
Intro to Rust LangIntro to Rust Lang

Modules andModules and
TestingTesting

Benjamin Owad, David Rudo, and Connor Tsui

1

Today: Modules and Testing
Packages and Crates
Modules

The use keyword

Module Paths and File System
Unit Testing
Integration Testing

2

Large Programs
As your programs get larger, the organization of the code becomes increasingly
important.

It is generally good practice to:

Split code into multiple folders and files
Group related functionality
Separate code with distinct features
Encapsulate implementation details
Modularize your program

3

Module System
Rust implements a number of organizational features, collectively referred to as
the module system.

Packages: A Cargo feature that lets you build, test, and share crates
Crates: A tree of modules that produces a library or executable
Modules: Lets you control the organization, scope, and privacy of paths
Paths: A way of naming an item, such as a struct, function, or module

4

Packages and Crates

5

Crate
A crate is the smallest amount of code that the Rust compiler considers at a time.

The equivalent in C/C++ is a compilation unit
Running rustc on a single file also builds a crate

Crates contain modules
Modules can be defined in other files
Paths allow modules to refer to other modules

6

Crate
There are two types of crates: binary crates and library crates.

A binary crate can be compiled to an executable
Contains a main function

Examples include command-line utilities or servers
A library crate has no main function, and does not compile to an executable

Defines functionality intended to be shared with multiple projects
Each crate also has a file referred to as the crate root

The Rust compiler looks at this file first, and it is also the root module of the
crate (more on modules later!)

7

Package
A package is a bundle of one or more crates.

A package is defined by a Cargo.toml file at the root of your directory
Cargo.toml describes how to build all of the crates

A package can contain any number of binary crates, but at most one library
crate

8

cargo new

Let's walk through what happens when we create a package with cargo new .

$ cargo new my-project
 Created binary (application) `my-project` package

$ ls my-project
Cargo.toml
src

$ ls my-project/src
main.rs

Creates a new package called my-project

Creates a src/main.rs file that prints "Hello, world!"

Creates a Cargo.toml in the root directory
9

Cargo.toml

Let's take a look inside the Cargo.toml .

[package]
name = "my-project"
version = "0.1.0"
edition = "2021"

[dependencies]

File written in toml , a file format for configuration files

Notice how there is no explicit mention of src/main.rs

Cargo follows the convention that a src/main.rs file is the crate root of a
binary crate
Similarly, a src/lib.rs file is the crate root of a library crate

10

Example: cargo
Cargo is actually a Rust package that ships with installations of Rust!

Contains the binary crate that compiles to the executable cargo

Contains a library crate that the cargo binary depends on

11

Aside: Package vs Project vs Program
"Package" is the only term of these three with a formal definition in Rust
"Project" is a very overloaded term

Meaningful in the context of an IDE
"Program"

Ask the mathematicians ¯\(ツ)/¯

12

Modules

13

Modules
Modules let us organize code within a crate for readability and easy reuse.

Modules are collections of items
Items are functions, structs, traits, etc.

Allows us to control the privacy of items
Mitigates namespace collisions
Here is a cheat sheet from the Rust Book!

14

https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html

Root Module
The root module is in our main.rs (for a binary crate) or lib.rs (for a library
crate).

$ cargo new restaurant

src/main.rs

fn main() {
 println!("Hello, world!");
}

15

Declaring Modules
We can declare a new module with the keyword mod .
src/main.rs

fn main() {
 println!("Hello, World!");
}

mod kitchen {
 // `cook` is defined in the module `kitchen`
 fn cook() {
 println!("I'm cooking");
 }
}

16

Using Modules
To use items outside of a module, we must declare them as pub .
src/main.rs

fn main() {
 kitchen::cook();
}

mod kitchen {
 pub fn cook() { println!("I'm cooking"); }

 // Only items internal to the `kitchen` should be able to access this
 fn examine_ingredients() {}
}

By default, all module items are private in Rust

17

Declaring Submodules
We can declare submodules inside of other modules.
src/main.rs

fn main() {
 kitchen::stove::cook();
}

mod kitchen {
 pub mod stove {
 pub fn cook() { println!("I'm cooking"); }
 }

 fn examine_ingredients() {}
}

Submodules also have to be declared as pub mod to be accessible

The module system is a tree, just like a file system
18

Modules as Files
In addition to declaring modules within files, creating a file named
module_name.rs declares a corresponding module named module_name .

src
├── module_name.rs
└── main.rs

Allows us to represent the module structure in the file system
Let's try moving the kitchen module to its own file!

