Intro _tb;_Ryét Lang
~Introduction

— N
_— / -
A~ N
{ — / = —_— N -
G — o : -
e — = e _~
=" / N\
¢ : - //""*\‘" — = BN 4 - -
> 5 \\ ~ - /A\ —-
= Y %
- R
// @ i [.
o~
> o -

Welcome!

Meet Ferris!

e Ferris is Rust's mascot,
and ours too!

Why Rust?

Why Rust?

e What is Rust?

e How does Rust compare to other languages?
e What are the biggest advantages of Rust?

e What are some issues that Rust has?

e Who is Rust for?

What is Rust?

e Rust started as a personal project of Graydon Hoare, a Mozilla Research
employee, in 2006

e Mozilla sponsored the project in 2009, and released the source code in 2010
e The first stable release, Rust 1.0, was announced in May 2015

e From the official rust website, Rust is:
o Fast

o Reliable

o Productive

https://www.rust-lang.org/

What is Rust?

e Compiled language
e No runtime (no garbage collector)
e Imperative, but with functional features

e Strong static typing

Rust vs Python

e Significantly faster
e Much lower memory use
e Multi-threaded

e Comprehensive type system

Rust vs Java

e No runtime overhead from the JVM or a garbage collector
e Much lower memory use
e Zero-cost abstractions

e First-class support for modern paradigms

Rust vs C/C++

e No segfaults!

e No null pointers!

 No buffer overflows!

e No data races!

e Memory safety as a guarantee through the type checker
e Robust type system with functional patterns

e Unified build system and dependency management

10

Rust Is Memory Safe

"C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you
do it blows your whole leqg off"
o Bjarne Stroustrup, creator of C++

Safety by default makes it much harder to shoot yourself in the foot
Memory accesses checked at compile-time

Powerful type system supports thread safety

11

Rust Is Low-Level

Compiles to machine code

No runtime (no garbage collector)
Memory can be allocated deliberately
Support for raw pointers

Support for inline assembly

Zero-overhead FFI

12

Rust Is Modern

Rust is only 9 years old

Algebraic and generic data types

Modern developer tooling

Included build system and dependency management
Asynchronous execution as a first-class language feature

Macros / Metaprogramming support

13

Issue: Learning curve

e Writing Rust feels very different
e The borrow checker can get in your way
e No object-oriented programming

e That is what we are here for!

14

Issue: Ecosystem

e Rustis only 9 years old

e Smaller and less mature ecosystem compared to some older languages
o There is a lot of momentum here

15

Other Issues

e Compile time is slow
e Using established C++ libraries requires complicated bindings

e Programming in a systems language still takes more time than in a higher-
level language

16

Who is Rust for?

e Rust targets complex programs while providing stability and security
e Rustis intended to be fast, reliable, and productive

e Which means Rust is not for everyone

17

Course Goals

By the end of the semester, we want you all to:

e Be able to read, write, and reason about Rust code
e Become an intermediate to advanced Rust developer

e Be confident that you can use Rust going forward!

18

Cargo Basics

19

Hello World!

To create an executable, we need a main function:;

src/main.rs

fn main() {
println!("Hello, world!");

}

To compile main.rs , use rustc.

$ rustc main.rs

20

Cargo

Rust has a built-in build system and
package manager called Cargo.

e Build system: Build and runin
one command

e Package manager: Manages
dependencies, like pip for
python or npm for node.js

21

Creating a new project

To create a new cargo project called hello_cargo, use cargo new .

$ cargo new hello_cargo
$ cd hello_cargo

e You will find a few important things
o .git repository and .gitignore

© Cargo.toml
O src/main.rs

e We will come back Cargo.toml in future weeks

22

Building your project
To build your project, use cargo build .

$ cargo build
Compiling hello_cargo v@.1.0 (<path>/hello_cargo)
Finished dev [unoptimized + debuginfo] target(s) in 1.00s

e This creates an executable file at target/debug/hello_cargo

e What if we want to run this executable?
o We could run ./target/debug/hello_cargo , but this is a lot to type...

23

Running your project

To run your project, use cargo run .

$ cargo run
Compiling hello_cargo v@0.1.0 (file:///projects/hello_cargo)
Finished dev [unoptimized + debuginfo] target(s) in 0.42s
Running target/debug/hello_cargo
Hello, world!

