
Intro to Rust LangIntro to Rust Lang

IntroductionIntroduction

1

Welcome!

2

Meet Ferris!

Ferris is Rust's mascot,
and ours too!

3

Why Rust?

4

Why Rust?

What is Rust?
How does Rust compare to other languages?
What are the biggest advantages of Rust?
What are some issues that Rust has?
Who is Rust for?

5

What is Rust?

Rust started as a personal project of Graydon Hoare, a Mozilla Research
employee, in 2006
Mozilla sponsored the project in 2009, and released the source code in 2010
The first stable release, Rust 1.0, was announced in May 2015
From the official rust website, Rust is:

Fast
Reliable
Productive

6

https://www.rust-lang.org/

What is Rust?

Compiled language
No runtime (no garbage collector)
Imperative, but with functional features
Strong static typing

7

Rust vs Python

Significantly faster
Much lower memory use
Multi-threaded
Comprehensive type system

8

Rust vs Java

No runtime overhead from the JVM or a garbage collector
Much lower memory use
Zero-cost abstractions
First-class support for modern paradigms

9

Rust vs C/C++

No segfaults!
No null pointers!
No buffer overflows!
No data races!
Memory safety as a guarantee through the type checker
Robust type system with functional patterns
Unified build system and dependency management

10

Rust Is Memory Safe

"C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you
do it blows your whole leg off"

Bjarne Stroustrup, creator of C++
Safety by default makes it much harder to shoot yourself in the foot
Memory accesses checked at compile-time
Powerful type system supports thread safety

11

Rust Is Low-Level

Compiles to machine code
No runtime (no garbage collector)
Memory can be allocated deliberately
Support for raw pointers
Support for inline assembly
Zero-overhead FFI

12

Rust Is Modern

Rust is only 9 years old
Algebraic and generic data types
Modern developer tooling
Included build system and dependency management
Asynchronous execution as a first-class language feature
Macros / Metaprogramming support

13

Issue: Learning curve

Writing Rust feels very different
The borrow checker can get in your way
No object-oriented programming
That is what we are here for!

14

Issue: Ecosystem

Rust is only 9 years old
Smaller and less mature ecosystem compared to some older languages

There is a lot of momentum here

15

Other Issues

Compile time is slow
Using established C++ libraries requires complicated bindings
Programming in a systems language still takes more time than in a higher-
level language

16

Who is Rust for?

Rust targets complex programs while providing stability and security
Rust is intended to be fast, reliable, and productive
Which means Rust is not for everyone

17

Course Goals

By the end of the semester, we want you all to:

Be able to read, write, and reason about Rust code
Become an intermediate to advanced Rust developer
Be confident that you can use Rust going forward!

18

Cargo Basics

19

Hello World!

To create an executable, we need a main function:
src/main.rs

fn main() {
 println!("Hello, world!");
}

To compile main.rs , use rustc .

$ rustc main.rs

20

Cargo

Rust has a built-in build system and
package manager called Cargo.

Build system: Build and run in
one command
Package manager: Manages
dependencies, like pip for
python or npm for node.js

21

Creating a new project

To create a new cargo project called hello_cargo , use cargo new .

$ cargo new hello_cargo
$ cd hello_cargo

You will find a few important things
.git repository and .gitignore
Cargo.toml

src/main.rs

We will come back Cargo.toml in future weeks

22

Building your project

To build your project, use cargo build .

$ cargo build
 Compiling hello_cargo v0.1.0 (<path>/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 1.00s

This creates an executable file at target/debug/hello_cargo
What if we want to run this executable?

We could run ./target/debug/hello_cargo , but this is a lot to type...

23

Running your project

To run your project, use cargo run .

$ cargo run
 Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.42s
 Running `target/debug/hello_cargo`
Hello, world!

24

Check if your project compiles

To check your code for syntax and type errors, use cargo check

$ cargo check
 Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.42s

Much faster than cargo build since it doesn't build the executable
Useful when programming to check if your code still compiles

25

Cargo Recap

We can create a project using cargo new
We can build a project using cargo build
We can build and run a project in one step using cargo run
We can check a project for errors using cargo check
Cargo stores our executable in the target/debug directory

26

Variables and Mutability

27

Variables

Variables are values bound to a name. We define variables with the let keyword.

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
}

28

Immutability

All variables in Rust are immutable by default.

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}

What happens when we try to compile this?