19

Modules as Files
src/main.rs

mod kitchen; // The compiler will look for kitchen.rs

fn main() {
 kitchen::stove::cook();
}

src/kitchen.rs

pub mod stove {
 pub fn cook() { println!("I'm cooking"); }
}

fn examine_ingredients() {}

What about moving the stove submodule to its own file?

20

Submodules as Files
We can move the stove submodule into a file src/kitchen/stove.rs to indicate
that stove is a submodule of kitchen .
src/kitchen.rs

pub mod stove; // note this still has to be `pub`

fn examine_ingredients() {}

src/kitchen/stove.rs

pub fn cook() {
 println!("I'm cooking");
}

main.rs is unchanged (omitted for slide real estate)

21

Alternate Submodule File Naming
We could also replace src/kitchen.rs with src/kitchen/mod.rs .
src/kitchen/mod.rs

pub mod stove;

fn examine_ingredients() {}

src/kitchen/stove.rs

pub fn cook() {
 println!("I'm cooking");
}

The only difference is in which file the kitchen module is defined

22

Alternate Submodule File Naming
In terms of Rust's module system, these two file trees are (essentially) identical.

src
├── kitchen
│ └── stove.rs
├── kitchen.rs
└── main.rs

src
├── kitchen
│ ├── mod.rs
│ └── stove.rs
└── main.rs

This is a stylistic choice that each instructor has a very strong opinion on
Ask at your own peril...

Consistency with surrounding codebase is always most important 23

The Module Tree, Visualized
Even with our file system changes, the module tree stays the same!

crate restaurant
├── mod kitchen: pub(crate)
│ ├── fn examine_ingredients: pub(self)
│ └── mod stove: pub
│ └── fn cook: pub
└── fn main: pub(crate)

We can customize our file structure without changing any behavior

24

Module Paths
To use any item in a module, we need to know its path, just like a filesystem.

There are two types of paths:

An absolute path is the full path starting from the crate root
A relative path starts from the current module and use self , super , or an
identifier in the current module
Components of paths are separated by double colons (::)

25

Paths for Referring to Modules
You may have noticed a path from the previous sequence:

kitchen::stove::cook();

This is saying:

In the module kitchen
In the submodule stove

Call the function cook

This is a path relative to the crate root

26

Using Paths
src/main.rs

mod kitchen;

fn main() {
 kitchen::stove::cook();
}

Not too hard to write...

27

Using Verbose Paths
What if we had a deeper module tree?
src/main.rs

fn main() {
 kitchen::stove::stovetop::burner::gas::gasknob::pot::cook();
 kitchen::stove::stovetop::burner::gas::gasknob::pot::cook();
 kitchen::stove::stovetop::burner::gas::gasknob::pot::cook();
}

A lot more verbose...
Especially if we need to write this multiple times

28

The use Keyword
We can bring paths into scope with the use keyword.
src/main.rs

mod kitchen;

use kitchen::stove::stovetop::burner::gas::gasknob::pot;

fn main() {
 pot::cook();
 pot::cook();
 pot::cook();
}

It is idiomatic to use up to the parent of a function, rather than the function
item itself

29

More use Syntax
We can also import items from the Rust standard library (std).

use std::collections::HashMap;
use std::io::Bytes;
use std::io::Write;

HashMap and Bytes are structs, and Write is a trait

It is idiomatic to import structs, enums, traits, etc. directly
No real reason behind this besides convention

30

More use Syntax
We can combine those 2 std::io imports into one statement:

use std::collections::HashMap;
use std::io::{Bytes, Write};

You could also write use std::io::* to bring in everything from the std::io
module (including Bytes and Write)

Called the "glob operator"
Generally not recommended (increases compilation cost)

31

Aside: Binary and Library Crate Paths
In the past examples, we were using a binary crate (src/main.rs). All the same
principles apply to using a library crate.

