
Intro to Rust LangIntro to Rust Lang

Modules andModules and
TestingTesting

1

Today: Modules and Testing

Modules, Packages, and Crates

The use keyword

Module Paths and the File System

Testing

Unit Testing

Integration Testing

Code Review

2

Large Programs

As your programs get larger, the organization of the code becomes increasingly

important. It is generally good practice to:

Split code into multiple folders and files

Group related functionality

Separate code with distinct features

Encapsulate implementation details

Modularize your program

3

Module System

Rust implements a number of organizational features, collectively referred to as

the module system.

Packages: A Cargo feature that lets you build, test, and share crates

Crates: A tree of modules that produces a library or executable

Modules: Lets you control the organization, scope, and privacy of paths

Paths: A way of naming an item, such as a struct, function, or module

4

Packages and Crates

5

Crate

A crate is the smallest amount of code that the Rust compiler considers at a time.

The equivalent in C/C++ is a compilation unit

Running rustc on a single file also builds a crate

Crates contain modules

Modules can be defined in other files

Paths allow modules to refer to other modules

6

Crate

There are two types of crates: binary crates and library crates.

A binary crate can be compiled to an executable

Contains a main function

Examples include command-line utilities or servers

A library crate has no main function, and does not compile to an executable

Defines functionality intended to be shared with multiple projects

Each crate also has a file referred to as the crate root

The Rust compiler looks at this file first, and it is also the root module of the

crate (more on modules later!)

7

Package

A package is a bundle of one or more crates.

A package is defined by a Cargo.toml file at the root of your directory

Cargo.toml describes how to build all of the crates

A package can contain any number of binary crates, but at most one library

crate

8

cargo new

Let's walk through what happens when we create a package with cargo new .

$ cargo new my-project
 Created binary (application) `my-project` package

$ ls my-project
Cargo.toml
src

$ ls my-project/src
main.rs

Creates a new package called my-project

Creates a src/main.rs file that prints "Hello, world!"

Creates a Cargo.toml in the root directory 9

Cargo.toml

Let's take a look inside the Cargo.toml .

[package]
name = "my-project"
version = "0.1.0"
edition = "2021"

[dependencies]

File written in toml , a file format for configuration files

Notice how there is no explicit mention of src/main.rs

Cargo follows the convention that src/main.rs is the root of a binary crate

Similarly, a src/lib.rs file is the root of a library crate

10

Example: cargo

Cargo is itself a Rust package that ships with installations of Rust!

Contains the binary crate that compiles to the executable cargo

Contains a library crate that the cargo binary depends on

11

Aside: Package vs Project vs Program

"Package" is the only term of these three with a formal definition in Rust

"Project" is a very overloaded term

More meaningful in the context of an IDE

"Program"

Ask the mathematicians ¯\(�)/¯

12

Modules

13

Modules

Modules let us organize code within a crate for readability and easy reuse.

Modules are collections of items

Items are functions, structs, traits, etc.

Allows us to control the privacy of items

Mitigates namespace collisions

Here is a cheat sheet from the Rust Book!

14

https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html

Root Module

The root module is in our main.rs (for a binary crate) or lib.rs (for a library

crate).

$ cargo new restaurant

src/main.rs

fn main() {
println!("Hello, world!");

}

15

Declaring Modules

We can declare a new module with the keyword mod .
src/main.rs

fn main() {
println!("Hello, World!");

}

mod kitchen {
// `cook` is defined in the module `kitchen`
fn cook() {

println!("I'm cooking");
 }
}

16

Using Modules

To use items outside of a module, we must declare them as pub .
src/main.rs

fn main() {
 kitchen::cook();
}

mod kitchen {
pub fn cook() { println!("I'm cooking"); }

// Only items internal to the `kitchen` should be able to access this
fn examine_ingredients() {}

}

By default, all module items are private in Rust

17

Declaring Submodules

We can declare submodules inside of other modules.
src/main.rs

fn main() {
 kitchen::stove::cook();
}

mod kitchen {
pub mod stove {

pub fn cook() { println!("I'm cooking"); }
 }
}

Submodules also have to be declared as pub mod to be accessible

The module system is a tree, just like a file system

18

Modules as Files

In addition to declaring modules within files, creating a file named

module_name.rs declares a corresponding module named module_name .

src
├── module_name.rs
└── main.rs

Allows us to represent our module structure in the file system

Let's try moving the kitchen module to its own file!

