
Intro to Rust LangIntro to Rust Lang

UnsafeUnsafe

1

The Story So Far...

We have covered all of the basic features of Rust, as well as many of the

intermediate concepts

If you are confident you understand the past 11 lectures, you can probably

say you are proficient with Rust!

2

Epilogue

As much as we'd love to dive deep into each of these topics in depth, we simply do

not have time.

However...

The goal of this course was never to feed you information

The goal was to teach you the core ideas of Rust and how to think about it

We hope that you will take the knowledge from this class and use it to explore

more about this programming language yourself

3

Unsafe Rust

4

Into the Woods

So far, we've only seen code where memory safety is guaranteed at compile time.

Rust has a second language hidden inside called unsafe Rust

unsafe Rust does not enforce memory safety guarantees

5

Why unsafe ?

Static analysis is conservative

By definition, it enforces soundness rather than completeness

We need a way to tell the compiler: "Trust me, I know what I'm doing"

Additionally, computer hardware is inherently unsafe

6

unsafe in 2024

Rust's precise requirements for unsafe code are still being determined

There's an entire book dedicated to unsafe Rust called the Rustonomicon

7

https://doc.rust-lang.org/nomicon/

What is unsafe , really?

If you take anything away from today, it should be this:

Unsafe code is the mechanism Rust gives developers for taking advantage of

invariants that, for whatever reason, the compiler cannot check.

Jon Gjengset, Rust for Rustaceans

8

What unsafe is not

It's important to understand that unsafe is not just a way to skirt the rules of

Rust.

Ownership

Borrow Checking

Lifetimes

unsafe is a way to enforce these rules using reasoning beyond the compiler

The onus is on you to ensure the code is safe

9

The unsafe Keyword

There are 2 ways to use the unsafe keyword in Rust. The first is marking a

function as unsafe .

impl<T> SomeType<T> {
// vvvvvv
pub unsafe fn decr(&self) {

self.some_usize -= 1;
 }
}

Here, the unsafe keyword serves as a warning to the caller

There may be additional invariants that must be upheld before calling decr

10

The unsafe Keyword

The second way is marking an expression as unsafe

impl<T> SomeType<T> {
pub fn as_ref(&self) -> &T {

unsafe { &*self.ptr }
 }
}

11

The unsafe Contracts

impl<T> SomeType<T> {
pub unsafe fn decr(&self) {

self.some_usize -= 1;
 }

pub fn as_ref(&self) -> &T {
unsafe { &*self.ptr }

 }
}

The first requires the caller to be careful

The second assumes the caller was careful when invoking decr

12

The unsafe Contracts

Imagine is SomeType<T> was really Rc<T> :

impl<T> Rc<T> {
pub unsafe fn decr(&self) {

self.count -= 1;
 }

pub fn as_ref(&self) -> &T {
unsafe { &*self.ptr }

 }
}

When self.count hits 0, T is dropped

What if someone else constructed &T without incrementing count ?

As long as nobody corrupts the reference count, this code is safe 13

Unsafe Superpowers

So what can we do with unsafe ?

With unsafe , we get 5 superpowers! We can:

1. Call an unsafe function or method

2. Access or modify a mutable static variable

3. Implement an unsafe trait

4. Access fields of union s

14

Unsafe Superpowers

1. Call an unsafe function or method

2. Access or modify a mutable static variable

3. Implement an unsafe trait

4. Access fields of union s

These 4 things aren't all that interesting, so why the big fuss?

15

THE UNSAFE SUPERPOWER

The biggest superpower of all is superpower 5!

DEREFERENCE A RAW POINTER

That's it!

But honestly, it's enough to wreak all sorts of havoc...

16

Raw Pointers

Unsafe Rust has 2 types of Raw Pointers:

*const T is an immutable raw pointer

*mut T is a mutable raw pointer

Note that the asterisk * is part of the type name

Immutable here means that the pointer can't be reassigned directly after

being dereferenced

17

Pointers vs References

Raw Pointers themselves are allowed to do some special things:

They can ignore borrowing rules by have multiple immutable and mutable

pointers to the same location

They are not guaranteed to point to valid memory

They don't implement any automatic cleanup

They can be NULL

18

Raw Pointers Example

Here's an example of creating raw pointers.

