
Formal Verification Report

Tezos Dexter V2 Contract
Delivered: June 9th, 2021

Prepared for the Tezos Foundation by

Summary

Verification Artifacts

Disclaimer

Functional Correctness of Dexter Entrypoints

Safety Property Verification

Invariants

Assumptions

Assumptions for Tezos Smart Contract Execution

Assumptions for External Contracts

Abstract Functional Specification of Dexter Entrypoints

Recommendations

A01: Input validation for %removeLiquidity

A02: Uniqueness of liquidity token contracts

A03: Input validation for %setLqtAddress

A04: Initialization of state variables

A05: Front-running possibility during pool initialization

A06: Verification of token and liquidity token contract implementations

1

Summary

Runtime Verification, Inc. have formally verified the Tezos Dexter V2 smart contract. The

formal verification was conducted by Stephen Skeirik, Rikard Hjort, Nishant Rodrigues, and

Daejun Park, from April 15, 2021 to June 4, 2021.

We formalized and proved safety properties of the Dexter contract. We also identified several

requirements on external contracts for the functional correctness and security of Dexter. It is

important that the users ensure that such requirements are satisfied throughout the operation of

Dexter. To be more specific, we provide several example scenarios where the requirements

could be violated. (See the Assumptions section for more details.)

We mechanized our proofs in the K framework to utilize the existing K Michelson semantics.

We note that, however, part of our proofs have not been fully mechanized, which we leave as

future work. The non-mechanized proofs have gone through only manual proof check, which

becomes part of the trust base.

Scope

The target of the formal verification is the following smart contract source and bytecode files at

git-commit-id 8a5792a5:

● dexter.mligo: Dexter contract source file written in LIGO

● dexter.mligo.tz: Compiled Michelson bytecode for FA1.2

● dexter.fa2.mligo.tz: Compiled Michelson bytecode for FA2

Note that the lqt_fa12.mligo file, the reference implementation of FA1.2 with the mint and burn

features, is not in the scope of this formal verification engagement. Note that, however, our

formal verification result of the Dexter contract is applicable for arbitrary token and liquidity

token contract implementations, provided that they faithfully implement the requirements we

explicitly formalized in the Assumptions section.

The formal verification is limited in scope within the boundary of the Dexter smart contract

only. Off-chain and client-side portions of the codebase as well as deployment and upgrade

scripts are not in the scope of this engagement.

Approach

We adopted a refinement-based verification approach to reduce verification effort as follows.

First, we formalized “baseline” properties for each Dexter entrypoint function, that specify the

storage update and the sequence of operations emitted. These baseline properties were written

based on our understanding of the LIGO source code, but they were verified against the

2

https://runtimeverification.com/
https://github.com/runtimeverification/michelson-semantics
https://gitlab.com/dexter2tz/dexter2tz/-/tree/8a5792a56e0143042926c3ca8bff7d7068a541c3
https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/dexter.mligo
https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/dexter.mligo.tz
https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/dexter.fa2.mligo.tz
https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/lqt_fa12.mligo

compiled Michelson bytecode using the K Michelson semantics. This way, we could ensure that

the Dexter source code was faithfully compiled to the Michelson bytecode, and the compiler

does not introduce into the bytecode any new behaviors that were not originally intended in the

source code.

Then, we formulated safety properties of Dexter over any sequence of arbitrary operations

including non-Dexter operations. One of the most critical properties is that “the liquidity share

price never decreases,” where the share price refers to (the geometric mean of) the XTZ and

token reserves per share. This share price preservation property implies that there is no way to

illegally drain funds from the liquidity pool, and thus users’ funds are safe (provided that certain

conditions are met, as described in the Assumptions section).

Lastly, we verified the safety properties. To reduce verification effort for the safety properties,

we first translated the baseline properties over an abstract configuration to abstract away certain

details that are irrelevant to the safety properties. This enabled us to prove the safety properties

using the abstract baseline properties.

About our assumptions

Since the external contracts that Dexter interacts with could be arbitrary, we had to make

certain assumptions on unknown external contracts. We did our best to minimize such

assumptions to make our verification result as general as possible. The assumptions were

formalized as axioms and used in our proofs. We note that our verification result is valid only

when the assumptions are met throughout the actual operation of Dexter.