19

Modules as Files
src/main.rs

mod kitchen; // The compiler will look for `kitchen.rs`

fn main() {
 kitchen::stove::cook();
}

src/kitchen.rs

pub mod stove {
pub fn cook() { println!("I'm cooking"); }

}

fn examine_ingredients() {}

What about moving the stove submodule to its own file as well?

20

Submodules as Files

We can move the stove submodule into a file src/kitchen/stove.rs to indicate

that stove is a submodule of kitchen .
src/kitchen.rs

pub mod stove; // note this still has to be `pub`

fn examine_ingredients() {}

src/kitchen/stove.rs

pub fn cook() {
println!("I'm cooking");

}

main.rs is unchanged (omitted for slide real estate)

21

Alternate Submodule File Naming

We could also replace src/kitchen.rs with src/kitchen/mod.rs .
src/kitchen/mod.rs

pub mod stove;

fn examine_ingredients() {}

src/kitchen/stove.rs

pub fn cook() {
println!("I'm cooking");

}

The only difference is in which file the kitchen module is defined

22

Alternate Submodule File Naming

In terms of Rust's module system, these two file trees are (essentially) identical.

src
├── kitchen
│ └── stove.rs
├── kitchen.rs
└── main.rs

src
├── kitchen
│ ├── mod.rs
│ └── stove.rs
└── main.rs

This is a stylistic choice that each instructor has a very strong opinion on

Ask at your own peril...
23

File Structure Comparison: Choice 1

src
├── bathroom
│ ├── mod.rs
│ ├── sink.rs
│ └── toilet.rs
├── dining_room
│ ├── guests.rs
│ ├── mod.rs
│ ├── seats.rs
│ └── tables.rs
├── garden
│ ├── dirt.rs
│ ├── mod.rs
│ ├── plants.rs
│ └── water.rs
├── kitchen
│ ├── dish_washer.rs
│ ├── mod.rs
│ ├── oven.rs
│ └── stove.rs
└── lib.rs

24

File Structure Comparison: Choice 2

src
├── bathroom
│ ├── sink.rs
│ └── toilet.rs
├── dining_room
│ ├── guests.rs
│ ├── seats.rs
│ └── tables.rs
├── garden
│ ├── dirt.rs
│ ├── plants.rs
│ └── water.rs
├── kitchen
│ ├── dish_washer.rs
│ ├── oven.rs
│ └── stove.rs
├── bathroom.rs
├── dining_room.rs
├── kitchen.rs
├── garden.rs
└── lib.rs

25

File Structure Comparison

Consistency with surrounding codebase is always most important!

See discussions:

Rust Users Forum

Rust Internals Forum

Reddit

26

https://users.rust-lang.org/t/module-mod-rs-or-module-rs/122653
https://internals.rust-lang.org/t/the-module-scheme-module-rs-file-module-folder-instead-of-just-module-mod-rs-introduced-by-the-2018-edition-maybe-a-little-bit-more-confusing/21977/17?u=zirconium-n
https://www.reddit.com/r/rust/comments/18pytwt/noob_question_foomodrs_vs_foors_foo_for_module/

The Module Tree, Visualized

Even with our file system changes, the module tree stays the same!

crate restaurant
├── mod kitchen: pub(crate)
│ ├── fn examine_ingredients: pub(self)
│ └── mod stove: pub
│ └── fn cook: pub
└── fn main: pub(crate)

We can customize our file structure without changing any behavior!

27

Module Paths

To use any item in a module, we need to know its path, just like a filesystem.

There are two types of paths:

An absolute path is the full path starting from the crate root

A relative path starts from the current module and use self , super , or an

identifier in the current module

Components of paths are separated by double colons (::)

28

Paths for Referring to Modules

You may have noticed a path from the previous sequence:

kitchen::stove::cook();

This is saying:

In the module kitchen

In the submodule stove

Call the function cook

This is a path relative to the current module (in this case, the root)

29

Using Paths
src/main.rs

mod kitchen;

fn main() {
 kitchen::stove::cook();
}

Not too hard to write...

30

Using Verbose Paths

What if we had a deeper module tree?
src/main.rs

fn main() {
 kitchen::stove::stovetop::burner::gas::gasknob::pot::cook();
 kitchen::stove::stovetop::burner::gas::gasknob::pot::cook();
 kitchen::stove::stovetop::burner::gas::gasknob::pot::cook();
}

A lot more verbose...