24

Check if your project compiles

To check your code for syntax and type errors, use cargo check

$ cargo check
Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
Finished dev [unoptimized + debuginfo] target(s) in 0.42s

e Much faster than cargo build since it doesn't build the executable

e Useful when programming to check if your code still compiles

25

Cargo Recap

We can create a project using cargo new

We can build a project using cargo build

We can build and run a project in one step using cargo run
We can check a project for errors using cargo check

Cargo stores our executable in the target/debug directory

26

Variables and Mutability

27

Variables

Variables are values bound to a name. We define variables with the let keyword.

fn main() {
let x = 5;
println!("The value of x is: {}", X),;

28

Immutability

All variables in Rust are immutable by default.

fn main() {

let x = 5;
println!("The value of x is: {}", Xx),;
X =6,

println!("The value of x is: {}", X),

}

e What happens when we try to compile this?

PAS

Immutability

When we try to compile, we get this error message:

error[E0384]: cannot assign twice to immutable variable
--> syxc/main.rs:4:5

2 let x = 5;

first assignment to "x°

help: consider making this binding mutable:
println! ("The value of x 1is: {}", Xx);
4 X = 6;
ANAAN cannot assign twice to immutable variable

W

e Let's follow the compiler's advice!

\X\

‘mut X

30

Mutability

To declare a variable as mutable, we use the mut keyword.

fn main() {
let mut x = 5;
println!("The value of x is: {}", X);
X =6,
println!("The value of x is: {}", X);

When we run the program now, we now get this:

$ cargo run

<-- snip -->
The value of x is: 5
The value of x is: 6

31

Constants

Like immutable variables, constants are values bound to a name.

const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

e Constants cannot be mut

e Constants must have an explicit type
o We will talk about types like u32 in a few slides

32

Scopes and Shadowing

You can create nested scopes within functions with curly braces {} .

fn main() {
let x = 5;

let x = x + 1;

{
let x = x * 2;
println!("The value of x in the inner scope is: {}", X),

}

println!("The value of x is: {}", X),;

o [et's dissect this!

33

let x = 5;
let x = x + 1;
{

}

let x = x * 2;

println!("The value of x in the inner scope is: {}", X),

println!("The value of x is: {}", X);

x isboundto 5 first

A new variable x is created and boundto x + 1,i.e. 6
An inner scope is created with the opening curly brace {
The third let statement shadows x

The shadowed x issetto x * 2 = 12

The inner scope ends with the closing curly brace }

x returns to being 6 again

34

let x = 5;
let x = x + 1;
{
let x = x * 2;
println!("The value of x in the inner scope is: {}", X);

}

println!("The value of x is: {}", Xx),

Let's run this!

$ cargo run

<-- snip -->
The value of x in the inner scope is: 12
The value of x is: 6

35

Aside: Shadowing vs Mutability

Mutability:

let mut spaces =" Y,
spaces = spaces.len();

2 let mut spaces ="

3 spaces = spaces.len();

ANNANNANANAN expected "&str', found

e Expected one type, got something else
o We'll talk about types in a few slides!

|

| '

|l e expected due to this value
|

|

|

‘usize’

36

Aside: Shadowing vs Mutability

Shadowing:

let spaces
let spaces

spaces.len();

e Even though the types are different, the let keyword
allows us to redefine the spaces variable

37

Shadowing vs Mutability

e Mutability lets us change the value of a variable
o We get a compile time error if we try to modify a non- mut variable

e Shadowing allows us to change what a variable's name refers to
o In addition to changing the value, it can also change types

38

Types

39

Types

Like most languages, there are two main categories of Data Types.

e Scalar Types
o Integers

o Floating-Points
o Boolean
o Character

e Compound Types
o Tuples

o Arrays

40

Integers

Rust has similar integer types you would expect to see in C.

Length Signed Unsigned

8-bit i8 us
16-bit 116 ul6
32-Dbit 132 u32
64-bit 164 u6sd
128-bit 1128 ul2s
arch isize usize

41

Floating-Points

Rust has both a 32-bit and 64-bit floating-point type.

fn main() {
let x = 2.0; // 64

let y: f32 = 3.0; // f32

42

Numeric Operations

// addition
let sum = 5 + 10;

// subtraction
let difference = 95.5 - 4.3;

// multiplication
let product = 4 * 30;

// division
let quotient = 56.7 / 32.2;
let truncated = -5 / 3; // Results in -1

// remaindexr / modulo
let remainder = 43 % 5;

43

Integer Casting

Rust has no implicit type conversion (coercion). However, we can explicitly convert
types using the as keyword.

fn main() {
let decimal: 32 = 65.4321;

let integer = decimal as u8;
let character = integer as char;

println! ("{}, {}, {}", decimal, integer, character);

$ cargo run
<-- snip -->
65.4321, 65, A

44

Booleans

A boolean in Rust has two values true and false (asin most other languages).

fn main() {
let t = true;

let f: bool = false; // with explicit type annotation

e Booleans are always 1 byte in size

45

Characters

Rust has a UTF-32 character type char .

fn main() {
let c = '2';
let z: char = 'Z"; // with explicit type annotation
let heart_eyed_cat = '&"';

e Use char with single quotes('a' vs. "a")
e Dueto char being UTF-32, a char is always 4 bytes in length
e We will talk more about this and UTF-8 / UTF-32 in the future!

