
Intro to Rust LangIntro to Rust Lang

Ownership (Part 1)Ownership (Part 1)

1

Welcome back!

Homework 1 due today
You can use 7 late days over the whole semester
If you spent over an hour on the assignment, please let us know!

2

Today: Ownership

Preliminary Content
Review: Scopes
String Introduction

Ownership
Motivation
Moving, clone , and copy

References and Borrowing
Slices and Owned Types

3

Review: Scopes

Recall scopes in Rust.

 // s is not valid here, it’s not yet declared
 {
 let s = "hello"; // s is valid from this point forward

 // do stuff with s
 } // this scope is now over, and s is no longer valid

There are two important points in time here:
When s comes into scope, it is valid
It remains valid until it goes out of scope

4

String Literals

We didn't explicitly talk about this last week, but every time you see a text like
"Hello, World!" surrounded by double quotes, that is a string literal.

fn main() {
 println!("Hello, world!"); // Print a string literal

 let s = "Ferris is our friend"; // Another string literal
}

String literals live inside in the program binary

5

Problem: String Literals are Immutable

Suppose we wanted to take user input and store it. This is how we might do it in
Python:

username = input("Tell me your name!")

We do not know how long username will be
How would we do this in Rust?
We need a way to store a collection of characters with a dynamic size

6

The String type

In addition to string literals, Rust has another string type, String
String manages data allocated on the heap

Dynamically stores an amount of text that is unknown at compile time

7

String example

You can create a String from a string literal using String::from() .

let s = String::from("hello");

This kind of string can be mutated:

let mut s = String::from("hello");

s.push_str(", world!"); // push_str() appends a literal to a String

println!("{}", s); // This will print `hello, world!`

8

Ownership

9

Ownership

From the official Rust Lang book:

Ownership is Rust’s most unique feature and has deep implications for the
rest of the language. It enables Rust to make memory safety guarantees
without needing a garbage collector, so it’s important to understand how
ownership works.

Today we'll introduce Ownership, as well as several related features

10

https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html

What is Ownership?

Ownership is a set of rules that govern how a Rust program manages memory.

Some languages have garbage collection to manage memory
Other languages require you to explicitly allocate and free memory
Rust has a third approach:

Manage resources via a set of rules

11

Ownership rules

Each value in Rust has an owner
There can only be one owner at a time
When the owner goes out of scope, the value will be dropped

12

Example: String vs string literals

Since we know the contents of string literals at compile time, the text is
hardcoded directly into the final executable
To support a fully resizable piece of text, we need to allocate on the heap

This means we must request memory from the allocator at runtime
We need a way of returning the memory when we're done using it
What 2 C functions does this remind you of?

13

malloc and free
In C, we use malloc and free to manage heap memory for our program.

However, we need to ensure we pair exactly one malloc with exactly one free .

If we forget to free , we leak memory
If we free too early, we have an invalid variable
If we free twice, that's a "double free" bug
Undefined behavior!!!

14

Manual Memory Management

Using malloc and free can lead to all sorts of undefined behavior
Unless you are the perfect developer...
Who never writes a bug...
You're bound to shoot yourself in the foot

It would be great if the compiler knew:
At what point the variable needs memory
At what point the memory is no longer needed

Idea: what if we tied memory allocation to the scope of a variable?

15

Rust's approach to memory

Memory is returned once the variable that owns it goes out of scope.

 {
 let s = String::from("hello"); // s is valid from this point forward

 // do stuff with s
 } // this scope is now over,
 // and s is no longer valid

When s comes into scope, it gets memory from the allocator
When s goes out of scope, it frees all of its memory

Rust calls a function called drop on s automatically once the program
reaches the closing bracket

16

Example: String "copying"

let s1 = String::from("hello");
let s2 = s1;

What is this code doing?

Bind the String containing "hello" to s1
Now what?

Do we make a copy of the String ?
What does a copy actually mean in this case?