However, if you use both a binary and a library crate, things are slightly different.

src
├── kitchen
│ ├── mod.rs
│ └── stove.rs
├── lib.rs <- What happens when we add this?
└── main.rs

32

Aside: Binary and Library Crate Paths
Typically when you have both a binary and library crate in the same package, you
want to call functions defined in lib.rs from main.rs .

src
├── kitchen
│ ├── mod.rs
│ └── stove.rs
├── lib.rs
└── main.rs (wants to call functions from lib.rs)

If you have both a main.rs file and a lib.rs file, both are crate roots

So how can we get items from a separate module tree?

33

Accessing Library from Binary
Let's try to refactor our previous example:
src/lib.rs

pub mod kitchen; // Now marked `pub`!

src/main.rs

fn main() {
 ???::kitchen::stove::cook();
}

All files in src/kitchen remain unchanged

What do we put in ??? ?

34

Accessing Library from Binary
We treat our library crate as an external crate, with the same name as our
package.
src/main.rs

fn main() {
 restaurant::kitchen::stove::cook();
}

Similar to how you would treat std as an external crate

We'll talk about external crates more next week!

35

The super Keyword
We can also construct relative paths that begin in the parent module with super .

crate restaurant
├── mod kitchen: pub(crate)
│ ├── fn examine_ingredients: pub(self)
│ └── mod stove: pub
│ └── fn cook: pub
└── fn main: pub(crate)

src/kitchen/stove.rs

pub fn cook() {
 super::examine_ingredients(); // Make sure you do this before cooking!
 println!("I'm cooking");
}

36

Privacy
mod kitchen: pub(crate)
├── fn examine_ingredients: pub(self)
└── mod stove: pub
 └── fn cook: pub

src/kitchen/stove.rs

pub fn cook() {
 super::examine_ingredients(); // Make sure you do this before cooking!
 println!("I'm cooking");
}

examine_ingredients does not need to be public in this case

stove can access anything in its parent module kitchen

Privacy only applies to parent modules and above
37

Privacy of Types
We can also use pub to designate structs and enums as public.

pub struct Breakfast {
 pub toast: String,
 seasonal_fruit: String,
}

pub enum Appetizer {
 Soup,
 Salad,
}

We can mark specific fields of structs public, allowing direct access
If an enum is public, so are its variants!

38

Recap: Modules
You can split a package into crates, and crates into modules
You can refer to items defined in other modules with paths
All module components are private by default, unless you mark them as pub

39

Testing

40

Testing
Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.

Edsger W. Dijkstra, The Humble Programmer

41

Testing
Correctness of a program is complex and not easy to prove.

Rust's type system helps with this, but it certainly cannot catch everything
Rust includes a testing framework for this reason!

42

What is a Test?
Generally we want to perform at least 3 actions when running a test:

1. Set up needed data or state
2. Run the evaluated code
3. Determine if the results are as expected

43

Writing Tests
In Rust, a test is a function annotated with the #[test] attribute.
src/lib.rs

#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 let result = 2 + 2;
 assert_eq!(result, 4);
 }
}

After running cargo new adder --lib , this code will be in src/lib.rs

44

Writing Tests
Let's break this down.

#[test]
fn it_works() {
 let result = 2 + 2;
 assert_eq!(result, 4);
}

The #[test] attribute indicates that this is a test function

We set up the value result by adding 2 + 2

We use the assert_eq! macro to assert that result is correct

We don't need to return anything, since not panicking is the test!

45

Running Tests
We run tests with cargo test .

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.57s
 Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

46

Running Tests
Let's break down the output of cargo test .