29

Immutability

When we try to compile, we get this error message:

error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`
3 | println!("The value of x is: {}", x);
4 | x = 6;
 | ^^^^^ cannot assign twice to immutable variable

Let's follow the compiler's advice!
30

Mutability

To declare a variable as mutable, we use the mut keyword.

fn main() {
 let mut x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}

When we run the program now, we now get this:

$ cargo run
 <-- snip -->
The value of x is: 5
The value of x is: 6

31

Constants

Like immutable variables, constants are values bound to a name.

const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

Constants cannot be mut
Constants must have an explicit type

We will talk about types like u32 in a few slides

32

Scopes and Shadowing

You can create nested scopes within functions with curly braces {} .

fn main() {
 let x = 5;

 let x = x + 1;

 {
 let x = x * 2;
 println!("The value of x in the inner scope is: {}", x);
 }

 println!("The value of x is: {}", x);
}

Let's dissect this! 33

let x = 5;
let x = x + 1;
{
 let x = x * 2;
 println!("The value of x in the inner scope is: {}", x);
}
println!("The value of x is: {}", x);

x is bound to 5 first
A new variable x is created and bound to x + 1 , i.e. 6
An inner scope is created with the opening curly brace {
The third let statement shadows x
The shadowed x is set to x * 2 = 12
The inner scope ends with the closing curly brace }
x returns to being 6 again 34

let x = 5;
let x = x + 1;
{
 let x = x * 2;
 println!("The value of x in the inner scope is: {}", x);
}
println!("The value of x is: {}", x);

Let's run this!

$ cargo run
 <-- snip -->
The value of x in the inner scope is: 12
The value of x is: 6

35

Aside: Shadowing vs Mutability

Mutability:

let mut spaces = " ";
spaces = spaces.len();

 |
2 | let mut spaces = " ";
 | ----- expected due to this value
3 | spaces = spaces.len();
 | ^^^^^^^^^^^^ expected `&str`, found `usize`
 |

Expected one type, got something else
We'll talk about types in a few slides!

36

Aside: Shadowing vs Mutability

Shadowing:

let spaces = " ";
let spaces = spaces.len();

Even though the types are different, the let keyword
allows us to redefine the spaces variable

37

Shadowing vs Mutability

Mutability lets us change the value of a variable
We get a compile time error if we try to modify a non- mut variable

Shadowing allows us to change what a variable's name refers to
In addition to changing the value, it can also change types

38

Types

39

Types

Like most languages, there are two main categories of Data Types.

Scalar Types
Integers
Floating-Points
Boolean
Character

Compound Types
Tuples
Arrays

40

Integers

Rust has similar integer types you would expect to see in C.

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

128-bit i128 u128

arch isize usize

41

Floating-Points

Rust has both a 32-bit and 64-bit floating-point type.

fn main() {
 let x = 2.0; // f64

 let y: f32 = 3.0; // f32
}

42

Numeric Operations

// addition
let sum = 5 + 10;

// subtraction
let difference = 95.5 - 4.3;

// multiplication
let product = 4 * 30;

// division
let quotient = 56.7 / 32.2;
let truncated = -5 / 3; // Results in -1

// remainder / modulo
let remainder = 43 % 5;

43

Integer Casting

Rust has no implicit type conversion (coercion). However, we can explicitly convert
types using the as keyword.

fn main() {
 let decimal: f32 = 65.4321;

 let integer = decimal as u8;
 let character = integer as char;

 println!("{}, {}, {}", decimal, integer, character);
}

$ cargo run
 <-- snip -->
65.4321, 65, A

44

Booleans

A boolean in Rust has two values true and false (as in most other languages).

fn main() {
 let t = true;

 let f: bool = false; // with explicit type annotation
}

Booleans are always 1 byte in size

45

Characters

Rust has a UTF-32 character type char .

fn main() {
 let c = 'z';
 let z: char = 'ℤ'; // with explicit type annotation
 let heart_eyed_cat = ' ';
}

Use char with single quotes ('a' vs. "a")
Due to char being UTF-32, a char is always 4 bytes in length
We will talk more about this and UTF-8 / UTF-32 in the future!

