
Intro to Rust LangIntro to Rust Lang

Error Handling andError Handling and
TraitsTraits

Benjamin Owad, David Rudo, and Connor Tsui

1

Today: Error Handling and Traits

Type Aliases

Const Generics

Error Handling

panic!

Result<V,E>

The Never Type

Traits
Trait Bounds

Copy vs Clone

Supertraits

Derivable Traits
2

Type Aliases

3

Type Aliases

You can declare a type alias to give a name to an already existing type.

type Kilometers = i32;

let x: i32 = 5;
let y: Kilometers = 5;

println!("x + y = {}", x + y); // Rust knows the types are really the same

4

Generic Type Aliases

You can also include generics in your type aliases.

type Grades = Vec<u8>;

fn main() {
 let mut empty_grades = Grades::new();
 empty_grades.push(42);
}

type Stack<T> = Vec<T>;

fn main() {
 let mut stack: Stack<i32> = Stack::new();
 stack.push(42);
}

5

Const Generics

6

Const Generics

struct ArrayPair<T, const N: usize> {
 left: [T; N],
 right: [T; N],
}

Const Generics allow items to be generic over constant values

7

Const Generics

Here's an example of constructing an ArrayPair with generic constant 5 :

struct ArrayPair<T, const N: usize> {
 left: [T; N],
 right: [T; N],
}

fn main() {
 let pair = ArrayPair::<i32, 5> {
 left: [0; 5],
 right: [1; 5],
 };

 println!("{:?}, {:?}", pair.left, pair.right);
}

[0, 0, 0, 0, 0], [1, 1, 1, 1, 1]
8

Const Generics Rules

Currently, const parameters may only be instantiated by const arguments of the
following forms:

A literal (i.e. an integer, bool, or character)

A standalone const parameter

A concrete constant expression (enclosed by {}), involving no generic parameters

9

Const Generic Literals

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
 foo::<2024>(); // Okay: `2024` is a literal
}

Note that any valid constant with the correct type usize can be a generic parameter

10

Standalone Const Parameter

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
 foo::<M>(); // Okay: `M` is a const parameter
 let _: [u8; M]; // Okay: `M` is a const parameter
}

Since M and N are const generic parameters of the same type, M is a valid
parameter

11

A Concrete Constant Expression

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
 foo::<{20 * 100 + 20 * 10 + 1}>(); // Okay: const expression
 // contains no generic parameters
}

12

Bad Constant Expressions

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
 foo::<{ M + 1 }>(); // Error: const expression
 // contains the generic parameter `M`, M+1 could overflow

 foo::<{ std::mem::size_of::<T>() }>(); // Error: const expression
 // contains the generic parameter `T`

 let _: [u8; std::mem::size_of::<T>()]; // Error: const expression
 // contains the generic parameter `T`
}

13

Const Generic Design Patterns

fn alternating<const ODD: bool>(nums: &[usize]) {
 let mut i = if ODD { 1 } else { 0 };

 while i < nums.len() {
 print!("{} ", nums[i]);
 i += 2;
 }

}

Const Generics allow for multiple compilations of the same function with slightly

different behavior

Const Generics representing "optional flags" is a common pattern

14

Const Generic Design Patterns

fn alternating<const ODD: bool>(nums: &[usize]) {
 // <-- snip -->
}

fn main() {
 let nums = [0, 1, 2, 3, 4, 5, 6, 7];

 alternating::<false>(&nums);
 println!();
 alternating::<true>(&nums);
}

0 2 4 6
1 3 5 7

15

Error Handling

16

What type_of Error?

In Rust there are two main types of errors we care about:

recoverable and unrecoverable errors (panics).

Result<V, E>

A return type for recoverable errors

panic!
A macro (notice the !) to invoke unrecoverable errors

17

The Result Type

Rust provides a Result type to represent "success" and "failure" states in code.

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Notice how the "success" does not have to have the same type as the "error"

18

unwrap()
pub const fn unwrap(self) -> T {
 match self {
 Ok(val) => val,
 Err => panic!("called `Option::unwrap()` on a `Err` value"),
 }
}

Takes an enum like an Option<T> or Result<V, E> type and unwraps it to reveal

the inner value

It should only be used when you expect an inner value, otherwise it will panic
Most common source of panics in Rust programs

19

unwrap()
Consider the following example from the Rust book:

use std::fs::File;

fn main() {
 let greeting_file = File::open("hello.txt").unwrap();
}

What happens if we don't have "hello.txt" ?

