
Intro to Rust LangIntro to Rust Lang

Closures andClosures and
IteratorsIterators

1

Today: Closures and Iterators

Closures

Iterators

Crate Highlights

2

Closures

3

What Is A Closure?

Closures are anonymous functions that can capture values from the scope in

which they're defined.

Known as lambdas in "lesser languages"

You can save closures in variables or pass them as arguments to other

functions

4

Closure Syntax

let annotated_closure = |num: i32| -> i32 {
 num
};

This should feel very similar to functions we've seen...

Like normal variables, Rust can derive closure type annotations from context!

5

Closures Simplified

fn add_one_v1 (x: i32) -> i32 { x + 1 }
let add_one_v2 = |x: i32| -> i32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

let _ = add_one_v3(3);
let _ = add_one_v4(4);

v1 is the equivalent function

We can remove type parameters in v3

This is similar to eliding the type parameter in let v = Vec::new()

For v4 , we can remove the {} since the body is only one line

6

How about this?

let example_closure = |x| x;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

How would we describe the type of example_closure ?

7

Closure Types

let example_closure = |x| x;
let s = example_closure(String::from("hello"));
let n = example_closure(5);

error[E0308]: mismatched types
 --> src/main.rs:5:29
 |
5 | let n = example_closure(5);
 | --------------- ^- help: try using a conversion method: `.to_string()`
 | | |
 | | expected struct `String`, found integer
 | arguments to this function are incorrect
note: closure parameter defined here
 --> src/main.rs:2:28
 |
2 | let example_closure = |x| x;
 | ^

8

Closure Types

let example_closure = |x| x;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

The first time we called example_closure with a String

Rust inferred the type of example_closure to be String -> String

Those types are now bound to the closure

example_closure(5) will not type check

9

Capturing References

Closures can capture values from their environment in three ways:

Borrowing immutably

Borrowing mutably

Taking ownership

Moving the value into the closure

10

Immutable Borrowing in Closures

let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let only_borrows = || { println!("From closure: {:?}", list); };

println!("Before calling closure: {:?}", list);
only_borrows(); // Prints "From closure: [1, 2, 3]"
println!("After calling closure: {:?}", list);

Before defining closure: [1, 2, 3]
Before calling closure: [1, 2, 3]
From closure: [1, 2, 3]
After calling closure: [1, 2, 3]

11

Immutable Borrowing in Closures

let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let only_borrows = || { println!("From closure: {:?}", list); };

println!("Before calling closure: {:?}", list);
only_borrows(); // Prints "From closure: [1, 2, 3]"
println!("After calling closure: {:?}", list);

Note how once a closure is defined, it's invoked in the same manner as a

function

Because we can have many immutable borrows, Rust allows us to to print,

even with the closure holding a reference

12

Mutable Borrowing in Closures

What happens if we mutate captured variables from inside

the closure?

let mut list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let borrows_mutably = || { list.push(7); };

borrows_mutably();
println!("After calling closure: {:?}", list);

This seems like it should work...

13

Mutable Borrowing in Closures

error[E0596]: cannot borrow `borrows_mutably` as mutable, as it is not declared as mutable
 --> src/main.rs:7:5
 |
5 | let borrows_mutably = || { list.push(7); };
 | ---- calling `borrows_mutably` requires mutable
 | binding due to mutable borrow of `list`
6 |
7 | borrows_mutably();
 | ^^^^^^^^^^^^^^^ cannot borrow as mutable

A closure mutating its captured state is equivalent to mutating itself

Calling borrows_mutably mutates the closure's internal state

We'll discuss in the next section...

14

Mutable Borrowing in Closures

help: consider changing this to be mutable
 |
5 | let mut borrows_mutably = || { list.push(7); };
 | +++

As always, the compiler tells us how to fix our mistake!

15

Mutable Borrowing in Closures

let mut list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let mut borrows_mutably = || { list.push(7); };

borrows_mutably();
println!("After calling closure: {:?}", list);

Before defining closure: [1, 2, 3]
After calling closure: [1, 2, 3, 7]

16

Closure Borrowing Rules

let mut list = vec![1, 2, 3];

let mut borrows_mutably = || { list.push(7); };

// println!("Before calling closure: {:?}", list); <-- Compiler error!
borrows_mutably();
println!("After calling closure: {:?}", list);

Note how we can't have a println! before invoking borrows_mutably

Rust only considers the invocation a borrow, not the definition

Closures are lazy in this sense

17

Giving Closures Ownership

let mystery = {
let x = rand::random::<u32>();

 |y: u32| -> u32 { x + y }
};

println!("Mystery value is {}", mystery(5));

18

Giving Closures Ownership

error[E0373]: closure may outlive the current block, but it borrows `x`,
 which is owned by the current block
 --> src/main.rs:6:9
 |
6 | |y: u32| -> u32 { x + y }
 | ^^^^^^^^^^^^^^^ - `x` is borrowed here
 | |
 | may outlive borrowed value `x`
 |
 |
4 | let mystery = {
 | ^^^^^^^
help: to force the closure to take ownership of `x`, use the `move` keyword
 |
6 | move |y: u32| -> u32 { x + y }
 |

19

Giving Closures Ownership

let mystery = {
let x = rand::random::<u32>();
move |y: u32| -> u32 { x + y }

// ^^^^ Add the `move` keyword!
};

println!("Mystery value is {}", mystery(5));

We can move values into closures instead of capturing references (borrowing)

Note that you can't selectively move parameters, it's all or nothing

move semantics with closures are important for thread safety!

