
Intro to Rust LangIntro to Rust Lang

ParallelismParallelism

1

Parallelism vs. Concurrency

Parallelism

Work on multiple tasks at the same

time

Utilizes multiple processors/cores

Concurrency

Manage multiple tasks, but only do

one thing at a time.

Better utilizes a single

processor/core

These terms are used (and abused) interchangably

2

Parallelism vs. Concurrency

3

Parallelism vs. Concurrency

Parallelism Concurrency

4

Parallelism vs. Concurrency (Examples)

Parallelism

Have one processor work on

loading the webpage, while

another updates the progress bar

Often used to divide tasks into

smaller units that can run at the

same time

e.g. Processing 100x100px

regions of an image on each

core

"Divide and conquer"

Concurrency

As we load a webpage, take a break

sometimes to update the loading

progress bar

Often used to do other things while

we wait for blocking I/O operations

e.g. Running garbage

collection while we wait for a

response over the network

5

Today: Parallelism

Threads

Synchronization

Message Passing

Send and Sync

More Synchronization

6

Terminology: Threads

Dangerously overloaded term—can mean one of many things

For this lecture, we define it as a "stream of instructions"

In Rust, language threads are 1:1 with OS threads

Key point: Threads share the same resources

7

Sharing Resources

static int x = 0;

static void thread(void) {
int temp = x;

 temp += 1;
 x = temp;
}
// <!-- snip -->
for (int i = 0; i < 20; ++i) {
 create_thread(thread); // helper function not shown
}

What is the value of x after we join on all 20 threads?

What is the next slide's title going to be?

8

Race Conditions

When multiple threads have access to the same data, things get complicated...

Specifically, this is about data races

9

The Bad Slide

Thread 1 Thread 2

temp = x (temp = 0)

temp = x (temp = 0)

temp += 1 (temp = 0 + 1)

temp += 1 (temp = 0 + 1)

x = temp (x = 1)

x = temp (x = 1)

Uh oh...

10

Synchronization

To make sure instructions happen in a reasonable order, we need to establish

mutual exclusion, so that threads don't interfere with each other.

Mutual exclusion means "Only one thread can do something at a time"

A common tool for this is a mutex lock

11

Sharing Resources With Mutual Exclusion

static int x = 0;
static mtx_t x_lock;

static void thread(void) {
 mtx_lock(&x_lock);
int temp = x;

 temp += 1;
 x = temp;
 mtx_unlock(&x_lock);
}
// <!-- snip -->

Only one thread can hold the mutex lock at a time

This provides mutual exclusion--only one thread may access x at the same

time. 12

Threads in Rust

13

Threads in Rust

Rust's typechecker guarantees an absence of data races

(Unless you use unsafe)

General race conditions are not prevented

Deadlocks are still allowed

14

Creating Threads

Threads can be created/spawned using thread::spawn .

let handle = thread::spawn(|| {
for i in 1..10 {

println!("hi number {} from the spawned thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
});

thread::spawn takes in a function, implementing the FnOnce and Send

traits.

Closures are often used to allow capturing values, but functions work as

well

More on the Send trait later...

Returns a JoinHandle type
15

Joining Threads

To wait for a thread to complete, we join on it.

let handle = thread::spawn(|| {
for i in 1..10 {

println!("hi number {} from the spawned thread!", i);
 thread::sleep(Duration::from_millis(1));
 }
});

handle.join().unwrap();

Execution of the main thread is halted until the spawned thread finishes

16

Capturing Values in Threads

We often want to use things outside of the the closure, but

borrowing them can be problematic.

let v = vec![1, 2, 3];

let handle = thread::spawn(|| {
println!("Here's a vector: {:?}", v);

});

error[E0373]: closure may outlive the current function,
but it borrows `v`, which is owned by the current function

In other words, what if v goes out of scope while the

thread is still running?
17

Capturing Values in Threads

To solve this problem, we can take ownership of values, moving them into the

closure.

let v = vec![1, 2, 3];

let handle = thread::spawn(move || {
println!("Here's a vector: {:?}", v);

});

v is no longer accessible in the main thread

You could clone v to solve this problem

But, what if we wanted to share v ?

18

Multiple Owners

Recall Rc<T> from last lecture.

Rc<T> works like Box<T> , providing a (spiritually) heap-allocated value.

The difference is, Rc<T> has an internal reference count, and the heap

allocated value will only be dropped when the reference count reaches zero.

The only problem is, Rc<T> is not thread safe...

19

Arc<T>

"Arc" stands for "Atomically Reference Counted". This means, it is thread-safe, at

the cost of slightly slower operations.

