
Intro to Rust LangIntro to Rust Lang

StandardStandard
Collections andCollections and
GenericsGenerics

1

Today: Standard Collections and Generics

Rust's std::collection Types
Vec<T>

String

HashMap<K, V>

Generic Types

2

Standard Collections

Rust's standard library contains a number of useful data structures called
collections.

Most other data types represent a single value, but collections contain
multiple values
Values in collections are (almost always) stored on the heap

The size of each collection does not need to be known at compile time
For more information on other standard library collections, refer to the
documentation of the std::collections module

3

https://doc.rust-lang.org/std/collections/index.html

Vectors

4

Review: Vectors

You can create a vector with new , and add elements with push .

let mut v = Vec::new();

v.push(5);
v.push(6);
v.push(7);
v.push(8);

println!("{:?}", v);

5

Review: vec! Macro

Rust provides a macro to create vectors easily in your programs.

let v = vec![1, 2, 3];

println!("{:?}", v);

[1, 2, 3]

6

Review: Indexing

You can index into a vector to retrieve a reference to an element.

let v = vec![1, 2, 3, 4, 5];

let third_ref: &i32 = &v[2];
println!("The third element is {}", third_ref);

let third: i32 = v[2]; // This is only possible because i32 is Copy
println!("The third element is {}", third);

7

Vec::get()
You can also use the get method to access an optional reference.

let v = vec![1, 2, 3, 4, 5];

let third: Option<&i32> = v.get(2);
match third {
 Some(third) => println!("The third element is {}", third),
 None => println!("There is no third element."),
}

Using get returns None if the index is out of bounds instead of panicking

8

Vec and References

Recall the rules for immutable and mutable references.

let mut v = vec![1, 2, 3, 4, 5];

let first = &v[0];

v.push(6);

println!("The first element is: {}", first);

You cannot mutate a vector while references to its
elements exist
Appending might resize and reallocate the vector and
change its location in memory

9

Vec and References

If we try to run this:

let mut v = vec![1, 2, 3, 4, 5];
let first = &v[0];
v.push(6);
println!("The first element is: {}", first);

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
 --> src/main.rs:4:5
 |
3 | let first = &v[0];
 | - immutable borrow occurs here
4 | v.push(6);
 | ^^^^^^^^^ mutable borrow occurs here
5 | println!("The first element is: {}", first);
 | ----- immutable borrow later used here

10

Iterating over a Vector

To access each element in order, we can iterate through the elements with a for
loop directly, rather than using indices.

let v = vec![100, 32, 57];

for elem in &v { // `elem` is a reference to an i32 (&i32)
 println!("{}", elem);
}

100
32
57

11

Mutable iteration over a Vector

We can also iterate over mutable references to each element to make changes to
each element.

let mut v = vec![100, 32, 57];

for elem in &mut v { // `elem` is a mutable reference to an i32
 *elem += 50;
}

println!("{:?}", v);

[150, 82, 107]

We only have a single mutable reference into the vector at a time
We pass the borrow checker's rules! 12

For Loop Sugar

You can also consume the vector when you want to loop over it.

let v = vec![100, 32, 57];

for i in v {
 println!("{}", i);
}

// println!("{:?}", v); <-- Can't do this anymore!

We'll talk more about this in week 7!

13

Deref Coercion to &[T]
Instead of a function taking a &Vec<T> as a parameter, we can take a &[T] .

fn largest(list: &Vec<i32>) -> &i32

fn largest(list: &[i32]) -> &i32

The second is more general and preferred
We can do this because of deref coercion

This basically means you can turn a &Vec<T> into a &[T]
We'll talk more about this in week 9!

