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Executive Summary
Tinyman engaged Runtime Verification Inc to conduct a security audit of their smart
contracts. The objective was to review the contracts’ business logic and
implementations in TEAL and identify any issues that could potentially cause the system
to malfunction or be exploited .

The audit was conducted by Musab Alturki in two separate rounds over the course of 8
calendar weeks:

1. Round 1 (6 weeks, over a period spanning April 23, 2021 through June 25, 2021)
considered an early version of the contracts (commit ID
cdfcc1617f05c904a998ef9add9fda60f78bc5db -- private repo), which was the
latest version available at the time of starting this audit engagement.

2. Round 2 (2 weeks, July 21, 2021 through August 4th, 2021) focused on
analyzing the security implications of the changes/additions the development
team made to the contracts (commit ID
3ff4162a38856dae70f8e6ce0b05386a403a1fc3) based on the outcome of the
first round of the audit.

The audit led to identifying six potentially critical issues, in addition to several
informative findings and general recommendations. The critical issues identified
included: Bootstrapping ill-formed pools (A01), leaking of funds when withdrawing
liquidity (A02), draining of pool funds (A03), locking up of liquidity tokens (A04), liquidity
token deflation attack (A05) and miscalculated protocol fees (A06). Informative findings
(B01 - B06) highlighted various aspects of the contracts that can be made more robust
and more maintainable and readable. They also included general recommendations to
improve code size and optimize performance.

All the critical issues have been addressed, and most of the informative findings and
general recommendations have been incorporated as well. The code is amply
documented and thoughtfully designed, following best practices.

Finally, a few highlights of the Tinyman contracts:

1. The validator application (whose logic is given in validator_approval.teal and
validator_clear_state.teal) is immutable once deployed, as the application’s
“update” and “delete” operations are disallowed by the contract’s logic
(regardless of the sender).
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2. The pool’s logic (given in pool_logicsig.tmpl.teal) ensures that the liquidity asset
of any pool created through the protocol’s bootstrapping process is not revocable
or freezable, and is not centrally managed by any account.

3. There is no mechanism for any account (including the validator application
Creator account) to close out a pool or remove funds from a pool.
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Goal
The goal of the audit is twofold:

1. Review the high-level business logic (protocol design) of the Tinyman system
based on the provided documentation

2. Review the low-level implementation of the system given as smart contracts in
TEAL

The audit focuses on trying to identify issues in the system’s logic and its
implementation that could potentially render the system vulnerable to attacks or cause it
to malfunction. Furthermore, the audit highlights informative findings that could be used
to improve performance and efficiency of the implementation and optimize its code size.

Scope
The scope of the audit is limited to the following artifacts:

1. The system’s high-level documentation given by:
a. The Tinyman AMM Design document and the FAQs document (available

online)
b. The readme.md file (and linked documents) located in the docs/ folder of

the system’s github repository documenting protocol messages and their
formats

2. The system’s implementation as smart contracts in TEAL (located in the
contracts folder) comprising the following contracts:

a. pool_logicsig.teal.tmpl
b. validator_approval.teal (in addition to validator_clear_state.teal)

The audit is limited in scope to the artifacts listed above. Off-chain and client-side
portions of the codebase as well as deployment and upgrade scripts are not in the
scope of this engagement.
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Methodology
Although the manual code review cannot guarantee to find all possible security
vulnerabilities as mentioned in our Disclaimer below, we have followed the following
approaches to make our audit as thorough as possible.

First, we rigorously reasoned about the business logic of the contract, validating
security-critical properties to ensure the absence of loopholes in the business logic. As
the system is based on Uniswap’s AMM design, we carefully examined previous
(publicly available) audit reports of Uniswap v1 and v2 to review the list of known issues
and check whether they apply to Tinyman, and if they apply, we check if the code is
vulnerable to them.

Second, we thoroughly reviewed the contract source code to detect any unexpected
(and possibly exploitable) behaviors. As TEAL is a relatively low-level language, we
constructed different higher-level representations of the TEAL codebase, including:

1. automatically generated control-flow graphs using an extended version of the
Tealer Static Analyzer tool,

2. manually writing corresponding python-like pseudo code (based on the
generated CFGs above), and then

3. cross-checking it with the high-level description of the system.