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

We have both an immutable and mutable pointer pointing to the same place

Notice how there is no unsafe keyword here

We can create raw pointers safely, we just cannot dereference them

19

Raw Pointers Example

Here is another example of creating a raw pointer.

let address: usize = 0xDEADBEEF;
let r = address as *const i32;

We construct a pointer to (likely) invalid memory

Again, no unsafe keyword necessary here!

20

Raw Pointers and unsafe

Let's actually try and dereference these pointers.

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

unsafe {
println!("r1 is: {}", *r1);
println!("r2 is: {}", *r2);

}

There's no undefined behavior here? Right?

Right?

Right! 21

Calling unsafe Functions

We must also call unsafe functions in an unsafe block.

unsafe fn dangerous() {}

fn main() {
unsafe {

dangerous();
 }
}

We would get an error if we called dangerous without the unsafe block!

22

Using extern Functions

Sometimes, we might need to interact with code from another language.

Rust has the keyword extern that facilitates the use of a Foreign Function

Interface (FFI)

Since other languages do not have Rust's safety guarantees, we have no idea

if they are safe to call or not!

23

extern "C"

Let's see how we would set up integration with the abs function from the C

standard library.

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
unsafe {

println!("Absolute value of -3 according to C: {}", abs(-3));
 }
}

The "C" defines the Application Binary Interface (ABI) that the external

function uses

We have no idea if abs is doing what it is supposed to be doing, so it is on us
24

extern "C"

We can also use extern to allow other languages to call Rust code!

#[no_mangle]
pub extern "C" fn call_from_c() {

println!("Just called a Rust function from C!");
}

Note how the usage of extern does not require unsafe

25

Mutable Static Variables

We can mutate global static variables with unsafe .

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
unsafe {

 COUNTER += inc;
 }
}

fn main() {
add_to_count(3);

unsafe {
println!("COUNTER: {}", COUNTER);

 }
} 26

Last 2 Superpowers

The last 2 superpowers are implementing an unsafe trait and accessing fields of

a union .

Send and Sync are both unsafe traits

The developer must provide their own proof of thread safety

union s are primarily used to interface with unions in C code

27

How to use unsafe code

Just because a function contains unsafe code doesn't mean you need to

mark the entire function as unsafe

Often, we want to write unsafe code that we know is actually safe

A common abstraction is to wrap unsafe code in a safe function

28

split_at_mut

Let's take a look at split_at_mut from the standard library.

let mut v = vec![1, 2, 3, 4, 5, 6];

let r = &mut v[..];

let (a, b) = r.split_at_mut(3);

assert_eq!(a, &mut [1, 2, 3]);
assert_eq!(b, &mut [4, 5, 6]);

29

split_at_mut

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]);

Unfortunately, we cannot write this function using only safe Rust

How would we attempt it?

30

split_at_mut Implementation

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
let len = values.len();

assert!(mid <= len);

 (&mut values[..mid], &mut values[mid..])
}

What is the issue with this?

Can you figure out what the compiler will tell us just by looking at the function

signature?

31

split_at_mut Compiler Error

If we try to compile, we get this error:

$ cargo run
 Compiling unsafe-example v0.1.0 (file:///projects/unsafe-example)
error[E0499]: cannot borrow `*values` as mutable more than once at a time
 --> src/main.rs:6:31
 |
1 | fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
 | - let's call the lifetime of this reference `'1`
...
6 | (&mut values[..mid], &mut values[mid..])
 | --------------------------^^^^^^--------
 | | | |
 | | | second mutable borrow occurs here
 | | first mutable borrow occurs here
 | returning this value requires that `*values` is borrowed for `'1`

For more information about this error, try `rustc --explain E0499`.
error: could not compile `unsafe-example` due to previous error

32

split_at_mut Implementation

Let's try again with unsafe .

use std::slice;

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
let len = values.len();
let ptr = values.as_mut_ptr();

assert!(mid <= len);

unsafe {
 (
 slice::from_raw_parts_mut(ptr, mid),
 slice::from_raw_parts_mut(ptr.add(mid), len - mid),
)
 }
}

33

split_at_mut Implementation

unsafe {
 (
 slice::from_raw_parts_mut(ptr, mid),
 slice::from_raw_parts_mut(ptr.add(mid), len - mid),
)
}

from_raw_parts_mut is unsafe because it takes a raw pointer and must trust

it is valid

Since the ptr came from a valid slice, we know it is valid!