14

Use Enums to Store Multiple Types

Vectors can only store values of the same type, so we can use enums to store
values of different types (variants).

enum SpreadsheetCell {
 Int(i32),
 Float(f64),
 Text(String),
}

let row = vec![
 SpreadsheetCell::Int(3),
 SpreadsheetCell::Text(String::from("blue")),
 SpreadsheetCell::Float(10.12),
];

15

Vectors and Ownership

Vectors own all of their contained elements.

let mut v = vec![String::from("rust"), String::from("is")];

let s = String::from("great!");

v.push(s); // move `s` into `v`

// `s` is no longer usable here!

To insert an owned value, it must be moved into the vector
In other words, ownership must be transferred to the vector

16

Dropping a Vector

Like any other struct, a vector is dropped when it goes out of scope.

{
 let v = vec!["rust".to_string(), "is".to_string(), "great!".to_string()];

 stuff(&v); // do stuff with `v`

} // <- `v` goes out of scope and everything it contains is freed

When the vector gets dropped, all of its contents are also dropped
The borrow checker will ensure that references into the vector cannot be used
after it has been dropped

17

String

18

What is a String?

A String is essentially a Vec of bytes interpreted as text
We introduced them back in week 2, but now we'll look at them in more depth
New Rust programmers may be confused by:

String 's internal UTF-8 encoding
Rust's prevention of possible logical errors from the encoding
String s are not as simple as they may initially seem

19

What is a String?

Rust "only" has one string type in the core language, str
We almost always see it in its borrowed form, &str
String slices are &str
String literals are also &str

References data stored in the program's binary

String is a growable, mutable, owned, UTF-8 encoded string type

20

Creating a String
You can create a String with the methods new , to_string , or from .

let mut s = String::new(); // empty mutable string

let data = "initial contents"; // string literal

let s = data.to_string(); // string literal into `String`

// the method also works on a literal directly:
let s = "initial contents".to_string();

let s = String::from("initial contents"); // string literal into `String`

21

Strings are UTF-8 Encoded

We can represent any properly encoded data in String .

Here are some greetings in different languages!

let hello = String::from("�� ����
�
� ��������");

let hello = String::from("Dobrý den");
let hello = String::from("Hallo");
let hello = String::from("שָׁלוֹם");
let hello = String::from("नम�त"े);
let hello = String::from("Olá");
let hello = String::from("Привет");
let hello = String::from("Hola");

22

Updating a String
We can grow a String by using the push or push_str methods.

let mut s = String::from("foo");

s.push('b'); // push a char
s.push_str("ar"); // push a &str

println!("{}", s);

foobar

23

Updating a String
The push_str method takes a string slice, because we don't want to take
ownership of the string passed in.

let mut s1 = String::from("foo");

let s2 = String::from("bar");

s1.push_str(&s2);

println!("s2 is {}", s2); // `s2` is still valid!

s2 is bar

24

Concatenating Strings

You can combine two strings with + :

let s1 = String::from("Hello, ");
let s2 = String::from("world!");
let s3 = s1 + &s2; // note s1 has been moved here and can no longer be used

This is syntactic sugar for a function whose signature looks something like this:

fn add(self, s: &str) -> String

Notice that add takes full ownership of self
Also notice add takes &str as its second parameter and not &String

This is the same deref coercion as with &Vec<T> to &[T] !

25

Concatenating Multiple Strings

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");

To combine multiple strings, you can use multiple + 's:

let s = s1 + "-" + &s2 + "-" + &s3;

Or you can use the format! macro:

let s = format!("{}-{}-{}", s1, s2, s3);

let s = format!("{s1}-{s2}-{s3}"); // relatively new shorthand!

26

Indexing into Strings

This code might seem reasonable from any other
programming language like Python or C.

let s1 = String::from("hello");
let h = s1[0];

Accessing individual characters in a string by indexing
is common in many languages
However, if you try to access a String using an index,
you will get an error

27

Indexing into Strings

let s1 = String::from("hello");
let h = s1[0];

error[E0277]: the type `String` cannot be indexed by `{integer}`
 --> src/main.rs:3:13
 |
3 | let h = s1[0];
 | ^^^^^ `String` cannot be indexed by `{integer}`
 |
 = help: the trait `Index<{integer}>` is not implemented for `String`

Why won't Rust allow indexing String ?

