
Intro to Rust LangIntro to Rust Lang

Smart Pointers andSmart Pointers and
Trait ObjectsTrait Objects

1

Today: Smart Pointers and Trait Objects

Box<T>

The Deref trait

The Drop trait

Trait Objects

Smart Pointers

2

Motivation for Box<T>

3

Let's Make a List

Let's say we wanted to make a recursive-style list:

enum List {
Cons(i32, List),

 Nil,
}

fn main() {
// List of [1, 2, 3]
let list = Cons(1, Cons(2, Cons(3, Nil)));

}

4

The Compiler's Suggestion

error[E0072]: recursive type `List` has infinite size
 --> src/main.rs:1:1
 |
1 | enum List {
 | ^^^^^^^^^
2 | Cons(i32, List),
 | ---- recursive without indirection
 |
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to break the cycle
 |
2 | Cons(i32, Box<List>),
 | ++++ +

The compiler is complaining because we've defined a type with infinite size

The suggestion is to use a Box<List>

5

Indirection with Box<T>

let singleton = Cons(1, Box::new(Nil));
let list = Cons(1, Box::new(Cons(2,

Box::new(Cons(3,
Box::new(Nil))))));

In the suggestion, "indirection" means we store a pointer to a List rather

than an entire List

Pointers have fixed size, so our enum is no longer of infinite size!

We create a Box<List> with the Box::new associated function

6

More about Box<T>

Box<T> is a simple "smart" pointer to memory allocated on the heap*

It is "smart" because it frees the memory when dropped

Other than the cost of allocation and pointer indirection, Box has no

performance overhead

Box<T> fully owns the data it points to (just like Vec<T>)

7

When to use Box<T>

When you have a type of unknown size at compile time (like List)

When you have a large amount of data and want to transfer ownership

Transferring ownership of a pointer is faster than a large chunk of data

Trait Objects

We'll get to this soon...

8

Using Values in the Box

let x = 5;
let y = Box::new(x);

assert_eq!(5, x);
assert_eq!(5, *y);

Just like a reference we can dereference a Box<T> to get T

Box<T> implements the Deref trait which customizes the behavior of *

9

Deref Trait

The deref trait is defined as follows:

pub trait Deref {
type Target: ?Sized;

// Required method
fn deref(&self) -> &Self::Target;

}

Behind the scenes *y is actually *(y.deref())

Note this does not recurse infinitely

We can treat anything that implements Deref like a pointer!

10

Deref Coercion

Recall that we were able to coerce a &String into a &str . We can also coerce a

&Box<String> into a &str !

fn hello(name: &str) {
println!("Hello, {name}!");

}

fn main() {
let m = Box::new(String::from("Rust"));
hello(&m);

}

Deref coercion converts a &T into &U if Deref::Target = U

Example: Deref coercion can convert a &String into &str

String implements the Deref trait such that Deref::Target = &str 11

Deref Coercion Rules

Rust is able to coerce mutable to immutable but not the reverse.

From &T to &U when T: Deref<Target=U>

From &mut T to &mut U when T: DerefMut<Target=U>

From &mut T to &U when T: Deref<Target=U>

For more information, consult the Rustonomicon

12

https://doc.rust-lang.org/nomicon/dot-operator.html

&T to &U Example

fn foo(s: &[i32]) {
print(s[0])

}

// Vec<T> implements Deref<Target=[T]>.
let owned = vec![1, 2, 3];

// Here we coerce &Vec<T> to &[T]
foo(&owned);

println!("{:?}", owned);

[1]
[1, 2, 3]

13

&mut T to &mut U Example

fn foo(s: &mut [i32]) {
 s[0] += 1;
}

// Vec<T> implements DerefMut<Target=[T]>.
let mut owned = vec![1, 2, 3];

// Here we coerce &mut Vec<T> to &mut [T]
foo(&mut owned);

println!("{:?}", owned);

[2, 2, 3]

DerefMut also allows coercing to &[T]
14

The Drop Trait

pub trait Drop {
fn drop(&mut self);