20

Threads Sneak Peek

Let's briefly explore spawning a new thread with a closure.

fn main() {
let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

 std::thread::spawn(move || println!("From thread: {:?}", list))
 .join()
 .unwrap();
}

21

Case for move : Thread Safety

fn main() {
let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

 std::thread::spawn(move || println!("From thread: {:?}", list))
 .join()
 .unwrap();
}

Why do we move instead of borrow?

Child thread's println! only needs a reference to list ...

Parent might drop list before the child thread runs

Use after free in child thread!

22

Handling Captured Values

A closure body can do any of the following to a value:

Move a captured value out of the closure

Mutate a captured value

Neither of the above

It could also have captured nothing to begin with!

The properties a closure has determines the function trait it implements

23

The Fn traits

24

The Fn traits

What do you mean, function trait???

Rust has 3 special traits that define the kind of closure we want to use

The 3 traits are:

FnOnce

FnMut

Fn

Rust auto-implements these for closures and functions

25

The Fn Traits:

Visualized

FnMut is also FnOnce

Fn is also FnMut and FnOnce

26

The Fn traits

FnOnce : Closures that can be called once

FnMut : Closures that can mutate the

captured values

Fn : Everything else!

27

The Fn traits

FnOnce : Closures that can be called once

All closures and functions implement this, since all closures can be called

at least once

However, closures that are exclusively FnOnce can only be called once

e.g. A closure that moves captured values out of its body

FnMut : Closures that can mutate the captured values

Can be called more than once

Fn : Everything else!

Don't move values out, don't mutate, don't capture anything

28

FnOnce

A closure that moves captured values out of its body will only implement FnOnce ,

and not FnMut or Fn :

let my_str = String::from("x");

// Returns `my_str`, moving it out of the closure
let consume_and_return = move || my_str;

Why can this closure only be called once?

It takes ownership of my_str , then gives ownership back to the caller

my_str is no longer accessible to our closure after it's called!

move keyword specifies that the closure takes ownership when it's created,

not when it's called
29

unwrap_or_else

All closures implement FnOnce , since all closures can be called once.

This does not mean they can only be called once!

One example is the unwrap_or_else method on Result

30

unwrap_or_else

unwrap_or_else processes the Result<T, E> of a function.

let count = |s: &str| s.len();

assert_eq!(Ok(2).unwrap_or_else(count), 2);
assert_eq!(Err("foobar").unwrap_or_else(count), 6);

If successful, it unwraps the value from Ok(T) into T

Otherwise, it takes E as input to the closure

31

unwrap_or_else

Let's look at the definition of the unwrap_or_else method on Result<T> .

impl<T, E> Result<T, E> {
pub fn unwrap_or_else<F>(self, f: F) -> T
where

 F: FnOnce(E) -> T
 {

match self {
Some(x) => x,
None => f(e),

 }
 }
}

32

unwrap_or_else

First let's observe the function definition.

pub fn unwrap_or_else<F>(self, f: F) -> T
where
 F: FnOnce(E) -> T
// <-- snip -->

This method is generic over F

F is the type of the closure we provide when calling unwrap_or_else

F must be able to be called once, take no arguments, and return a T for

Option<T>

33

unwrap_or_else

Now let's observe the function body.

{
match self {

Some(x) => x,
None => f(e),

 }
}

If the Option is Some , then extract the inner value

Otherwise, call f once and return the value

Note that f is not required to only be FnOnce here

It is valid for f to be FnMut or Fn

34

FnMut

FnMut applies to closures that might mutate the captured values.

let mut x: usize = 1;
let mut add_two_to_x = || x += 2;
add_two_to_x();

Use cases: Stateful operations on some shared resource

Imagine x were a score on a scoreboard

Note that this will not compile without the second mut

mut signals that we are mutating our closure's environment

35

FnMut

Another simple example:

let mut base = String::from("");
let mut build_string = |addition| base.push_str(addition);

build_string("Ferris is ");
build_string("happy!");

println!("{}", base);

Ferris is happy!