46

Tuples

A tuple is a way of grouping together a number of values with a variety of types.

fn main() {
let tup: (132, f64, u8) = (500, 6.4, 1);
}

iy

Tuples

You can destructure tuples like so:

fn main() {
let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {}"

y Y

48

Tuples

You can also access specific elements in the tuples like so:

fn main() {
let x: (132, f64, u8) = (500, 6.4, 1);

let five_hundred = x.0;
let six_point_four = x.1;

let one = x.2;

49

Arrays

To store a collection of multiple values, we use arrays.

fn main() {
let a = [1, 2, 3, 4, 5];
let months = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"],

e Unlike tuples, all elements must be the same type

e The number of elements is always fixed at compile time
o If you want a collection that grows and shrinks, use a vector (lecture 4)

e Similar to stack-allocated arrays you would see in C

50

Arrays

We define an array's type be specifying the type of the elements and the length of
the array.

let a: [i32; 5] = [1, 2, 3, 4, 5];

We can also initialize the array such that every element has the same value.

let a = [3; 5];
// let a = [3, 3, 3, 3, 3];

51

Arrays

To access an array element, we use square brackets.

fn main() {
let a = [1, 2, 3, 4, 5];

let first = a[@];
let second = a[l];

e Rust will ensure that the index is within bounds at runtime
o This is not done in C/C++

52

Functions, Statements, and Expressions

53

Functions

Like most programming languages, Rust has functions!

fn main() {
println!("Hello, world!");

another_ function();

}

fn another_function() {
println! ("Another function.");

}

$ cargo run

<-- snip -->
Hello, world!
Another function.

54

Functions

All parameters / arguments to functions must be given an explicit type.

fn main() {
print_labeled_measurement(5, 'h');

}

fn print_labeled_measurement(value: 132, unit_label: char) ({
println! ("The measurement is: {}{}", value, unit_label);

}

$ cargo run
<-- snip -->
The measurement is: 5h

55

Returning from Functions

You can return values back to the caller of a function with the return keyword.

fn main() {
let x = plus_one(5);
println!("The value of x is: {}", X);

}

fn plus_one(x: 132) -> 132 {
return x + 1;

}

$ cargo run
<-- snip -->
The value of x is: 6

56

Returning from Functions

You can also omit the return keyword.

fn plus_one(x: 132) -> 132 {
x + 1

}

$ cargo run
<-- snip -->
The value of x is: 6

e Why are we allowed do this?

57

Statements and Expressions
All functions are a series of statements optionally ending in an expression.

fn main() {
let x = 6; // Statement
let y = 2 + 2; // Statement resulting from the expression 2 + 2°
2 + 2; // Expression ending in a semicolon, which turns the expression

// into a statement with no effect

e Statements are instructions that do some action and don't return a value
e Expressions evaluate / return to a resultant value

e A more precise explanation can be found here

58

https://doc.rust-lang.org/beta/reference/statements-and-expressions.html

Statements and Expressions

e Statements
o let y = 6; isastatement and does not return a value

o You cannot write x =y = 6

e Expressions
© 2 + 2 Is an expression

o Calling a function is an expression
o A scope is also an expression
e If you add a semicolon to an expression, it turns into a statement

e If a scope is an expression, can scopes return values?

59

Statements and Expressions

Observe the following code, where a scope returns a value.

fn main() {

let y = {
let x = 3;
X + 1

3

println! ("The value of y is: {}", y);

e Notice that there is no semicolon after x + 1
e Scopes return the value of their last expression

e Since functions are scopes, they can also return values in this way!
60

Function Return Types

Let's revisit this code snippet.

fn main() {
let x = plus_one(5);
println!("The value of x is: {}", X);

}

fn plus_one(x: 132) -> 132 {
X + 1

}

e Functions must have a specific return value, or return nothing
o No return type is equivalent to returning the unit type ()

e Notice again that there is no semicolon after x + 1

61

Suppose we did add a semicolon:

fn plus_one(x: 132) -> 132 {
X + 1;

}

We get this error:

error[EQ308] : mismatched types
--> src/main.xs:7:24

1 | fn plus_one(x: 132) -> 132 {

| - ANN expected 132, found ()

| |

| implicitly returns () as its body has no tail or "return expression
2 | x + 1;

|

- help: remove this semicolon to return this value

62

Control Flow

63

1f Expressions

We can define runtime control flow with if .

fn main() {
let number = 3;

1T number < 5 {

println! ("condition was true");
} else {

println! ("condition was false");

}

64

if Expressions

if expressions must condition on a boolean expression.

fn main() {
let number = 3;

1T number {
println! ("number was three");

}

error[EQ308]: mismatched types
--> src/main.rs:4:8
|
4 | if number {
| ANNAAN expected "bool™, found integer

65

else if Branching

You can handle multiple conditions with else if

fn main() {
let number = 6;

1T number % 4 == 0 {
println!("divisible by 4");
} else 1f number % == 0 {
println!("divisible by 3");
} else 1f number % == @ {
println!("divisible by 2"),;
} else {
println!("not divisible by 4, 3, or 2");
}

66

1f s are Expressions!