20

unwrap()
fn main() {
 let greeting_file = File::open("hello.txt").unwrap();
}

thread 'main' panicked at src/main.rs:4:49:
called `Result::unwrap()` on an `Err` value:
 Os { code: 2, kind: NotFound, message: "No such file or directory" }

This error message isn't the best...

21

expect()
We can do better than this if we expect this error and know what message to print to the

user if something goes wrong.

fn main() {
 let greeting_file = File::open("hello.txt")
 .expect("'hello.txt' should be included in this project");
}

Now we get:

thread 'main' panicked at src/main.rs:5:33:
'hello.txt' should be included in this project:
 Os { code: 2, kind: NotFound, message: "No such file or directory" }

22

Panics

Panics in Rust are unrecoverable errors. They can happen in many different ways:

Out of bounds slice indexing

Integer overflow (only in debug mode)

.unwrap() on a None or Err

Calls to the panic! macro

23

More Panics

There are other useful macros that panic:

assert! , assert_eq! , assert_ne!
Conditionally panics based on inputs

unimplemented! / todo!

Usually used while something is in progress

unreachable!
Can help the compiler optimize a code segment away

24

Using Results 1

To have recoverable errors, we should use results.

fn integer_divide(a: i32, b: i32) -> Result<i32, String> {
 if b == 0 {
 Err("Divide by zero".to_string())
 } else {
 Ok(a/b)
 }
}

Here, the "success" type is an i32 , and the "failure" a String

The caller has to handle both cases

25

Using Results 2

Result<T, E> is generic, so we can create our own failure/error types!

enum ArithError {
 DivideByZero,
 IllegalShift(i32)
}

fn shift_and_divide(x: i32, div: i32, shift: i32) -> Result<i32, ArithError> {
 if shift <= 0 {
 Err(ArithError::IllegalShift(shift))
 } else if div == 0 {
 Err(ArithError::DivideByZero)
 } else {
 Ok((x << shift) / div)
 }
}

Creating your own "error" enum like ArithError is a common pattern
26

The ? Operator

To make error handling more ergonomic, Rust provides the ? operator.

let x = potential_fail()?;

let x = match potential_fail() {
 Ok(v) => v
 Err(e) => return Err(e.into()), // Error is propagated up a level
}

If potential_fail returns an Err , return early

Else we can unwrap the inner value and continue

Think of the ? as quick way to see where a function short-circuit returns on failure

27

The ? Operator Example

use std::num::ParseIntError; // a built-in error type

fn multiply(
 first_number_str: &str,
 second_number_str: &str,
) -> Result<i32, ParseIntError> {

 let first_number = first_number_str.parse::<i32>()?;
 let second_number = second_number_str.parse::<i32>()?;

 Ok(first_number * second_number)
}

If either of the parse calls fail, we return their Err values

Otherwise, we store the parsed values

28

The ? Operator Example

If parse fails, we will get the parse function's Err values as expected.

fn print(result: Result<i32, ParseIntError>) {
 match result {
 Ok(n) => println!("n is {}", n),
 Err(e) => println!("Error: {}", e),
 }
}

fn main() {
 print(multiply("10", "2"));
 print(multiply("ten", "2"));
}

n is 20
Error: invalid digit found in string

29

The ? Operator

We can also chain multiple ? together:

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
 let mut username = String::new();

 File::open("hello.txt")?.read_to_string(&mut username)?;

 Ok(username)
}

30

The Never Type

31

Functions that never return

Consider the following code, what should the type of x be?

let x = loop { println!("forever"); };

loop never terminates, so what type should x be?

This is not immediately obvious, right?

32

The "Never" Type - !
Rust has a special type called ! , or the "never type", for this exact reason.

Another example:

fn bar() -> ! {
 loop {}
}

33

What's the point?

Why have a type that never has a value? Consider the following:

let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
};

Recall match statements can only return 1 type

continue has the ! type

Rust knows this can't be value and allows guess: u32

This is why we can have panic! in a match statement like unwrap()

34

What else is ! ?
panic!

break

continue

Everything that doesn't return a value - typically related to control flow

print! and assert! return () , so they don't use !