This approach enabled us to systematically check consistency between the logic and
the low-level TEAL implementation.

Thirdly, we reviewed the TEAL guidelines published by Algorand to check for known
issues.

Additionally, given the nascent TEAL development and auditing community, we
reviewed this list of known Ethereum security vulnerabilities and attack vectors and
checked whether they apply to TEAL smart contracts; if they apply, we checked whether
the code is vulnerable to them.

Finally, we dedicated the last two weeks of the audit to review the security impact of the
changes made to the contracts’ code based on the issues raised in the first phase to
ensure they were properly addressed and investigate effects on other parts of the
contracts.
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Disclaimer
This report does not constitute legal or investment advice. The preparers of this report
present it as an informational exercise documenting the due diligence involved in the
secure development of the target contract only, and make no material claims or
guarantees concerning the contract's operation post-deployment. The preparers of this
report assume no liability for any and all potential consequences of the deployment or
use of this contract.

Smart contracts are still a nascent software arena, and their deployment and public
offering carries substantial risk. This report makes no claims that its analysis is fully
comprehensive, and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components
critical to the correct operation of this system.

The possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large
quantity of funds.
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Findings
Findings presented in this section are issues that can cause the system to fail,
malfunction, and/or be exploited, and should be properly addressed.

A01: Bootstrapping Broken Pools through Ill-formed Transaction
Groups

The pool_logicsig contract computes a value and pushes it to the top of the stack (lines
280 -- 286) but that value is never used. The value corresponds to the result of this
Boolean expression:

global GroupSize == 5 && gtxn 4 Sender == txn Sender

which checks that:

1. the transaction group contains exactly 5 transactions, and that
2. the sender of the fifth transaction in the group is the Pool logicsig account.

Not using this result means that the logic effectively skips making these checks, which
would allow ill-formed transaction groups when bootstrapping a pool (of two non-Algo
ASAs). The transaction group may now be such that:

1. the fifth transaction is no longer a proper asset opt-in transaction, and/or
2. the group includes additional (malicious) transactions that are not checked by the

logic.

An attacker may use this vulnerability to cause damage by breaking the protocol or at
least creating a non-functioning pool.

Scenarios

1. The attacker sends a bootstrap transaction group with the fifth (opt-in)
transaction having a sender different from the Pool account, rendering the pool
unusable (as it’s unable to receive Asset2 tokens)

2. The attacker sends a bootstrap transaction group that includes the required five
transactions in addition to a sixth transaction, which can be:
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a. a pay transaction that causes the pool to pay back to the attacker most of
the amount of Algo that the attacker just paid to the pool in transaction 0 of
the group, or

b. a pay transaction that drains the pool account of all Algos the account may
have had just before bootstrapping

c. an app call transaction that could possibly cause the validator application
to get into an inconsistent state

Recommendation

Make sure the values computed by lines (280 -- 286) is used by inserting either an
assert instruction right after line 286, or an && instruction right after line 289.

Status

This issue has been fully addressed.

A02: Leaking Funds When Burning LP Tokens Due to
Miscalculated Withdraw Amount

On a burn operation, the wrong amount of Asset2 may be sent out to a pooler due to a
calculation error. More specifically, line 394 loads the content of scratch memory slot 61:

Load 61 // outstanding_asset2_amount

which stores the outstanding amount of asset 1 as maintained in the state of the
application, while what should be loaded is the outstanding amount of asset 2 (as the
comment in the same line above indicates), which is stored in slot 62. This bug may
result in inflating the computed value of the supply amount of Asset2, which inflates the
amount of Asset 2 that is allocated for withdrawal to the pooler. This in turn affects the
value of the issued pool shares and results in incorrect price adjustments.

Scenario

The attacker can exploit this miscalculation to steal Asset2 tokens by observing the
current state of the application and repeatedly minting and burning (perhaps the same
amount of) LP tokens. The attack will have a higher chance of going through undetected
by performing deposits and withdrawals of small amounts at a relatively low frequency
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but over an extended period of time, allowing swaps in between to “correct” the price
before timing the next burn operation.