}

Values are dropped when they go out of scope

Dropping a value will recursively drop all its fields by default

This mechanism allows automatically freeing memory

You can also provide a custom implementation of Drop on your types

Allows us to run user code when values are dropped

15

Drop Trait Example

struct CustomSmartPointer {
 data: String,
}

impl Drop for CustomSmartPointer {
fn drop(&mut self) {

println!("Dropping `CustomSmartPointer` with data `{}`!", self.data);
 }
}

This is a custom implementation that simply prints the data on drop

The data will still be freed automatically

This method does not include automatic memory freeing logic

16

Drop Trait Example

let c = CustomSmartPointer {
 data: String::from("my stuff"),
};
let d = CustomSmartPointer {
 data: String::from("other stuff"),
};
println!("CustomSmartPointers created.");

CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
Dropping CustomSmartPointer with data `my stuff`!

Notice how values are dropped in reverse order of creation

17

Drop Trait Usage

Drop trait implementations are typically not needed unless:

You are manually managing memory

This likely involves using unsafe under the hood

You need to do something special before a value is dropped

Might involve managing OS resources

Might involve signalling other parts of your codebase

18

Manual Drop

What if we want to manually drop a value before the

end of the scope?

let csm = CustomSmartPointer {
 data: String::from("some data"),
};
println!("CSM created.");

csm.drop();

println!("CSM dropped before the end of the scope");

19

Manual Drop

error[E0040]: explicit use of destructor method
 --> src/main.rs:16:7
 |
16 | c.drop();
 | --^^^^--
 | | |
 | | explicit destructor calls not allowed
 | help: consider using `drop` function: `drop(c)`

Rust won't let you explicitly call the drop trait method to avoid double drops

20

Manual Drop

let csm = CustomSmartPointer {
 data: String::from("some data"),
};
println!("CSM created.");

std::mem::drop(csm);

println!("CSM dropped before the end of the scope");

This code works since we use std::mem::drop instead

What's the difference?

21

std::mem::drop

Here is the actual source code of std::mem::drop in the standard library:

pub fn drop<T>(_x: T) {}

It takes ownership of _x , and then _x reaches the end of the scope and is

dropped

Hence, calling this function drops it, on demand!

22

Object Oriented Programming

Well...

Not quite...

23

What We Know So Far...

pub struct AveragedCollection {
 list: Vec<i32>,
 average: f64,
}

impl AveragedCollection {
pub fn add(&mut self, value: i32) {

self.list.push(value);
self.update_average();

 }

 <-- snip -->
}

Encapsulation within impl blocks and crates

Public and private functions and methods with pub 24

Inheritence?

Rust structs cannot "inherit" the implementations of methods or data fields from

another struct...

If we want to wrap another struct's functionality, we can use composition

If we want to define interfaces, we can use traits

If we want polymorphism...

Rust has something called "trait objects"

25

Polymorphism

Polymorphism != Inheritance

Polymorphism == "Code that can work with multiple data types"

In object oriented languages, polymorphism is usually expressed with classes

Rust expresses polymorphism with generics and traits:

Generics are abstract over different possible types

Traits impose constraints on what behaviors types must have

26

Trait Objects

Trait objects allow us to store objects that implement a trait.

pub trait Window {
fn draw(&self);

}

pub struct LaptopScreen {
pub windows: Vec<Box<dyn Window>>,

}

In this example, LaptopScreen holds a vector of Window objects

We use the dyn keyword to describe any type that implements Window

In a Box , since objects implementing Window could be of any size at

runtime
27

Trait Objects and Closures

Since closures implement the Fn traits, they can be represented as trait objects!

fn returns_closure() -> Box<dyn Fn(i32) -> i32> {
Box::new(|x| x + 1)

}

fn main() {
let closure = returns_closure();
print!("{}", closure(5)); // prints 6

}

We can use trait objects to return dynamic types

Deref coercion happening in the background to keep ergonomics clean!