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

We see test result: ok , meaning we have passed all the tests

In this case, only 1 test has run, and it has passed
The 0 measured statistic is for benchmark tests, which are currently only
available in "nightly" versions of Rust

47

Documentation Tests
You may have seen something similar to this in your homework:

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

All of the code examples in documentation comments are treated as tests!
This is useful for keeping your docs and code in sync

48

#[cfg(test)]

You may have also noticed this #[cfg(test)] attribute in your homework:

#[cfg(test)]
mod tests {
 // <-- snip -->
}

This tells the compiler that this entire module should only be used for testing
Effectively removes this module from the source code when compiling with
cargo build

49

Writing Better Tests
Let's try and be more creative with our tests.

#[cfg(test)]
mod tests {
 #[test]
 fn exploration() {
 assert_eq!(2 + 2, 4);
 }

 #[test]
 fn another() {
 panic!("Make this test fail");
 }
}

50

Failing Tests
Let's see what we get:

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.72s
 Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 2 tests
test tests::another ... FAILED
test tests::exploration ... ok

failures:

---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
 tests::another

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`
51

Failing Tests
failures:

---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
 tests::another

test result: FAILED. 1 passed; 1 failed; <-- snip -->

error: test failed, to rerun pass `--lib`

Instead of ok , we get that the result of tests:another is FAILED

52

Checking Results
We can use the assert! macro to ensure that something is true .

#[test]
fn larger_can_hold_smaller() {
 let larger = Rectangle {
 width: 8,
 height: 7,
 };
 let smaller = Rectangle {
 width: 5,
 height: 1,
 };

 assert!(larger.can_hold(&smaller));
}

53

Testing Equality
Rust also provides a way to check equality between two values.

#[test]
fn it_adds_two() {
 assert_eq!(4, add_two(2));
}

54

Testing Equality
If add_two(2) somehow evaluated to 5 , we would get this output:

---- tests::it_adds_two stdout ----
thread 'tests::it_adds_two' panicked at 'assertion failed: `(left == right)`
 left: `4`,
 right: `5`', src/lib.rs:11:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

You get a nicer error message from assert_eq! versus using
assert!(left == right)

55

Custom Error Messages
We can also write our own custom error messages in assert!

#[test]
fn greeting_contains_name() {
 let result = greeting("Carol");
 assert!(
 result.contains("Carol"),
 "Greeting did not contain name, value was `{}`",
 result
);
}

56

#[should_panic]

You may have seen something similar in your homework:

#[test]
#[should_panic(expected = "not less than 100")]
fn greater_than_100() {
 this_better_be_less_than_100(200);
}

The #[should_panic] attribute says that this test expects a panic!

Adding the expected = "..." means we want a specific panic message

57

Using Result<T, E> in Tests
We can also use Result in our tests.

#[test]
fn it_works() -> Result<(), String> {
 if 2 + 2 == 4 {
 Ok(())
 } else {
 Err(String::from("two plus two does not equal four"))
 }
}

The test will now fail if it returns Err

Allows convenient usage of ? in tests

Note that you can't use #[should_panic] on tests that return a Result
58

Controlling Test Behavior
cargo test compiles your code in test mode and runs the resulting test binary.

By default, it will run all tests in parallel and prevent the output (stdout and
stderr) from being displayed.

Other testing configurations are available
Note that you can run cargo test --help , and cargo test -- --help for help

59

Running Tests in Parallel
Suppose each of your tests all write to some shared file on disk.

All tests write to a file output.txt

They later assert that the file still contains that data they wrote
You probably don't want all of them to run at the same time!

60

Test Threads
By default, Rust will run all of the tests in parallel, on different threads.

You can use --test-threads to control the number of threads running the tests.

$ cargo test -- --test-threads=1

Generally not a good idea, since the benefits of parallelism are lost

61

Showing Output
If you want to prevent the capturing of output, you can use --show-output

$ cargo test -- --show-output

This will print the full output of every test that is run
With 1000 tests, this might get too verbose!
If only we could only run a subset of the tests...

62

Running Tests by Name
Let's say we have 1000 tests, but only one is named one_hundred . We can run
cargo test one_hundred to only run that test.

$ cargo test one_hundred
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.69s
 Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 999 filtered out; finished in 0.00s

Notice how there are now 999 filtered out tests, these were the tests that
didn't match the name one_hundred

63

Multiple Tests by Name
cargo will actually find any test that matches the name you passed in.