35

Traits

36

Traits

A trait defines functionality a particular type has and can share with other types.

trait Shape {
 // Associated function signature; `Self` refers to the implementer type.
 fn new_shape() -> Self;

 // Method signature to be implemented by a struct.
 fn area(&self) -> f32;

 fn name(&self) -> String;
}

Traits are defined with the trait keyword

They act as an interface for structs

They can cannot be constructed directly, only applied onto structs

37

Trait Definitions

So how do we use traits? We impl ement them for a struct:

struct Rectangle {
 height: f32,
 width: f32
}

impl Shape for Rectangle {
 fn new_shape() -> Self {
 Rectangle { height: 1.0, width: 1.0 }
 }

 // <-- snip -->
}

38

Default Trait Implementations

Traits can also provide a default implementation of functions.

trait Shape {
 // <-- snip -->

 // Default method implementation (can be overriden)
 fn print(&self) {
 println!("{} has an area of {}", self.name(), self.area());
 }
}

These can be overriden by any impl Shape for MyStruct

39

Overriding Default Trait Implementations

We can simply override functions as such:

impl Shape for Rectangle {
 // <-- snip -->

 fn print(&self) {
 println!("I am a rectangle! :)");
 }
}

40

Traits in Action

What happens we try and construct a Shape ?

let rec = Shape::new_unit();

41

Traits != Types

let rec = Shape::new_unit();

error[E0790]: cannot call associated function on trait without
 specifying the corresponding `impl` type
 --> src/main.rs:20:15
 |
3 | fn new_shape() -> Self;
 | ----------------------- `Shape::new_shape` defined here
...
20 | let rec = Shape::new_shape();
 | ^^^^^^^^^^^^^^^^ cannot call associated function of trait
 |
help: use the fully-qualified path to the only available implementation
 |
20 | let rec = <Rectangle as Shape>::new_shape();
 | +++++++++++++ +

Traits are abstract, we cannot construct a trait by itself
42

Traits in Action

To use the Shape trait, Rust must know who is implementing it.

let rec: Rectangle = Shape::new_unit();
let rec = <Rectangle as Shape>::new_shape();

43

Super Traits

Rust doesn't have "inheritance", but you can define a trait as being a superset of another

trait.

trait Person {
 fn name(&self) -> String;
}

trait Student: Person {
 fn university(&self) -> String;
}

Person is a supertrait of Student

Student is a subtrait of Person

Implementing Student on a type requires you to also impl Person

44

Even Super-er Traits

trait Programmer {
 fn fav_language(&self) -> String;
}

// CompSciStudent is a subtrait of both Programmer and Student
trait CompSciStudent: Programmer + Student {
 fn git_username(&self) -> String;
}

We can make a trait a subtrait of multiple traits with the + operator

Implementing CompSciStudent will now require you to impl both supertraits

45

Recap: Traits

Traits define shared behavior among types in an abstract way

Instead of inheritance, Rust has supertraits

Traits are similar to:
Interfaces

Abstract / Virtual Classes

46

Derivable Traits

47

Deriveable Traits

Back in week 3, we saw this example:

#[derive(Debug)]
struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

Student { andrew_id: "cjtsui", attendance: [true, false], grade: 42, stress_level: 1000 }

Recall that we were not able to print out this struct without the
#[derive(Debug)]

48

Debug Trait

The Debug trait is defined as such in the standard library:

pub trait Debug {
 // Required method
 fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

We could implement this trait for Student ourselves
It would likely be tedious...

49

Debug Trait

impl fmt::Debug for Student {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "Student {{ ")?;
 write!(f, "andrew_id: {:?}, ", self.andrew_id)?;
 write!(f, "attendance: {:?}, ", self.attendance)?;
 write!(f, "grade: {:?}, ", self.grade)?;
 write!(f, "stress_level: {:?}, ", self.stress_level)?;
 write!(f, "}}")
 }
}

Student { andrew_id: "cjtsui", attendance: [true, false], grade: 42, stress_level: 1000 }

Editor's note: it was indeed tedious

50

Deriveable Traits

Luckily, Rust can derive traits for us when there there is an obvious and common

implementation.

The compiler can provide basic implementations for some traits via the

#[derive] attribute

struct X can #[derive] a trait if all the fields of X can derive that trait

These traits can still be manually implemented if a more complex behavior is required

51

https://doc.rust-lang.org/reference/attributes.html

Deriveable Traits

Let's break this down.

#[derive(Debug)]
struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

Every single field is printable

It is then reasonable that the struct itself should also be printable!

