRp/f3+2bNnC9OnTLdoZN24c3bp1yxGDvb298feIESMIDw/H2dkZV1dX41qWLFnC8OHDiY2NJSAggJIlS/L++++zc+dO49yKFSvSuXNn5s+fj6enJ2vWrLFYG+Tv7OzssLOzy3HcbDYX6JdgQbcnIup3ItaividS8NTvRAqe+p2IdajvFU15fU+V1JBCxcfHh9OnT3PkyJFcR2t4e3sTHx9vcSw+Ph4vL68cD/HvhZ+fH4mJibdNWNyP/Ir1Tnx9fcnMzOTcuXO3XVA7Pj6ekJAQXnzxReBmsuTIkSPUq1fPKGNvb0+3bt1YvHgxx44do06dOvj5+Rmv+/n5cfjw4bver/Lly+daJj4+nubNm/PKK68Yx5KTk3OUGzBgAD179qRKlSrUrFmTFi1a3PkGiIiIiIiIiIiISKGmpIYUKoGBgbRq1Yru3bszbdo0atWqxf/+9z9MJhPBwcEMGzYMf39/JkyYQI8ePdi+fTuzZs1i9uzZD9TuqFGjaNasGREREQwYMAAnJycSExNZv349s2bNuq868yvWbAcPHqRkyZLGvslkolGjRvTu3ZuwsDBiY2Px9fXl/PnzbNy4ER8fH5599llq167Nv//9b7Zt20aZMmWYNm0aZ8+etUhqwM0pqDp16sShQ4eMBEi26OhoOnXqRLVq1XjuueewsbFh//79/PTTT0ycOPGusdeuXZvPPvuMH374AU9PTxYtWsTu3bvx9PS0KNe+fXtKlSrFxIkTGT9+/APcLRERERERERERESkMbKwdgMi9WrZsGf7+/vTs2ZN69eoxcuRIMjMzgZsjBJYuXcqSJUto0KAB0dHRjB8/nvDw8Adq08fHh82bN3PkyBFatmyJr68v0dHRVKpU6b7rzK9Ys7Vq1QpfX19je+KJJwCYP38+YWFhDBs2jDp16tClSxd2795tTKP11ltv4efnR/v27QkKCsLNzY0uXbrkqL9NmzaULVuWw4cP06tXL4vX2rdvz6pVq1i3bh3+/v40a9aM6dOnU7169TzFPnjwYLp160aPHj148skn+e233yxGbWSzsbEhPDyczMxMwsLC7vEOiYiIiIiIiIiISGFjMmvyMREpxPr378/58+dZuXLlfZ1/+vTpAlso3NPTk5SUFM35KFJA1O9EbipTs2bBt2k2q++JFCB954kUPPU7EetQ3yvabG1tqVKlyl3LafopESmUfv/9dw4ePMgXX3xx3wkNERERERERERERKVyU1BCRQikkJIRdu3bx8ssv065dO2uHIyIi8si6mJxcoO2ZTCbKFGiLIiIiIiLyOFFSQ0QKpbi4OGuHICIiIiIiIiIiIgVMC4WLiIiIiIiIiIiIiEihoKSGiIiIiIiIiIiIiIgUCpp+SkREREREHliZmjX/347ZbL1ARERERESkSNNIDRERERERERERERERKRSU1BAp5GJiYmjcuPE9nWMymVi+fHm+xJMtPDycLl26GPtms5lBgwZRtmxZTCYTCQkJ+dq+iIiIiIiIiIiIFD1KaoiFvz+ILqyCgoIwmUw5ths3bhR4LJ988gmNGjXC2dkZFxcXfH19mTx58kOrf/jw4WzcuPG+z2/WrBkvv/yyxbGPP/4Yk8nEggULLI6Hh4fTsmXL+2pn7dq1LFiwgFWrVpGWlkaDBg3uN2QRERERERERERF5TCmpIUXWwIEDSUtLs9iKF8+5jMy1a9fyLYZ58+YxZMgQIiMjSUhIID4+npEjR5Kenv7Q2nB2dqZcuXL3fX7r1q2Ji4uzOLZp0yaqVq2a43hcXBxt2rS5r3aSk5Nxd3enefPmuLm55fpe5MX169fv6zwREREREREREREp/JTUkNsKCgoiMjKSkSNHUrZsWdzc3IiJibEoc+nSJQYPHoyrqyv29vY0aNCAVatWGa8vW7aM+vXrY2dnh4eHB7GxsRbne3h4MHHiRMLCwnB2dqZ69eqsXLmS8+fPExISgrOzMz4+PuzZs8fivK1bt9KyZUscHByoWrUqkZGRXL582aKMo6Mjbm5uFlt2mxMmTCAsLIxSpUoxaNCgfIt15cqVhIaG0r9/f2rVqkX9+vXp2bMn77zzjlEmKyuL8ePHU6VKFezs7GjcuDFr1661aPv06dP07NmTsmXL4uTkRJMmTdi5cyeQc/qp3bt3065dO8qXL0/p0qUJDAxk7969t32fW7duzeHDh/nll1+MY5s3b2b06NEWSY2UlBROnDhB69atATh16hShoaG4uLhQtmxZQkJCSE1NzbWN8PBwXnvtNU6ePInJZMLDwwO4OXrjqaeewsXFhXLlytGpUyeSk5ON81JTUzGZTHz11VcEBgZib2/P4sWLAfj000/x9vbG3t6eunXrMnv27Nteo4iIiIiIiIiIiBQN9/dTaXlsLFy4kKFDh7Jz5062b99OeHg4LVq0oF27dmRlZdGhQwf+/PNPPv/8c2rWrEliYiLFihUD4McffyQ0NJSYmBh69OjBtm3beOWVVyhXrhzh4eFGG9OnT2fSpElERUUxffp0+vTpQ/PmzenXrx/vv/8+o0aNIiwsjEOHDmEymUhOTiY4OJiJEycyb948zp8/T0REBBEREcyfPz9P1zV16lSio6N5++238zVWNzc3Nm/ezIkTJ6hevXquscycOZPY2FjmzJmDr68v8+bN4//+7/84dOgQtWvXJj09ncDAQCpXrszKlStxc3Nj7969ZGVl5Vrfn3/+Sd++ffnwww8xm83ExsbSsWNHjh49SsmSJXOUb9GiBSVKlGDTpk307NmTxMRE/vrrL/r378+oUaNISUnB09OTTZs2YW9vT0BAANevX6d9+/YEBASwZcsWihcvzsSJEwkODubAgQPY2trmuMaaNWvyr3/9i927dxufkcuXLzN06FB8fHxIT08nOjqarl27kpCQgI3N/8u5jh49mtjYWHx9fY3ERnR0NLNmzcLX15d9+/YxcOBAnJyc6Nu3b673JSMjg4yMDGPfxsYGZ2dnY2qy/JbdRkG0JSI3qd+JWJf6nkjB0XeeSMFTvxOxDvW9oi3P76tZ5BZ9+/Y1h4SEmM1mszkwMND81FNPWbzu7+9vHjVqlNlsNpt/+OEHs42Njfnw4cO51tWrVy9zu3btLI6NGDHCXK9ePWO/evXq5hdffNHYT0tLMwPmqKgo49j27dvNgDktLc1sNpvN/fv3Nw8aNMii3i1btphtbGzMf/31lxF7iRIlzE5OTsY2dOhQo80uXboUSKw///yzuVmzZmbA7OXlZe7bt6/5q6++MmdmZhrnVKpUyfzOO+9YtO3v729+5ZVXzGaz2TxnzhxzyZIlzb/99ps5N2+//ba5UaNGub5mNpvNmZmZ5pIlS5q/++474xhg/vbbb439Fi1aGPf0n//8p7ljx45ms9lsfuaZZ8zz5s0zm81mc58+fcytW7c2m81m86JFi8x16tQxZ2VlGXVkZGSYHRwczD/88IPZbLb8LJnNZvP06dPN1atXv22cZrPZfP78eTNgPnjwoNlsNptTUlLMgHnGjBkW5WrWrGn+4osvLI5NmDDBHBAQcNu63377bTNgbL6+vneMRURERO7NBTA2ERERERGR/KKRGnJHPj4+Fvvu7u6cO3cOgISEBKpUqYKXl1eu5yYlJRESEmJxrEWLFsyYMYPMzEzj1/q3tuHq6gpAw4YNcxw7d+4cbm5u7N+/nwMHDhjTEAGYzWaysrJISUnB29sbgN69ezN27FijjIuLi/F3kyZNCiRWd3d3tm/fzk8//cR///tftm3bRt++ffn0009Zu3Yt6enp/Pzzz7Ro0SJH2/v37wdu3mdfX1/Kli1LXpw9e5a33nqLuLg4zp07R2ZmJleuXOHkyZO3PScoKIivv/4auLluRlBQEACBgYHExcXx0ksvERcXx8CBAwHYv38/x44dyzHy4+rVqxbTR93N0aNHiY6OZufOnfz666/G6JOTJ09aLCR+6/t1+fJlkpOT6d+/vxEPwI0bNyhduvRt2xozZgxDhw419rNHgpw5cyZf11XJlj3tVmpqKmazOd/bExH1O5GC5vK3ffU9kYKj7zyRgqd+J2Id6ntFm62tLZUrV75rOSU15I5KlChhsW8ymYwHzw4ODg+9jewhRrkdy243PT2dwYMHExkZmaOuatWqGX+XLl2aWrVq5dqmk5NTgcSarUGDBjRo0IBXXnmFl19+mZYtW7J582aeeOKJu7Z5r/e5b9++/Pbbb8ycOZPq1atjZ2dHQEDAHR/ct27dmnfeeYczZ84QFxfH8OHDgZtJjTlz5pCcnMypU6eMRcLT09N54oknLBJL2SpUqJDnWDt37kz16tX55JNPqFSpEllZWTRo0CBHrLe+X9mLrH/yySc8+eSTFuWyk0+5sbOzw87OLsdxs9lcoF+CBd2eiKjfiViL+p5IwVO/Eyl46nci1qG+VzTl9T1VUkPum4+PD6dPn+bIkSO5jtbw9vYmPj7e4lh8fDxeXl53fPh8N35+fiQmJt42YXE/8ivW3NSrVw+4OeKgVKlSVKpUifj4eAIDAy3abtq0KXDzPn/66adcuHAhT6M14uPjmT17Nh07dgRuLuj966+/3vGc5s2bY2try+zZs7l69aqRbPH39+f8+fPMmzcPJycnIyY/Pz+++uorKlasSKlSpe79JgC//fYbhw8f5pNPPqFly5bAzQXg78bV1ZVKlSpx/PhxevfufV9ti4iIiIiIiIiISOFkc/ciIrkLDAykVatWdO/enfXr15OSksKaNWtYu3YtAMOGDWPjxo1MmDCBI0eOsHDhQmbNmmWMArhfo0aNYtu2bURERJCQkMDRo0dZsWIFERER911nfsX6j3/8gwkTJhAfH8+JEyfYsWMHYWFhVKhQgYCAAABGjBjBu+++y1dffcXhw4cZPXo0CQkJvP766wD07NkTNzc3unTpQnx8PMePH2fZsmVs37491zZr167NokWLSEpKYufOnfTu3fuuoz0cHBxo1qwZH374IS1atDASOba2thbHs0el9O7dm/LlyxMSEsKWLVtISUkhLi6OyMhITp8+nad7U6ZMGcqVK8e//vUvjh07xn/+8x+L6aHuZNy4cUyePJkPPviAI0eOcPDgQebPn8+0adPydL6IiIiIiIiIiIgUTkpqyANZtmwZ/v7+9OzZk3r16jFy5EgyMzOBm7/mX7p0KUuWLKFBgwZER0czfvx4wsPDH6hNHx8fNm/ezJEjR2jZsiW+vr5ER0dTqVKl+64zv2Jt27YtO3bs4Pnnn8fLy4vu3btjb2/Pxo0bKVeuHACRkZEMHTqUYcOG0bBhQ9auXcvKlSupXbs2cDOxsG7dOipWrEjHjh1p2LAhU6ZMue0Ikrlz53Lx4kX8/Pzo06cPkZGRVKxY8a6xtm7dmj///NNYTyNbYGAgf/75J61btzaOOTo68t///pdq1arRrVs3vL296d+/P1evXs3zyA0bGxuWLFnCjz/+SIMGDXjjjTd4//3383TugAED+PTTT5k/fz4NGzYkMDCQBQsW4OnpmafzRUREREREREREpHAymTX5mIg8xk6fPl1gC4V7enqSkpKiOR9FCoj6nUjBKlOz5v/722xW3xMpQPrOEyl46nci1qG+V7TZ2tpSpUqVu5bTSA0RERERERERERERESkUtFC4iIiIiIg8sIvJycDNX8+VsXIsIiIiIiJSdGmkhoiIiIiIiIiIiIiIFApKaoiIiIiIiIiIiIiISKGgpIaIiIiIiIiIiIiIiBQKWlNDREQeG2Vq1rR2CFLALgIu1g5C5HFkNls7AhERERERKaI0UkNERERERERERERERAoFJTVErCgmJobGjRsb++Hh4XTp0uWht2MymVi+fDkAqampmEwmEhISHno7IiIiIiIiIiIiIvlJSY1CLL8egBe0oKAgTCZTju3GjRsFGkdcXFyucbz11lv51ubw4cPZuHHjA9fz119/UbZsWcqXL09GRsZDiExERERERERERETk0aM1NeSRMHDgQMaPH29xrHjxnB/Pa9euYWtrm6+xHD58mFKlShn7zs7O+daWs7PzQ6l/2bJl1K9fH7PZzPLly+nRo8dDiE5ERERERERERETk0aKRGkVEUFAQkZGRjBw5krJly+Lm5kZMTIxFmUuXLjF48GBcXV2xt7enQYMGrFq1yng9+8G4nZ0dHh4exMbGWpzv4eHBxIkTCQsLw9nZmerVq7Ny5UrOnz9PSEgIzs7O+Pj4sGfPHovztm7dSsuWLXFwcKBq1apERkZy+fJlizKOjo64ublZbNltTpgwgbCwMEqVKsWgQYPyNVaAihUrWsTh7OzM7t27adeuHeXLl6d06dIEBgayd+9ei/NMJhNz5syhU6dOODo64u3tzfbt2zl27BhBQUE4OTnRvHlzkpOTjXP+Pv3UrT777DPKlSuXY+RFly5d6NOnj8WxuXPn8uKLL/Liiy8yd+7cXOu7k82bN9O0aVPs7Oxwd3dn9OjRxkiZVatW4eLiQmZmJgAJCQmYTCZGjx5tnD9gwABefPFFAH777Td69uxJ5cqVcXR0pGHDhnz55ZcW7T2Mz2tePlciIiIiIiIiIiJStCipUYQsXLgQJycndu7cyXvvvcf48eNZv349AFlZWXTo0IH4+Hg+//xzEhMTmTJlCsWKFQPgxx9/JDQ0lBdeeIGDBw8SExNDVFQUCxYssGhj+vTptGjRgn379vHss8/Sp08fwsLCePHFF9m7dy81a9YkLCwMs9kMQHJyMsHBwXTv3p0DBw7w1VdfsXXrViIiIvJ8XVOnTqVRo0bs27ePqKiofIv1Tv7880/69u3L1q1b2bFjB7Vr16Zjx478+eefFuWyEzAJCQnUrVuXXr16MXjwYMaMGcOePXswm815vvbnn3+ezMxMVq5caRw7d+4cq1evpl+/fsax5ORktm/fTmhoKKGhoWzZsoUTJ07kqQ2AM2fO0LFjR/z9/dm/fz8fffQRc+fOZeLEiQC0bNmSP//8k3379gE3EyDly5cnLi7OqGPz5s0EBQUBcPXqVZ544glWr17NTz/9xKBBg+jTpw+7du2yaPdBPq8P43MlIiIiIiIiIiIihY/JnJcnuvJICg8P59KlSyxfvpygoCAyMzPZsmWL8XrTpk1p06YNU6ZMYd26dXTo0IGkpCS8vLxy1NW7d2/Onz/PunXrjGMjR45k9erVHDp0CLg5+qFly5YsWrQIgF9++QV3d3eioqKMqaN27NhBQEAAaWlpuLm5MWDAAIoVK8acOXOMerdu3UpgYCCXL1/G3t6eoKAgtm3bZjGt1ODBg4mNjcXDwwNfX1++/fbbfI81Li6O1q1b4+TkZHFvTpw4Qbly5SyOZWVl4eLiwhdffEGnTp0AjPU3JkyYYFH/3LlzjSTEkiVLeOmll/jrr7+AmyM1li9fbizafet7CvDKK6+QmprK999/D8C0adP45z//ybFjxzCZTACMHTuWxMRE4x516dKFxo0bW4x8MJlMfPvtt3Tp0oXU1FQ8PT3Zt28fjRs3ZuzYsSxbtoykpCSjztmzZzNq1Ch+//13bGxseOKJJ+jZsyfDhw+na9eu+Pv7M27cOH777Td+//13qlSpwpEjR6hduza56dSpE3Xr1mXq1KkAD/x5zcvn6u8yMjIsRr3Y2Njg7OzMmTNnuHbtWq5xP0wmkwkPDw9SU1PzlEiT/OFSo4a1QxAReSyUMZv1nSdSgPRvTZGCp34nYh3qe0Wbra0tlStXvms5ralRhPj4+Fjsu7u7c+7cOeDmlEFVqlTJ9QExQFJSEiEhIRbHWrRowYwZM8jMzDR+IX9rG66urgA0bNgwx7Fz587h5ubG/v37OXDgAIsXLzbKmM1msrKySElJwdvbG7iZqBg7dqxRxsXFxfi7SZMmBRJrti1btlCyZEljv0yZMpw9e5a33nqLuLg4zp07R2ZmJleuXOHkyZMWceSlzatXr/LHH39YrNtxOwMHDsTf358zZ85QuXJlFixYQHh4uJF8yMzMZOHChcycOdM458UXX2T48OFER0djY3P3wVhJSUkEBAQYdcLN+5mens7p06epVq0agYGBxMXFMWzYMLZs2cLkyZNZunQpW7du5cKFC1SqVMlIaGRmZjJp0iSWLl1qJAwyMjJwdHS87b2Ce/u85vVzdavJkyczbtw4Y9/X15e9e/fm6T+UD5OHh0eBtieWLlo7ABGRx4i+80QKnvqdSMFTvxOxDvW9x5uSGkVIiRIlLPZNJhNZWVkAODg4PPQ2sh+C53Ysu9309HQGDx5MZGRkjrqqVatm/F26dGlq1aqVa5t/HzmRX7Fm8/T0tEiqAPTt25fffvuNmTNnUr16dezs7AgICMjxC//7bfN2fH19adSoEZ999hnPPPMMhw4dYvXq1cbrP/zwA2fOnMmxMHhmZiYbN26kXbt2eWrnboKCgpg3bx779++nRIkS1K1bl6CgIOLi4rh48SKBgYFG2ffff5+ZM2cyY8YMGjZsiJOTE0OGDLnjvYJ7+7zm9XN1qzFjxjB06FBjPzvho5EajxcXawcgIvIY0XeeSMHRvzVFCp76nYh1qO8VbRqpIRZ8fHw4ffo0R44cyfXX797e3sTHx1sci4+Px8vLyxj5cD/8/PxITEy8bcLifuRXrHcSHx/P7Nmz6dixIwCnTp3i119/zZe2/m7AgAHMmDGDM2fO0LZtW6pWrWq8NnfuXF544QWLUS4A77zzDnPnzs1TUsPb25tly5ZhNpuNpEt8fDwlS5akSpUqwP9bV2P69OlGAiMoKIgpU6Zw8eJFhg0bZtQXHx9PSEiIsXB4VlYWR44coV69enm+5rt9Xu/nc2VnZ4ednV2O42azuUC/BAu6PREREWvRd55IwVO/Eyl46nci1qG+VzTl9T3VQuGPicDAQFq1akX37t1Zv349KSkprFmzhrVr1wIwbNgwNm7cyIQJEzhy5AgLFy5k1qxZDB8+/IHaHTVqFNu2bSMiIoKEhASOHj3KihUrHmhB5/yK9U5q167NokWLSEpKYufOnfTu3fuhjX65m169enH69Gk++eQTiwXCz58/z3fffUffvn1p0KCBxRYWFsby5cu5cOHCXet/5ZVXOHXqFK+99hr/+9//WLFiBW+//TZDhw41RjOUKVMGHx8fFi9ebCwI3qpVK/bu3cuRI0csRmrUrl2b9evXs23bNpKSkhg8eDBnz569p2u+2+c1Pz5XIiIiIiIiIiIi8uhTUuMxsmzZMvz9/enZsyf16tVj5MiRZGZmAjd/+b506VKWLFlCgwYNiI6OZvz48YSHhz9Qmz4+PmzevJkjR47QsmVLfH19iY6OplKlSvddZ37Feidz587l4sWL+Pn50adPHyIjI6lYsWK+tXer0qVL0717d5ydnenSpYtx/LPPPsPJyYmnn346xzlPP/00Dg4OfP7553etv3Llynz//ffs2rWLRo0a8fLLL9O/f3/eeusti3KBgYFkZmYaSY2yZctSr1493NzcqFOnjlHurbfews/Pj/bt2xMUFISbm5tF3Hl1p89rfnyuRERERERERERE5NFnMmucjsgj7+mnn6Z+/fp88MEH1g6lyDl9+nSBranh6elJSkqKhkdaUZmaNa0dgojIY6GM2azvPJECpH9rihQ89TsR61DfK9psbW2N6fDvRGtqiDzCLl68SFxcHHFxccyePdva4YiIiIiIiIiIiIhYlZIaIo8wX19fLl68yLvvvmsxxZOI3J+LycnWDkEKkH7BI2IdJpOJMtYOQkREREREiiwlNUQeYampqdYOQUREREREREREROSRoYXCRURERERERERERESkUFBSQ0RERERERERERERECgVNPyUiIiIi8hCUqVnT2iE8OrSOjYiIiIiI5BON1BARERERERERERERkUJBSQ0RsarU1FRMJhMJCQnWDkVEREREREREREQecUpqSKETHh5Oly5drB3GAwsKCsJkMuXYbty4UaBxxMXFWbTv6upK9+7dOX78eIG0X7VqVdLS0mjQoEGBtCciIiIiIiIiIiKFl5IaIlY0cOBA0tLSLLbixXMudXPt2rV8j+Xw4cP8/PPPfP311xw6dIjOnTuTmZmZ7+0WK1YMNze3XK9bRERERERERERE5FZKakihFhQURGRkJCNHjqRs2bK4ubkRExNjUebSpUsMHjwYV1dX7O3tadCgAatWrTJeX7ZsGfXr18fOzg4PDw9iY2Mtzvfw8GDixImEhYXh7OxM9erVWblyJefPnyckJARnZ2d8fHzYs2ePxXlbt26lZcuWODg4ULVqVSIjI7l8+bJFGUdHR9zc3Cy27DYnTJhAWFgYpUqVYtCgQfkaK0DFihVxd3enVatWREdHk5iYyLFjxwBYsWIFfn5+2NvbU6NGDcaNG2cxosRkMvHpp5/StWtXHB0dqV27NitXrjRev3jxIr1796ZChQo4ODhQu3Zt5s+fD+Q+/dTmzZtp2rQpdnZ2uLu7M3r0aIv28vK+i4iIiIiIiIiISNGjpIYUegsXLsTJyYmdO3fy3nvvMX78eNavXw9AVlYWHTp0ID4+ns8//5zExESmTJlCsWLFAPjxxx8JDQ3lhRde4ODBg8TExBAVFcWCBQss2pg+fTotWrRg3759PPvss