Recommendation

Fix the statement in line 394 so that the correct slot is used:

Load 62 // outstanding_asset2_amount

Status

This issue has been fully addressed.

A03: Draining of Pool Funds Due to Missing GroupSize Checks

The pool_logicsig and validator_approval contracts do not check the global GroupSize
property of the transaction group being executed along every possible execution path.
In particular, the mint, burn, swap, redeem and redeem fees operations do not include
necessary logic to ensure that the size of the transaction group being processed is
equal to the expected size. For example, the mint operation expects a transaction group
consisting of exactly 5 transactions, but this is not enforced. This can potentially be
exploited by an attacker to include an additional pool-signed transaction to an otherwise
valid transaction group that would drain the pool account of its Algos and/or assets.

Scenario

An attacker could target a pool with some sizable holding amount of Algos (or assets)
by constructing a proper transaction group of any of the affected operations listed above
(say a swap) and including additional one or more transactions signed by the pool’s
logic signature. These transactions could be pay transactions (for transferring Algos)
and/or asset transfer transactions (for transferring assets), effectively draining the funds
of the pool account.

Recommendation

Add a GroupSize check that asserts the exact expected size of the transaction group to
every execution path corresponding to the affected operations: minting, burning,
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swapping, redeeming and redeeming of fees. A natural location for these checks is the
pool_logicsig contract.

Status

This issue has been fully addressed.

A04: Losing Unclaimed Excess LP Token Amounts When
Minting (and Locking Them Up Indefinitely)

While discussing the logic that updates the application state in the contract (the branch
labeled “update_local_state”), Tinyman developer Fergal pointed out that the application
state update fragment in lines 844-850 that is supposed to accumulate excess liquidity
amounts belonging to the pooler incorrectly overrides the current value, instead of
adding to it. This causes the pooler to lose any unclaimed excess amount when
performing a mint operation before claiming the current excess amount. Furthermore,
as this amount is elsewhere recorded as outstanding liquidity, there would be no way for
this amount to be burned, resulting in having it locked up forever.

Scenario

This bug causes the system to lock up pooler’s LP tokens every time a pooler mints
while its excess amount of the LP token is non-zero. As more poolers mint before
claiming excess amounts, more LP tokens get forever locked up, eventually leading to
the pool being non-functional. Note that an attacker may be able to expedite this
process, but the achievable speed up is bounded by how much the attacker is able to
spend on locked up tokens.

Recommendation

Fix the logic in lines 844-850 so that the state variable maintaining the excess LP token
amount in the state of a pooler account properly accumulates excess LP token
amounts.

Status

This issue has been fully addressed.
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A05: Vulnerability to LP Token Deflation Attack

In the first mint operation, the contract needs to check that the geometric mean of
Asset1 and Asset2 amounts is bounded below by the minted LP token amount, which
can be expressed as follows:

minted_squared <= amounts_product_squared

Since the amounts involved require wide (128-bit) multiplication, the contract was
supposed to implement this assertion by checking that:

if (minted_squared_hi >= amounts_product_squared_hi) then

minted_squared_hi == amounts_product_squared_hi &&

minted_squared_lo <= amounts_product_squared_lo

The implementation in the contract (lines 519 -- 538) was found to incorrectly enforce
the inverse of this check when the products “minted_squared” and
“amounts_product_squared” differ only in the low 64 bits, that is, when

minted_squared_hi == amounts_product_squared_hi

Specifically, line 536 in the contract used the wrong comparison operator to assert this
property.

This bug enables an attacker to severely deflate the value of an LP token to a point that
would render the pool quickly unusable.

Scenario

The attacker may start with a first mint in which 2 ** 32 - 1 LP tokens are minted to
represent 1 token of Asset1 and 1 token of Asset2. Only a few subsequent minting
operations (which would necessarily be using very large amounts of LP tokens) would
then be possible before the minting logic would begin to panic, denying any further mint
operations very early in the lifetime of the pool.
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Recommendation

Either replace the comparison operator in line 536 with >=, or interchange lines 534 and
535 to achieve the same effect.