Especially if we need to write this multiple times

31

The use Keyword

We can bring paths into scope with the use keyword.
src/main.rs

mod kitchen;

use kitchen::stove::stovetop::burner::gas::gasknob::pot;

fn main() {
 pot::cook();
 pot::cook();
 pot::cook();
}

It is idiomatic to use up to the parent of a function, rather than the function

item itself

32

More use Syntax

We can also import items from the Rust standard library (std).

use std::collections::HashMap;
use std::io::Bytes;
use std::io::Write;

HashMap and Bytes are structs, and Write is a trait

It is idiomatic to import structs, enums, traits, etc. directly

33

More use Syntax

We can combine those 2 std::io imports into one statement:

use std::collections::HashMap;
use std::io::{Bytes, Write};

use std::io::*; // Also possible!

You could also write use std::io::* to bring in everything from the std::io

module (including Bytes and Write)

Called the "glob operator"

Generally not recommended since it clutters the namespace

34

Aside: Binary and Library Crate Paths

In the past examples, we were using a binary crate (src/main.rs). All the same

principles apply to using a library crate.

However, if you use both a binary and a library crate, things are slightly different.

src
├── kitchen
│ ├── mod.rs
│ └── stove.rs
├── lib.rs <- What happens when we add this?
└── main.rs

35

Aside: Binary and Library Crate Paths

src
├── kitchen
│ ├── mod.rs
│ └── stove.rs
├── lib.rs
└── main.rs (wants to call functions from lib.rs)

Typically when you have both a binary and library crate in the same package, you

want to use functions and types defined in lib.rs from main.rs .

If you have both a main.rs file and a lib.rs file, both are crate roots

So how can we get items from a separate module tree?

36

Accessing Library from Binary

Let's try to refactor our previous example:
restaurant/src/lib.rs

pub mod kitchen; // Now marked `pub`!

restaurant/src/main.rs

fn main() {
 ???::kitchen::stove::cook();
}

All files in src/kitchen remain unchanged

What do we put in ??? ?

37

Accessing Library from Binary

We treat our library crate as an external crate, with the same name as our

package.
restaurant/src/main.rs

fn main() {
 restaurant::kitchen::stove::cook();
}

Similar to how you would treat std as an external crate

We'll talk about external crates more next week!

38

The super Keyword

We can also construct relative paths that begin in the parent module with super .

crate restaurant
├── mod kitchen: pub(crate)
│ ├── fn examine_ingredients: pub(self)
│ └── mod stove: pub
│ └── fn cook: pub
└── fn main: pub(crate)

src/kitchen/stove.rs

pub fn cook() {
 super::examine_ingredients(); // Make sure you do this before cooking!

println!("I'm cooking");
}

39

Privacy

mod kitchen: pub(crate)
├── fn examine_ingredients: pub(self)
└── mod stove: pub
 └── fn cook: pub

src/kitchen/stove.rs

pub fn cook() {
 super::examine_ingredients(); // Make sure you do this before cooking!

println!("I'm cooking");
}

examine_ingredients does not need to be public in this case

stove can access anything in its parent module kitchen

Note that privacy only applies upwards, not downwards
40

Privacy of Types

We can also use pub to designate structs and enums as public.

pub struct Breakfast {
pub toast: String,

 seasonal_fruit: String,
}

pub enum Appetizer {
 Soup,
 Salad,
}

We can mark specific fields of structs public, allowing direct access

If an enum is public, so are its variants!

41

Recap: Modules

You can split a package into crates

Crates into modules

Modules into items

You can refer to items defined in other modules with paths

All module components are private by default, unless you mark them as pub

42

Testing

43

Testing

Program testing can be a very effective way to show the presence of bugs,

but it is hopelessly inadequate for showing their absence.

Edsger W. Dijkstra, The Humble Programmer

44

Testing

Correctness of a program is complex and not easy to prove.

Rust's type system helps with this, but it certainly cannot catch everything

Rust includes a testing framework for this reason!

45

What is a Test?

Generally we want to perform at least 3 actions when running a test:

1. Set up needed data or state

2. Run the evaluated code

3. Determine if the results are as expected

46

Writing Tests

In Rust, a test is a function annotated with the #[test] attribute.
src/lib.rs

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

let result = 2 + 2;
assert_eq!(result, 4);

 }
}

After running cargo new adder --lib , this code will be in src/lib.rs

47

Writing Tests

Let's break this down.

#[test]
fn it_works() {

let result = 2 + 2;
assert_eq!(result, 4);

}

The #[test] attribute indicates that this is a test function

We set up the value result by adding 2 + 2

We use the assert_eq! macro to assert that result is correct

We don't need to return anything, since not panicking is the test!