Are there other traits that follow the same logic with structs?

52

Clone
Recall the Clone trait from week 2.

let mut foo = vec![1, 2, 3];
let mut foo2 = foo.clone(); // explicit duplication of an object

foo.push(4); // foo = [1,2,3,4]
let y = foo2.pop(); // y=3, foo2 = [1, 2]

A type that implements Clone can be duplicated / deep copied

The new value is independent of the original value and can be modified without

affecting the original value

53

Clone
We can also derive Clone for Student !

#[derive(Clone)]
struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

Each field is cloneable

So the entire struct should also be cloneable!

54

#[derive(Clone)] Behind The Scenes

struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

impl Clone for Student {
 fn clone(&self) -> Self {
 Self {
 andrew_id: self.andrew_id.clone(),
 attendance: self.attendance.clone(),
 grade: self.grade.clone(),
 stress_level: self.stress_level.clone(),
 }
}

55

Derive Traits

Here's a list of other traits that can be derived:

Comparison traits: Eq , PartialEq , Ord , PartialOrd

Clone , to create a T from a &T

Copy , to give a type "copy semantics" instead of "move semantics"

Hash , to compute a hash from &T

Default , to create an empty instance of a data type

Debug , to format a value using the {:?} formatter

56

Copy

Recall that the Copy is a marker for types whose values can be duplicated simply by
copying bits.

The only types that are Copy are:

All integer types: u8 , i32 , etc

bool

All floating point types: f32 , f64 , etc

char type

57

Copy

Here is the definition of Copy in the standard library:

pub trait Copy: Clone {}

Notice how therre are no methods associated with Copy

This is because Copy is always a simple bitwise copy

Copy is a subtrait of Clone

58

What Can #[derive(Copy)] ?
Since Clone is a supertrait of Copy , we must derive Clone first to derive Copy .

#[derive(Clone, Copy)]
pub struct Cat {
 age: u32,
 name: &'static str // reference to a string literal
}

Note that we cannot force impl Copy ourselves whenever
#[derive(Clone, Copy)] doesn't work, so always use #[derive] for Copy

59

When #[derive] Fails

What happens if a field is not Copy ?

#[derive(Copy)]
pub struct Stuff<T> {
 singleton: T,
 many: Vec<T>,
}

error[E0204]: the trait `Copy` cannot be implemented for this type
 --> src/main.rs:4:10
 |
4 | #[derive(Copy)]
 | ^^^^
...
7 | many: Vec<T>,
 | ------------ this field does not implement `Copy`
 |
 = note: this error originates in the derive macro `Copy`

60

Deriving Default
What if we tried to derive Default instead?

pub trait Default: Sized {
 // Required method
 fn default() -> Self;
}

#[derive(Default)]
pub struct Stuff<T> {
 singleton: T,
 many: Vec<T>,
}

This actually compiles, even though T is not Default !
However...

61

When #[derive(Default)] Fails

We can only derive Default if every generic type T used is
also Default .

// No #[derive(Default)] here!
struct Nope;

fn main() {
 let d: Stuff<Nope> = Stuff::default();
}

Nope is not Default

62

When #[derive(Default)] Fails

We get this error only after trying to construct Stuff<Nope> .

error[E0277]: the trait bound `Nope: Default` is not satisfied
 --> src/main.rs:10:26
 |
10 | let d: Stuff<Nope> = Stuff::default();
 | ^^^^^ the trait `Default` is not implemented for `Nope`
 |
 = help: the trait `Default` is implemented for `Stuff<T>`

63

#[derive] vs Manual Implementation

Sometimes we can't derive a trait, or need a more complex behavior than what the #
[derive] will provide.

pub trait Default: Sized {
 // Required method
 fn default() -> Self;
}

struct SomeOptions {
 foo: i32,
 bar: f32,
}

Defaults for both i32 and f32 is 0

We don't always want this behaviour

64

Example: Default
We can still manaully implement all of the derivable traits.

impl Default for SomeOptions {
 fn default() -> Self {
 SomeOptions {
 foo: 12,
 bar: 20.0,
 }
 }
}

#[derive(Default)] would make both of those values 0

Instead we manualy set them to values we want

65

Aside: The Orphan Rule

Rust has a specific rule for trait implementations.

You cannot provide implementations of a trait for a type unless:

You created the type

You created the trait

66

Aside: The Orphan Rule

The orphan rule basically means you cannot implement someone else's trait for someone

else's type.