Status

This issue has been fully addressed.

A06: Miscalculated Protocol Fee Due to a Rounding Error

The formula for calculating the protocol fee as specified when performing a swap
operation might potentially produce the value 0 more often than necessary, due to
(integer) division being performed before multiplication (at the same precedence level):

(((asset_in_amount * 5) / 20000) * issued_liquidity_tokens) / input_supply

Any asset_in_amount < 4,000 would immediately result in a calculated fee of 0
(regardless of the other parameters). This is in addition to the (inevitable) case when:

asset_in_amount < 4000 * input_supply / issued_liquidity_tokens

Therefore, this formulation could potentially lead to significant losses in protocol fees
over a large number of small-to-medium-sized swaps.

Scenario

No interesting attacker-specific scenarios other than intentionally using swaps with
small amounts to deprive the protocol of its fees.

Recommendation

Re-order the operations so that division is delayed as much as possible in the
computation, that is:

(asset_in_amount * 5 * issued_liquidity_tokens) / (20000 * input_supply)

The fee would be 0 iff

asset_in_amount < 4000 * input_supply / issued_liquidity_tokens
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Therefore, when input_supply < issued_liquidity_tokens, the recommended
reordering above would yield a positive fee value, while the original formulation would
yield zero.

Status

This issue has been fully addressed.
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Informative Findings
Findings presented in this section do not necessarily represent any flaw in the code
itself. However, they indicate areas where the code may need some external support or
areas where the code deviates from best practices. Due to discussion about previous
issues hitting code size limits, we have included information on potential code size
reductions.

B01: Draining/Locking Up of Funds in Pools Involving Untrusted
Assets

A pool may be created for an asset whose Manager, Clawback and/or Freeze
parameters are set to non-ZeroAddress values. These values specify addresses of
accounts that are authorized to perform certain authoritative functions over holdings of
the asset. For example, the Clawback address if set means that the specified address is
authorized to revoke holdings of this asset.

For Tinyman pools, this introduces a potentially serious vulnerability through which a
malicious or a compromised account that has an authority over the asset of an
Asset-Algo pool using one of these attributes may be able to either:

1. drain all assets and Algos from the pool, or
2. lock up all assets of the pool, preventing users from swapping assets or burning

LP tokens.

Scenario

1. The attacker creates a revocable asset A (setting its clawback or manager
address field to a compromised address).

2. The attacker bootstraps a pool for the pair A-Algo
3. Poolers (and maybe the attacker) fund the pool minting LP tokens
4. The attacker revokes all the asset amount back, bringing the pool’s asset A

balance to 0
5. The attacker then executes a 0-N swap (N is the amount of Algo in the pool

minus the swap fee) to claim all the pool's Algo amount.
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Note how the attacker managed to claim almost all Algos the poolers contributed at
minimal cost. Similarly, an asset with a non-zero freeze address can potentially be used
to lock up user funds, denying them from swapping or burning.

Recommendation

Despite being potentially catastrophic in theory, there are a few considerations that
make this vulnerability less severe in practice:

1. Well-known assets are trusted and typically backed by entities that employ
measures and mitigations to protect accounts with authority over their assets
(e.g. using multi-sig accounts)

2. For less well-known assets, there is always this risk of the asset being part of a
larger scheme to walk away with users' funds, so poolers in particular would
need to be aware of these risks and ready to accept them for such assets. One
way to ensure users’ awareness of these risks is to direct users to descriptions of
potential risks in the system’s documentation and make sure that the frontend
displays proper warning messages whenever dealing with pools involving
untrusted assets.

Although creating pools involving assets with some of these configurable parameters
set can be prevented by the smart contract, it would be too restrictive and would render
Tinyman of little usability since many top and well-known assets in the Algorand
ecosystem currently set at least one of these parameters. Furthermore, this authority
over tokens is not new in Algorand as many ERC tokens in Ethereum, for example,
provide similar authoritative functionality over token holdings. Algorand makes these
properties more explicit and user-facing.

So the recommended mitigations for this issue generally lie outside of the scope of the
smart contracts.