46

Tuples

A tuple is a way of grouping together a number of values with a variety of types.

fn main() {
 let tup: (i32, f64, u8) = (500, 6.4, 1);
}

47

Tuples

You can destructure tuples like so:

fn main() {
 let tup = (500, 6.4, 1);

 let (x, y, z) = tup;

 println!("The value of y is: {}", y);
}

48

Tuples

You can also access specific elements in the tuples like so:

fn main() {
 let x: (i32, f64, u8) = (500, 6.4, 1);

 let five_hundred = x.0;

 let six_point_four = x.1;

 let one = x.2;
}

49

Arrays

To store a collection of multiple values, we use arrays.

fn main() {
 let a = [1, 2, 3, 4, 5];
 let months = ["January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"];
}

Unlike tuples, all elements must be the same type
The number of elements is always fixed at compile time

If you want a collection that grows and shrinks, use a vector (lecture 4)
Similar to stack-allocated arrays you would see in C

50

Arrays

We define an array's type be specifying the type of the elements and the length of
the array.

let a: [i32; 5] = [1, 2, 3, 4, 5];

We can also initialize the array such that every element has the same value.

let a = [3; 5];
// let a = [3, 3, 3, 3, 3];

51

Arrays

To access an array element, we use square brackets.

fn main() {
 let a = [1, 2, 3, 4, 5];

 let first = a[0];
 let second = a[1];
}

Rust will ensure that the index is within bounds at runtime
This is not done in C/C++

52

Functions, Statements, and Expressions

53

Functions

Like most programming languages, Rust has functions!

fn main() {
 println!("Hello, world!");
 another_function();
}

fn another_function() {
 println!("Another function.");
}

$ cargo run
 <-- snip -->
Hello, world!
Another function.

54

Functions

All parameters / arguments to functions must be given an explicit type.

fn main() {
 print_labeled_measurement(5, 'h');
}

fn print_labeled_measurement(value: i32, unit_label: char) {
 println!("The measurement is: {}{}", value, unit_label);
}

$ cargo run
 <-- snip -->
The measurement is: 5h

55

Returning from Functions

You can return values back to the caller of a function with the return keyword.

fn main() {
 let x = plus_one(5);
 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 return x + 1;
}

$ cargo run
 <-- snip -->
The value of x is: 6

56

Returning from Functions

You can also omit the return keyword.

fn plus_one(x: i32) -> i32 {
 x + 1
}

$ cargo run
 <-- snip -->
The value of x is: 6

Why are we allowed do this?

57

Statements and Expressions

All functions are a series of statements optionally ending in an expression.

fn main() {
 let x = 6; // Statement
 let y = 2 + 2; // Statement resulting from the expression `2 + 2`
 2 + 2; // Expression ending in a semicolon, which turns the expression
 // into a statement with no effect
}

Statements are instructions that do some action and don't return a value
Expressions evaluate / return to a resultant value
A more precise explanation can be found here

58

https://doc.rust-lang.org/beta/reference/statements-and-expressions.html

Statements and Expressions

Statements
let y = 6; is a statement and does not return a value

You cannot write x = y = 6
Expressions

2 + 2 is an expression
Calling a function is an expression
A scope is also an expression

If you add a semicolon to an expression, it turns into a statement
If a scope is an expression, can scopes return values?

59

Statements and Expressions

Observe the following code, where a scope returns a value.

fn main() {
 let y = {
 let x = 3;
 x + 1
 };

 println!("The value of y is: {}", y);
}

Notice that there is no semicolon after x + 1
Scopes return the value of their last expression
Since functions are scopes, they can also return values in this way!

60

Function Return Types

Let's revisit this code snippet.

fn main() {
 let x = plus_one(5);
 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1
}

Functions must have a specific return value, or return nothing
No return type is equivalent to returning the unit type ()

Notice again that there is no semicolon after x + 1
61

Suppose we did add a semicolon:

fn plus_one(x: i32) -> i32 {
 x + 1;
}

We get this error:

error[E0308]: mismatched types
 --> src/main.rs:7:24
 |
1 | fn plus_one(x: i32) -> i32 {
 | -------- ^^^ expected `i32`, found `()`
 | |
 | implicitly returns `()` as its body has no tail or `return` expression
2 | x + 1;
 | - help: remove this semicolon to return this value

62

Control Flow

63

if Expressions

We can define runtime control flow with if .

fn main() {
 let number = 3;

 if number < 5 {
 println!("condition was true");
 } else {
 println!("condition was false");
 }
}

64

if Expressions

if expressions must condition on a boolean expression.

fn main() {
 let number = 3;

 if number {
 println!("number was three");
 }
}

error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if number {
 | ^^^^^^ expected `bool`, found integer

65

else if Branching

You can handle multiple conditions with else if

fn main() {
 let number = 6;

 if number % 4 == 0 {
 println!("divisible by 4");
 } else if number % 3 == 0 {
 println!("divisible by 3");
 } else if number % 2 == 0 {
 println!("divisible by 2");
 } else {
 println!("not divisible by 4, 3, or 2");
 }
}

66

if s are Expressions!