28

Internal Representation of Strings

A String is really a wrapper over Vec<u8> , or a vector of bytes.

let hello = String::from("Hola");

How long is this string?
The length of the string is 4
The internal vector storing the string "Hola" is 4 bytes long

Simple enough, right?

29

Internal Representation: Cyrillic

Now suppose we wanted to say "Hello", but in Russian.

let hello = String::from("Привет");

How long is this string?
There are 6 distinct characters
However, the string's len is 12, the number of bytes needed in the
internal vector

30

Internal Representation: UTF-8

Let's revisit some invalid Rust code again.

let hello = "Привет";
let answer = &hello[0];

What should answer be?
It can't be П , internally it is represented by 2
bytes: [208, 159]
Do we return 208 instead?

There isn't any obvious expected behavior here...

31

Internal Representation: UTF-8

let hello = "Привет";
let answer = &hello[0]; // BAD!

Anything we can return here might not be an "expected" result
The philosophy of Rust is to not compile this code at all

Prevents misunderstandings early in the development process
Further reading on UTF-8: Rust Book Chapter 8.2

32

https://doc.rust-lang.org/book/ch08-02-strings.html#bytes-and-scalar-values-and-grapheme-clusters-oh-my

Slicing Strings

Instead of indexing with a single number, you can use [] with a range to create a
string slice containing specific bytes.

let hello = "Привет";

let s = &hello[0..4]; // `s` == "Пр"

33

Slicing Strings

However, if we try to slice only a part of a character's bytes, Rust panics at runtime.

let hello = "Привет";

let s = &hello[0..1];

thread 'main' panicked at 'byte index 1 is not a char boundary;
it is inside 'П' (bytes 0..2) of `Привет`'

This happens in the same way that an invalid index causes a panic!

34

Iterating Over Strings

Normally, we want to iterate over individual Unicode scalar values, and we can use
the chars method.

for c in "Пр".chars() {
 println!("{c}");
}

П
р

35

Iterating Over Strings

Alternatively, if you want the actual raw bytes, you can use the bytes method.

for b in "Пр".bytes() {
 println!("{b}");
}

208
159
209
128

36

Recap: Strings

Rust chooses to use UTF-8 strings as the default (for both String and &str)
Programmers have to think about handling unicode upfront
The complexity brought on by encodings is more apparent in Rust
However, this prevents having to deal with non-ASCII characters later!

The standard library offers many methods for String and &str types to
help handle these complex situations correctly

37

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/primitive.str.html

HashMap

38

HashMap<K, V>
The type HashMap<K, V> stores keys with type K mapped to values with type V .

Many languages support this kind of data structure, even if they use a
different name:

Hash
Map
Object
Hash Table
Dictionary
Associative Array

39

Creating a Hash Map

We can create a new hash map with new and insert entries with insert .

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

Note that we need to import HashMap from the standard library's collections
module with use
We'll talk more about use in week 6!

40

Accessing Values in a Hash Map

We can use the get method to get the value associated with a key.

let mut scores = HashMap::new();
scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

let team_name = String::from("Blue");
let score = scores.get(&team_name).unwrap_or(&0);

The get method returns an Option<&V> , similar to Vec::get()
We use unwrap_or(&0) on the result

If it returns Some(&x) , we unwrap and get &x
If it returns None , we go to the default case &0

41

Iterating over a Hash Map

We can iterate over each key/value pair using a for loop, similar to vectors.

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

for (key, value) in scores {
 println!("{key}: {value}");
}

Yellow: 50
Blue: 10

Note that the order is non-deterministic
42

Hash Maps and Ownership

Hash maps own their contained data, just like vectors.

let field_name = String::from("Favorite color");
let field_value = String::from("Blue");

let mut map = HashMap::new();
map.insert(field_name, field_value);

// field_name and field_value are invalid at this point!