Status

As the recommended mitigations lie outside of the scope of the contracts, there is no
immediate need to address them here. The development team is fully aware of the
potential of this issue and will address the issue in the user-facing application’s
front-end.
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B02: Alternative Protocol Fee Calculation Method

The protocol calculates the protocol fee and allocates the fee in LP tokens every time a
swap operation is performed. Although this calculation method is probably the most
natural and intuitive (since protocol fees are meant to represent ⅙ of the swap fees), it
may generally be likely to yield less protocol fees being allocated to the protocol than
what should actually be allocated to more accurately represent this percentage due to
truncation in integer division. To alleviate this effect, Uniswap v2 does not compute fees
on the spot (when performing a swap). Instead, it computes the accumulated fees
between mints/burns. Since swaps are likely to occur more frequently than mints or
burns in the normal operation of a pool, the accumulation becomes less likely to yield
zero fees. The way this is achieved is by computing the fees based on the difference in
the square root of the pool’s constant, which is the product of the asset1_supply and
asset2_supply (See Uniswap v2 white paper for more details).

Recommendation

Implement Uniswap v2’s method of computing the protocol fees, and evaluate the
improvement that this approach provides. More specifically, the pool state now
maintains a new variable, kRootLast, which is the square root of the pool’s constant
from the last mint or burn operation (initially is zero). Then, on every mint or burn,

1. compute the square root of the current pool constant:

kRoot = isqrt(asset1_supply * asset2_supply)

2. Use this and the last constant to compute the protocol fee:

if kRootLast == 0 or kRootLast >= kRoot:

fee = 0

else:

num = issued_liquidity_tokens * (kRoot - kRootLast)

den = 5 * kRoot + kRootLast

fee = num // den

3. Update the constant in preparation for the next mint/burn
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kRootLast = kRoot

Initial simulation suggests that in practice this method yields a fee amount that is closer
to the target 0.05% of trades on the long run. We recommend that further simulations
are done to confirm this finding though,

Status

The development team conducted tests and simulations, which indicated that the
suggested alternative methods for calculating the fee performs only marginally better
while being a little less intuitive than the original method. Therefore, it was decided that
there is no need to change the calculation method.

B03: Including Arbitrary Character Sequences in Liquidity Pool
Asset Name

When bootstrapping a pool, the contracts verify that the name of the liquidity pool asset
that is being created (the transaction indexed 2 in the bootstrap operation, T2) has a
specific format, namely “Tinyman Pool X-Y”, where X is the asset unit name of the first
asset in the pool’s asset pair and Y is the asset unit name of the second asset. To
perform this check, the validator_approval contract expects that the IDs of the asset pair
of the pool are passed as members of the foreign assets array to the application call
(the transaction indexed 1 in the group, T1). The contract uses these parameters to
read the asset unit names of the assets and compares them with the name supplied by
the liquidity asset creation transaction T2. However, the contract does not currently
check that the foreign asset IDs in T1 actually correspond to the asset pair of the pool,
which means that the liquidity asset name can potentially include arbitrary asset unit
names (provided that the unit names correspond to some assets in the blockchain).

Scenario

A malicious user may:

1. Create dummy assets with arbitrary unit names X and Y
2. Bootstrap a pool for a proper (actual) pair of assets, say USDC-GOLD$, while

supplying:
a. In T1, the asset IDs of the dummy assets whose unit names are X and Y

in the transaction’s foreign assets array
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b. In T2, the arbitrary asset name “Tinyman Pool X-Y” for the liquidity pool
asset

Recommendation

Check that the asset IDs given in the foreign assets array actually match the asset IDs
of the pool stored in the pool account’s state. One simple way to do this in TEAL 4
(which is the version used by the validator_approval contract) is to use the actual asset
IDs (rather than array indices) to index into the foreign assets array.

Status

This has been properly addressed.

B04: Using Tinyman as a Price Oracle

Tinyman may generally be used by other systems as a price oracle by querying the
pool’s current supply of assets. However, it’s important to note that this price can
potentially be manipulated by sandwiching a price query between two swaps in the
opposite direction (at the cost of two swap fees). The attacker would need to make sure
that these two swap operations are included in the same block at the right order, which
is feasible only if the attacker happens to be in control of (or is able to influence) the
validator node creating block.