17

s1
name value
ptr
len 5

capacity 5

index value
0 h
1 e
2 l
3 l
4 o

String data layout

let s1 = String::from("hello");

A String is made up of 3
fields:

A pointer to the characters
somewhere in memory
A length
A capacity

Left diagram is on the stack
Right diagram is on the heap

18

s1
name value
ptr
len 5

capacity 5 index value
0 h
1 e
2 l
3 l
4 o

s2
name value
ptr
len 5

capacity 5

Pointer aliasing

let s1 = String::from("hello");
let s2 = s1;

One way to handle this case is:

When we assign s1 to s2 ,
only the stack data is copied
We do not create a copy of the
contents of the String
Also known as a "shallow copy"
in some languages

19

s1
name value
ptr
len 5

capacity 5 index value
0 h
1 e
2 l
3 l
4 o

s2
name value
ptr
len 5

capacity 5

Pointer aliasing

let s1 = String::from("hello");
let s2 = s1;

Suppose Rust handled this case
with a shallow copy.

Following Rust's scope rules,
what would happen if we tried
to drop both s1 and s2 ?

Double free!
How can this be prevented?

20

s1
name value
ptr
len 5

capacity 5 index value
0 h
1 e
2 l
3 l
4 o

s2
name value
ptr
len 5

capacity 5

Enforcing one owner at
a time

To ensure memory safety, after the
second line, s1 is no longer valid.

let s1 = String::from("hello");
let s2 = s1; // s1 is no longer valid

Grayed out portion is no longer
accessible to the program

21

What happens if we try to use s1 after it is in invalid?

let s1 = String::from("hello");
let s2 = s1;
println!("{}, world!", s1);

error[E0382]: borrow of moved value: `s1`
 |
2 | let s1 = String::from("hello");
 | -- move occurs because `s1` has type `String`,
 which does not implement the `Copy` trait
3 | let s2 = s1;
 | -- value moved here
4 |
5 | println!("{}, world!", s1);
 | ^^ value borrowed here after move
 |
help: consider cloning the value if the performance cost is acceptable
 |
3 | let s2 = s1.clone();

22

Move semantics

let s1 = String::from("hello");
let s2 = s1;

Rust calls this shallow copy plus invalidation a move

We moved s1 into s2
Hence s1 can no longer be accessed

23

Moving vs cloning

let s1 = String::from("hello");
let s2 = s1;

What if we copied all of the data instead?
Known as deep copying or cloning

Implicitly copying all of the data would solve the problem
But it can get expensive, quickly

In Rust, cloning must be explicitly performed by the programmer
This is very intentional, to avoid accidental performance loss

24

Clone
If we do want to deep copy, we can use a method called clone .

let s1 = String::from("hello");
let s2 = s1.clone();

println!("s1 = {}, s2 = {}", s1, s2);

s1 = hello, s2 = hello

This copies all of the data contained in s1 , both on the heap and the stack
We'll talk more about methods next week!

25

What about integers?

Based on what we have seen, this code should not work.

let x = 5;
let y = x;

println!("x = {}, y = {}", x, y);

x = 5, y = 5

x is still valid, but it looks like we moved it into y
We just said that this wasn't allowed!

26

Copy

let x = 5;
let y = x;

Types such as integers have a size known at compile time
Data is stored either in registers or on the stack
Copies of integers are very quick to make
There is no difference between a shallow copy and a deep copy here

So why not clone implicitly?

27

Copy
Certain types are annotated with a Copy trait, which allows implicit copying
instead of moving.

Types that are Copy :

All numeric types, including integers and floating points
Boolean type, bool
Character type, char
Tuples, if they only contain types that are Copy

(i32, i32) is Copy , but (i32, String) is not

28

Ownership and Functions

Passing a variable to a function behaves just as assignment does.