48

Running Tests

We run tests with cargo test .

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished test [unoptimized + debuginfo] target(s) in 0.57s
 Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

49

Running Tests

Let's break down the output of cargo test .

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

We see test result: ok , meaning we have passed all the tests

In this case, only 1 test has run, and it has passed

50

Documentation Tests

You may have seen something similar to this in your homework:

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

All of the code examples in documentation comments are treated as tests!

This is useful for keeping your docs and code in sync

51

#[cfg(test)]

You may have also noticed this #[cfg(test)] attribute in your homework:

#[cfg(test)]
mod tests {

// <-- snip -->
}

This tells the compiler that this entire module should only be used for testing

The compiler ignores this module when compiling with cargo build

52

Writing Better Tests

Let's try and be more creative with our tests.

#[cfg(test)]
mod tests {

#[test]
fn exploration() {

assert_eq!(2 + 2, 4);
 }

#[test]
fn another() {

panic!("Make this test fail");
 }
}

53

Failing Tests

Let's see what we get:

$ cargo test

running 2 tests
test tests::another ... FAILED
test tests::exploration ... ok

failures:

---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
 tests::another

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

54

Failing Tests

failures:

---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
 tests::another

test result: FAILED. 1 passed; 1 failed; <-- snip -->

error: test failed, to rerun pass `--lib`

Instead of ok , we get that the result of tests:another is FAILED

55

Checking Results

We can use the assert! macro to ensure that something is true .

#[test]
fn larger_can_hold_smaller() {

let larger = Rectangle {
 width: 8,
 height: 7,
 };

let smaller = Rectangle {
 width: 5,
 height: 1,
 };

assert!(larger.can_hold(&smaller));
}

56

Testing Equality

Rust also provides a way to check equality between two values with assert_eq! .

#[test]
fn it_adds_two() {

assert_eq!(4, add_two(2));
}

57

Testing Equality

If add_two(2) somehow evaluated to 5 , we would get this output:

---- tests::it_adds_two stdout ----
thread 'tests::it_adds_two' panicked at 'assertion failed: `(left == right)`
 left: `4`,
 right: `5`', src/lib.rs:11:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

You get a nicer error message from assert_eq! versus using

assert!(left == right)

58

Custom Error Messages

We can also write our own custom error messages in assert!

#[test]
fn greeting_contains_name() {

let result = greeting("Carol");
assert!(

 result.contains("Carol"),
"Greeting did not contain name, value was `{}`",

 result
);
}

59

#[should_panic]

If you want test that your code (correctly) panics, you can use #[should_panic] :

#[test]
#[should_panic(expected = "not less than 100")]
fn greater_than_100() {

this_better_be_less_than_100(200);
}

The #[should_panic] attribute says that this test expects a panic!

Adding the expected = "..." means we want a specific panic message

60

Controlling Test Behavior

cargo test compiles your code in test mode and runs the resulting test binary.

By default, it will run all tests in parallel and will not print any test output

Other testing configurations are available

Note that you can run cargo test --help , and cargo test -- --help for help

61

Running Tests in Parallel

Suppose each of your tests all write to some shared file on disk

All tests write to a file output.txt

They later assert that the file still contains that data they wrote

You probably don't want all of them to run at the same time!

62

Test Threads

By default, Rust will run all tests in parallel, on different threads.

You can use --test-threads flag to control the number of threads.

$ cargo test -- --test-threads=1

Only use this when you actually need to, otherwise the benefits of running

tests in parallel are lost

63

Showing Output

If you want to prevent the capturing of output, you can use --no-capture .

$ cargo test -- --no-capture
$ cargo test -- --show-output

--no-capture will print the full output of every test that is run

Using --show-output will only show the output of passed tests

With 1000 tests, this might become verbose!

If only we could only run a subset of the tests...

64

Running Tests by Name

Let's say we have 1000 tests, but only one is named one_hundred . We can run

cargo test one_hundred to only run the one_hundred test.

$ cargo test one_hundred

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 999 filtered out; finished in 0.00s

Notice how there are now 999 filtered out tests, these were the tests that

didn't match the name one_hundred

65

Multiple Tests by Name

cargo will actually find any test that matches the name you passed in.

$ cargo test add

running 2 tests
test tests::add_three_and_two ... ok
test tests::add_two_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 998 filtered out; finished in 0.00s

If you want an exact name, use cargo test {name} -- --exact

66

Ignoring Tests

We can ignore some tests by using the #[ignore] attribute.