/Tp04ewsDBefPFF9u7dS82aNQkLC8NsNgOQnJxMcHAw3bt358CBA3z11Vds3bqViIiIPF/X1KlTadSoEfv27SMqKirfYs2Ng4MDcHOEyJYtWwgLC+P1118nMTGROXPmsGDBAt555x2Lc8aNG0doaCgHDhygY8eO9O7dmwsXLgAQFRVFYmIia9asISkpiY8++ojy5cvn2vaZM2fo2LEj/v7+7N+/n48++oi5c+cyceJEi3J3et9FRERERERERESkaDKZ7/RkU+QRFB4ezqVLl1i+fDlBQUFkZmayZcsW4/WmTZvSpk0bpkyZwrp16+jQoQNJSUl4eXnlqKt3796cP3+edevWGcdGjhzJ6tWrOXToEHBz9EPLli1ZtGgRAL/88gvu7u5ERUUxfvx4AHbs2EFAQABpaWm4ubkxYMAAihUrxpw5c4x6t27dSmBgIJcvX8be3p6goCC2bduGra2tUWbw4MHExsbi4eGBr68v3377bb7HGhcXR+vWrbl48SIuLi6kpaXx3HPPceLECY4fP07Hjh15+umnGTNmjNHu559/zsiRI/n555+BmyM13nrrLSZMmADA5cuXcXZ2Zs2aNQQHB/N///d/lC9fnnnz5uV4D1JTU/H09GTfvn00btyYsWPHsmzZMpKSkjCZTADMnj2bUaNG8fvvv2NjY3PX9z03GRkZZGRkGPs2NjY4Oztz5syZApney2Qy4eHhQWpq6h0TSiLy8KjfSUFzqVHD2iE8MsqYzep7IgVI33kiBU/9TsQ61PeKNltbWypXrnzXcprEXgo9Hx8fi313d3fOnTsHQEJCAlWqVMk1oQGQlJRESEiIxbEWLVowY8YMMjMzjREdt7bh6uoKQMOGDXMcO3fuHG5ubuzfv58DBw6wePFio4zZbCYrK4uUlBS8vb2Bm4mKsWPHGmVcXFyMv5s0aVIgsWarUqUKZrOZK1eu0KhRI5YtW4atrS379+8nPj7eYmRGZmYmV69e5cqVKzg6OuZo18nJiVKlShnvwz/+8Q+6d+/O3r17eeaZZ+jSpQvNmzcnN0lJSQQEBBgJjezrTE9P5/Tp01SrVi1He2D5vudm8uTJjBs3ztj39fVl7969efoP5cPk4eFRoO2JiPqdFJyL1g7gEaO+J1Lw1O9ECp76nYh1qO893pTUkEKvRIkSFvsmk4msrCzg/02j9DDbyH7Yntux7HbT09MZPHgwkZGROerKfigPULp0aWrVqpVrm05OTgUSa7YtW7ZQqlQpKlasSMmSJY3j6enpjBs3jm7duuVoy97ePtd2s9vJbqNDhw6cOHGC77//nvXr1/P000/z6quvMnXq1Pu6xru1l5sxY8YwdOhQY9/G5ubsexqpIVJ0qd9JQXOxdgCPGPU9kYKj7zyRgqd+J2Id6ntFm0ZqiHDz1/ynT5/myJEjuY7W8Pb2Jj4+3uJYfHw8Xl5exsiH++Hn50diYuJtExb3I79izebp6WkxUiSbn58fhw8ffuBrqVChAn379qVv3760bNmSESNG5JrU8Pb2ZtmyZZjNZiMBEx8fT8mSJalSpcp9t29nZ4ednV2O42azuUC/BAu6PRFRvxOxFvU9kYKnfidS8NTvRKxDfa9oyut7qqSGFGmBgYG0atWK7t27M23aNGrVqsX//vc/TCYTwcHBDBs2DH9/fyZMmECPHj3Yvn07s2bNYvbs2Q/U7qhRo2jWrBkREREMGDAAJycnEhMTWb9+PbNmzbqvOvMr1ruJjo6mU6dOVKtWjeeeew4bGxv279/PTz/9lGPx7jvV8cQTT1C/fn0yMjJYtWqVMQXX373yyivMmDGD1157jYiICA4fPszbb7/N0KFDjdEVIiIiIiIiIiIi8njSE0Ip8pYtW4a/vz89e/akXr16jBw5kszMTODmKISlS5eyZMkSGjRoQHR0NOPHjyc8PPyB2vTx8WHz5s0cOXKEli1b4uvrS3R0NJUqVbrvOvMr1rtp3749q1atYt26dfj7+9OsWTOmT59O9erV81yHra0tY8aMwcfHh1atWlGsWDGWLFmSa9nKlSvz/fffs2vXLho1asTLL79M//79eeuttx7WJYmIiIiIiIiIiEghZTJrnI6IPMZOnz5dYGtqeHp6kpKSouGRIgVE/U4KWpmaNa0dwiOjjNmsvidSgPSdJ1Lw1O9ErEN9r2iztbXN0/TzGqkhIiIiIiIiIiIiIiKFgpIaIiIiIiIiIiIiIiJSKGihcBERERGRh+BicrK1Q3gkmEwmylg7CBERERERKbI0UkNERERERERERERERAoFJTVERERERERERERERKRQ0PRTIiIiIiLyUJVf39LaIYg8NLtqLrR2CCIiIiJyC43UEBERERERERERERGRQkFJDRERERERERERERERKRSU1BC5jZiYGBo3bvzQ6ouLi8NkMnHp0qWHVieAh4cHM2bMeKh13q9HKRYREREREREREREpepTUeASFh4fTpUsXa4fxwIKCgjCZTDm2GzduFGgc2cmE7M3V1ZXu3btz/PjxO543fPhwNm7c+NDiaN68OWlpaZQuXfqh1ZkbDw+PXO/7lClT8rVdERERERERERERkfymhcIlXw0cOJDx48dbHCtePOfH7tq1a9ja2uZrLIcPH6ZkyZIcPXqUQYMG0blzZw4cOECxYsUsypnNZjIzM3F2dsbZ2fmhtW9ra4ubm9tDq+9Oxo8fz8CBAy2OlSxZskDatraC+CyJiIiIiIiIiIiIdWikxiMuKCiIyMhIRo4cSdmyZXFzcyMmJsaizKVLlxg8eDCurq7Y29vToEEDVq1aZby+bNky6tevj52dHR4eHsTGxlqc7+HhwcSJEwkLC8PZ2Znq1auzcuVKzp8/T0hICM7Ozvj4+LBnzx6L87Zu3UrLli1xcHCgatWqREZGcvnyZYsyjo6OuLm5WWzZbU6YMIGwsDBKlSrFoEGD8jVWgIoVK+Lu7k6rVq2Ijo4mMTGRY8eOGSM51qxZwxNPPIGdnR1bt27NMf1U9giaqVOn4u7uTrly5Xj11Ve5fv26USYjI4NRo0ZRtWpV7OzsqFWrFnPnzgVyTj+1YMECXFxcWL58ObVr18be3p727dtz6tQpo77k5GRCQkJwdXXF2dkZf39/NmzYkOPa/q5kyZI57ruTk5NFHD/88AO+vr44ODjQpk0bzp07x5o1a/D29qZUqVL06tWLK1euGHUGBQURERFBREQEpUuXpnz58kRFRWE2m28bx8mTJ433pVSpUoSGhnL27FkAUlNTsbGxyfFezZgxg+rVq5OVlQXATz/9RIcOHXB2dsbV1ZU+ffrw66+/5ohryJAhlC9fnvbt29/1/oiIiIiIiIiIiEjhpKRGIbBw4UKcnJzYuXMn7733HuPHj2f9+vUAZGVl0aFDB+Lj4/n8889JTExkypQpxuiDH3/8kdDQUF544QUOHjxITEwMUVFRLFiwwKKN6dOn06JFC/bt28ezzz5Lnz59CAsL48UXX2Tv3r3UrFmTsLAw4wF2cnIywcHBdO/enQMHDvDVV1+xdetWIiIi8nxdU6dOpVGjRuzbt4+oqKh8izU3Dg4OwM1f9WcbPXo0U6ZMISkpCR8fn1zP27RpE8nJyWzatImFCxeyYMECi/jCwsL48ssv+eCDD0hKSmLOnDl3HO1x5coV3nnnHT777DPi4+O5dOkSL7zwgvF6eno6HTt2ZOPGjezbt4/g4GA6d+7MyZMn73Rr8yQmJoZZs2axbds2Tp06RWhoKDNmzOCLL75g9erVrFu3jg8//NDinIULF1K8eHF27drFzJkzmTZtGp9++mmu9WdlZRESEsKFCxfYvHkz69ev5/jx4/To0QO4maBq27Yt8+fPtzhv/vz5hIeHY2Njw6VLl2jTpg2+vr7s2bOHtWvXcvbsWUJDQ3PEZWtrS3x8PB9//HGu8WRkZPDHH38YW3p6OkCuU3Xl11bQ7WnTpk39Tps2a20iRYm1+9O99Dtrx6BN2+O2qd9p02adTX2vaG95+veZ+U5PfsUqwsPDuXTpEsuXLycoKIjMzEy2bNlivN60aVPatGnDlClTWLduHR06dCApKQkvL68cdfXu3Zvz58+zbt0649jIkSNZvXo1hw4dAm4+XG7ZsiWLFi0C4JdffsHd3Z2oqChj6qgdO3YQEBBAWloabm5uDBgwgGLFijFnzhyj3q1btxIYGMjly5ext7cnKCiIbdu2WUwFNHjwYGJjY/Hw8MDX15dvv/0232ONi4ujdevWXLx4ERcXF9LS0njuuec4ceIEx48fZ9u2bbRu3Zrly5cTEhJitB0TE8Py5ctJSEgw3pe4uDiSk5ONpFFoaCg2NjYsWbKEI0eOUKdOHdavX0/btm1zvBd/j2PBggW89NJL7NixgyeffBKA//3vf3h7e7Nz506aNm2a6+ejQYMGvPzyy0YCycPDgyFDhjBkyBBjPy0tjRIlSlict2bNGlq2bGnEsWHDBp5++mkApkyZwpgxY0hOTqZGjRoAvPzyy6SmprJ27Vrg5oiIc+fOcejQIeM/MKNHj2blypUkJibmiGX9+vV06NCBlJQUqlatCkBiYiL169dn165d+Pv7s3TpUl5++WXS0tKws7Nj7969NGnShOPHjxujcrZs2cIPP/xgXMfp06epWrUqhw8fxsvLi6CgIP744w/27t2b6/269f0cN26cse/r63vXc0REROT+lF/f0tohiDw0v7bbcvdCIiIiIlJgtKZGIfD3UQPu7u6cO3cOgISEBKpUqZJrQgMgKSnJ4kE9QIsWLZgxYwaZmZnGw/lb23B1dQWgYcOGOY6dO3cONzc39u/fz4EDB1i8eLFRxmw2k5WVRUpKCt7e3sDNRMXYsWONMi4uLsbfTZo0KZBYs1WpUgWz2cyVK1do1KgRy5Yts0i4/D2e3NSvX99iDQ53d3cOHjwI3HwvihUrRmBg4F3ryVa8eHH8/f2N/bp16+Li4kJSUhJNmzYlPT2dmJgYVq9eTVpaGjdu3OCvv/6660iNESNGEB4ebnGscuXKFvt/v4+Ojo5GQiP72K5duyzOadasmUXGNCAggNjYWIv3J1tSUhJVq1Y1EhoA9erVM67P39+fLl268Oqrr/Ltt9/ywgsvsGDBAlq3bo2HhwcA+/fvZ9OmTbmOdklOTjY+90888cQd7wfAmDFjGDp0qLFvY3NzoNqZM2csRuzkF5PJhIeHB6mpqXccRSQiD4/6nYh15PXXVSKFRUpKirVDuCt954kUPPU7EetQ3yvabG1tczzDzI2SGoXA339xbzKZjPUGsqdRephtZP+PaG7HsttNT