$ cargo test add
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.61s
 Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 2 tests
test tests::add_three_and_two ... ok
test tests::add_two_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 998 filtered out; finished in 0.00s

If you want an exact name, use cargo test {name} -- --exact

64

Ignoring Tests
We can ignore some tests by using the #[ignore] attribute.

#[test]
fn it_works() {
 assert_eq!(2 + 2, 4);
}

#[test]
#[ignore]
fn expensive_test() {
 // code that takes an hour to run
}

If we only want to run ignored tests, we can run cargo test -- --ignored

If we want to run all tests, we can run cargo test -- --include-ignored

65

Test Organization
The Rust community thinks about tests in terms of two main categories: unit tests
and integration tests.

Unit tests test each unit of code in isolation
Integration tests are external to your library, testing the entire system

66

Unit Tests
Unit tests are almost always contained within the src directory.

The convention is to create a submodule named tests annotated with #
[cfg(test)] for every module you want to test

Recall that #[cfg(test)] attribute on items will only compile those items
when running cargo test , and not cargo build

Prevents deploying extra code in production that is only used for testing

67

Testing Private Functions
Rust allows you to test private functions.

// bad style for slides
pub fn add_two(a: i32) -> i32 { internal_adder(a, 2) }
fn internal_adder(a: i32, b: i32) -> i32 { a + b }

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn internal() {
 assert_eq!(4, internal_adder(2, 2));
 }
}

68

Integration Tests
Integration Tests use your library in the same way any other code would.

They can only call functions that are part of your library's public API
Useful for testing if many parts of your library work together correctly

69

Integration Tests
To create integration tests, we need a tests directory.

adder
├── Cargo.lock
├── Cargo.toml
├── src
│ └── lib.rs
└── tests
 └── integration_test.rs

Notice how tests is outside of src

70

Integration Tests
Since we are now external to our own library, we must import everything as if it
were a 3rd-party crate.
tests/integration_test.rs

use adder;

#[test]
fn it_adds_two() {
 assert_eq!(4, adder::add_two(2));
}

Note that we don't need to annotate anything with #[cfg(tests)]

We can now also run test files using the name of the file with
cargo test --test integration_test

71

Submodules in Integration Tests
As you add more integration tests, you might want to make more files in the
tests directory to help organize them.

You can use submodules in the tests directory just like in the src directory

You can also use the "alternate file path" method to define non-test code

72

Submodules in Integration Tests
Using the alternate naming convention with common/mod.rs tells Rust not to treat
the common module as an integration test file.

├── Cargo.lock
├── Cargo.toml
├── src
│ └── lib.rs
└── tests
 ├── common
 │ └── mod.rs
 └── integration_test.rs

73

Submodules in Integration Tests
Here is an example of using common in an integration test:

└── tests
 ├── common
 │ └── mod.rs
 └── integration_test.rs

use adder;

mod common;

#[test]
fn it_adds_two() {
 common::setup();
 assert_eq!(4, adder::add_two(2));
}

74

Integration Tests for Binary Crates
We cannot create integration tests for a binary crate.

Binary crates do not expose their functions
This is why most binary crates will be paired with a library crate, even if they
don't need to expose any functions

75

Recap: Testing
Unit tests examine parts of a library in isolation and can test private
implementation details
Integration tests check that many parts of the library work together correctly
Even though Rust can prevent some kinds of bugs, tests are still extremely
important to reduce logical bugs!

76

Homework 6
You'll be following the Rust Book and implementing a mini version of grep !

You can do this homework in <10 minutes by copying and pasting code
We encourage you to actually read and follow the tutorial
You will still have to add some small extra feature once you are done!
Remember that if you complete 4 homeworks and show up to every lecture, you
pass this course!
We will only grade homework 6 at the end of the semester if your grade is not
already high enough

77

https://doc.rust-lang.org/book/ch12-00-an-io-project.html

Next Lecture: Crates, Closures,
and Iterators

Thanks for coming!

78