28

Working With Trait Objects

struct ChromeWindow {
 width: u32,
 height: u32,
 evil_tracking: bool
}

struct FirefoxWindow {
 width: u32,
 height: u32,
}

impl Window for ChromeWindow { fn draw(&self) { ... } }
impl Window for FirefoxWindow { fn draw(&self) { .. } }

Say we have multiple types that implement Window

29

Working With Trait Objects: Dynamic Dispatch

impl LaptopScreen {
pub fn run(&self) {

// `windows` is of type Vec<Box<dyn Window>>
for window in self.windows.iter() {

 window.draw();
 }
 }
}

This is different than if windows was Vec<ChromeWindow>

The generic parameter (in Vec) is known at compile time.

Trait objects allow for types to fill in for the trait object at runtime

30

Generic Version

What about a version implemented with generics?

pub struct LaptopScreen<T: Window> {
pub windows: Vec<T>,

}

impl<T> LaptopScreen<T>
where
 T: Window,
{

pub fn run(&self) {
for window in self.windows.iter() {

 window.draw();
 }
 }
}

What is wrong with this version?

31

Trait Objects: Mixing Objects

let screen = LaptopScreen {
 windows: vec![

Box::new(ChromeWindow {
 width: 1280,
 width: 720,
 evil_tracking: true,
 }),

Box::new(FirefoxWindow {
 <-- snip -->
 }),
],
};
screen.run();

This is not possible with the version using generics

32

Aside: Dynamically Sized Types

dyn Window is an example of a dynamically sized type (DST)

DSTs have to be in a Box , because we don't know the size at compile time

A dyn Window could be a ChromeWindow or FirefoxWindow object

How much space should we make on the stack?

Pointers to DSTs are double the size (wide pointers)

If you're interested in more information, ask us after lecture!

33

Smart Pointers

34

Smart Pointers

Rc<T>

RefCell<T>

Interior Mutability

Memory Leaks

35

Motivation for Rc<T>

36

Let's Make a List (again)

Let's continue making the recursive-style list from the

beginning of lecture with Box<T> .

enum List {
Cons(i32, Box<List>),

 Nil,
}

fn main() {
let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));

}

37

Cargo's Suggestion

 Compiling cons-list v0.1.0 (file:///projects/cons-list)
error[E0382]: use of moved value: `a`
 --> src/main.rs:11:30
 |
9 | let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
 | - move occurs because `a` has type `List`, which does not implement the `Copy` trait
10 | let b = Cons(3, Box::new(a));
 | - value moved here
11 | let c = Cons(4, Box::new(a));
 | ^ value used here after move

Cons needs to own the data it holds

We want both b and c to point to the same instance a

a was already moved into b when we create c

38

References?

enum List<'a> {
Cons(i32, &'a List<'a>),

 Nil,
}

use crate::List::{Cons, Nil};

fn main() {
let nil = Nil;
let a = Cons(10, &nil);
let b = Cons(5, &a);
let c = Cons(3, &a);
let d = Cons(4, &a);

}

While it can be done, it's a little messy
39

Introducing Rc<T>

enum List {
Cons(i32, Rc<List>),

 Nil,
}

use crate::List::{Cons, Nil};
use std::rc::Rc;

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));

}

Short for reference counted

Keeps track of the number of references to a value 40

Rc<T> : Reference Counted

Use Rc::new(T) to create a new Rc<T>

Rc::clone() isn't a deep clone, it increments the ref counter

When an Rc is cloned, increment reference count

When an Rc is dropped, decrement reference count

When the reference count reaches zero, free the memory

41

When to use Rc<T>

Share one instance of allocated memory throughout the program

We can only access the data as read-only

We don't need to know what part of the program is going to use it last

Only used for single-threaded scenarios

Arc<T> for multi-threaded (more on that soon)

42

Rc<T> Reference Counting Demonstrated

fn main() {
let a = Rc::new(String::new("TODO: Steal Connor's identity"));
// Ref count after creating a: 1

let b = Rc::clone(&a);
// Ref count after creating b: 2

 {
let c = Rc::clone(&a);
// Ref count after creating c: 3

 }
// Ref count after dropping c: 2

}
// Ref count after dropping b and c: 0

The ref count is incremented on each clone

The ref count is decremented on each drop

43

Rc<T> Recap

Allows sharing immutable references without lifetimes

Should be used when the last user of the data is unknown

Very low overhead for providing this capability

O(1) increment/decrement of counter

Potential allocation/de-allocation on heap

Implemented using the Drop trait and unsafe !