Trust base

The verification of the baseline properties have been fully mechanized in the K framework on

top of the K Michelson semantics. The trust base includes the K framework as well as the K

Michelson semantics. However, the LIGO-to-Michelson compiler is not in our trust base, since

the verification was conducted against the compiled bytecode.

The proofs for the safety properties have not been fully mechanized. Specifically, some proofs

are not yet machine-checkable, but only manual proof checks have been performed. However,

all the proofs except one are written in a machine-checkable form, and we believe that they can

be made machine-checkable with reasonable effort, which we leave as future work.

Our safety property proofs depend on a mathematical model of the general Tezos smart contract

execution process. This model includes several explicit assumptions about how Tezos smart

contracts execute. Any violation of these assumptions in the actual Tezos blockchain

implementation (due to implementation bugs, updates to the protocol, or an inconsistency

between our mathematical model and the actual implementation) could invalidate the proofs.

3

Verification Artifacts

Our proof artifacts contain the full details of our formal verification process. Though we have

made significant efforts to keep our proof scripts readable, given the amount of details which we

must encode to complete our proofs, reading the raw proof scripts may still require concentrated

effort.

Reproducibility

Interested users may wish to run our mechanized proofs on their own machines to better

understand our tooling and approach. Since our mechanized proofs were performed using the K

Framework and the K-Michelson semantics, both of these tools must be installed first. To install

these tools, use your favorite Git client to check out our K-Michelson Git repository and then

consult our installation guide. Then, to reproduce our mechanical proofs, run the following

command:

$ make dexter-prove

Structure

All of the Dexter proof artifacts are included in our K-Michelson Git repository under the

tests/proofs/dexter directory. We have four source files, three of which contain our mechanized

proof of the baseline properties and one of which contains our high-level manual proof of some

important safety properties.

● Baseline Property Proof Artifacts

○ dexter-compiled.md: contains the Michelson source code of the compiled Dexter

contracts in both the FA1.2 and FA2 variants.

○ dexter.md: contains helper functions and semantic descriptions of each Dexter

entrypoint.

○ dexter-spec.md: contains proof scripts for the baseline property proofs.

● High-Level Safety Properties

○ dexter-properties.md: contains the formulation and proof of high-level safety

properties over arbitrary operation sequences.

4

https://github.com/runtimeverification/michelson-semantics
https://github.com/runtimeverification/michelson-semantics/blob/master/INSTALL.md
https://github.com/runtimeverification/michelson-semantics/tree/master/tests/proofs/dexter
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-compiled.md
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter.md
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-spec.md
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md

Disclaimer

This report does not constitute legal or investment advice. The preparers of this report present

it as an informational exercise documenting the due diligence involved in the secure

development of the target contract only, and make no material claims or guarantees concerning

the contract's operation post-deployment. The preparers of this report assume no liability for

any and all potential consequences of the deployment or use of this contract.

Smart contracts are still a nascent software arena, and their deployment and public offering

carries substantial risk. This report makes no claims that its analysis is fully comprehensive,

and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components critical to the

correct operation of this system.

The possibility of human error in the manual review process is very real, and we recommend

seeking multiple independent opinions on any claims which impact a large quantity of funds.

5

Functional Correctness of Dexter Entrypoints

Summary

In this section, we survey our proofs of functional correctness of Dexter entrypoints. Our proof

scripts consist of two pieces:

1. The Michelson code corresponding to the Dexter contract

2. High-level functional descriptions of each Dexter contract entrypoint derived from the

Dexter LIGO code

Each script relates the high-level entrypoint description to the low-level Michelson code.

Because we perform our proofs directly over Michelson code, we avoid the need to assume the

correctness of the LIGO compiler.

Each functional description of a Dexter contract entrypoint specifies: (a) the conditions under

which they succeed as well as how the storage gets updated; and (b) the conditions under which

the transactions fail which leads the Michelson VM to revert. These entrypoint descriptions as

well as the proofs relating them to the Michelson code are contained in the artifact

dexter-spec.md. Each description covers only the execution of the Dexter contract directly

including the operations that it emits; they do not include the execution of any internal

operations emitted by the Dexter contract.