34

from_raw_parts_mut Safety Contract

Here is the actual safety contract for from_raw_parts_mut :

/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `data` must be [valid] for both reads and writes for `len * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
/// * `data` must be non-null and aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * `data` must point to `len` consecutive properly initialized values of type `T`.
///
/// * The memory referenced by the returned slice must not be accessed through any other pointer
/// (not derived from the return value) for the duration of lifetime `'a`.
/// Both read and write accesses are forbidden.
///
/// * The total size `len * mem::size of::<T>()` of the slice must be no larger than `isize::MAX`

35

from_raw_parts_mut Misuse

We could very easily misuse from_raw_parts_mut if we wanted to...

use std::slice;

let address: usize = 0xDEADBEEF;
let r = address as *mut i32;

let values: &[i32] = unsafe { slice::from_raw_parts_mut(r, 10000) };

This might seem ridiculous, but when you always assume your code is safe...

36

With Great Power...

What could go wrong?

Probably not much, if you're careful

By careful, we mean writing a proof for every use of unsafe

If you do get something wrong...

With unsafe , you hold great responsibility

37

Undefined Behavior

If you get something wrong, your program now has undefined behavior.

It should go without saying that undefined behavior is bad

The best scenario is you get a visible error:

Segfaults

Unexpected deadlocks

Garbled output

Panics that don't exit the program

The worst case...

38

Undefined Behavior

The worst case scenario is that your program state is invisibly corrupted.

Data races

Transactions aren't atomic

Backups are corrupted

Security leaks

Schrödinger’s Bug

39

Interacting with Safe Rust

Unsafe code is not defined.

The compiler could eliminate the entire unsafe block if it wanted to

It could also miscompile surrounding, safe code!

In a lot of ways, unsafe Rust is far worse than C/C++ because it assumes all

of Rust's safety guarantees

40

Safe unsafe : Valid References

You may recall that all references must be valid. A valid reference:

must never dangle

must always be aligned

must always point to a valid value for their target type

must either be immutably shared or mutably exclusive

Plus more guarantees relating to lifetimes

41

Other Validity Requirements

Some primitive types have other guarantees:

bool is 1 byte, but can only hold 0x00 or 0x01

char cannot hold a value above char::MAX

Most Rust types cannot be constructed from uninitialized memory

If Rust didn't enforce this, it wouldn't be able to make niche optimizations

Option<&T> is a good example

What if Option<Option<bool>> used 0x00 through 0x03 ?

It doesn't matter if Rust does make the optimization, all that matters is that it

is allowed to whenever it wants

42

Even More Validity Requirements

Here are some even more requirements:

Owned Pointer Types (like Box and Vec) are subject to optimizations

assuming the pointer to memory is not shared or aliased anywhere

You can never assume the layout of a type when casting

All code must prepared to handle panic! s and stack unwinding

Stack unwinding drops everything in the current scope, returns from that

scope, drops everything in that scope, returns, etc...

All variables are subject to something called the Drop Check, and if you drop

something incorrectly, you might cause undefined behavior

43

Fighting with unsafe

That was a lot, right?

Remember that it is very possible to write safe unsafe code

A lot of the time, it isn't actually that difficult

Being careful is half the battle

Being absolutely sure you actually need unsafe is the other half

44

Working with unsafe

It is tempting to reason about unsafety locally.

Consider whether the code in the unsafe block is safe in the context of both

the rest of the codebase, and in the context of other people using your library

Encapsulate the unsafety as best you can

Read and write documentation!

Use tools like Miri to verify your code!

Make sure to formally reason about your program

45

Miri

Miri is an undefined behavior detection tool for Rust.

An interpreter for Rust's mid-level intermediate representation

Can detect out-of-bounds memory accesses and use-after-free

Invalid use of uninitialized data

Not sufficiently aligned memory accesses and references

46

Recap: unsafe

With unsafe , we have great powers

But we must accept the responsibility of leveraging those powers

There are consequences to writing unsafe unsafe code

unsafe is a way to promise to the compiler that the indicated code is safe

47

Next Lecture: Parallelism

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

48