44

RefCell<T> and Interior Mutability

45

First, Cell<T>

use std::cell::Cell;

let c1 = Cell::new(5i32);
c1.set(15i32);

let c2 = Cell::new(10i32);
c1.swap(&c2);

assert_eq!(10, c1.into_inner()); // consumes cell
assert_eq!(15, c2.get()); // returns copy of value

Shareable, mutable container

Values can be moved in and out of a cell

Used for Copy types

(where copying or moving values isn’t too resource intensive) 46

RefCell<T>

Hold's sole ownership like Box<T>

Allows borrow checker rules to be enforced at runtime

Interface with .borrow() or borrow_mut()

If borrowing rules are violated, panic!

Typically used when Rust's conservative compile-time checking "gets in the

way"

It is not thread safe!

Use Mutex<T> instead

47

Interior Mutability

fn main() {
let x = 5;
let y = &mut x; // cannot borrow immutable x as mutable

}

It would be useful for a value to mutate itself in its methods but appear

immutable to other code

Code outside the value's methods wouldn't be able to mutate it

This can be achieved with RefCell<T>

48

Interior Mutability with Mock Objects

pub trait Messenger {
// Note this takes &self and not &mut self
fn send(&self, msg: &str);

}

pub struct LimitTracker<'a, T: Messenger> {
 messenger: &'a T,
 value: usize,
 max: usize,
}

LimitTracker tracks a value against a maximum value and sends messages

based on how close to the maximum value the current value is

We want to mock a messenger for our limit tracker to keep track of messages

for testing 49

Limit Tracker

impl<'a, T> LimitTracker<'a, T>
where
 T: Messenger,
{

// --- snip ---
pub fn set_value(&mut self, value: usize) {

self.value = value;

let percentage_of_max = self.value as f64 / self.max as f64;

if percentage_of_max >= 1.0 {
self.messenger.send("Error: You are over your quota!");

 } else if percentage_of_max >= 0.9 {
self.messenger

 .send("Urgent warning: You've used up over 90% of your quota!");
 } else if percentage_of_max >= 0.75 {

self.messenger
 .send("Warning: You've used up over 75% of your quota!");
 }
 }
}

50

Our Mock Messenger

struct MockMessenger {
 sent_messages: Vec<String>,
}

impl MockMessenger {
fn new() -> MockMessenger {

 MockMessenger { sent_messages: vec![] }
 }
}

impl Messenger for MockMessenger {
fn send(&self, message: &str) {
self.sent_messages.push(String::from(message));

 }
}

This code won't compile! self.sent_messages.push requires &mut self
51

Let's Use Interior Mutability

use std::cell::RefCell;

struct MockMessenger {
 sent_messages: RefCell<Vec<String>>,
}

impl MockMessenger {
fn new() -> MockMessenger {

 MockMessenger {
 sent_messages: RefCell::new(vec![]),
 }
 }
}

impl Messenger for MockMessenger {
fn send(&self, message: &str) {
self.sent_messages.borrow_mut().push(String::from(message));

 }
}

52

Managing Borrows

impl Messenger for MockMessenger {
fn send(&self, message: &str) {
let mut one_borrow = self.sent_messages.borrow_mut();
let mut two_borrow = self.sent_messages.borrow_mut();

 one_borrow.push(String::from(message));
 two_borrow.push(String::from(message));
 }
}