Passing a String :

fn main() {
 let s = String::from("hello");
 takes_ownership(s);
} // Because `s`'s value was moved, `s` is not dropped

 // `some_string` comes into scope
fn takes_ownership(some_string: String) {
 println!("{} is mine now!", some_string);
} // `some_string` goes out of scope and `drop` is called.
 // The backing memory is freed.

29

Ownership and Functions

What if we tried to use a value after a function takes ownership of it?

fn main() {
 let s = String::from("hello");
 takes_ownership(s);
 println!("{} is invalid now!", s);
}

error[E0382]: borrow of moved value: `s`
 --> src/main.rs:4:36
 |
2 | let s = String::from("hello");
 | - move occurs because `s` has type `String`,
 which does not implement the `Copy` trait
3 | takes_ownership(s);
 | - value moved here
4 | println!("{} is invalid now!", s);

30

Ownership and Functions

Passing an i32 :

fn main() {
 let x = 5;
 makes_copy(x);
 println!("Here is {} again!", x); // x is still valid!
}

fn makes_copy(some_integer: i32) {
 println!("{} just got copied", some_integer);
}

31

Return Values and Scope

Returning values can also transfer ownership.

fn main() {
 let s1 = gives_ownership();
 println!("{}", s1); // s1 is valid---we have taken ownership
}

fn gives_ownership() -> String {
 let some_string = String::from("yours");

 some_string // `some_string` is returned and
 // moves out to the calling function
}

32

Return Values and Scope

Another example of taking and giving back ownership:

fn main() {
 let s2 = String::from("hello");
 let s3 = takes_and_gives_back(s2);
 println!("{}", s3);
} // Here, `s3` goes out of scope and is dropped.
 // `s2` was moved, so nothing happens to `s2`.

fn takes_and_gives_back(a_string: String) -> String {
 a_string // a_string is returned and
 // moves out to the calling function
}

33

Recap: Ownership

Ownership rules:
Each value in Rust has an owner
There can only be one owner at a time
When the owner goes out of scope, the value will be dropped

With just ownership, we can either move, copy, or clone
Moving and copying has no overhead
Cloning is expensive

34

Moving is somewhat tedious

fn main() {
 let s1 = String::from("hello");
 let (s2, len) = calculate_length(s1);
 println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String, usize) {
 let length = s.len();
 (s, length)
}

If we want to give a function some data, it seems we need to move the data
into the function
To get it back, it seems we need to also return the data back every time
What if we want to let a function use a value but not take ownership? 35

References and Borrowing

36

References

Moving into and returning data from a function is a lot of work
Rust has a feature specifically for using a value without transferring
ownership called references
We can share memory using these references

37

Reference with &
Instead of moving a value into a function, we can provide a reference to the value.

We use & to define a reference to a value.

fn main() {
 let s1 = String::from("hello");

 let len = calculate_length(&s1);

 println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
 s.len()
}

The &s1 syntax lets us create a variable that refers to the value of s1 38

References as Function Arguments

 // `borrowed` is a reference to a String
fn calculate_length(borrowed: &String) -> usize {
 borrowed.len()
} // Here, `borrowed` goes out of scope

borrowed is a reference to s1 (i.e. &s1)
We do not own s1 with just a reference to it
This means s1 will not be dropped when borrowed goes out of scope
We call holding a reference borrowing

39

Mutating a Reference

What if we want to modify the value of something we've
borrowed through a reference?

fn main() {
 let s = String::from("hello");

 change(&s);
}

fn change(some_string: &String) {
 some_string.push_str(", world");
}

40

Modifying a Reference

We get an error if we try to modify a reference.

error[E0596]: cannot borrow `*some_string` as mutable,
 as it is behind a `&` reference

 --> src/main.rs:8:5
 |
7 | fn change(some_string: &String) {
 | ------- help: consider changing this
 to be a mutable reference: `&mut String`
8 | some_string.push_str(", world");
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `some_string` is a `&` reference,
 so the data it refers to cannot
 be borrowed as mutable