09n8ODBREZG5qirWrVqxt+lS5emVq1aubaZvcZDfseabcuWLZQqVYqKFSvmumh2XuIpiPfiVsOHD2f9+vVMnTqVWrVq4eDgwHPPPXfXh/Dly5e/7X3P9vd7dqdryy+2traEhYUxf/58unXrxhdffMHMmTON19PT0+ncuTPvvvtujnPd3d2Nv/Py3tnZ2WFnZ5fjuNlsLtAvwYJuT0TU70RE5MEUpu8QfeeJFDz1OxHrUN8rmvL6niqpUcj5+Phw+vRpjhw5kutoDW9vb+Lj4y2OxcfH4+XlleOX9ffCz8+PxMTEuz44vxf5FWs2T09Pi5EiD1vDhg3Jyspi8+bNuU4/lZsbN26wZ88eY6qpw4cPc+nSJWOkS3x8POHh4XTt2hW4+ZA/NTU1X+LPi507d1rs79ixg9q1a+f6/nh7e3Pq1ClOnTplMf3UpUuXqFevnlFuwIABNGjQgNmzZ3Pjxg26detmvObn58eyZcvw8PCgeHH950pERERERERERORxp4XCC7nAwEBatWpF9+7dWb9+PSkpKaxZs8ZYB2HYsGFs3LiRCRMmcOTIERYuXMisWbMYPnz4A7U7atQotm3bRkREBAkJCRw9epQVK1bc00Lhf5dfsRYUDw8P+vbtS79+/Vi+fDkpKSnExcWxdOnS255TokQJXnvtNXbu3MmPP/5IeHg4zZo1M5IctWvX5ptvviEhIYH9+/fTq1evPI2e+PPPP/nll18stj/++OOBr/HkyZMMHTqUw4cP8+WXX/Lhhx/y+uuv51q2bdu2NGzYkN69e7N371527dpFWFgYgYGBFlN9eXt706xZM0aNGkXPnj0tRry8+uqrXLhwgZ49e7J7926Sk5P54YcfeOmll8jMzHzg6xEREREREREREZHCRUmNImDZsmX4+/vTs2dP6tWrx8iRI40Hvn5+fixdupQlS5bQoEEDoqOjGT9+fI71Fu6Vj48Pmzdv5siRI7Rs2RJfX1+io6OpVKnSfdeZX7EWpI8++ojnnnuOV155hbp16zJw4EAuX7582/KOjo6MGjWKXr160aJFC5ydnfnqq6+M16dNm0aZMmVo3rw5nTt3pn379vj5+d01jujoaNzd3S22kSNHPvD1hYWF8ddff9G0aVNeffVVXn/9dQYNGpRrWZPJxIoVKyhTpgytWrWibdu21KhRw+L6svXv359r167Rr18/i+OVKlUiPj6ezMxMnnnmGRo2bMiQIUNwcXEx1sQQERERERERERGRx4fJrMnHRKxiwYIFDBkyhEuXLlk7lDwJCgqicePGzJgx46HXPWHCBL7++msOHDjw0Ou+m9OnTxfYQuGenp6kpKRozkeRAqJ+J2IdJpMJ/2Nh1g5D5KHZVXOhtUO4K33niRQ89TsR61DfK9psbW2pUqXKXcvpp84iYjXp6en89NNPzJo1i9dee83a4YiIiIiIiIiIiMgjTivviojVRERE8OWXX9KlS5ccU0+JiIhI4fVruy369ZyIiIiIiOQLJTVErCQ8PLxQrRcSFxf30OtcsGABCxYseOj1ioiIiIiIiIiISNGk6adERERERERERERERKRQUFJDREREREREREREREQKBU0/JSIiIiIiD1X59S2tHYLI4+eYtQO4N7tqLrR2CCIiIlJIaaSGiIiIiIiIiIiIiIgUCkpq3IPw8HC6dOli7TAeWwsWLMDFxcXaYcgdeHh4MGPGDGuHISIiIiIiIiIiIkVUoUxqhIeHYzKZcmzBwcHWDq3QiIuLw2QycenSJYvjt97bEiVK4OrqSrt27Zg3bx5ZWVkFFl9uD8d79OjBkSNH8qW9ZcuWERQUROnSpXF2dsbHx4fx48dz4cKFfGnvYYiJiaFx48Y5jnt4eOTaP6ZMmVLwQYqIiIiIiIiIiIg8RIUyqQEQHBxMWlqaxfbll19aO6wiIfvepqamsmbNGlq3bs3rr79Op06duHHjxn3XazabH+h8BwcHKlaseN/n387YsWPp0aMH/v7+rFmzhp9++onY2Fj279/PokWL7rvea9eu5Tj2oPcgr8aPH5+jf7z22mv53u6jILf7LiIiIiIiIiIiIkVDoU1q2NnZ4ebmZrGVKVMGAJPJxJw5c+jUqROOjo54e3uzfft2jh07RlBQEE5OTjRv3pzk5GSjvuxfvc+ZM4eqVavi6OhIaGgov//++21jyMjIIDIykooVK2Jvb89TTz3F7t27gZsPr2vVqsXUqVMtzklISMBkMnHs2LH7jhVgxYoV+Pn5YW9vT40aNRg3bpzFw3KTycSnn35K165dcXR0pHbt2qxcuRKA1NRUWrduDUCZMmUwmUyEh4fnuLeVK1fGz8+PN998kxUrVrBmzRoWLFhg1GEymUhISDDOu3TpEiaTibi4OOD/jQZZs2YNTzzxBHZ2dmzdupXk5GRCQkJwdXXF2dkZf39/NmzYYNQTFBTEiRMneOONN4xRBpD79FMfffQRNWvWxNbWljp16uRIQtzpPgDs2rWLSZMmERsby/vvv0/z5s3x8PCgXbt2LFu2jL59+wK5Tz02ZMgQgoKCLOKOiIhgyJAhlC9fnvbt29/2HmRlZTF58mQ8PT1xcHCgUaNG/Pvf/zbqyj5v48aNNGnSBEdHR5o3b87hw4eNezFu3Dj2799v3KPs9wagZMmSOfqHk5OTRd0//PADvr6+ODg40KZNG86dO8eaNWvw9vamVKlS9OrViytXruS4voiICEqXLk358uWJiorCbDZzOydPniQkJARnZ2dKlSpFaGgoZ8+eBW5+hmxsbNizZ4/FOTNmzKB69erGyKCffvqJDh064OzsjKurK3369OHXX3+9430XERERERERERGRoqnQJjXuZsKECYSFhZGQkEDdunXp1asXgwcPZsyYMezZswez2UxERITFOceOHWPp0qV89913rF27ln379vHKK6/cto2RI0eybNkyFi5cyN69e6lVqxbt27fnwoULmEwm+vXrx/z58y3OmT9/Pq1ataJWrVr3HeuWLVsICwvj9ddfJzExkTlz5rBgwQLeeecdi7bGjRtHaGgoBw4coGPHjvTu3ZsLFy5QtWpVli1bBsDhw4dJS0tj5syZd7yfbdq0oVGjRnzzzTd3vvG5GD16NFOmTCEpKQkfHx/S09Pp2LEjGzduZN++fQQHB9O5c2dOnjwJwDfffEOVKlUsRhvk5ttvv+X1119n2LBh/PTTTwwePJiXXnqJTZs25ek+ACxevBhnZ+fbvs/3uobHwoULsbW1JT4+no8//vi292Dy5Ml89tlnfPzxxxw6dIg33niDF198kc2bN1vUN3bsWGJjY9mzZw/FixenX79+wM2puIYNG0b9+vWNe9SjR497ijUmJoZZs2axbds2Tp06RWhoKDNmzOCLL75g9erVrFu3jg8//DDH9RUvXpxdu3Yxc+ZMpk2bxqeffppr/VlZWYSEhHDhwgU2b97M+vXrOX78uBGnh4cHbdu2zbWPhIeHY2Njw6VLl2jTpg2+vr7s2bOHtWvXcvbsWUJDQ/N032+VkZHBH3/8YWzp6ekAuU7VlV9bQbenTZs29Ttt2qy1iYjcjbX/O6VN28PY9FnWps06m/pe0d7yoni+/Qsln61atQpnZ2eLY2+++SZvvvkmAC+99JLx4HPUqFEEBAQQFRVl/Ir79ddf56WXXrI4/+rVq3z22WdUrlwZgA8//JBnn32W2NhY3NzcLMpevnyZjz76iAULFtChQwcAPvnkE9avX8/cuXMZMWIE4eHhREdHs2vXLpo2bcr169f54osvcozeuNdYx40bx+jRo41RBDVq1GDChAmMHDmSt99+2ygXHh5Oz549AZg0aRIffPABu3btIjg4mLJlywJQsWLFPD+4r1u3LgcOHMhT2VuNHz+edu3aGftly5alUaNGxv6ECRP49ttvWblyJREREZQtW5ZixYoZow1uZ+rUqYSHhxsJiaFDh7Jjxw6mTp1K9kgUuPN9OHr0KDVq1KBEiRL3fF25qV27Nu+9956xn52QufUeZGRkMGnSJDZs2EBAQABw8z3cunUrc+bMITAw0Dj/nXfeMfZHjx7Ns88+y9WrV3FwcMDZ2ZnixYvneo9GjRrFW2+9ZXFszZo1tGzZ0tifOHEiLVq0AKB///6MGTOG5ORkatSoAcBzzz3Hpk2bGDVqlHFO1apVmT59OiaTiTp16nDw4EGmT5/OwIEDc8SwceNGDh48SEpKClWrVgXgs88+o379+uzevRt/f38GDBjAyy+/zLRp07Czs2Pv3r0cPHiQFStWADBr1ix8fX2ZNGmSUe+8efOoWrUqR44cwcvLK9f7npvJkyczbtw4Y9/X15e9e/ca/b2geHh4FGh7IqJ+J2IVR60dgIg86jw9Pa0dgshDoX9riliH+t7jrdAmNVq3bs1HH31kcSz7QT2Aj4+P8berqysADRs2tDh29epV/vjjD0qVKgVAtWrVLB5wBgQEkJWVxeHDh3M8OE5OTub69evGQ2GAEiVK0LRpU5KSkgCoVKkSzz77LPPmzaNp06Z89913ZGRk8Pzzz1vUda+x7t+/n/j4eIuRGZmZmVy9epUrV67g6OiYo14nJydKlSrFuXPncrmbeWM2m/OcLbtVkyZNLPbT09OJiYlh9erVpKWlcePGDf766y9jpEZeJSUlMWjQIItjLVq0yDHq5E734U5TJ92PJ554Itfjt96DY8eOceXKFYtED9xcC8LX19fi2K2xu7u7A3Du3DmqVat2xziyk2q3+vvD+79/7hwdHY2ERvaxXbt2WZzTrFkzi89AQEAAsbGxZGZmUqxYMYuySUlJVK1a1UhoANSrVw8XFxeSkpLw9/enS5cuvPrqq3z77be88MILLFiwgNatWxtfTPv372fTpk05Ephwsw9mJzVud99vNWbMGIYOHWrs29jcHKh25syZAlmHw2Qy4eHhQWpq6kP/3IlI7tTvRKzjfv69KCKPn5SUFGuHIPJA9G9NEetQ3yvabG1t8/QD5EKb1HBycrKYwunvbv3lffb/WOV2LHve/vwyYMAA+vTpw/Tp05k/fz49evQwkg73G2t6ejrjxo2jW7duOdqzt7fPtd7seh7kepOSkoxf02Q/EL71Px7Xr1/P9bzstRyyDR8+nPXr1zN16lRq1aqFg4MDzz33XL49WL7TffDy8mLr1q1cv379jqM1bGxscvyHMrfr/fu15nY8e9qj1atX5+ikdnZ2t439Xj6z5cuXv2P/yK3uh/15yQtbW1vCwsKYP38+3bp144svvrBISqWnp9O5c2fefffdHOdmJ3ng9vf9VnZ2djnuL9z8DBfkl2BBtyci6nciIiKPIn03S1Ghf2uKWIf6XtGU1/e0yK6pcT9OnjzJzz//bOzv2LEDGxsb6tSpk6Ns9uLU8fHxxrHr16+ze/du6tWrZxzr2LEjTk5OfPTRR6xdu9ZYE+FB+Pn5cfjwYWrVqpVjy0423I2trS1wc4RHXvznP//h4MGDdO/eHYAKFSoAWKx3ceui4XcSHx9PeHg4Xbt2pWHDhri5uZGampojvrvF5u3tbXH/s+u+9f7fTa9evUhPT2f27Nm5vn7p0iXg5vX+fW2PvF7v39WrVw87OztOnjyZ4/27dVTD3eTlHj1sO3futNjfsWMHtWvXzjFKA26+P6dOneLUqVPGscTERC5dumTxHg0YMIANGzYwe/Zsbty4YZGs8/Pz49ChQ3h4eOS4V3lJZIiIiIiIiIiIiEjRUmhHamRkZPDLL79YHCtevDjly5e/7zrt7e3p27cvU6dO5Y8//iAyMpLQ0NBc1yxwcnLiH//4ByNGjKBs2bJUq1aN9957jytXrtC/f3+jXLFixQgPD2fMmDHUrl3bWEPhQURHR9OpUyeqVavGc889h42NDfv37+enn35i4sSJeaqjevXqmEwmVq1aRceOHY01GuD/3dvMzEzOnj3L2rVrmTx5Mp06dSIsLAwABwcHmjVrxpQpU/D09OTcuXM51nC4ndq1a/PNN9/QuXNnTCYTUVFROUYEeHh48N///pcXXngBOzu7XN/XESNGEBoaiq+vL23btuW7777jm2++YcOGDXmKA+DJJ59k5MiRDBs2jDNnztC1a1cqVarEsWPH+Pjjj3nqqad4/fXXadOmDe+//z6fffYZAQEBfP755/z00085povKi5IlSzJ8+HDeeOMNsrKyeOqpp/j999+Jj4+nVKlSxlopd+Ph4UFKSgoJCQlUqVKFkiVLGiMR/vzzzxz9w9HR0Zhq7X6dPHmSoUOHMnjwYPbu3cuHH35IbGxsrmXbtm1Lw4YN6d27NzNmzODGjRu88sorBAYGWkzH5e3tTbNmzRg1ahT9+vXDwcHBeO3VV1/lk08+oWfPnowcOZKyZcty7NgxlixZwqeffpprMkVERERERERERESKrkI7UmPt2rW4u7tbbE899dQD1VmrVi26detGx44deeaZZ/Dx8bntL/gBpkyZQvfu3enTpw9+fn4cO3aMH374gTJlyliU69+/P9euXcuxMPn9at++PatWrWLdunX4+/vTrFkzpk+fTvXq1fNcR+XKlY0Fx11dXYmIiDBey763Hh4eBAcHs2nTJj744ANWrFhh8RB53rx53LhxgyeeeIIhQ4bkOaEybdo0ypQpQ/PmzencuTPt27fHz8/Posz48eNJTU2lZs2axqiQv+vSpQszZ85k6tSp1K9fnzlz5jB//nyCgoLyfB8A3n33Xb744gt27txJ+/btqV+/PkOHDsXHx8dIMLRv356oqChGjhyJv78/f/75p5HguR8TJkwgKiqKyZMn4+3tTXBwMKtXr76nxfK6d+9OcHAwrVu3pkKFCnz55ZfGa9HR0Tn6x8iRI+873mxhYWH89ddfNG3alFdffZXXX389x7om2UwmEytWrKBMmTK0atWKtm3bUqNGDb766qscZbP7yN9HMlWqVIn4+HgyMzN55plnaNiwIUOGDMHFxSXPo5JERERERERERESk6DCZNfkYADExMSxfvvy+pxS6ky1btvD0009z6tQpYyFwkcImKCiIxo0bM2PGjIde94QJE/j66685cODAQ6/7bk6fPl1gC4V7enqSkpKiOR9FCoj6nYh1mEwm/I/d/48/ROTxsKvmQmuHIPJA9G9NEetQ3yvabG1tqVKlyl3LFdrppwqDjIwMzp8/T0xMDM8//7wSGiJ/k56eTmpqKrNmzcrzSB8RERERERERERF5fCmpkY++/PJL+vfvT+PGjfnss8+sHY7IIyciIoIvv/ySLl265Jh6SkRERAqvX9tt0a/nRAqQfrUqIiIijxNNPyUijzVNPyVSdKnfiViH+p5IwVO/Eyl46nci1qG+V7TldfoprbQrIiIiIiIiIiIiIiKFgpIaIiIiIiIiIiIiIiJSKGhNDRGRIq5MzZrWDkHEai4CLtYOQuRxpKkAREREREQkn2ikhoiIiIiIiIiIiIiIFApKaohYgdlsZtCgQZQtWxaTyURCQoK1Q3poFixYgIuLi7XDEBERERERERERkSJISQ2RW4SHh2MymZgyZYrF8eXLl2Myme56/oULFxgyZAjVq1fH1taWSpUq0a9fP06ePGlRbu3atSxYsIBVq1aRlpZGgwYNjLZNJhMlSpTA1dWVdu3aMW/ePLKysh7qdRY2qampRS75IyIiIiIiIiIiIvdOSQ2Rv7G3t+fdd9/l4sWLeSqfmZlJVlYWFy5coFmzZmzYsIGPP/6YY8eOsWTJEo4dO4a/vz/Hjx83zklOTsbd3Z3mzZvj5uZG8eI3l7cJDg4mLS2N1NRU1qxZQ+vWrXn99dfp1KkTN27cyJfrFRERERERERERESkslNQQ+Zu2bdvi5ubG5MmTc309e3qllStXUq9ePezs7Dh58iRjx47l559/ZsOGDXTo0IFq1arRqlUrfvjhB0qUKMGrr74K3BwN8tprr3Hy5ElMJhMeHh5G3XZ2dri5uVG5cmX8/Px48803WbFiBWvWrGHBggVGuUuXLjFgwAAqVKhAqVKlaNOmDfv37zdej4mJoXHjxsyZM4eqVavi6OhIaGgov//+u8W1fPrpp3h7e2Nvb0/dunWZPXu28Vr26IhvvvmG1q1b4+joSKNGjdi+fXuO+1GtWjUcHR3p2rUrv/32m8XrycnJhISE4OrqirOzM/7+/mzYsMGijIeHB5MmTaJfv36ULFmSatWq8a9//ct43dPTEwBfX19MJhNBQUEAxMXF0bRpU5ycnHBxcaFFixacOHEi1/dNRERERERERERECj8lNUT+plixYkyaNIkPP/yQ06dP51rmypUrvPvuu3z66accOnSIihUrsmTJEnr37o2bm5tFWQcHB1555RV++OEHLly4wMyZMxk/fjxVqlQhLS2N3bt33zGeNm3a0KhRI7755hvj2PPPP8+5c+dYs2YNP/74I35+fjz99NNcuHDBKHPs2DGWLl3Kd999x9q1a9m3bx+vvPKK8frixYuJjo7mnXfeISkpiUmTJhEVFcXChQst2h87dizDhw8nISEBLy8vevbsaYwa2blzJ/379yciIoKEhARat27NxIkTLc5PT0+nY8eObNy4kX379hEcHEznzp1zTMkVGxtLkyZNjDj/8Y9/cPjwYQB27doFwIYNG0hLS+Obb77hxo0bdOnShcDAQA4cOMD27dsZNGhQnqYJExERERERERERkcKpuLUDEHkUde3alcaNG/P2228zd+7cHK9fv36d2bNn06hRIwDOnj3LpUuX8Pb2zrU+b29vzGYzx44do2nTppQsWZJixYrlSIDcTt26dTlw4AAAW7duZdeuXZw7dw47OzsApk6dyvLly/n3v//NoEGDALh69SqfffYZlStXBuDDDz/k2WefJTY2Fjc3N95++21iY2Pp1q0bcHM0RGJiInPmzKFv375G28OHD+fZZ58FYNy4cdSvX59jx45Rt25dZs6cSXBwMCNHjgTAy8uLbdu2sXbtWuP8Ro0aGfcJYMKECXz77besXLmSiIgI43jHjh2NpMuoUaOYPn06mzZtok6dOlSoUAGAcuXKGffswoUL/P7773Tq1ImaNWsa9/l2MjIyyMjIMPZtbGxwdnY21jHJb9ltKOkiIiKPC33niRQc/VtTpOCp34lYh/pe0ZbX91VJDZHbePfdd2nTpg3Dhw/P8ZqtrS0+Pj45jpvN5nyJxWw2G516//79pKenU65cOYsyf/31F8nJycZ+tWrVjIQGQEBAAFlZWRw+fJiSJUuSnJxM//79GThwoFHmxo0blC5d2qLeW6/T3d0dgHPnzlG3bl2SkpLo2rWrRfmAgACLpEZ6ejoxMTGsXr2atLQ0bty4wV9//ZVjpMat7ZhMJtzc3Dh37txt70nZsmUJDw+nffv2tGvXjrZt2xIaGmrE+HeTJ09m3Lhxxr6vry979+61uEcF4dbpxgpK3laHERERebis8Z0n8rhTvxMpeOp3Itahvvd4U1JD5DZatWpF+/btGTNmDOHh4RavOTg4WGQOK1SogIuLC0lJSbnWlZSUhMlkolatWvcVS1JSkrGuRHp6Ou7u7sTFxeUo5+Likqf60tPTAfjkk0948sknLV4rVqyYxX6JEiWMv7OvOSsrK6+hM3z4cNavX8/UqVOpVasWDg4OPPfcc1y7du227WS3dbd25s+fT2RkJGvXruWrr77irbfeYv369TRr1ixH2TFjxjB06FBj38bm5ux7Z86cyRFLfshePyU1NTXfkl+341KgrYmIiNxkje88kceVNf+tKfK4Ur8TsQ71vaLN1tY2Tz9AVlJD5A6mTJlC48aNqVOnzh3L2djYEBoayuLFixk/frzFtFJ//fUXs2fPpn379pQtW/aeY/jPf/7DwYMHeeONNwDw8/Pjl19+oXjx4nfMSp88eZKff/6ZSpUqAbBjxw5sbGyoU6cOrq6uVKpUiePHj9O7d+97jimbt7c3O3futDi2Y8cOi/34+HjCw8ONER3p6emkpqbeUzu2trYAZGZm5njN19cXX19fxowZQ0BAAF988UWuSQ07Oztjuq5bmc3mAv0SLOj2RERErEXfeSIFT/1OpOCp34lYh/pe0ZTX91QLhYvcQcOGDenduzcffPDBXctOmjQJNzc32rVrx5o1azh16hT//e9/ad++PdevX+ef//znXevIyMjgl19+4cyZM+zdu5dJkyYREhJCp06dCAsLA6Bt27YEBATQpUsX1q1bR2pqKtu2bWPs2LHs2bPHqMve3p6+ffuyf/9+tmzZQmRkJKGhoUbCZdy4cUyePJkPPviAI0eOcPDgQebPn8+0adPyfH+yR0lMnTqVo0ePMmvWLIuppwBq167NN998Q0JCAvv376dXr173NNIDoGLFijg4OLB27VrOnj3L77//TkpKCmPGjGH79u2cOHGCdevWcfTo0TuuqyEiIiIiIiIiIiKFm5IaIncxfvz4PD2EL1euHDt27KB169YMHjyYmjVrEhoaSs2aNdm9ezc1atS4ax1r167F3d0dDw8PgoOD2bRpEx988AErVqwwpoUymUx8//33tGrVipdeegkvLy9eeOEFTpw4gaurq1FXrVq16NatGx07duSZZ57Bx8eH2bNnG68PGDCATz/9lPnz59OwYUMCAwNZsGCBMc1VXjRr1oxPPvmEmTNn0qhRI9atW8dbb71lUWbatGmUKVOG5s2b07lzZ9q3b4+fn1+e2wAoXrw4H3zwAXPmzKFSpUqEhITg6OjI//73P7p3746XlxeDBg3i1VdfZfDgwfdUt4iIiIiIiIiIiBQeJrPG6YgUOTExMSxfvpyEhARrh/LIO336dIGtqeHp6UlKSkqBD48sU7NmgbYnIiJSxmy2yneeyOPKmv/WFHlcqd+JWIf6XtFma2tLlSpV7lpOIzVERERERERERERERKRQ0ELhIiJF3MXkZGuHIGIV+gWPiHWYTCbKWDsIEREREREpsjRSQ6QIiomJ0dRTIiIiIiIiIiIiUuQoqSEiIiIiIiIiIiIiIoWCkhoiIiIiIiIiIiIiIlIoaE0NERERERF5qMqvb2ntEEQeP8esHYDIY0j9TsQ6HuO+t6vmQmuH8EjQSA0RERERERERERERESkUlNQQEREREREREREREZFCQUkNkceYyWRi+fLl1g6D8PBwunTpYu0wRERERERERERE5BGnpIZIEREeHo7JZMqxBQcHWzs0Q2pqKiaTiYSEBIvjM2fOZMGCBVaJSURERERERERERAoPLRQuUoQEBwczf/58i2N2dnZWiibvSpcube0QREREREREREREpBDQSA2RIsTOzg43NzeLrUyZMgAcPXqUVq1aYW9vT7169Vi/fr3FuXFxcZhMJi5dumQcS0hIwGQykZqaahyLj48nKCgIR0dHypQpQ/v27bl48SIAa9eu5amnnsLFxYVy5crRqVMnkpOTjXM9PT0B8PX1xWQyERQUBOScfiojI4PIyEgqVqyIvb09Tz31FLt3784R68aNG2nSpAmOjo40b96cw4cPP4zbKCIiIiIiIiIiIo8ojdQQeQxkZWXRrVs3XF1d2blzJ7///jtDhgy553oSEhJ4+umn6devHzNnzqR48eJs2rSJzMxMAC5fvszQoUPx8fEhPT2d6OhounbtSkJCAjY2NuzatYumTZuyYcMG6tevj62tba7tjBw5kmXLlrFw4UKqV6/Oe++9R/v27Tl27Bhly5Y1yo0dO5bY2FgqVKjAyy+/TL9+/YiPj8+1zoyMDDIyMox9GxsbnJ2djWm68lt2GwXRlojcpH4nYh3qcyIiIiIi+aOo/1s7r9enpIZIEbJq1SqcnZ0tjr355ps0adKE//3vf/zwww9UqlQJgEmTJtGhQ4d7qv+9996jSZMmzJ492zhWv3594+/u3btblJ83bx4VKlQgMTGRBg0aUKFCBQDKlSuHm5tbrm1cvnyZjz76iAULFhjxffLJJ6xfv565c+cyYsQIo+w777xDYGAgAKNHj+bZZ5/l6tWr2Nvb56h38uTJjBs3ztj39fVl7969VK5c+Z7uwYPy8PAo0PZERP1OxCqOWjsAEREREZGiJ3sWlMedkhoiRUjr1q356KOPLI6VLVuWRYsWUbVqVSOhARAQEHDP9SckJPD888/f9vWjR48SHR3Nzp07+fXXX8nKygLg5MmTNGjQIE9tJCcnc/36dVq0aGEcK1GiBE2bNiUpKcmirI+Pj/G3u7s7AOfOnaNatWo56h0zZgxDhw419m1sbs6+d+bMGa5du5an2B6EyWTCw8OD1NRUzGZzvrcnIup3ItZS1H89JiIiIiJiLSkpKdYOIV/Z2trm6QfISmqIFCFOTk7UqlXrvs7Nfsh/64O/69evW5RxcHC4Yx2dO3emevXqfPLJJ1SqVImsrCwaNGiQb0mDEiVKGH9nP0DJTqT8nZ2dXa6LppvN5gJ92FnQ7YmI+p2IiIiIiPx/7d17VFV1/v/x10Y4COIFFAUCPIrXQhTzkmGFSmkZk37NaiqVYqwxL+Mlb1MpeBkv6GhGY9oisWnM+q4Sv9mMpoxgQ6aUaZpXDDINMye7QAUI5/eHP/d0Bi9Qerbn8HysddZif87e+/PeZ683W3mfz+cDeAZP/79tTa+PhcKBOqBjx476/PPPVVxcbLa9//77Tvucnxrq5/vs3r3baZ+YmBhlZ2dfsI9///vfOnTokJ5++mn169dPHTt2NBcQP+/8Ghrn1+C4kKioKNlsNqe1MSoqKpSfn6/rr7/+ElcJAAAAAAAAwNMxUgPwIGVlZTp58qRTm7e3txISEtSuXTuNGDFCaWlp+u677/TUU0857demTRtFREQoJSVFc+fO1eHDh7V48WKnfaZPn65OnTrpiSee0O9//3vZbDZt3bpVQ4cOVVBQkJo2baqVK1cqNDRUx44d07Rp05yOb968ufz8/LRx40aFh4erfv36aty4sdM+DRo00KhRozR58mQFBQUpMjJSCxcu1A8//KDk5OQr+GkBAAAAAAAAcDeM1AA8yMaNGxUaGur06t27t7y8vLRu3Tr9+OOP6tGjh373u99p7ty5Tsf6+Pjo1Vdf1cGDBxUTE6MFCxZozpw5Tvu0a9dO77zzjvbs2aMePXqoV69eWr9+vby9veXl5aW1a9fqww8/VHR0tCZMmKC0tDSn4729vbVs2TKtWLFCYWFhuueeey54HfPnz9eQIUM0bNgwde3aVQUFBdq0aZMCAwOv7AcGAAAAAAAAwK0YDk+fiAsALuH48eMuWyi8VatWKiws9Pj5D4FrBXkHWMMwDHUvGG51GAAAAIDH2Rm12uoQriqbzabw8PDL7sdIDQAAAAAAAAAA4BZYUwMAAADAFXX69ncZJQW4EKMTAdcj7wBrkHuQGKkBAAAAAAAAAADcBEUNAAAAAAAAAADgFihqAAAAAAAAAAAAt8CaGgAAAG4gMCrK6hCAmmN+YwAAAABXCSM1AAAAAAAAAACAW6CoAcByhmEoKyvL6jAAAAAAAAAAXOMoagAukJSUpEGDBlnWf05OjgzDkGEY8vLyUuPGjRUbG6spU6aouLjYZXGkpKSoS5cu1dqLi4t15513uiwOAAAAAAAAAO6JogZQhxw6dEhffPGF8vPzNXXqVG3ZskXR0dHau3fvrzpveXn5rzo+JCREvr6+v+ocAAAAAAAAADwfRQ3AYrm5uerRo4d8fX0VGhqqadOm6ezZs+b7GzduVO/evdWkSRM1bdpUd999t44ePWq+X1RUJMMw9Oabb6pPnz7y9/dX586dtX379mp9NW/eXCEhIWrXrp0eeOAB5eXlKTg4WKNGjTL3iY+P1/jx452OGzRokJKSksxtu92u2bNna/jw4WrUqJEee+wxSdLUqVPVrl07+fv7q3Xr1nrmmWdUUVEhScrMzFRqaqr27NljjhrJzMyUVH36qb1796pv377y8/NT06ZN9dhjj6mkpMR8//zIl0WLFik0NFRNmzbV6NGjzb4AAAAAAAAAeCZvqwMA6rITJ07orrvuUlJSkl5++WUdPHhQI0eOVP369ZWSkiJJKi0t1cSJExUTE6OSkhLNmDFDgwcP1u7du+Xl9Z+65FNPPaVFixapbdu2euqpp/Tb3/5WBQUF8va+eJr7+fnp97//vSZMmKBTp06pefPmNY590aJFmjFjhmbOnGm2NWzYUJmZmQoLC9PevXs1cuRINWzYUFOmTNH999+vffv2aePGjdqyZYskqXHjxtXOW1paqv79+6tXr17Kz8/XqVOn9Lvf/U5jxowxiyCStHXrVoWGhmrr1q0qKCjQ/fffry5dumjkyJEXjLesrExlZWXmtpeXlwICAswCy9V2vg9X9AXgHPIOsBa5B7gOzzzA9cg7wBrknmer6X2lqAFY6C9/+YsiIiKUnp4uwzDUoUMHffHFF5o6dapmzJghLy8vDRkyxOmYl156ScHBwdq/f7+io6PN9ieffFIDBw6UJKWmpuqGG25QQUGBOnTocMkYzr9fVFRUq6JG3759NWnSJKe2p59+2vzZbrfrySef1Nq1azVlyhT5+fkpICBA3t7eCgkJueh516xZo59++kkvv/yyGjRoIElKT09XYmKiFixYoBYtWkiSAgMDlZ6ernr16qlDhw4aOHCgsrOzL1rUmDdvnlJTU83t2NhY7dq1S9ddd12Nr/lKsNvtLu0PgOfk3RmrAwBqyVNyD3An5B3geuQdYA1yr26jqAFY6MCBA+rVq5dTFTIuLk4lJSU6fvy4IiMjdeTIEc2YMUM7duzQ6dOnVVVVJUk6duyYU1EjJibG/Dk0NFSSdOrUqcsWNRwOh6TaV7i7detWre21117TsmXLdPToUZWUlOjs2bNq1KhRrc574MABde7c2SxoSOc+k6qqKh06dMgsatxwww2qV6+euU9oaOgl1waZPn26Jk6caG6fH+Vy4sSJX70mSE0YhiG73a6ioiLzMwdwdXla3jWxOgCgljwl9wB34GnPPMAdkHeANcg9z2az2Wr0BWSKGsA1LjExUS1bttSLL76osLAwVVVVKTo6utof4n18fMyfzxcozhdALuXAgQOS/lPh9vLyqvZQuNBaFT8vOkjS9u3b9dBDDyk1NVX9+/dX48aNtXbtWi1evPjyF/kL/Px6pXPXfKnr9fX1veBi5A6Hw6UPQVf3B4C8A6xC7gGuR94BrkfeAdYg9zxTTe8pC4UDFurYsaO2b9/ulLB5eXlq2LChwsPD9e9//1uHDh3S008/rX79+qljx446c+bKTUDy448/auXKlbr11lsVHBwsSQoODlZxcbG5T2Vlpfbt23fZc7333ntq2bKlnnrqKXXr1k1t27bVZ5995rSPzWZTZWXlJc/TsWNH7dmzR6WlpWZbXl6evLy81L59+9pcHgAAAAAAAAAPQ1EDcJFvv/1Wu3fvdno99thj+vzzzzV27FgdPHhQ69ev18yZMzVx4kR5eXkpMDBQTZs21cqVK1VQUKB//vOfTlMo1dapU6d08uRJHTlyRGvXrlVcXJxOnz6t5cuXm/v07dtXb7/9tt5++20dPHhQo0aN0jfffHPZc7dt21bHjh3T2rVrdfToUS1btkzr1q1z2sdut6uwsFC7d+/W6dOnnRbuPu+hhx5S/fr1NWLECO3bt09bt27V2LFjNWzYMHPqKQAAAAAAAAB1E9NPAS6Sk5Oj2NhYp7bk5GT9/e9/1+TJk9W5c2cFBQUpOTnZXHDby8tLa9eu1bhx4xQdHa327dtr2bJlio+P/0UxtG/fXoZhKCAgQK1bt9Ydd9yhiRMnOi3c/eijj2rPnj0aPny4vL29NWHCBPXp0+ey5/7Nb36jCRMmaMyYMSorK9PAgQP1zDPPKCUlxdxnyJAhevPNN9WnTx998803WrVqlZKSkpzO4+/vr02bNukPf/iDunfvLn9/fw0ZMkR//vOff9E1AwAAAAAAAPAchoPJxwDUYcePH3fZQuGtWrVSYWEhcz4CLuJpeRcYFWV1CECNBTocHpN7gDvwtGce4A7IO8Aa5J5ns9lsCg8Pv+x+TD8FAAAAAAAAAADcAtNPAQAAuIEzR49aHQJQI4ZhKNDqIAAAAAB4LEZqAAAAAAAAAAAAt0BRAwAAAAAAAAAAuAWKGgAAAAAAAAAAwC2wpgYAAACAK6rZ5lusDsHJzqjVVocAAAAA4AphpAYAAAAAAAAAAHALFDUAAAAAAAAAAIBboKgBQJKUlJSkQYMG1Xh/wzCUlZV11eKpDbvdrqVLl1odBgAAAAAAAICrjKIGAEtVVFRYHQIAAAAAAAAAN0FRA0A18fHxGjdunKZMmaKgoCCFhIQoJSXFfN9ut0uSBg8eLMMwzG1JWr9+vbp27ar69eurdevWSk1N1dmzZ833DcPQ8uXL9Zvf/EYNGjTQ3LlzL3ucw+FQSkqKIiMj5evrq7CwMI0bN86M9bPPPtOECRNkGIYMw7i6Hw4AAAAAAAAAy1DUAHBBq1evVoMGDbRjxw4tXLhQs2bN0ubNmyVJ+fn5kqRVq1apuLjY3H733Xc1fPhw/eEPf9D+/fu1YsUKZWZmmoWL81JSUjR48GDt3btXjz766GWPe+ONN7RkyRKtWLFCR44cUVZWljp16iRJevPNNxUeHq5Zs2apuLhYxcXFrvqIAAAAAAAAALiYt9UBALg2xcTEaObMmZKktm3bKj09XdnZ2br99tsVHBwsSWrSpIlCQkLMY1JTUzVt2jSNGDFCktS6dWvNnj1bU6ZMMc8lSQ8++KAeeeQRc/vRRx+95HHHjh1TSEiIEhIS5OPjo8jISPXo0UOSFBQUpHr16qlhw4ZOsfy3srIylZWVmdteXl4KCAhw2eiO830wkgRwHfIOsMa1mHPXYkzAlcQzD3A98g6wBrnn2Wp6XylqALigmJgYp+3Q0FCdOnXqksfs2bNHeXl5TiMzKisr9dNPP+mHH36Qv7+/JKlbt261Om7o0KFaunSpWrdurQEDBuiuu+5SYmKivL1r/its3rx5Sk1NNbdjY2O1a9cuXXfddTU+x5Xw86m6ALgGeQdY4IjVAThr1aqV1SEALsEzD3A98g6wBrlXt1HUAHBBPj4+TtuGYaiqquqSx5SUlCg1NVX/8z//U+29+vXrmz83aNCgVsdFRETo0KFD2rJlizZv3qwnnnhCaWlpys3NrRbnxUyfPl0TJ040t728zs2+d+LECZWXl9foHL/G+bVHioqK5HA4rnp/AMg7wCrX4rfmCgsLrQ4BuKp45gGuR94B1iD3PJvNZqvRF5ApagD4RXx8fFRZWenU1rVrVx06dEht2rSp1blqcpyfn58SExOVmJio0aNHq0OHDtq7d6+6du0qm81WLZb/5uvrK19f32rtDofDpQ9BV/cHgLwDIH4HoM7gmQe4HnkHWIPc80w1vacUNQD8Ina7XdnZ2YqLi5Ovr68CAwM1Y8YM3X333YqMjNS9994rLy8v7dmzR/v27dOcOXMueq7LHZeZmanKykr17NlT/v7+euWVV+Tn56eWLVuasWzbtk0PPPCAfH191axZM1d9DAAAAAAAAABcyMvqAAC4p8WLF2vz5s2KiIhQbGysJKl///7asGGD3nnnHXXv3l033XSTlixZYhYfLuZyxzVp0kQvvvii4uLiFBMToy1btuitt95S06ZNJUmzZs1SUVGRoqKizEXMAQAAAAAAAHgew8E4HQB12PHjx122pkarVq1UWFjI8EjARcg7wBqGYah7wXCrw3CyM2q11SEAVxXPPMD1yDvAGuSeZ7PZbAoPD7/sfozUAAAAAAAAAAAAboE1NQAAAABcUadvf5dvzwEAAAC4KhipAQAAAAAAAAAA3AJFDQAAAAAAAAAA4BYoagAAAAAAAAAAALfAmhoAAAAArqhmm2+xOgTU0M6o1VaHAAAAANQKIzUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAJKk7du3q169eho4cKDVodRKfHy8xo8fb3UYAAAAAAAAAFyAogYASVJGRobGjh2rbdu26YsvvrA6HAAAAAAAAACohqIGAJWUlOi1117TqFGjNHDgQGVmZprv5eTkyDAMbdq0SbGxsfLz81Pfvn116tQp/eMf/1DHjh3VqFEjPfjgg/rhhx/M48rKyjRu3Dg1b95c9evXV+/evZWfn2++n5mZqSZNmjjFkZWVJcMwzO2UlBR16dJFf/3rX2W329W4cWM98MAD+v777yVJSUlJys3N1bPPPivDMGQYhoqKiq7KZwQAAAAAAADAehQ1AOj1119Xhw4d1L59ez388MN66aWX5HA4nPZJSUlRenq63nvvPX3++ee67777tHTpUq1Zs0Zvv/223nnnHT333HPm/lOmTNEbb7yh1atXa9euXWrTpo369++vr7/+ulaxHT16VFlZWdqwYYM2bNig3NxczZ8/X5L07LPPqlevXho5cqSKi4tVXFysiIiIX/+BAAAAAAAAALgmeVsdAADrZWRk6OGHH5YkDRgwQN9++61yc3MVHx9v7jNnzhzFxcVJkpKTkzV9+nQdPXpUrVu3liTde++92rp1q6ZOnarS0lItX75cmZmZuvPOOyVJL774ojZv3qyMjAxNnjy5xrFVVVUpMzNTDRs2lCQNGzZM2dnZmjt3rho3biybzSZ/f3+FhIRc8jxlZWUqKyszt728vBQQEGCO8Ljazvfhir4AnEPeAdYg59wL98sz8MwDXI+8A6xB7nm2mt5XihpAHXfo0CHt3LlT69atkyR5e3vr/vvvV0ZGhlNRIyYmxvy5RYsW8vf3Nwsa59t27twp6dzoioqKCrMIIkk+Pj7q0aOHDhw4UKv47Ha7WdCQpNDQUJ06dapW55CkefPmKTU11dyOjY3Vrl27dN1119X6XL+G3W53aX8AyDvAEkesDgA11apVK6tDwBXEMw9wPfIOsAa5V7dR1ADquIyMDJ09e1ZhYWFmm8PhkK+vr9LT0802Hx8f82fDMJy2z7dVVVXVuF8vL69qU1xVVFRU2+/X9nPe9OnTNXHiRKf+JenEiRMqLy+v9flqyzAM2e12FRUVVbtuAFcHeQdYg2/NuZfCwkKrQ8AVwDMPcD3yDrAGuefZbDZbjb6ATFEDqMPOnj2rl19+WYsXL9Ydd9zh9N6gQYP06quvqkOHDrU+b1RUlGw2m/Ly8tSyZUtJ5woW+fn5Gj9+vCQpODhY33//vUpLS9WgQQNJ0u7du2vdl81mU2Vl5WX38/X1la+vb7V2h8Ph0oegq/sDQN4BwKXw+9Gz8MwDXI+8A6xB7nmmmt5TihpAHbZhwwadOXNGycnJaty4sdN7Q4YMUUZGhtLS0mp93gYNGmjUqFGaPHmygoKCFBkZqYULF+qHH35QcnKyJKlnz57y9/fXH//4R40bN047duxQZmZmrfuy2+3asWOHioqKFBAQoKCgIHMUBgAAAAAAAADPwl/+gDosIyNDCQkJ1Qoa0rmixgcffKCPP/74F517/vz5GjJkiIYNG6auXbuqoKBAmzZtUmBgoCQpKChIr7zyiv7+97+rU6dOevXVV5WSklLrfp588knVq1dP119/vYKDg3Xs2LFfFC8AAAAAAACAa5/hYJwOgDrs+PHjLltTo1WrViosLGR4JOAi5B1gDcMw1L1guNVhoIZ2Rq22OgRcATzzANcj7wBrkHuezWazKTw8/LL7MVIDAAAAAAAAAAC4BYoaAAAAAAAAAADALbBQOAAAAIAr6vTt7zIlAAAAAICrgpEaAAAAAAAAAADALVDUAAAAAAAAAAAAboHppwAAbi8wKsrqEHCNOiOpidVBAHUR004BAAAAuEoYqQEAAAAAAAAAANwCRQ0AAAAAAAAAAOAWKGoA16D4+HiNHz/e3Lbb7Vq6dKll8QAAAAAAAADAtYCiBtxKUlKSDMPQ/PnzndqzsrJkGMZV67e8vFwLFy5U586d5e/vr2bNmikuLk6rVq1SRUXFVev3vPz8fD322GPmtmEYysrKsiROCiwAAAAAAAAArMJC4XA79evX14IFC/T4448rMDDwqvdXXl6u/v37a8+ePZo9e7bi4uLUqFEjvf/++1q0aJFiY2PVpUuXCx5ns9muSAzBwcFXLU5PcyU/dwAAAAAAAADXFkZqwO0kJCQoJCRE8+bNu+g+//rXv3TLLbfIz89PERERGjdunEpLSyVJ6enpio6ONvc9P8rjhRdecOrj6aefliQtXbpU27ZtU3Z2tkaPHq0uXbqodevWevDBB7Vjxw61bdtW0rkpo8aMGaPx48erWbNm6t+/vyRp3759uvPOOxUQEKAWLVpo2LBhOn36tNlXaWmphg8froCAAIWGhmrx4sXVrufnoyPsdrskafDgwTIMw9yuaZwXGmnRpUsXpaSkSJIcDodSUlIUGRkpX19fhYWFady4ceY1fvbZZ5owYYIMw3AaHfPGG2/ohhtukK+vr+x2e7XrsNvtmjNnjnmtLVu21P/93//pq6++0j333KOAgADFxMTogw8+qPG9PH/e2bNna/jw4WrUqJHTiBYAAAAAAAAAnoWiBtxOvXr19Kc//UnPPfecjh8/Xu39o0ePasCAARoyZIg+/vhjvfbaa/rXv/6lMWPGSJJuu+027d+/X1999ZUkKTc3V82aNVNOTo4kqaKiQtu3b1d8fLwk6W9/+5sSEhIUGxtbrS8fHx81aNDA3F69erVsNpvy8vL0wgsv6JtvvlHfvn0VGxurDz74QBs3btSXX36p++67zzxm8uTJys3N1fr16/XOO+8oJydHu3btuuj15+fnS5JWrVql4uJic7s2cV7KG2+8oSVLlmjFihU6cuSIsrKy1KlTJ0nSm2++qfDwcM2aNUvFxcUqLi6WJH344Ye677779MADD2jv3r1KSUnRM888o8zMTKdzL1myRHFxcfroo480cOBADRs2TMOHD9fDDz+sXbt2KSoqSsOHD5fD4ZB0+Xt53qJFi9S5c2d99NFHeuaZZy54XWVlZfruu+/MV0lJiSSZxRlXvFzdX116AQCuPVY/G3jxqmsv8o4XL9e/yDtevKx5kXue/aoJpp+CWxo8eLC6dOmimTNnKiMjw+m9efPm6aGHHjIX2m7btq2WLVum2267TcuXL1d0dLSCgoKUm5ure++9Vzk5OZo0aZKeffZZSdLOnTtVUVGhm2++WZJ05MgRxf//AsfltG3bVgsXLjS358yZo9jYWP3pT38y21566SVFRETo8OHDCgsLU0ZGhl555RX169dP0rnCSHh4+EX7OD