We still use the & and mut syntax for RefCell

borrow returns either a Ref or RefMut which

implement Deref / DerefMut

Deref coercion applies: Can be treated as

standard references
53

What Makes Each Smart Pointer Unique

Rc<T> - Enables multiple read-only owners of the same data

Box<T> - Allows immutable or mutable borrows that are checked at compile

time

RefCell<T> - Allows immutable/mutable borrows that are checked at runtime

54

Combining Smart Pointers: Rc<RefCell<T>>

#[derive(Debug)]
enum List {
Cons(Rc<RefCell<i32>>, Rc<List>),

 Nil,
}

Common type seen in Rust

Enables multiple owners of mutable data (with runtime checks)

Extremely powerful, but comes with some overhead

55

Rc<RefCell<T>> List

let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;

println!("a after = {:?}", a);
println!("b after = {:?}", b);
println!("c after = {:?}", c);

a after = Cons(RefCell { value: 15 }, Nil)
b after = Cons(RefCell { value: 3 }, Cons(RefCell { value: 15 }, Nil))
c after = Cons(RefCell { value: 4 }, Cons(RefCell { value: 15 }, Nil)) 56

Let's Try Another List

enum List {
Cons(i32, RefCell<Rc<List>>),

 Nil,
}

impl List {
fn tail(&self) -> Option<&RefCell<Rc<List>>> {
match self {
Cons(_, item) => Some(item),

 Nil => None,
 }
 }
}

This implementation allows modifying the list structure instead of list values

Now we have a function tail that gets the rest of our list 57

What Happens?

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

println!("a initial rc count = {}", Rc::strong_count(&a));
println!("a next item = {:?}", a.tail());

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

println!("a rc count after b creation = {}", Rc::strong_count(&a));
println!("b initial rc count = {}", Rc::strong_count(&b));
println!("b next item = {:?}", b.tail());

if let Some(link) = a.tail() {
 *link.borrow_mut() = Rc::clone(&b);
}

println!("b rc count after changing a = {}", Rc::strong_count(&b));
println!("a rc count after changing a = {}", Rc::strong_count(&a));

println!("a next item = {:?}", a.tail());
58

Answer

Exited with signal 6 (SIGABRT): abort program

a initial rc count = 1
a next item = Some(RefCell { value: Nil })
a rc count after b creation = 2
b initial rc count = 1
b next item = Some(RefCell { value: Cons(5, RefCell { value: Nil }) })
b rc count after changing a = 2
a rc count after changing a = 2
a next item = Some(RefCell { value: Cons(10, RefCell { value: Cons(5, RefCell...

We see that at the end we have a reference cycle!

59

Let's Look Closer

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));
// a is Cons(5, Nil)

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));
// b is Cons(10, a) = Cons(10, Cons(5, Nil))

if let Some(link) = a.tail() {
// link is Nil (pointed to by a)

 *link.borrow_mut() = Rc::clone(&b);
// link is now b = Cons(10, a)

}
// a = Cons(5, link) = Cons(5, b) = Cons(5, Cons(10, a))
// ^^^ reference cycle of a made!

This can cause a memory leak!

Rc only frees when the strong_count is 0 60

Avoiding Reference Cycles

We know Rc::clone increases the strong_count

You can create a Weak<T> reference to a value with Rc::downgrade

This increases the weak_count and can be nonzero when the Rc is freed

To ensure valid references, Weak<T> must be upgraded before any use

Returns an Option<Rc<T>>

61

Weak<T> Trees

use std::cell::RefCell;
use std::rc::{Rc, Weak};

#[derive(Debug)]
struct Node {
 value: i32,
 parent: RefCell<Weak<Node>>,
 children: RefCell<Vec<Rc<Node>>>,
}

62

Weak<T> Trees In Action

fn main() {
let leaf = Rc::new(Node {

 value: 3,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![]),
 });

println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());

let branch = Rc::new(Node {
 value: 5,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

 *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());
} // Tree is effectively dropped even with parent references!

63

Recap

Box<T>

The Deref trait

The Drop trait

Trait Objects

Smart Pointers

64

Next Lecture: Unsafe

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

65