Just like variables, references are immutable by default
41

Mutable References

If we want to modify the value that we've borrowed, we must use a mutable
reference, denoted &mut val .

fn main() {
 let mut s = String::from("hello");

 change(&mut s);
}

fn change(some_string: &mut String) {
 some_string.push_str(", world");
}

42

s
name value
ptr

s1
name value
ptr
len 5

capacity 5

index value
0 h
1 e
2 l
3 l
4 o

Reference Data
Layout

In memory, references are
just like pointers
In practice, they have a
couple of constraints that
make them safer

43

Reference Constraints

Mutable References are Exclusive
No Dangling References

44

Constraint: Mutable References are
Exclusive

If you have a mutable reference to a value, you can have
no other references to that value.

let mut s = String::from("hello");

let r1 = &mut s;
let r2 = &mut s;

println!("{}, {}", r1, r2);

45

Constraint: Mutable References are Exclusive

let mut s = String::from("hello");
let r1 = &mut s;
let r2 = &mut s;
println!("{}, {}", r1, r2);

error[E0499]: cannot borrow `s` as mutable more than once at a time
 --> src/main.rs:5:14
 |
4 | let r1 = &mut s;
 | ------ first mutable borrow occurs here
5 | let r2 = &mut s;
 | ^^^^^^ second mutable borrow occurs here
6 |
7 | println!("{}, {}", r1, r2);
 | -- first borrow later used here

46

Constraint: Mutable References are Exclusive

Most languages will let you mutate anything, whenever you want
If data can be written to from multiple places, the value can become
unpredictable
Making mutable references exclusive prevents data races at compile time!

47

Multiple Mutable References

We are allowed to hold multiple mutable references, just
not simultaneously.

let mut s = String::from("hello");

{
 let r1 = &mut s;
} // r1 goes out of scope here, so we can make
 // a new mutable reference with no problems

let r2 = &mut s;

Notice that the scopes of these mutable references do
not overlap

48

Mutable and Immutable References

We cannot have both an immutable and mutable
reference to the same value.

let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM

println!("{}, {}, and {}", r1, r2, r3);

49

Mutable and Immutable References

let mut s = String::from("hello");
let r1 = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM
println!("{}, {}, and {}", r1, r2, r3);

error[E0502]: cannot borrow `s` as mutable because
 it is also borrowed as immutable
 --> src/main.rs:6:14
 |
4 | let r1 = &s; // no problem
 | -- immutable borrow occurs here
5 | let r2 = &s; // no problem
6 | let r3 = &mut s; // BIG PROBLEM
 | ^^^^^^ mutable borrow occurs here
7 |
8 | println!("{}, {}, and {}", r1, r2, r3);

50

Mutable and Immutable References

Note that exclusivity rules only apply for references whose scopes overlap.

let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
println!("{} and {}", r1, r2);
// variables r1 and r2 will not be used after this point

let r3 = &mut s; // no problem
println!("{}", r3);

The scope of a reference starts when it is initialized
The scope of a reference ends at the last point it is used
The specific term for reference scopes are lifetimes

We'll talk about lifetimes in week 8!
51

Constraint: No Dangling References

The Rust compiler guarantees that references will never be
invalid, which means it will not allow dangling references.

fn main() {
 let reference_to_nothing = dangle();
}

fn dangle() -> &String {
 let s = String::from("hello");

 &s
}

52

Constraint: No Dangling References

error[E0106]: missing lifetime specifier
 --> src/main.rs:5:16
 |
5 | fn dangle() -> &String {
 | ^ expected named lifetime parameter
 |
 = help: this function's return type contains a borrowed value,
 but there is no value for it to be borrowed from
help: consider using the `'static` lifetime
<-- snip -->

Focus on this line:

this function's return type contains a borrowed value, but there is no value
for it to be borrowed from

53

Reference Constraints

Mutable references are exclusive:
At any given time, you can have either one mutable reference or any
number of immutable references

A book being read by multiple people is fine
If more than one person writes, they may overwrite each other's
work
References are similar to Read-Write locks

No dangling references:
References must always be valid

54

The Borrow Checker

The Borrow Checker enforces the ownership and borrowing rules by checking:

That all variables are initialized before they are used
That you can't move the same value twice
That you can't move a value while it is borrowed
That you can't access a place while it is mutably borrowed (except through the
mutable reference)
That you can't mutate a place while it is immutably borrowed
and more...