Since if expressions are expressions, we can bind the result of an if expression
to a variable.

fn main() {
let condition = true;
let number = if condition { 5 } else { 6 };

println!("The value of number is: {}", number);

e if expressions must always return the same type in all branches

67/

Loops

There are 3 kinds of loops in Rust.

e loop
e while

e for

68

loop loops

loop will loop forever until you tell it to stop with break .

fn main() {
let mut counter = 0;

loop {
counter += 1;
1T counter == 10 {
break;
}
}

println! ("The counter is {}", counter),;

e break and continue apply to the innnermost loop where they are called

69

loop s are Expressions

Like everything else, you can return a value from a loop .

fn main() {
let mut counter = 0;

let result = loop {
counter += 1;

1T counter == 10 {
break counter * 2;

}
s

println!("The result is {}", result);

70

Loop Labels

You can label loops to use with break and continue to specify which loop it
applies to.

'outer: loop {
println! ("Entered the outer loop");

'innexr: loop {
println! ("Entered the inner loop");

// break; // <-- This would break only the innexr loop
break 'outer; // <-- This breaks the outer loop

}

println!("This point will never be reached");

t
println! ("Exited the outer loop");

/71

Loop Labels

‘outer: loop {
println! ("Entered the outer loop");
'inner: loop {
println! ("Entered the innexr loop");
break 'outer;

}

println! ("This point will never be reached");

}
println! ("Exited the outer loop");

Entered the outer loop
Entered the inner loop
Exited the outer loop

e Appliesto while and for loops too

/2

while loops

Just like other languages, we have while loops that stop after some condition.

fn main() {
let mut number = 3;

while numbexr !'= 0 {
println! ("{}!", number);
number -= 1;

}

println! ("LIFTOFF!!!"™);

VE

for loops

We can also loop through collections with a for loop.

fn main() {
let a = [10, 20, 30, 40, 50];

for element in a {
println!("the value is: {}", element);

}

74

for loops and ranges

To loop over a range, use the ..

fn main() {
for number in 1..4 {

syntax to create a range.

println! ("{}...", number),

}
println! ("SURPRISE!!!");

/5

Recap

e Variables and Mutability
e Scalar and Compound Data Types
e Functions, Statements, and Expressions

e Control Flow

76

Course Logistics

77

Syllabus

You can find our course syllabus here or on our website.

e There is a quiz on Gradescope worth 50 points (half a homework) that checks
that you have read the entire syllabus

e Please make sure you understand the bolded parts!

78

https://rust-stuco.github.io/assets/pdf/syllabus-s25.pdf
https://rust-stuco.github.io/about/

Course Logistics: Grading

e Attendance is mandatory
o We have to take attendance every lecture

o You get a maximum of 2 unexcused absences by StuCo guidelines
e Homeworks / programming assignments are worth 100 points each

e You need at least 1000 points to pass this course

79

Course Logistics: Communication

e Piazza
e Unofficial Discord
e Email

e Talk to us!

80

https://piazza.com/cmu/spring2025/98008/home
https://discord.com/invite/nXGE2yTckU

Course Logistics: Homework

e Homeworks are designed to take less than an hour per week
o If you are spending more than that, please let us know!

e Autograded assignments through Gradescope

e 7 late days
o You can ask us for more late days if you ask in advance...

81

Course Logistics: Homework Solutions

e We have made homework solutions public
e We strongly encourage students to avoid looking at these solutions
e Give a good-faith attempt at the homework before resorting to this

e You will not learn anything from copying and pasting our code
o We will catch you, and we are required to report you to the university

82

Homework 1

e This first homework consists of 8 small puzzles and 4 simple function
implementations

e The objective is to build confidence with Rust syntax and experience
interpreting error messages

e Refer to README.md for further instructions

e Please let us know if you have any questions!

83

Next Lecture: Ownership (Part 1)

Thanks for coming!

Slides created by:
Connor Tsui, Benjamin Owad, David Rudo,
Jessica Ruan, Fiona Fisher, Terrance Chen

84