43

Updating a Hash Map

Hash maps only contain one value for each distinct key, so to update we can just
insert twice.

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Blue"), 25);

println!("{:?}", scores);

{"Blue": 25}

Inserting twice overwrites the existing value for the given key

44

Accessing a Hash Map with Defaults

A common pattern when accessing a HashMap is:
If the key exists, we want to access the value
If the key does not exist, insert a default value and then access it

HashMap has a special API called Entry

45

Hash Map Entries

To insert a value if the key does not already exist, you can use the Entry API and
the method or_insert .

let mut scores = HashMap::new();
scores.insert(String::from("Blue"), 10);

scores.entry(String::from("Yellow")).or_insert(50);
scores.entry(String::from("Blue")).or_insert(50);

println!("{:?}", scores);

{"Yellow": 50, "Blue": 10}

46

Hash Map Entries

If you want to update a value, or provide a default if it doesn't yet exist, you can do
something similar:

let text = "hello world wonderful world";

let mut map = HashMap::new();

for word in text.split_whitespace() {
 let count: &mut usize = map.entry(word).or_insert(0);
 *count += 1;
}

println!("{:?}", map);

{"world": 2, "hello": 1, "wonderful": 1}
47

hash_map::Entry::or_insert
The method or_insert has the following signature:

fn or_insert(self, default: V) -> &mut V

It gives out a mutable reference
That reference are guaranteed to point to valid data
We need to provide a default, otherwise this data might not exist

Shorter and more readable than separate conditionals

48

Recap:

We covered The Rust Book Chapter 8
Always refer to the documentation!

Vec<T> documentation
String documentation
HashMap<K, V> documentation

49

https://doc.rust-lang.org/book/ch08-00-common-collections.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/stable/std/collections/hash_map/struct.HashMap.html

Generics

50

Generics

So what was the deal with the T in Vec<T> , and K, V in HashMap<K, V> ?

We refer to these as generic types
Think of it as being able to fill in any type you want in place of T
Generics allow us to replace specific types with a placeholder that represents
multiple types

Removes code duplication

51

Removing Code Duplication

Let's say we want to find the largest number in a list.

let number_list = vec![34, 50, 25, 100, 65];

let mut largest = &number_list[0];

// Pretend the list always has at least 1 element.
for number in &number_list {
 if number > largest {
 largest = number;
 }
}

println!("The largest number is {}", largest);

52

Removing Code Duplication

What if we have multiple lists? We then have to do multiple searches.

let number_list = vec![34, 50, 25, 100, 65];
let mut largest = &number_list[0];
for number in &number_list {
 if number > largest {
 largest = number;
 }
}
println!("The largest number is {}", largest);

let number_list = vec![102, 34, 6000, 89, 54, 2, 43, 8];
let mut largest = &number_list[0];
for number in &number_list {
 if number > largest {
 largest = number;
 }
}

53

Removing Code Duplication

Instead, we can make a function called largest .

fn largest(list: &[i32]) -> &i32 {
 let mut largest = &list[0];
 for item in list {
 if item > largest {
 largest = item;
 }
 }
 largest
}

fn main() {
 let number_list = vec![34, 50, 25, 100, 65];
 println!("The largest number is {}", largest(&number_list));

 let number_list = vec![102, 34, 6000, 89, 54, 2, 43, 8];
println!("The largest number is {}", largest(&number list));

54

Remove Function Duplication

What if we also wanted to find the largest character in a slice?

fn largest_char(list: &[char]) -> &char {
 let mut largest = &list[0];
 for item in list {
 if item > largest {
 largest = item;
 }
 }
 largest
}

This is effectively the same as finding the largest number in a list
We would still need to write a new function in addition to largest
Can we remove a function that has been duplicated? 55

Generic Functions

We can define a function as generic over some type T with a tag <T> :

fn largest<T>(list: &[T]) -> &T

This function is generic over T
This function takes in a slice of T as input
This function returns a reference to T
T can be any* type!