Recommendation

The recommendation is either to:

1. include documentation of this limitation and advise developers to familiarize
themselves with this possibility if they intend to use Tinyman as a price oracle, or

2. add additional logic that would facilitate the use of Tinyman as a reliable price
oracle, while alleviating this issue of price manipulation.

Status

Tinyman developers added logic that included computing current prices and cumulative
prices of assets over a period of time and maintaining them in the state of the pool
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account. An additional layer of logic (in a separate contract) can now be implemented
on top of Tinyman that can be used as a reliable price oracle.

B05: Code Readability/Maintainability Improvement
Opportunities

I. pool_logicsic

1. Some labels use names of the form `l[digit]+`. Replacing them with more
descriptive names would be helpful.

2. It is generally better to use TypeEnum to check the type of a transaction instead of
relying on whether XferAsset is zero. This is also to stay consistent with how similar
checks are made in the contract.

II. valicator_approval

1. Some PyTeal-generated labels (e.g. l47, l48, …) remain in the contract. It would
greatly help readability/maintainability if more meaningful names for these labels
are used.

2. Using location 113 instead of 104 for `outsanding_liquidity_token_key` in line 147
(and refactoring the code) is suggested to remain consistent with the convention
used for assets (ids are in locations 10[1|2|3] and keys are in locations 11[1|2|3]).

3. Comments:
a. Typo: “suppply” (lines 553, 568, 651, 654, 660, 727, 729, 733, 756, 767)

=> “supply”
b. Typo in line 5: “3:” => “2:” (for asset2_balance)
c. The comment in line 9 does not seem to apply, and should be removed.
d. It would be useful to make the documentation of scratch memory slots

used more complete. The suggested additions are:

// 52:   Txn 2 asset or algo amount

// 53:   Txn 3 asset or algo amount

// 61:   outstanding_asset1_amount

// 62:   outstanding_asset2_amount
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// 103:  liquidity_token_id

// 113:  outstanding_liquidity_token_key (currently 104)

// 123:  excess_liquidity_token_key

// 201:  excess_asset1_amount

// 202:  excess_asset2_amount

// 203:  excess_liquidity_token

4. After bootstrapping a pool but before performing the first mint, attempting to
perform any non-mint operation would (correctly) fail. However, this failure is
manifested as either a division by zero, integer underflow or as an invalid access
to a non-existent transaction. The contract would be more readable and robust
(to changes in TEAL or changes in the txn group structure) if the contract
rejected upfront any non-mint op when the liquidity_token_id is zero early in the
logic, perhaps with an assert of the form:

assert(liquidity_token_id == 0 => AppArgs[0] == "mint")

This can also potentially enable simplifying the logic for the swap_mint_burn
branch.

5. Check the “exists” flag of asset_holding_get with assert instead of discarding it with pop.

B06: Code Size Optimization Opportunities

Given the imposed size limits on TEAL smart contracts, it’s very important to optimize
code as much as possible (while maintaining code readability and logical structure as
much as possible). Below we highlight a list of code optimization recommendations.

I. pool_logicsic

1. Use int instead of byte to reprepresent Asset/App IDs. This would save four lines
of code (Out of 8 locations where Asset/App IDs are referenced, 6 `btoi` ops can
be removed while two `itob` will need to be added).

2. Lines 269-274 and Lines 311-318 share common computations that can be
factored out to increase modularity and reuse, and decrease the size of the
program. One way to accomplish this is as follows:
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a. In the previous basic block (just above line 267), store the value 0 at
location 1 of the scratch memory

b. Remove lines 311-315 and also 317 (so this part will now simply store
`gtxn[4].Fee` at location 1). Then, change the branch label in Line 319 to
something like “calculate_boot_fee”, the label of the new basic block we
are creating next.

c. Create the new basic block labeled “calculate_boot_fee”, which will have
the instructions of lines 269-275 with a “+” opcode added right after line
269.

