
Intro to Rust LangIntro to Rust Lang

Concurrency:Concurrency:
Async/AwaitAsync/Await

1

Recap: Parallelism vs. Concurrency

Parallelism

Work on multiple tasks at the same

time

Utilizes multiple processors/cores

Concurrency

Manage multiple tasks, but only do

one thing at a time.

Better utilizes a single

processor/core

These terms are used (and abused) interchangeably

2

Concurrency

Today, we'll be talking about Rust's mechanism for concurrency.

Different from how other languages approach concurrency

Rust has specific keywords async and await

When we say something is asynchronous, we generally also mean it is

concurrent

When we mention cooperative multitasking, we mean asynchronous

3

Concurrency is Complicated

Asynchronous execution in any language is complicated

Async is not a mutually exclusive feature to parallelism

Parallelism and concurrency can "mix" in Rust

4

Rust's Concurrency is Even More Complicated!

Due to the high complexity of Rust's rules and features, async is even harder to

implement and use in Rust.

Asynchronous execution is still evolving both as a feature in Rust and as a

programming paradigm

We're going to keep this lecture primarily focused on the high level details of using

async rather than creating your own Future s

5

What is Asynchronous Code?

A concurrent programming model supported by many languages

All in slightly different forms under the hood

Allows for a large number of tasks on only a few threads

You can imagine "lightweight" tasks on "heavyweight" OS-backed threads

Still preserves the "feel" of synchronous programming through the async /

await syntax

6

Rust Async vs Other Concurrency Models

OS threads

Very easy to express, but hard to synchronize and have overhead on

startup

Event driven programming

Can be performant with callbacks

Causes overly verbose non-linear control flow (debugging nightmare)

Coroutines

Supports many tasks like async

Abstract away low-level details needed for systems programmers

Actor Model

A fine solution for many distributed systems using message passing

Leaves practical issues such as control flow and retry logic up to the user
7

What Makes Rust Async Special?

Futures are inert

Futures only make progress when polled, dropping a future stops

progress

Async is zero-cost

Only pay for what you use (like iterators)

Async without heap allocation or dynamic dispatch

Great for low-resource systems

Rust has no built-in runtime

Provided by community crates such as Tokio

Single and Multithreaded runtimes are possible in Rust

Have different advantages/disadvantages
8

Threaded Download

fn get_two_sites() {
// Spawn two threads to do work.
let thread_one = thread::spawn(|| download("https://www.foo.com"));
let thread_two = thread::spawn(|| download("https://www.bar.com"));

// Wait for both threads to complete.
 thread_one.join().expect("thread one panicked");
 thread_two.join().expect("thread two panicked");
}

This is pretty wasteful, let's use async instead!

9

Async Download

async fn get_two_sites_async() {
// Create two different "futures" which, when run to completion,
// will asynchronously download the webpages.
let future_one = download_async("https://www.foo.com");
let future_two = download_async("https://www.bar.com");

// Run both futures to completion at the same time.
 futures::join!(future_one, future_two);

// Could've instead done:
// future_one.await;
// future_two.await;
// But would've been slower since serial computation

}

10

Another Async Example

async fn hello_world() {
println!("hello, world!");

}

fn main() {
let future = hello_world(); // Nothing is printed

 future.await; // printing should happen now?
}

11

Another Async Example Error

5 | fn main() {
 | ---- this is not `async`
6 | let future = hello_world(); // Nothing is printed
7 | future.await; // printing should happen now?
 | ^^^^^ only allowed inside `async` functions and blocks

We can only use await in async code blocks (which main isn't)

We can fix this with an executor

12

Another Async Example Fixed

use futures::executor::block_on;

async fn hello_world() {
println!("hello, world!");

}

fn main() {
let future = hello_world(); // Nothing is printed
block_on(future); // `future` is run and "hello, world!" is printed

}

block_on blocks the current thread until the provided future has finished

Other executors may provide more complex behavior

like scheduling multiple futures onto the same thread

13

The Future Trait

14

The Future Trait

When you use the keyword async , what you are really doing is creating a state

machine that implements the Future trait.

For now, you can think of async as syntax sugar for impl Future

This is a wildly incorrect statement, but we're omitting details today

The next few slides are very technically complex, so don't worry if you don't

understand everything

15

Futures Simplified

trait SimpleFuture {
type Output;
fn poll(&mut self, wake: fn()) -> Poll<Self::Output>;

}

enum Poll<T> {
Ready(T),

 Pending,
}

An async computation that can produce a value (even ())

Above is a simplified version of the trait

Futures are only advanced via the poll function

16

Polling

If a future completes it returns Poll::Ready(result) , else Poll::Pending

The future arranges for the wake() function to be called when more progress

can be made and makes the executor continue

This is how an executor is able to ensure progress without constant

polling

IMPORTANT: What would happen if we put a long blocking function in our

future?