Since if expressions are expressions, we can bind the result of an if expression
to a variable.

fn main() {
 let condition = true;
 let number = if condition { 5 } else { 6 };

 println!("The value of number is: {}", number);
}

if expressions must always return the same type in all branches

67

Loops

There are 3 kinds of loops in Rust.

loop

while

for

68

loop loops

loop will loop forever until you tell it to stop with break .

fn main() {
 let mut counter = 0;

 loop {
 counter += 1;
 if counter == 10 {
 break;
 }
 }

 println!("The counter is {}", counter);
}

break and continue apply to the innnermost loop where they are called 69

loop s are Expressions

Like everything else, you can return a value from a loop .

fn main() {
 let mut counter = 0;

 let result = loop {
 counter += 1;

 if counter == 10 {
 break counter * 2;
 }
 };

 println!("The result is {}", result);
}

70

Loop Labels

You can label loops to use with break and continue to specify which loop it
applies to.

'outer: loop {
 println!("Entered the outer loop");

 'inner: loop {
 println!("Entered the inner loop");

 // break; // <-- This would break only the inner loop
 break 'outer; // <-- This breaks the outer loop
 }

 println!("This point will never be reached");
}
println!("Exited the outer loop"); 71

Loop Labels

'outer: loop {
 println!("Entered the outer loop");
 'inner: loop {
 println!("Entered the inner loop");
 break 'outer;
 }
 println!("This point will never be reached");
}
println!("Exited the outer loop");

Entered the outer loop
Entered the inner loop
Exited the outer loop

Applies to while and for loops too
72

while loops

Just like other languages, we have while loops that stop after some condition.

fn main() {
 let mut number = 3;

 while number != 0 {
 println!("{}!", number);

 number -= 1;
 }

 println!("LIFTOFF!!!");
}

73

for loops

We can also loop through collections with a for loop.

fn main() {
 let a = [10, 20, 30, 40, 50];

 for element in a {
 println!("the value is: {}", element);
 }
}

74

for loops and ranges

To loop over a range, use the .. syntax to create a range.

fn main() {
 for number in 1..4 {
 println!("{}...", number);
 }
 println!("SURPRISE!!!");
}

75

Recap

Variables and Mutability
Scalar and Compound Data Types
Functions, Statements, and Expressions
Control Flow

76

Course Logistics

77

Syllabus

You can find our course syllabus here or on our website.

There is a quiz on Gradescope worth 50 points (half a homework) that checks
that you have read the entire syllabus
Please make sure you understand the bolded parts!

78

https://rust-stuco.github.io/assets/pdf/syllabus-s25.pdf
https://rust-stuco.github.io/about/

Course Logistics: Grading

Attendance is mandatory
We have to take attendance every lecture
You get a maximum of 2 unexcused absences by StuCo guidelines

Homeworks / programming assignments are worth 100 points each
You need at least 1000 points to pass this course

79

Course Logistics: Communication

Piazza
Unofficial Discord
Email
Talk to us!

80

https://piazza.com/cmu/spring2025/98008/home
https://discord.com/invite/nXGE2yTckU

Course Logistics: Homework

Homeworks are designed to take less than an hour per week
If you are spending more than that, please let us know!

Autograded assignments through Gradescope
7 late days

You can ask us for more late days if you ask in advance...

81

Course Logistics: Homework Solutions

We have made homework solutions public
We strongly encourage students to avoid looking at these solutions
Give a good-faith attempt at the homework before resorting to this
You will not learn anything from copying and pasting our code

We will catch you, and we are required to report you to the university

82

Homework 1

This first homework consists of 8 small puzzles and 4 simple function
implementations
The objective is to build confidence with Rust syntax and experience
interpreting error messages
Refer to README.md for further instructions
Please let us know if you have any questions!

83

Next Lecture: Ownership (Part 1)

Thanks for coming!

Slides created by:
Connor Tsui, Benjamin Owad, David Rudo,
Jessica Ruan, Fiona Fisher, Terrance Chen

84