36

FnMut

We can pass an FnMut closure as an argument to a function.

fn do_twice<F>(mut func: F)
where
 F: FnMut(),
{

func();
func();

}

Would do_twice accept a closure that's exclusively FnOnce ?

No, because we call our closure twice

How about an Fn closure?

Yes!
37

Fn

The Fn trait is a superset of FnOnce and FnMut .

Fn applies to closures that:

Don't move captured values out of their body

Don't mutate captured values

Don't capture anything from their environment

Can be called more than once without mutating the environment

Use cases:

Stateless operations without side effects

Logging, pretty printing

Predicates* for sorting, searching, filtering

38

Fn

Fn applies to closures that don't capture anything from their environment:

let double = |x| x * 2; // captures nothing

assert!(double(2) == 4);

39

Fn

Fn also applies to closures that don't mutate captured variables:

let mascot = String::from("Ferris");
let is_mascot = |guess| guess == mascot; // `mascot` immutably borrowed

assert!(is_mascot("Ferris")); // true
assert!(!is_mascot("Ferrari")); // false

40

Fn

The Fn usually represents pure functions, which means it makes sense to pass

them as inputs to other functions!

fn reduce<F, T>(reducer: F, data: &[T]) -> Option<T>
where
 F: Fn(T, T) -> T,
{

// <-- snip -->
}

We can specify the arguments and return types for Fn

Functions are values!

41

fn vs. Fn

Rust also has function pointers, denoted fn (instead of Fn).

fn add_one(x: i32) -> i32 {
 x + 1
}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
f(arg) + f(arg)

}

fn main() {
let answer = do_twice(add_one, 5);

}

fn is a type* that implements all 3 closure traits Fn , FnMut , and FnOnce

42

Recap: Closure Traits

Fn , FnMut , FnOnce describe different groups of closures

You don't impl them, they apply to a closure automatically if appropriate

A single closure can implement one or multiple of these traits

FnOnce - call at least once, environment may be consumed

FnMut - call multiple times, environment may change

Fn - call multiple times, environment doesn't change

43

Iterators

Sorry functional haters... it's show time!

44

What is an Iterator?

Iterators allow you to perform some task on a sequence of elements

Iterators manage iterating over each item and determining termination

Rust iterators are lazy

This means we don't pay a cost until we consume the iterator

45

The Iterator Trait

All iterators must implement the Iterator trait:

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// methods with default implementations elided
}

Keep generating Some(item)

When the Iterator is finished, None is returned

46

type Item

What's going on with the type Item ?

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// <-- methods with default implementations elided -->
}

This is an associated type

To define Iterator you must define the Item you're iterating over

Different from generic types!

There can only be one way to iterate over something
47

Custom Iterator Example

Let's say we want to implement an iterator that generates the Fibonacci sequence.

struct Fibonacci {
 curr: u32,
 next: u32,
}

First need to declare the struct that can implement Iterator

We need to store two numbers to compute the next element

48

Fibonacci Example

impl Iterator for Fibonacci {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
let current = self.curr;

self.curr = self.next;
self.next = current + self.next;

// No endpoint to a Fibonacci sequence - `Some` is always returned.
Some(current)

 }
}

Notice Self::Item is aliased to u32

49

Iterating Explicitly

let v1 = vec![1, 2, 3];

let mut v1_iter = v1.iter();

assert_eq!(v1_iter.next(), Some(&1));
assert_eq!(v1_iter.next(), Some(&2));
assert_eq!(v1_iter.next(), Some(&3));
assert_eq!(v1_iter.next(), None);

Here we see how the next method is used

Notice how v1_iter is mutable

When we call next() we've consumed that iterator element

The iterator's internal state has changed

Note that iter() provides immutable borrows to v1 's elements 50

Vec Iterators

let v1 = vec![1, 2, 3];

for val in v1.iter() {
println!("Got: {}", val);

}

for val in &v1 {
println!("Got: {}", val);

}

These do the same thing!

Note that this is not syntax sugar

We saw this code before in lecture 4

Except now we explicitly create the iterator that Rust did for us
51

Syntactic Sugar: for loops

let v1 = vec![1, 2, 3];

for val in v1.iter() {
println!("Got: {}", val);

}

let mut v1_iter = v1.iter();
while let Some(val) = v1_iter.next() {

println!("Got: {}", val);
}

The for loop is syntax sugar

52

Iterators and Mutable Borrows

We can use the iter_mut() on Vec to get an iterator over mutable references.

let mut vec = vec![1, 2, 3]; // Note that we need `vec` to be mutable
let mut mutable_iter = vec.iter_mut();

while let Some(val) = mutable_iter.next() {
 *val += 1;
}

println!("{:?}", vec);

[2, 3, 4]