56

Generic Functions

Generic types can have any name, not just <T> :

fn largest<T>(list: &[T]) -> &T

fn largest<Key>(list: &[Key]) -> &Key

fn largest<Smile>(list: &[Smile]) -> &Smile

All of these essentially mean the same thing!
Last one is frowned upon since it might seem like a struct or enum

57

Generic Functions

Let's try to modify our old function directly:

fn largest<T>(list: &[T]) -> &T {
 let mut largest = &list[0];
 for item in list {
 if item > largest {
 largest = item;
 }
 }
 largest
}

fn main() {
 println!("The largest number is {}",
 largest(&[34, 50, 25, 100, 65]));
 println!("The largest char is {}",
 largest(&['y', 'm', 'a', 'q']));
}

58

Generic Functions

We get an error:

error[E0369]: binary operation `>` cannot be applied to type `&T`
 --> src/main.rs:4:17
 |
4 | if item > largest {
 | ---- ^ ------- &T
 | |
 | &T
 |
help: consider restricting type parameter `T`
 |
1 | fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {
 | ++++++++++++++++++++++

59

error[E0369]: binary operation `>` cannot be applied to type `&T`
 --> src/main.rs:4:17
 |
4 | if item > largest {
 | ---- ^ ------- &T
 | |
 | &T
 |
help: consider restricting type parameter `T`
 |
1 | fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {
 | ++++++++++++++++++++++

We cannot compare two &T to each other
We've stated that T can be any type, regardless of if T is a type that cannot
actually be compared
Let's just follow the compiler's advice for now!

60

Generic Functions

Once we make that change, this works!

fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {
 let mut largest = &list[0];

 for item in list {
 if item > largest {
 largest = item;
 }
 }

 largest
}

The largest number is 100
The largest char is y 61

Sneak Peek: Traits

use std::cmp::PartialOrd;

fn largest<T: PartialOrd>(list: &[T]) -> &T {
 let mut largest = &list[0];

 for item in list {
 if item > largest {
 largest = item;
 }
 }

 largest
}

We'll talk about type restrictions with traits next week!
For now, all you need to know is that we need the PartialOrd trait to enable

i
62

Generic Structs

We can define structs to contain a generic type using the <T> syntax as well!

struct Point<T> {
 x: T,
 y: T,
}

fn main() {
 let integer = Point { x: 5, y: 10 };
 let float = Point { x: 1.0, y: 4.0 };
}

63

Generic Structs

Observe that this declaration defines both the x field and
the y field to be of the same type.

struct Point<T> {
 x: T,
 y: T,
}

fn main() {
 let wont_work = Point { x: 5, y: 4.0 };
}

64

Generic Structs

If we try to compile this, we get an error

error[E0308]: mismatched types
 --> src/main.rs:7:38
 |
7 | let wont_work = Point { x: 5, y: 4.0 };
 | ^^^ expected integer,
 found floating-point number

65

Generic Structs

If we want a struct that allows different generic fields to have different types, we
need to define another generic type.

struct Point<T, U> {
 x: T,
 y: U,
}

fn main() {
 let both_integer = Point { x: 5, y: 10 };
 let both_float = Point { x: 1.0, y: 4.0 };
 let integer_and_float = Point { x: 5, y: 4.0 };
}

Note that they can still be the same!
66

Generic Enums

Recall the Option<T> type:

enum Option<T> {
 Some(T),
 None,
}

This is a generic enum over T !

67

Generic Enums

Enums can be generic over multiple types, just like structs.

enum Result<T, E> {
 Ok(T),
 Err(E),
}

This enum is generic over T and E , with each stored in a variant
Result<T, E> is a very common type in the standard library that we will talk

about next week!