Examples:

You cannot implement Hash for Vec<T>

You cannot implement PartialOrd for String

The real reason is that these trait implementations actually already exist, but this will

become clearer when we talk about 3rd party crates.

67

Trait Mix Ups

Consider the following:

trait Pilot {
 fn fly(&self);
}

trait Wizard {
 fn fly(&self);
}

struct Human;

68

Trait Mix Ups

Let's say we implement both traits for Human , which both have the fly method, as well

as our own fly implementation.

impl Pilot for Human {
 fn fly(&self) {
 println!("This is your captain speaking.");
 }
}

impl Wizard for Human {
 fn fly(&self) {
 println!("Up!");
 }
}

impl Human {
 fn fly(&self) {
 println!("*waving arms furiously*");
 }
} 69

Trait Mix Ups

What happens here?

fn main() {
 let person = Human;
 person.fly();
}

70

Trait Mix Ups

Here, Rust uses .fly() from Human .

fn main() {
 let person = Human;
 person.fly();
}

How do we call every version of .fly() ?

fn main() {
 let person = Human;
 Pilot::fly(&person); // fly takes &self as a parameter
 Wizard::fly(&person);
 person.fly();
}

71

Even Worse Trait Mix Ups

Last time we got lucky because fly took &self as a parameter. What would we do if

that wasn't the case?

fn main() {
 let person = Human;
 <person as Pilot>::fly();
 <person as Wizard>::fly();
 person.fly();
}

This is considered the fully qualified syntax of a trait

72

Trait Bounds

If we want to ensure that a generic argument implements a trait, we can use trait bounds.

pub fn notify<T: Summary>(item: &T) {
 println!("Breaking news! {}", item.summarize());
}

We can only call item.summarize() because T is Summary

73

Argument Position impl Trait
You can annotate the generic type with a trait bound, or you can use impl Trait as the

type of the argument.

fn get_csv_lines<R: std::io::BufRead>(src: R) -> u32;

fn get_csv_lines(src: impl std::io::BufRead) -> u32;

The second line is called an argument-position impl trait (APIT).

There is a slight difference here which we won't cover, just know that these aren't

completely identical
Watch this for more information

74

https://youtu.be/CWiz_RtA1Hw?si=nJ4lFAJz7Uczz50I&t=882

Return Position impl Trait
If your function returns a type that implements MyTrait , you can write its return type as -

> impl MyTrait .

fn to_key<T>(v: Vec<T>) -> impl Hash;

This is called return-position impl trait (RPIT)

Starting in Rust 1.75, you can use RPIT in traits!

These are no longer generics, but are instead existential types
Read this blog for more information

75

https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html
https://varkor.github.io/blog/2018/07/03/existential-types-in-rust.html

where Clauses

Trait bounds are awesome, but sometimes too many can be verbose.

fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32;

This can be cumbersome to write, so we have where clauses!

fn some_function<T, U>(t: &T, u: &U) -> i32
where
 T: Display + Clone,
 U: Clone + Debug,

Now we don't need ultrawide monitors to code in Rust!

76

Conditional Implementation

Say we have a struct Pair .

use std::fmt::Display;

struct Pair<T> {
 x: T,
 y: T,
}

impl<T> Pair<T> {
 fn new(x: T, y: T) -> Self {
 Self { x, y }
 }
}

77

Conditional Implementation

We can conditionally implement methods based on the traits the generic parameters
implement.

impl<T: Display + PartialOrd> Pair<T> {
 fn cmp_display(&self) {
 if self.x >= self.y {
 println!("The largest member is x = {}", self.x);
 } else {
 println!("The largest member is y = {}", self.y);
 }
 }
}

T must implement Display to be printed

T must implement PartialOrd to be compared

cmp_display will exist for a Pair<i32> but not for Pair<T: !PartialOrd>
78

Homework 5

You'll be parsing some files to implement Reader and Summary traits

The parse methods will return a Result , which means they can fail

Parsing strings in Rust is tricky, so you will only need to do half of this homework to

receive full credit
The second half is all extra credit!

Even though this week focused on Errors and Traits, this homework will heavily test

your familiarity with the String API

Please do not hesistate to reach out for help!

79

https://doc.rust-lang.org/std/string/struct.String.html

Next Lecture: Modules and Testing

Thanks for coming!

80