3. Lines 64-70, 79-85, 93-99, 107-113 and 121-127 check the same condition (that
there is one application argument and the `OnCompletion` field is `NoOp`). Since
failing any of these checks results in panic, and since they are all done at the top
of the non-bootstrap branches, they can all be replaced by an assert at the
beginning of the non-bootstrap branch at line 64. This can be accomplished by
just adding an assert right after line 70, and then removing blocks 79-85, 93-99,
107-113 and 121-127 so that branching within the non-bootstrap branch will be
based only on the value of the application argument -- “mint”, “burn”, … etc).

4. The same `select` pattern used in lines 577-586 can be used in other locations
where similar checks are asserted: checks that branch out based on `XferAsset`
being 0 and `TypeEnum` being equal to `pay`. These are: lines 378-386,
448-459, 478-489, 537-547, and 550-560. Although gains in terms of number of
lines removed may not be significant when using `select` here, improvements in
structure resulting from select’s implicit branching can be quite useful to
readability and maintainability of the code.

II. valicator_approval

1. lines 758-760 compute the asset_2_amount, which is already computed earlier in
a parent block in lines 66-68 and stored in location 52 (which is untouched in the
entire contract). So lines 758-760 can be replaced by a load 52

2. Similarly, lines 687-689 compute asset_3_amount, which is already computed
earlier in a parent block in lines 295-297 and stored in location 53. So lines
687-689 can be replaced by a load 53.

3. burn:  label is not used, so it may safely be removed without affecting the logic. A
commented-out label can be used instead for readability (like already done for
other parts of the contract).

4. Line sequences 609-611 and 633-635 can each be replaced by a `load 62`, since
the `outstanding_asset2_amount` was already read from the pool’s state and
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stored in slot 62 in a parent block (and is untouched in between). Similarly,
616-618 and 627-629 can each be replaced by a `load 61` for the same reasons.

5. Another code optimization suggestion: The check `calculated_amount_in > 0`
(Lines 666-668) seems redundant since the formula for `calculated_amount_in`
guarantees that the amount will always be at least 1, assuming no arithmetic
overflows or errors which would have caused TEAL to panic before reaching this
point. (Note that if lines 666-668 are removed, then line 674 will need to be
removed as well).
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Appendix
We include here samples of artifacts created during the process of conducting this
audit. One type of artifact is an automatically generated set of diagrams visualizing the
control-flow graphs (CFG) of the programs’ logic. The CFGs were generated using an
extended version of the Tealer static analyzer by Trail of Bits available here. Below (next
page) is a sample showing an excerpt of the generated CFG of the validator contract.

Another type of artifact is a manually developed Python-like pseudo code that extracts
the high-level logic implemented by the TEAL smart contracts. This pseudo code makes
it easier and more natural to reason about the business logic of the application and
cross-check it against the intended behaviors of the different components of the system.
This pseudo-code later evolved into a Python-based simulator for Tinyman to
investigate some economic aspects of the protocol (swap fees, protocol fees, LP token
deflation rate, … etc). Below is an excerpt of the specification developed for the
validator_approval contract showing a specification of the burn logic:

update_oracle_if_needed()

assert(sender != pooler)
if (_liquidity_token_id != 0) #after first mint

assert(burn_asset_id == _liquidity_token_id)
issued_liquidity_tokens =

(MAX_UINT64 - _liquidity_token_balance) + _outstanding_liquidity_token

calculated_asset1_out =
Lo64( (burn_amount *W _asset1_supply) /W (issued_liquidity_tokens *W 1) )

excess_asset_1 = calculated_asset1_out - asset1_out

calculated_asset2_out =
Lo64( (burn_amount *W _asset2_supply) /W (issued_liquidity_tokens *W 1) )

excess_asset_2 = calculated_asset2_out - asset2_out

assert(calculated_asset1_out and calculated_asset2_out)

final_asset1_supply           = asset1_supply - calculated_asset1_out
final_asset2_supply           = asset2_supply - calculated_asset2_out
Final_issued_liquidity_tokens = issued_liquidity_tokens - burn_amount

update_local_state()
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