17

Let's Talk Real Futures

trait Future {
type Output;
fn poll(

// Note the change from `&mut self` to `Pin<&mut Self>`:
self: Pin<&mut Self>,
// and the change from `wake: fn()` to `cx: &mut Context<'_>`:

 cx: &mut Context<'_>,
) -> Poll<Self::Output>;
}

Pin ensures that our futures are unmovable in memory

Context<'_> holds info on the wake function as well as useful metadata

"Who" called the wake function

Value of type Waker

etc
18

Waker

Most futures do not complete on the first poll

Waker is used to ensure the future is polled when it's ready to make progress

Waker provides the following:

wake() to alert the executer that a task is ready to be polled

clone() so that it can be copied and stored

19

Timer Example

pub struct TimerFuture {
 shared_state: Arc<Mutex<SharedState>>,
}

/// Shared state between the future and the waiting thread
struct SharedState {

/// Whether or not the sleep time has elapsed
 completed: bool,

/// The waker for the task that `TimerFuture` is running on.
/// The thread can use this after setting `completed = true` to tell
/// `TimerFuture`'s task to wake up, see that `completed = true`, and
/// move forward.

 waker: Option<Waker>,
}

20

Writing Our Future Implementation

impl Future for TimerFuture {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {

// Look at the shared state to see if the timer has already completed.
let mut shared_state = self.shared_state.lock().unwrap();
if shared_state.completed {

 Poll::Ready(())
 } else {
 shared_state.waker = Some(cx.waker().clone());
 Poll::Pending
 }
 }
}

21

How Could This Work?

TimerFuture launches a thread with access to a shared state variable

Arc<Mutex<_>>

In this thread, we sleep for a duration

Once that time has passed we update the shared state completed=true

We then tell the waker in our shared state to wake up the last future that

polled it

In practice, we would never use a thread for something like this

22

Notable Takeaways

Futures are a very powerful tool

Futures and related functions can be implemented and managed in

numerous ways

This is why Rust doesn't have a "default" runtime

Futures are designed to be "interruptible", to enable efficient polling

Don't put large blocking code in async functions!

While the previous future launched a thread, this is uncommon

IO related async code uses epoll or other related polling calls

23

High Level Usage of async / await

You can wake up now

24

async Blocks

async fn foo() -> u8 { 5 }

fn bar() -> impl Future<Output = u8> {
async {

let x: u8 = foo().await;
 x + 5
 }
}

The async block results in a type of Future<Output=u8>

foo() is also a type that implements Future<Output=u8>

foo().await will result in a value of type u8

25

async move

fn move_block() -> impl Future<Output = ()> {
let my_string = "foo".to_string();
async move {

// ...
println!("{my_string}");

 }

// println!("{my_string}"); will not compile
}

Just like with closures, move gives an async block ownership of a variable

Otherwise we had to handle future's that hold references

26

async Lifetimes

// This function:
async fn foo(x: &u8) -> u8 { *x }

// Is equivalent to this function:
fn foo_expanded<'a>(x: &'a u8) -> impl Future<Output = u8> + 'a {

async move { *x }
}

Unlike typical functions, async fn are bounded by their argument's lifetimes

This is because we're really putting a lifetime on the Future trait object

27

async Lifetime Issues

fn foo() -> impl Future<Output = u8> {
let x = 5;
borrow_x(&x) // async function

}

async fn must be .await ed while its non-static

arguments are still valid

Calling await immediately is one solution

foo.await

28

async Lifetime Solutions

fn good() -> impl Future<Output = u8> {
async {

let x = 5;
borrow_x(&x).await

 }
}

Another is to use an async block to bundle the arguments with an async fn

call

This is now a 'static future

29

Streams

trait Stream {
/// The type of the value yielded by the stream.
type Item;

fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Option<Self::Item>>;

}

Very similar to a Future but returns multiple values instead

Functionally like an iterator

poll returns Ready(Some(T)) or Ready(None) when the stream is done

30

Streams in Channels

async fn send_recv() {
const BUFFER_SIZE: usize = 10;
let (mut tx, mut rx) = mpsc::channel::<i32>(BUFFER_SIZE);

 tx.send(1).await.unwrap();
 tx.send(2).await.unwrap();

drop(tx);