General advice: default to using Rc<T> , and switch to Arc<T> if you need to

share ownership across threads

The compiler will not let you use Rc across threads

20

Sharing Resources in Rust

We can give the vector multiple owners by using an Arc .

let v = Arc::new(vec![1, 2, 3]);

let v_copy = v.clone();
let handle = thread::spawn(move || {

println!("Here's a vector: {:?}", v_copy);
});

println!("Here's a vector: {:?}", v);

handle.join().unwrap();

v and v_copy both point to the same value

When both are dropped, only then will the underlying vector be dropped

Is this a data race?
21

Sharing Mutable Resources in Rust

If we attempt to mutate the vector, we will indeed encounter an

error

let v = Arc::new(vec![1, 2, 3]);

let v_copy = v.clone();
let handle = thread::spawn(move || {
 v_copy.push(4);

println!("Here's a vector: {:?}", v_copy);
});

v.push(5);
println!("Here's a vector: {:?}", v);

handle.join().unwrap();

This prevents a data race
22

Sharing Mutable Resources in Rust

let v = Arc::new(vec![1, 2, 3]);

let v_copy = v.clone();
let handle = thread::spawn(move || {
 v_copy.push(4);

println!("Here's a vector: {:?}", v_copy);
});

v.push(5);
println!("Here's a vector: {:?}", v);

handle.join().unwrap();

cannot borrow data in an Arc as mutable
<!-- snip -->
help: trait DerefMut is required to modify through a dereference,
but it is not implemented for Arc<Vec<i32>> 23

Sharing Mutable Resources in Rust

The solution to this is actually the same as in C—we introduce a mutex.

24

Mutexes in Rust

Unlike in C, mutexes in Rust actually wrap values.

let x = Mutex::new(0);
let x_data = x.lock().unwrap();

This allows the typechecker to verify that the lock is acquired before accessing

a value (and eliminates a class of bugs)

If we know this, our multiple mutable references rule is not broken!

x_data is a MutexGuard type.

It has deref coercion, so one can operate on it just like it was the actual

data

When x_data is dropped, the mutex will be unlocked.

lock may return an error if another thread panics 25

Sharing Mutable Resources in Rust

let v = Arc::new(Mutex::new(vec![1, 2, 3]));

let v_copy = v.clone();
let handle = thread::spawn(move || {
 v_copy.lock().unwrap().push(4);

println!("Here's a vector: {:?}", v_copy);
});

v.lock().unwrap().push(5);
println!("Here's a vector: {:?}", v);

handle.join().unwrap();

The other thread cannot access the mutex until it is dropped (unlocked)

This prevents multiple mutable references, and the data race, by providing

mutual exclusion!
26

C to Rust Example

27

C to Rust Example

Here's the C code from before, turned into Rust directly.

let mut x = 0;

for _ in 0..20 {
 thread::spawn(|| {
 x += 1;
 });
}

A sea of errors ensues of course, but the key idea is that

this violates one of our rules.

We can't have multiple mutable references at the same

time!

28

C to Rust Example (with Mutexes)

Here's our code from before, with mutexes incorporated

let x = Mutex::new(0);

for _ in 0..20 {
 thread::spawn(|| {

let mut data = x.lock().unwrap();
 *data += 1;
 });
}

What is wrong now?

What if the main function ends? It owns x , so the

thread references to x will be invalid...

How can we have multiple owners? 29

C to Rust Example (with Multiple Ownership)

let x = Arc::new(Mutex::new(0));

for _ in 0..20 {
let x_clone = Arc::clone(&x);

 thread::spawn(move || {
let mut data = x_clone.lock().unwrap();

 *data += 1;
 });
}

Notice that we move each clone of x into each thread, taking ownership of it

Each thread has a pointer to the mutex

The mutex is not deallocated until all of the Arc s pointing to it are

dropped (and the reference count is zero)
30

The Good Slide

let x = Arc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..20 {
let x_clone = Arc::clone(&x);

 handles.push(thread::spawn(move || {
let mut data = x_clone.lock().unwrap();

 *data += 1;
 }));
}

for handle in handles { handle.join().unwrap(); } // Wait for all threads
println!("Final value of x: {}", *x.lock().unwrap());

x is 20, every time.

And it is illegal for it to be anything else in safe Rust. 31

Parallelism Checkpoint

Up until now, we have been talking about parallelism with shared state. Let's shift

gears and talk about message passing.

32

Message Passing

Rather than sharing state between threads, an increasingly popular approach to

safe concurrency is message passing.