55

Slices

56

Slices

Slices let you reference a contiguous sequence of elements in a collection
rather than the whole collection

A slice is similar to a reference, so it does not have ownership

57

Slices

Suppose we want to write this function:

fn first_word(s: &String) -> ?

Find the first space and return all the characters before it
What type should we return?

58

String Slices

A string slice is sometimes a reference to part of a String , and it looks like this:

let s = String::from("hello world");

let hello = &s[0..5];
let world = &s[6..11];

hello contains the first 5 characters of s
world contains the 5 characters starting at the 6th index of s

59

world
name value
ptr
len 5

index value
0 h
1 e
2 l
3 l
4 o
5
6 w
7 o
8 r
9 l
10 d

s
name value
ptr
len 11

capacity 11String Slices

let s = String::from("hello world");

let hello = &s[0..5];
let world = &s[6..11];

A string slice stores a pointer
to memory and a length

60

String Slices

You can shorthand ranges with the .. syntax.

let s = String::from("hello");

let slice = &s[0..2];
let slice = &s[..2];

let len = s.len();
let slice = &s[3..len];
let slice = &s[3..];

let slice = &s[0..len];
let slice = &s[..];

61

String Literals are Slices

Recall that we talked about string literals being stored inside the binary.

let s = "Hello, world!";

The type of s here is &str : it’s a slice pointing to that specific point of the
binary with type str
String literals are immutable

Their &str immutable reference type reflects that

62

Owned Types

String slices and string literals are immutable because they are a special type
of immutable reference
String is an owned type

i.e. a type that has an owner
Another owned type is a vector

63

Vectors

Vectors allow you to store a collection of values of the same type contiguously in
memory. Internally, it is a dynamically sized array stored on the heap.

You can create an vector with the method new :

let v: Vec<i32> = Vec::new();

The <i32> just means that the vector stores i32 values. We'll talk more
about this syntax in Week 4!

64

Updating a Vec
To add elements to a Vec , we can use the push method.

let mut v = Vec::new();

v.push(5);
v.push(6);
v.push(7);
v.push(8);

println!("{:?}", v);

[5, 6, 7, 8]

65

vec! Macro

Rust provides a macro to create vectors easily in your programs.

let v = vec![1, 2, 3];

println!("{:?}", v);

[1, 2, 3]

Briefly: Macros are a special type of function
They can take in a variable number of arguments

66

Reading Elements of Vectors

You can index into a vector to retrieve a reference to an element.

let v = vec![1, 2, 3, 4, 5];

let third: &i32 = &v[2];
println!("The third element is {}", third);

Note that Rust will panic if you try to index out of the bounds of the Vec

67

More Vec<T> to come...

We will talk more about String and Vec<T> in Week 4!

68

Homework 2

The second homework consists of 10 small ownership puzzles
Refer to the README.md for further instructions
Always follow the compiler's advice!

We highly recommend reading the Rust Book chapter on ownership
Ownership is a very tricky concept that affects almost every aspect of
Rust, so understanding it is key to writing more complex Rust code

Try your best to understand Ownership before attempting the homework

69

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

Next Lecture: Structs and Enums

Thanks for coming!

Slides created by:
Connor Tsui, Benjamin Owad, David Rudo,
Jessica Ruan, Fiona Fisher, Terrance Chen

70