Macros

The artifact dexter-compiled.md contains the compiled dexter code, including the FA1.2 and

FA2 versions as K macros.

Lemmas and Helper Functions

The artifact dexter.md contains data structures and functions that make the mechanized proof

claims more readable. This includes: (a) a model of the storage of the Dexter contract; (b)

constructors representing each Dexter LIGO contract entrypoint parameters; (c) a function

runProof() which consumes a boolean indicating the Dexter FA1.2 or FA2 version and an

abstract Dexter entrypoint and sets up the Michelson VM to execute that Dexter entrypoint.

It also contains a set of small (and hopefully trivially obvious) assumptions, such as X / 1 = X.

6

Safety Property Verification

The ultimate safety property we proved is the safety of the liquidity pool reserves, that is, that

users’ funds in the liquidity pool are safe. More specifically, we formulated the safety property

“the liquidity share price never decreases,” where the share price is defined as the

geometric mean of the XTZ and token reserves per share, as follows:

the share price := \sqrt(the XTZ reserve * the token reserve) / the total shares

The share price preservation property subsumes safety properties such as:
1

● Each entrypoint is functionally correct, never sending more assets than it should (e.g.,

due to rounding errors).

● It is not possible to earn “free” money by repeating token exchanges back and forth, or

adding and removing liquidity back and forth.

● No re-entrancy vulnerabilities exist.

● No exploits for the non-atomicity of %updateTokenPool exist.

We proved that the share price preservation property holds over any sequences of arbitrary

operations. The proof is based on the other Dexter invariants that we proved, assumptions on

external contracts and Tezos smart contract execution, and functional specifications of the

Dexter entrypoint functions, which we explain below.

The full details can be found in dexter-properties.md.

Invariants

One of the critical invariants of Dexter is about the Dexter state variables. In Dexter, the share

price as well as the token exchange rate are determined by the three state variables, XtzPool,

TokenPool, and LqtTotal, which keep track of the XTZ reserve size, the token reserve size, and

the total number of shares, respectively. However, while the Dexter entrypoint functions

immediately update these state variables, the actual amount of reserves or shares will be

updated later by the continuation operations emitted by the entrypoints. Since another Dexter

entrypoint can potentially be reentered during the execution of the current continuation

operations, and this reentrance can be repeated, the gap between the state variables and the

actual reserves/shares is unbounded.

1
Note that, however, this property has nothing to do with the market price of shares. Indeed, for example,

the USD value of the share price could decrease due to the so-called “impermanent loss” problem.

7

https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md

To deal with the potentially unbounded gap, we formulated the gap as a function of the

continuation operations, and used it to specify the invariant on the state variables. See the claim

[inv] in dexter-properties.md for the details.

This invariant was proved by the induction on sequences of operations and case analysis over

different types of operations. Most of the proof is straightforward, except the proof of

[lemma-update-token-pool-internal] which states that whenever the

%updateTokenPoolInternal entrypoint is executed, the given argument NewTokenPool must

be greater than or equal to the TokenPool state variable and less than or equal to the actual

token reserve. See the claim [lemma-update-token-pool-internal] in dexter-properties.md

for more details.

Assumptions

In order to prove the safety properties over arbitrary operation sequences, we had to make

several assumptions on the execution environment outside the Dexter contract. Note that the

safety properties we proved hold under the condition that these assumptions are satisfied

throughout the operation of Dexter.

Assumptions for Tezos Smart Contract Execution

We axiomatized several primitive behaviors of the Tezos smart contract execution that are

required for the safety proofs. Specifically, the assumptions include:

● The evaluation order of operations in the DFS.

● The state variables and XTZ balance of a smart contract account cannot be updated

without executing the contract code.
2

● A smart contract can emit only internal operations (i.e., operations whose source is not

itself).

● The contract code is immutable. No runtime code generation nor evaluation is possible.

See the corresponding section in dexter-properties.md for more details.

Assumptions for External Contracts

We made assumptions on the behaviors of external contracts, especially the token and liquidity

token contracts. These assumptions are required for the safety proofs, and thus it is important

to verify that these are satisfied by the given implementation of the token and liquidity token

2
In other blockchain systems, (e.g. Ethereum) it is possible to send currency to a smart contract account

without ever executing the contract code (e.g. by designating the contract as the recipient of mining

rewards or selfdestruct rewards).