In this approach, threads communicate with each other through channels

Golang famously utilizes this approach

33

Message Passing Example

let (tx, rx) = mpsc::channel();

Channels have two halves, a transmitter and a receiver

Connor writes "Review the ZFOD PR" on a rubber duck and it floats down the

river (transmitter)

Ben finds the duck downstream, and reads the message (receiver)

Note that communication is one-way here

Note also that each channel can only transmit/receive one type

e.g. Sender<String> , Receiver<String> can't transmit integers

34

Message Passing Example

let (tx, rx) = mpsc::channel();

thread::spawn(move || { // Take ownership of `tx`
let val = String::from("review the ZFOD PR!");

 tx.send(val).unwrap(); // Send val through the transmitter
});

let received = rx.recv().unwrap(); // receive val through the receiver
println!("I am too busy to {}!", received);

Note that, after we send val , we no longer have ownership of it!

35

Message Passing Example

We can also use receivers as iterators!

let (tx, rx) = mpsc::channel();

thread::spawn(move || { // Take ownership of `tx`
let val = String::from("review the ZFOD PR!");

 tx.send(val).unwrap(); // Send val through the transmitter
 tx.send("buy Connor lunch".into()).unwrap();
});

for msg in rx {
println!("I am too busy to {}!", msg);

}

Wait, what does mpsc stand for?

36

mpsc ⟹ Multiple Producer, Single Consumer

This means we can clone the transmitter end of the channel, and have multiple

producers.

let (tx, rx) = mpsc::channel();

let tx1 = tx.clone();
thread::spawn(move || { // owns tx1
 tx1.send("yo".into()).unwrap();
 thread::sleep(Duration::from_secs(1));
});

thread::spawn(move || { // owns tx
 tx.send("hello".into()).unwrap();
 thread::sleep(Duration::from_secs(1));
});

for received in rx {
i tl !("G t {}" i d)

37

Send and Sync

38

Send and Sync

Everything we have gone over so far is a standard library feature. The language

itself provides two marker traits to enforce safety when dealing with multiple

threads, Send and Sync .

39

Send vs. Sync

Send

Indicates that the type is safe to send between threads.

Rc<T> does not implement this trait, because it is not thread safe.

Sync

Indicates that the type implementing Send can be referenced from multiple

threads

For example, RefCell<T> from last lecture implements Send but not Sync

Rc<T> does not implement Sync either

40

Using Send and Sync

It is generally rare that you would implement these traits yourself

Structs containing all Send / Sync types automatically derive Send / Sync

Explicitly implementing either one requires using unsafe

This would be an example of a trait you might want to unimplement

e.g. If you are doing something with unsafe that is not thread-safe

impl !Send for CoolType<T> {}

41

More Shared State Primitives

42

RwLock<T> (Reader-Writer Lock)

A reader-writer lock is like a mutex, except it allows concurrent access between

readers (not writers).

We can acquire a read lock (or shared lock)

Can be held by multiple readers at once

No writers can hold the lock

We can acquire a write lock (or exclusive lock),

Can be held by only one writer

No readers can hold the lock

43

RwLock<T> Example

let shared_data = Arc::new(RwLock::new(Vec::<i32>::new()));

// All of the readers can hold the read lock simultaneously
for _ in 0..5 {

let shared_data_clone = Arc::clone(&shared_data);
 thread::spawn(move || {

let data = shared_data_clone.read().unwrap();
println!("Reader: {:?}", *data);

 });
}

// The writer has to be the only one with the lock
let shared_data_clone = Arc::clone(&shared_data);
thread::spawn(move || {

let mut data = shared_data_clone.write().unwrap();
 data.push(42);

println!("Writer: {:?}", *data);
});

44

Even More Primitives

CondVar<T> —release a mutex and atomically wait to be signaled to re-acquire

it

Barrier —Memory barrier, allows multiple threads to wait at a certain point,

until all relevant threads reach that point

Weak<T> —downgraded version of Rc or Arc that holds a pointer, but does

not count as an owner.

Retrieving the value can fail, if it has been deallocated already.

45

One more thing...

46

std::sync::atomic

Rust provides atomic primitive types, like AtomicBool , AtomicI8 , AtomicIsize ,

etc.

Safe to share between threads (implementing Sync), providing ways to

access the values atomically from any thread

100% lock free, using bespoke assembly instructions

Highly performant, but very difficult to use

Requires an understanding of memory ordering—one of the most difficult

topics in computer systems

We won't cover it further in this course, but the API is largely 1:1 with the

C++20 atomics.

47

Review: "Fearless Concurrency"

What we have gone over today is referred to as "fearless concurrency" in the rust

community.

By leveraging the ownership system, we can move entire classes of

concurrency bugs to compile-time

Rather than choosing a restrictive "dogmatic" approach to concurrency, Rust

supports many approaches, safely

Subjectively, this may be the single best reason to use this language

Both parallelism and concurrency, as introduced in this lecture, benefit from

these guarantees

48

Next Lecture: Concurrency

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

49