68

Generic Methods

Methods on structs can also be generic.

struct Point<T> {
 x: T,
 y: T,
}

impl<T> Point<T> {
 fn x(&self) -> &T {
 &self.x
 }
}

fn main() {
 let p = Point { x: 5, y: 10 };
 println!("p.x = {}", p.x());
} 69

Generic Methods

impl<T> Point<T> {
 fn x(&self) -> &T {
 &self.x
 }
}

Observe that we have to declare T after the impl as well as after Point
This is to specify that we're implementing methods on the type Point<T>
This is different from implementing methods on the type Point<f32>

70

Generic impl
We could have made an implementation specific to Point<f32> :

impl Point<f32> {
 fn distance_from_origin(&self) -> f32 {
 (self.x.powi(2) + self.y.powi(2)).sqrt()
 }
}

This code means that Point<f32> will have an additional
distance_from_origin method on top of the methods defined for Point<T>

71

Generic impl
Going back to the Point<T, U> example:

struct Point<T, U> {
 x: T,
 y: U,
}

We could implement methods for when x is i32 , but with no restrictions on y .

impl<U> Point<i32, U> {
 fn get_sum_x(&self, other: Point<i32, U>) -> i32 {
 self.x + other.x
 }
}

72

Generic impl
However, this actually restricts the type of other to have the same generic type
parameters <i32, U> .

impl<U> Point<i32, U> {
 fn get_sum_x(&self, other: Point<i32, U>) -> i32 {
 self.x + other.x
 }
}

fn main() {
 let p1 = Point { x: 5, y: 3.2 }; // y is f64
 let p2 = Point { x: 5, y: 4.4 }; // y is also f64
 println!("{}", p1.get_sum_x(p2))
}

Note that U has to be the same in both self and other 73

Generic impl
To solve this, we can make the method generic over another type:

impl<U> Point<i32, U> {
 fn get_sum_x<V>(&self, other: Point<i32, V>) -> i32 {
 self.x + other.x
 }
}

fn main() {
 let p1 = Point { x: 5, y: 3.2 }; // y is f64
 let p2 = Point { x: 5, y: String::new() }; // y is String
 println!("{}", p1.get_sum_x(p2))
}

74

Here's another example of a generic impl :

struct Point<X1, Y1> {
 x: X1,
 y: Y1,
}

impl<X1, Y1> Point<X1, Y1> {
 fn mixup<X2, Y2>(self, other: Point<X2, Y2>) -> Point<X1, Y2> {
 Point {
 x: self.x,
 y: other.y,
 }
 }
}

fn main() {
 let p1 = Point { x: 5, y: 10.4 };
 let p2 = Point { x: "Hello", y: 'c' };

 let p3 = p1.mixup(p2);
 println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
} 75

Performance of Generics

The good news is that there is zero overhead to using generics!
The work is done at compile-time instead of runtime.

Rust accomplishes this with monomorphization

76

Monomorphization

Let's look at how this works by using the standard library's generic Option<T> :

let integer = Some(5);
let float = Some(5.0);

The compiler will identify which types T can take on by find all instances of
Option<T> , in this case i32 and f64

It creates monomorphized versions of Option specific to those types

77

Monomorphization

The compiler will generate something similar to the following:

enum Option_i32 {
 Some(i32),
 None,
}

enum Option_f64 {
 Some(f64),
 None,
}

fn main() {
 let integer = Option_i32::Some(5);
 let float = Option_f64::Some(5.0);
}

All extra work is performed at compile time!
78

Recap: Generics

Generics allow us to reduce code duplication
Monomorphization means we do not incur any runtime cost!

79

Homework 4

You'll be implementing two collection data structures:
MultiSet

A collection that stores unordered values and tracks multiplicity
MultiMap

A collection that maps keys to any number of values
Make sure you are familiar with the API for HashMap and Entry !

80

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Next Lecture: Errors and Traits

Thanks for coming!

Slides created by:
Connor Tsui, Benjamin Owad, David Rudo,
Jessica Ruan, Fiona Fisher, Terrance Chen

81