8

https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md
https://gitlab.com/tzip/tzip/-/merge_requests/111
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md#assumptions-for-tezos-execution-environment

contracts. If some of these assumptions are not satisfied for good reasons, then the proof needs

to be revisited.

Here we highlight the critical assumptions. For the full list of assumptions, see the

corresponding section in dexter-properties.md.

Token Contract %transfer

We assume that only Dexter can spend its own tokens, and no one else can. Specifically, for

example, there must not exist any authorized users who are permitted to spend any

Dexter-owned tokens in any cases. For another example, there must not exist a way to (even

temporarily) borrow tokens from Dexter.

We also assume that the token transfer operation must update the balance before emitting

continuation operations. For example, the token contract must not implement the so-called

“pull pattern” where the transfer operation does not immediately update the balance but only

allows the receiver to claim the transferred amount later as a separate transaction. Note that

such a delayed balance update may lead to an exploit. (See A06 for an exploit scenario.)

Liquidity Token Contract %mintOrBurn

Regarding the liquidity token contract, we assume that only the %mintOrBurn entrypoint can

alter the total liquidity supply and only Dexter is permitted to call it.

Abstract Functional Specification of Dexter Entrypoints

As mentioned earlier in the document, we slightly abstracted the functional correctness

specification of each Dexter entrypoint and based the safety proofs on the abstract

specifications. The corresponding section in dexter-properties.md provides the full details.

We note that we had to add an extra input validation condition for the %removeLiquidity

specification for the invariant proof. Specifically, we added the condition that the lqtBurned

argument must be strictly smaller than the lqtTotal state variable. This is required for the

invariant of lqtTotal being positive. Indeed, this extra condition was already mentioned in the

Dexter source code comment for the same reason. However, the current Dexter implementation

does not check the condition, leaving the potential for Dexter becoming nonfunctional by

mistake or corrupted admin users. It is strongly recommended to add an explicit input

validation for the LqtBurned argument.

9

https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md#assumptions-for-external-contracts
https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/dexter/dexter-properties.md#abstract-behaviors-of-dexter-entrypoints

Recommendations

In this section, we make several recommendations to prevent potential usability issues, most of

which are related to the deployment of Dexter exchanges.

A01: Input validation for %removeLiquidity

As mentioned in the Assumptions section, there exists no explicit input validation that ensures

the lqtBurned argument to be strictly less than the storage.lqtTotal value, although it is

implicitly required as described in the code comment. It is a better practice to have an explicit

input validation instead of relying on the implicit assumption, considering the code simplicity

and the small runtime overhead of such an input validation.
3

Recommendation

Add an input validation for the lqtBurned argument in %removeLiquidity.

3
Another trick is to have the initial storage.lqtTotal to be strictly greater than the initial total supply of

the liquidity token. Then, it is impossible for storage.lqtTotal to become zero, even without any extra

input validation for lqtBurned. However, this trick would increase the complexity of the deployment

process.

10

https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/dexter.mligo#L213-214

A02: Uniqueness of liquidity token contracts

As mentioned in the Assumptions section, only (a single instance of) Dexter must be permitted

to call %mintOrBurn. In other words, the liquidity token contract (or the liquidity token ID)

must be unique for each exchange. If multiple exchanges are associated with the same liquidity

token contract, then one could mint LP tokens in a cheaper pool and burn them in a more

expensive pool, making a profit.

Currently there seems to exist no systematic enforcement mechanism for this uniqueness

requirement in deploying a new exchange. This leaves the possibility that a new exchange could

be deployed with an existing liquidity token contract that was already associated with another

exchange, by mistake or maliciously.
4

Recommendation

Have an enforcement mechanism that ensures this uniqueness requirement in deploying a new

exchange.

4
Although the current reference implementation of the liquidity token contract does not allow itself to be

associated with more than one exchange because it admits only a single admin, users can come up with

their own liquidity token contract implementation that may admit multiple admins.

11

A03: Input validation for %setLqtAddress

The %setLqtAddress entrypoint needs to check that storage.lqtTotal is not less than the

total supply of the lqtAddress token. Otherwise, it may lead to a situation that certain benign

users cannot redeem their liquidity later.