// `StreamExt::next` is similar to `Iterator::next`, but returns a
// type that implements `Future<Output = Option<T>>`.
assert_eq!(Some(1), rx.next().await);
assert_eq!(Some(2), rx.next().await);
assert_eq!(None, rx.next().await);

}

This is a small teaser for asynchronous channels
31

Executing Multiple Futures at a Time

Sometimes .await isn't enough

32

Who Was Paying Attention?

async fn get_book_and_music() -> (Book, Music) {
let book_future = get_book();
let music_future = get_music();

 (book_future.await, music_future.await)
}

Which will finish executing first?

book_future

music_future

This is non-deterministic

All of the above

33

Who Was Paying Attention?

async fn get_book_and_music() -> (Book, Music) {
let book_future = get_book();
let music_future = get_music();

 (book_future.await, music_future.await)
}

Remember, futures are inert

Rust won't do any work until they're actively .await ed

This means book_future and music_future will be polled to completion in

series rather than concurrently

Note: polled to completion concurrently IS NOT running concurrently

34

What We Really Want is join!

use futures::join;

async fn get_book_and_music() -> (Book, Music) {
let book_fut = get_book();
let music_fut = get_music();

 join!(book_fut, music_fut)
}

We still get a tuple containing the output of each Future

But now we've "joined" them to be polled together

35

select!

use futures::{future, select};

async fn count() {
let mut a_fut = future::ready(4);
let mut b_fut = future::ready(6);
let mut total = 0;

loop {
select! {

 a = a_fut => total += a,
 b = b_fut => total += b,
 complete => break,
 default => unreachable!(), // never runs (futures are ready, then complete)
 };
 } // value at end of loop should be 10
}

This runs multiple futures, but quits polling other futures after the first

responds
36

Spawning

Here's a common asynchronous scenario:

Imagine we have a web server that needs to accept connections

We don't want to block the main thread

async_std::task::spawn will create and run a new task that handles

connections

It takes a Future and returns a JoinHandle which can be .await ed

Note that async_std is

37

Spawning Example

async fn process_request(stream: &mut TcpStream) -> Result<(), std::io::Error>{
 stream.write_all(b"HTTP/1.1 200 OK\r\n\r\n").await?;
 stream.write_all(b"Hello World").await?;

Ok(())
}

async fn main() {
let listener = TcpListener::bind("127.0.0.1:8080").await.unwrap();
loop {

// Accept a new connection
let (mut stream, _) = listener.accept().await.unwrap();
// Now process this request without blocking the main loop

 task::spawn(async move {process_request(&mut stream).await});
 }
}

Note that spawn requires an asynchronous runtime!
38

The Power of Async Runtime

ft. Tokio

39

Why Use Async Runtimes?

Writing code that primarily manages multiple IO operations

Interfacing with libraries that depend on an async runtime

Need non-blocking versions of std library api functions for your async code

40

When is Using Async Runtimes Bad?

Trying to speed up CPU-bound computations

Just use threads or Rayon

Reading a lot of files

OSes tend to not provide async file APIs

A thread pool will serve just as well

Sending a single web request

Async runtimes are meant to help manage multiple tasks at a time

Use reqwest instead

41

Async Message Passing

use tokio::sync::mpsc;

#[tokio::main]
async fn main() {

let (tx, mut rx) = mpsc::channel(32);
let tx2 = tx.clone();

 tokio::spawn(async move {
 tx.send("sending from first handle").await.unwrap();
 });

 tokio::spawn(async move {
 tx2.send("sending from second handle").await.unwrap();
 });

while let Some(message) = rx.recv().await {
println!("GOT = {}", message);

 }
}

42

Why Async Message Passsing?

An option for maintaining shared state

A convenient way to link async code with sync code

Async server handling sends data to sync processing thread

Most libraries provide tailored channels for specific use cases

Ex: Tokio mpsc , oneshot , broadcast , watch

43

Mutex With Async

Within an async runtime, mutexes are allowed

Can be used easily if low contention is expected

If high contention is an issue:

Restructure the code to avoid the mutex

Shard the mutex

Message passing

Use an async mutex (comes at a higher cost)

44

Async Mutex Example

use tokio::sync::Mutex; // note! This uses the Tokio mutex

// This compiles!
// (but restructuring the code would be better in this case)
async fn increment_and_do_stuff(mutex: &Mutex<i32>) {

let mut lock = mutex.lock().await;
 *lock += 1;

do_something_async().await;
} // lock goes out of scope here

Using a tokio::Mutex in an async block isn't always required

But it is here

Using a synchronous mutex from within async code is ok if:

Contention remains low and t

h l k h ld ll

45

Sync Mutex in Async

// No tokio:sync:Mutex now!
async fn increment_and_do_stuff(mutex: &Mutex<i32>) {
 {

let mut lock: MutexGuard<i32> = mutex.lock().unwrap();
 *lock += 1;
 } // lock goes out of scope here

do_something_async().await;
}

We've now restructured the code so that the MutexGuard isn't held during the

.await

The issue we're avoiding is that MutexGuard isn't Send

Tokio wants the ability to move tasks between threads at any given

.await call
46

Bridging with Synchronous Code -- Option 1

// Snippet example from Tokio Redis project
impl BlockingSubscriber {

pub fn get_subscribed(&self) -> &[String] {
self.inner.get_subscribed()

 }

pub fn next_message(&mut self) -> crate::Result<Option<Message>> {
self.rt.block_on(self.inner.next_message())

 }

pub fn subscribe(&mut self, channels: &[String]) -> crate::Result<()> {
self.rt.block_on(self.inner.subscribe(channels))

 }
}

Build a synchronous interface to async code

Call block_on on futures synchronous code needs
47

Bridging with Synchronous Code -- Option 2

fn main() {
let runtime = Builder::new_multi_thread().worker_threads(1).enable_all().build().unwrap();

let mut handles = Vec::with_capacity(10);
for i in 0..10 {

 handles.push(runtime.spawn(my_bg_task(i)));
 }

// Do something time-consuming while the background tasks execute.
 std::thread::sleep(Duration::from_millis(750));

println!("Finished time-consuming task.");

// Wait for all of them to complete.
for handle in handles {

// The `spawn` method returns a `JoinHandle`. A `JoinHandle` is
// a future, so we can wait for it using `block_on`.

 runtime.block_on(handle).unwrap();
 }
}

Spawning async jobs on the run time 48

Bridging with Synchronous Code -- Option 3

pub fn new() -> TaskSpawner {
let (send, mut recv) = mpsc::channel(16);
let rt = Builder::new_current_thread().enable_all().build().unwrap();

 std::thread::spawn(move || {
 rt.block_on(async move {

while let Some(task) = recv.recv().await {
 tokio::spawn(handle_task(task));
 }
 });
 });

 TaskSpawner {
 spawn: send,
 }
}
// Sync code that sends message to async running thread
pub fn spawn_task(&self, task: Task) {

match self.spawn.blocking_send(task) {
// <--- snip --->

 }
}

49

Some Nice Tokio Features

50

Channel Types

Usually provide both async and blocking versions of calls for bridging code

Types available:

mpsc - Multi-producer, single-consumer channel where many values can

be sent

oneshot - single-producer, single consumer channel where a single value

can be sent

broadcast - multi-producer, multi-consumer where many values can be

sent and each receiver sees every value

watch - Multi-producer, multi-consumer where many values can be sent

but no history is kept i.e. receivers only see the most recent value

51

Notify

async fn delay(dur: Duration) {
let when = Instant::now() + dur;
let notify = Arc::new(Notify::new());
let notify_clone = notify.clone();

 thread::spawn(move || {
let now = Instant::now();
if now < when {

 thread::sleep(when - now);
 }
 notify_clone.notify_one();
 });
 notify.notified().await;
}

Allows us to not have to deal with Waker s for simple tasks!

Task notification mechanism

52

Async File Read/Write

use tokio::fs::File;
use tokio::io::{self, AsyncReadExt, AsyncWriteExt};
#[tokio::main]
async fn main() -> io::Result<()> {

let mut f = File::open("foo.txt").await?;
let mut buffer = [0; 10];

// read up to 10 bytes
let n = f.read(&mut buffer[..]).await?;
let n = f.write(b"some bytes").await?

// copy reader into file
let mut reader: &[u8] = b"Async is awesome!";

 io::copy(&mut reader, &mut f).await?;

Ok(())
} 53

Tracing

let subscriber = tracing_subscriber::FmtSubscriber::new();
tracing::subscriber::set_global_default(subscriber)?;

#[tracing::instrument]
fn trace_me(a: u32, b:u32) -> u32 {
 tracing::event!(Level::WARN, "Event occurred");
}

Could be it's own lecture

Uses subscribers and macros nicely log asynchronous events in a meaningful

way

Uses the notion of Spans (sections of code/processes)

54

Takeaways

Async/Await is a powerful tool

There are lots of libraries to help manage asynchronous tasks

Is not a drop-in replacement for standard parallelism

Has slightly different rules and best practices compared to other concurrent

models

55

Next Lecture: Macros

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

56