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
}

#[test]
#[ignore]
fn expensive_test() {

// code that takes an hour to run
}

If we want to run only ignored tests, we can run cargo test -- --ignored

If we want to run all tests, we can run cargo test -- --include-ignored
67

Test Organization

The Rust community thinks about tests in terms of two main categories: unit tests

and integration tests.

Unit tests test each unit of code in isolation

Integration tests are external to your library, testing the entire system

68

Unit Tests

Unit tests are almost always contained within the src directory.

The convention is to create submodules named tests for every module you

want to test

Make sure to add the attribute #[cfg(test)] !

Prevents deploying extra code in production that is only used for testing

69

Testing Private Functions

You can unit test private functions as long as the module the test lives in has

access to it.

pub fn add_two(a: i32) -> i32 { internal_adder(a, 2) }
fn internal_adder(a: i32, b: i32) -> i32 { a + b }

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn internal() {

assert_eq!(4, internal_adder(2, 2));
 }
}

70

Integration Tests

Integration Tests use your library in the same way any other code would.

They can only call functions that are part of your library's public API

Useful for testing if many parts of your library work together correctly

71

Integration Tests

To create integration tests, we need a tests directory.

adder
├── Cargo.lock
├── Cargo.toml
├── src
│ └── lib.rs
└── tests
 └── integration_test.rs

Notice how tests is outside of src

72

Integration Tests

Since we are now external to our own library, we must import everything as if it

were a 3rd-party crate.
adder/tests/integration_test.rs

use adder;

#[test]
fn it_adds_two() {

assert_eq!(4, adder::add_two(2));
}

Note that we don't need to annotate anything with #[cfg(tests)]

We run test files using the name of the integration test file, like

cargo test --test integration_test

73

Integration Tests for Binary Crates

We cannot create integration tests for a binary crate.

Binary crates do not expose their functions

This is why most binary crates will be paired with a library crate, even if they

don't need to expose any functions

74

Recap: Testing

Unit tests examine parts of a library in isolation and can test private

implementation details

Integration tests check that many parts of the library work together correctly

Even though Rust can prevent some kinds of bugs, tests are still extremely

important to reduce logical bugs!

75

Homework 6

Homework 6 is going to be very different from the previous 5 homeworks!

You will be following a tutorial from the official Rust Book (our textbook)

Your task is to implement a miniature version of the popular CLI tool grep

We are not giving you any starter code

Your assignment will be manually graded on both correctness and robustness

76

https://doc.rust-lang.org/book/ch12-00-an-io-project.html

Code Review

77

Code?

What is code?

Why do we write code?

78

Typical Assignment Workflow

You are probably very used to this workflow:

Get assignment handout and code outline

"Fill in the blanks"

Debug a few things

Graded by autograder

All done!

Never use this code again

Delete it at the end of the semester

79

https://www.cs.cmu.edu/~410/lectures/L01c_Boot.pdf

Real World Workflow

In the real world, the workflow is almost the complete opposite:

Jump into a massive codebase

Figure out where the "blanks" are to add new features

Read and debug someone else's code

Run tests that may not be exhaustive

Not done!

Your users and your team are constantly "grading" your work

80

Homework 6 Grading

We will be manually grading for both correctness and robustness.

By following the tutorial, you will easily get 100% on this assignment

We will give you up to 100 extra credit points for style, quality, documentation,

and robustness

If you simply copy and paste everything from the tutorial, you may get around

15/100 extra credit points

We are going to be super strict!

Adopting the 15-410 (CMU Operating Systems) mindset

81

Style

You can follow the Rust style guide for advice.

Key things:

Format your code correctly with cargo fmt

Run the cargo clippy linter

Make sure comments are styled correctly

Use descriptive naming

82

https://doc.rust-lang.org/nightly/style-guide/

Documentation

Most of the extra credit grade will come from your documentation.

Documentation should be descriptive and succinct

For this assignment, explain the features of your executable!

For fellow developers, explain:

Design

Architecture / structure of your code

Why does this function need to exist?

83

https://rust-lang.github.io/api-guidelines/documentation.html

Errors

There are 3 types of errors:

Hmm...

Try to resolve

That's not right...

Try to report

Uh-oh

Try to help the developer find the fatal problem faster

84

https://www.cs.cmu.edu/~410/lectures/L10a_Errors.pdf

Testing

Write good tests!

1000 tests testing the same thing?

5 tests testing edge cases?

85

Next Lecture: Crates, Closures, and

Iterators

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

86