Scenario

1. Alice deploys a Dexter exchange with the initial storage.lqtTotal = 10.

2. She deploys a liquidity token contract, setting herself as initial liquidity provider by

minting 20 tokens to herself, by mistake or maliciously.
5

3. Bob adds liquidity and mints 10 liquidity tokens. Now, storage.lqtTotal = 20.

4. Alice burns 20 liquidity tokens, by mistake or maliciously, which drains Bob’s funds from

the pool.

5. Bob cannot redeem his liquidity tokens and loses his funds.

Recommendation

Have an enforcement mechanism that ensures the above requirement for the %setLqtAddress

entrypoint.

5
Note that, in the given reference implementation of the liquidity contract, Alice can mint the initial

tokens as part of the storage initialization, even if she is not the admin.

12

https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/lqt_fa12.mligo

A04: Initialization of state variables

Once the deployment and initialization of a Dexter exchange is completed, it is recommended to

have storage.lqtTotal to be not (significantly) less than \sqrt(storage.xtzPool *

storage.tokenPool). Otherwise, the minimum amount of deposits for minting non-zero

liquidity tokens could be too high for normal users to afford.

Scenario

1. Suppose the initial value of the state variables are: lqtTotal = 1, and xtzPool =

tokenPool = 10,000

2. Then one cannot mint any liquidity tokens with a deposit smaller than (10,000 xtz,

10,000 tokens).

Recommendation

Have an enforcement mechanism that ensures that the initial storage.lqtTotal value is not

significantly small compared to the initial pool reserves.

13

A05: Front-running possibility during pool initialization

According to a test deployment script, origination.sh, a method for the deployment and

initialization of an exchange pool is as follows:

A. Suppose Alice is the initial liquidity provider.

B. Alice deploys a Dexter exchange with setting an initial lqtTotal value (say L).

C. Alice deploys a liquidity token contract initially minting L liquidity tokens to herself.

D. Alice sends the initial amount of XTZ (say X) to the new exchange pool.

E. Alice sends the initial amount of tokens (say T) to the new exchange pool.

F. Alice calls the %updateTokenPool entrypoint.

G. Alice calls the %setLqtAddress entrypoint to associate the liquidity token contract with

the exchange.

In the above method, it is important to atomically execute the steps D, E, and F. Otherwise, the

pool reserves can be drained by front-running attacks.

Scenario

1. Suppose Alice has executed the steps A to D.

2. Alice sends a transaction to execute step E.

3. Bob front-runs to call %tokenToXtz with tokensSold = 1, before Alice’s transaction for

step E. This way, Bob can buy the entire XTZ reserve at only 1 token, since

storage.tokenPool = 0 at this point.

Recommendation

Have an enforcement mechanism to ensure the pool initialization to be atomic.

14

https://gitlab.com/dexter2tz/dexter2tz/-/blob/8a5792a56e0143042926c3ca8bff7d7068a541c3/origination.sh

A06: Verification of token and liquidity token contract

implementations

As mentioned in the Assumptions section, the implementation of the token and liquidity token

contracts needs to be verified to ensure that it satisfies the requirements for the safety and

security of Dexter. Certain critical requirements include:

● No allowance (or borrowing) granted for the Dexter-owned tokens.

● No delayed balance update (e.g., the pull pattern) in token transfers.

Violating these requirements may lead to exploits. For example, if the pull pattern is adopted in

token transfers, the following exploit is possible. A malicious user calls %xtzToToken and then

calls %updateTokenPool before claiming the bought tokens. Later he claims the tokens, which

makes storage.tokenPool to be larger than the actual token reserve, and distorts the token

exchange price.

Note that the (FA1.2 or FA2) standard conformance requirement alone may not be sufficient.

For example, it is unclear whether the delayed balance update violates the FA1.2 standard or

not, as FA1.2 does not explicitly specify the atomicity requirement. Also, note that certain token

implementations may intentionally violate some standard requirements for additional features

required for their own purposes.

Recommendation

Clearly document that users must verify the implementation of the token and liquidity token

contracts that satisfy the requirements before they associate them to a Dexter exchange to be

deployed.

15