8VVZMmTRQSEmK21ybOSzl27JhCQkKUkJAgHx8fRUZGqkePHpKkoKAg1atXTw0bNnTq+89//rP69etnFhTatWun/fv3Ky0tTUlJSeZ+d911lx5//HFJ0owZM7R8+XJ1795dQ4cOlSRNnTpVvXr10pdffmmOxrnUvaxfv74kqW/fvpo0adIlr2vevHlKTU01t2NjY7Vr1y5dd911v+4Dq6XzI2twZZ2xOgAAQDU88wDXI+8A1yPvAGuQe3UbRQ24rQULFqhv37568sknndr37Nmjjz/+WH/729/MNofDoaqqKhUWFqpjx4669dZblZOTo4SEBO3fv19PPPGEFi5cqIMHDyo3N1fdu3eXv7+/eWxN3XjjjdVi2bp1qwICAqrte/ToUf34448qLy9Xz549zfagoCC1b9++xn3+/BqvhKFDh2rp0qVq3bq1BgwYoLvuukuJiYny9r74r4sDBw7onnvucWqLi4vT0qVLVVlZqXr16kmSYmJizPdbtGghSeYokJ+3nTp1SiEhITW6l5LUrVu3y17X9OnTNXHiRHPby+vcQLUTJ06ovLz8ssf/WoZxbqqwoqKiK3av8B9NrA4AAFANzzzAdfi3JuB65B1gDXLPs9lsthp9AZmiBtzWrbfeqv79+2v69OlOowFKSkr0+OOPm+tA/FxkZKSkc2tDrFy5Uu+++65iY2PVqFEjs9CRm5ur2267zTymXbt2OnjwYI1i+u8pnkpKSpSYmKgFCxZU2zc0NFQFBQU1Om9N1DROLy+var/0KyoqzJ8jIiJ06NAhbdmyRZs3b9YTTzyhtLQ05ebmysfH51fF+PPjzw8nu1BbVVWVpJrdS6n6534hvr6+8vX1rdbucDhc+hB0dX8AAFiFZx7geuQd4HrkHWANcs8z1fSesqYG3Nr8+fP11ltvafv27WZb165dtX//frVp06bay2azSfrPuhr/+7//a07ZFB8fry1btigvL89pGqcHH3xQW7Zs0UcffVSt/4qKCqdFq/9b165d9cknn8hut1eLpUGDBoqKipKPj4927NhhHnPmzBkdPnz4ktft4+OjyspKp7aaxhkcHGyuhSFJ3333nQoLC5329/PzU2JiopYtW6acnBxt375de/fulXSuYvrffXfs2FF5eXlObXl5eWrXrp05SuOXqMm9BAAAAAAAAFB3UNSAW+vUqZMeeughLVu2zGybOnWq3nvvPY0ZM0a7d+/WkSNHtH79eqfFpWNiYhQYGKg1a9Y4FTWysrJUVlamuLg4c9/x48crLi5O/fr10/PPP689e/bo008/1euvv66bbrpJR44cuWh8o0eP1tdff63f/va3ys/P19GjR7Vp0yY98sgjqqysVEBAgJKTkzV58mT985//1L59+5SUlGROjXQxdrtd2dnZOnnypM6cOVOrOPv27au//vWvevfdd7V3716NGDHCqfCQmZmpjIwM7du3T59++qleeeUV+fn5qWXLlmbf27Zt04kTJ3T69GlJ0qRJk5Sdna3Zs2fr8OHDWr16tdLT06tNDVZbNbmXAAAAAAAAAOoOihpwe7NmzTKnK5LOFSxyc3N1+PBh3XLLLYqNjdWMGTMUFhZm7mMYhm655RYZhqHevXubxzVq1EjdunVzms7I19dXmzdv1pQpU7RixQrddNNN6t69u5YtW6Zx48YpOjr6orGFhYUpLy9PlZWVuuOOO9SpUyeNHz9eTZo0MQsXaWlpuuWWW5SYmKiEhAT17t272toc/23x4sXavHmzIiIiFBsbW6s4p0+frttuu0133323Bg4cqEGDBikqKso8d5MmTfTiiy8qLi5OMTEx2rJli9566y01bdrU/LyLiooUFRVlLlretWtXvf7661q7dq2io6M1Y8YMzZo1y2lasF+iJvcSAAAAAAAAQN1hOJh8DEAddvz4cZctFN6qVSsVFhYy5+NVEPizwhwAwHqBDgfPPMCF+Lcm4HrkHWANcs+z2Ww2hYeHX3Y/RmoAAAAAAAAAAAC34G11AAAA/Fpnjh61OgRcg/gGD2ANwzAUaHUQAAAAADwWIzUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAAAAAAAAAADgFihqAAAAAAAAAAAAt0BRAwAAAAAAAAAAuAWKGgAAAAAAAAAAwC1Q1AAAAAAAAAAAAG6BogYAAAAAAAAAAHALFDUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAAAAAAAAAADgFihqAAAAAAAAAAAAt0BRAwAAAAAAAAAAuAWKGgAAAAAAAAAAwC1Q1AAAAAAAAAAAAG6BogYAAAAAAAAAAHALFDUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAAAAAAAAAADgFihqAAAAAAAAAAAAt0BRAwAAAAAAAAAAuAWKGgAAAAAAAAAAwC1Q1AAAAAAAAAAAAG6BogYAAAAAAAAAAHALFDUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAAAAAAAAAADgFihqAAAAAAAAAAAAt0BRAwAAAAAAAAAAuAWKGgAAAAAAAAAAwC1Q1AAAAAAAAAAAAG6BogYAAAAAAAAAAHALFDUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAAAAAAAAAADgFrytDgAArOTj4+OSfgzDkCTZbDY5HA6X9AnUdeQdYA1yD3A98g5wPfIOsAa559lq+nc6w8HdBwAAAAAAAAAAboDppwDABUpKStS1a1eVlJRYHQpQZ5B3gDXIPcD1yDvA9cg7wBrkHiSKGgDgElVVVfroo49UVVVldShAnUHeAdYg9wDXI+8A1yPvAGuQe5AoagAAAAAAAAAAADdBUQMAAAAAAAAAALgFihoA4AK+vr6aOXOmfH19rQ4FqDPIO8Aa5B7geuQd4HrkHWANcg+SZDgcDofVQQAAAAAAAAAAAFwOIzUAAAAAAAAAAIBboKgBAAAAAAAAAADcAkUNAAAAAAAAAADgFihqAAAAAAAAAAAAt0BRAwBcqKioSMnJyWrVqpX8/PwUFRWlmTNnqry83OrQAI82d+5c3XzzzfL391eTJk2sDgfwWM8//7zsdrvq16+vnj17aufOnVaHBHi0bdu2KTExUWFhYTIMQ1lZWVaHBHi8efPmqXv37mrYsKGaN2+uQYMG6dChQ1aHBXi85cuXKyYmRo0aNVKjRo3Uq1cv/eMf/7A6LFiEogYAuNDBgwdVVVWlFStW6JNPPtGSJUv0wgsv6I9//KPVoQEerby8XEOHDtWoUaOsDgXwWK+99pomTpyomTNnateuXercubP69++vU6dOWR0a4LFKS0vVuXNnPf/881aHAtQZubm5Gj16tN5//31t3rxZFRUVuuOOO1RaWmp1aIBHCw8P1/z58/Xhhx/qgw8+UN++fXXPPffok08+sTo0WMBwOBwOq4MAgLosLS1Ny5cv16effmp1KIDHy8zM1Pjx4/XNN99YHQrgcXr27Knu3bsrPT1dklRVVaWIiAiNHTtW06ZNszg6wPMZhqF169Zp0KBBVocC1ClfffWVmjdvrtzcXN16661WhwPUKUFBQUpLS1NycrLVocDFGKkBABb79ttvFRQUZHUYAAD8YuXl5frwww+VkJBgtnl5eSkhIUHbt2+3MDIAAK6ub7/9VpL4Px3gQpWVlVq7dq1KS0vVq1cvq8OBBbytDgAA6rKCggI999xzWrRokdWhAADwi50+fVqVlZVq0aKFU3uLFi108OBBi6ICAODqqqqq0vjx4xUXF6fo6GirwwE83t69e9WrVy/99NNPCggI0Lp163T99ddbHRYswEgNALgCpk2bJsMwLvn67z/qnDhxQgMGDNDQoUM1cuRIiyIH3NcvyTsAAADgShk9erT27duntWvXWh0KUCe0b99eu3fv1o4dOzRq1CiNGDFC+/fvtzosWICRGgBwBUyaNElJSUmX3Kd169bmz1988YX69Omjm2++WStXrrzK0QGeqbZ5B+DqadasmerVq6cvv/zSqf3LL79USEiIRVEBAHD1jBkzRhs2bNC2bdsUHh5udThAnWCz2dSmTRtJ0o033qj8/Hw9++yzWrFihcWRwdUoagDAFRAcHKzg4OAa7XvixAn16dNHN954o1atWiUvLwbNAb9EbfIOwNVls9l04403Kjs721ykuKqqStnZ2RozZoy1wQEAcAU5HA6NHTtW69atU05Ojlq1amV1SECdVVVVpbKyMqvDgAUoagCAC504cULx8fFq2bKlFi1apK+++sp8j2+yAlfPsWPH9PXXX+vYsWOqrKzU7t27JUlt2rRRQECAtcEBHmLixIkaMWKEunXrph49emjp0qUqLS3VI488YnVogMcqKSlRQUGBuV1YWKjdu3crKChIkZGRFkYGeK7Ro0drzZo1Wr9+vRo2bKiTJ09Kkho3biw/Pz+LowM81/Tp03XnnXcqMjJS33//vdasWaOcnBxt2rTJ6tBgAcPhcDisDgIA6orMzMyL/nGHX8fA1ZOUlKTVq1dXa9+6davi4+NdHxDgodLT05WWlqaTJ0+qS5cuWrZsmXr27Gl1WIDHysnJUZ8+faq1jxgxQpmZma4PCKgDDMO4YPuqVasuOzUqgF8uOTlZ2dnZKi4uVuPGjRUTE6OpU6fq9ttvtzo0WICiBgAAAAAAAAAAcAtM5A4AAAAAAAAAANwCRQ0AAAAAAAAAAOAWKGoAAAAAAAAAAAC3QFEDAAAAAAAAAAC4BYoaAAAAAAAAAADALVDUAAAAAAAAAAAAboGiBgAAAAAAAAAAcAsUNQAAAAAAAAAAgFugqAEAAAAAAAAAANwCRQ0AAAAAAAAAAOAWKGoAAAAAAAAAAAC3QFEDAAAAAAAAAAC4hf8Ht3dkERqHbXUAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cb_explanation.plot('PaidLoan')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6466635d",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "trustyai-python-module",
"language": "python",
"name": "trustyai-python-module"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}