Before we saw that v1.iter() gave us an iterator over &i32

Now, we see that v1.iter_mut() gives us an iterator over &mut i32 53

More Mutable Iteration

let mut vec = vec![1, 2, 3];

let mut mutable_iter = vec.iter_mut();
while let Some(val) = mutable_iter.next() {
 *val += 1;
}

for val in vec.iter_mut() {
 *val += 1;
}

for val in &mut vec {
 *val += 1;
}

All of these do the same thing!
54

Iterators and Ownership

If we want an iterator to iterate over owned values, we usually use into_iter() .

let mut vec = vec![1, 2, 3];

let owned_iter = vec.into_iter(); // vec is *consumed*
for val in owned_iter {

println!("I own {}", val);
}

// owned_iter has been consumed

To make an iterator that owns its values we have into_iter()

into_iter() is the sole method on the IntoIterator trait

This is what the for loops are actually consuming

55

Consuming Iterators

The standard library has many functions for using iterators.

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

let total: i32 = v1_iter.sum(); // `.sum()` consumes `v1_iter`

assert_eq!(total, 6);

Most of these functions consume iterators

56

Other consuming functions

fn sum(self)

fn max(self)

fn count(self)

fn map(self, f: F)

fn filter(self, predicate: P)

fn fold(self, init: B, f: F)

fn collect(self)

Coming soon...

Many, many more!

57

Producing Iterators

let v1: Vec<i32> = vec![1, 2, 3];

v1.iter().map(|x| x + 1);

This code seems fine...

58

Producing Iterators

warning: unused `Map` that must be used
 --> src/main.rs:4:5
 |
4 | v1.iter().map(|x| x + 1);
 | ^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: iterators are lazy and do nothing unless consumed
 = note: `#[warn(unused_must_use)]` on by default

Zero-cost abstractions at work

Rust won't make us pay for our iterator until we use it

It will compile and warn us of unused data

59

Producing Iterators

let v2: Vec<i32> = (1..4).map(|x| x + 1).collect();

println!("{:?}", v2);

[2, 3, 4]

We use collect() to tell Rust we're done modifying our iterator and want to

convert our changes to a Vec

collect is a super common method on iterators

If you don't use collect , no computation is performed

collect is the method that executes all of the desired operations!

60

Filter

fn filter_by(list: Vec<i32>, val: i32) -> Vec<i32> {
 list.into_iter().filter(|x| x == val).collect()
}

--> src/main.rs:2:35
 |
2 | list.into_iter().filter(|x| x == val).collect()
 | ^^ no implementation for `&i32 == i32`
 |

Some iterator functions take a reference instead of

ownership

Note how our filter closure captures the input val for

our filtering needs!

61

Filter

list.into_iter().filter(|&x| x == val).collect()

or

list.into_iter().filter(|x| *x == val).collect()

We either explicitly match on the reference or

dereference

62

Chaining It Together

let iter = (0..100).map(|x| x*x).skip(1).filter(|y| y % 3 == 0);

for x in iter.take(5) {
print!("{}, ", x);

}

You can read this as:

Print first 5 square numbers

Skipping 0

Only divisible by 3

Note that filter doesn't need a dereference for %

63

Chaining It Together

let iter = (0..100).map(|x| x*x).skip(1).filter(|y| y % 3 == 0);
println!("{:?}", iter);

for x in iter.take(5) {
print!("{}, ", x);

}

Filter { iter: Skip { iter: Map { iter: 0..100 }, n: 1 } }
9, 36, 81, 144, 225,

Notice how iter is just a bunch of metadata

Lazy iterators on display!

64

Iterator Recap

Iterators is an extremely powerful structure in Rust

View the std library for more info on Iterator methods

Rules regarding closures and ownership still apply

Iterators are lazy

Remember to use .collect() !

65

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Crate Highlights

66

rand

The standard library includes many things... but a random number generator isn't

one of them*.

Here's an example of using the rand crate:

use rand::prelude::*;

let mut rng = rand::thread_rng();
let y: f64 = rng.gen(); // generates a float between 0 and 1

let mut nums: Vec<i32> = (1..100).collect();
nums.shuffle(&mut rng);

67

rand

use rand::prelude::*;

let mut rng = rand::thread_rng();
let y: f64 = rng.gen(); // generates a float between 0 and 1

let mut nums: Vec<i32> = (1..100).collect();
nums.shuffle(&mut rng);

rand is the de facto crate for:

Generating random numbers

Creating probabilistic distributions

Providing randomness related algorithms (like vector shuffling)

68

clap

Often, we want our binary to take in command line arguments. A very popular

argument parser used in Rust programs is clap .

use clap::Parser;

#[derive(Parser, Debug)]
#[command(version, about, long_about = None)]
struct Args {

#[arg(short, long)]
 name: String, // Name of the person to greet

#[arg(short, long, default_value_t = 1)]
 count: u8, // Number of times to greet
}

Makes use of Rust's macro system to generate boilerplate code for us! 69

clap

Here's how you would use a clap struct called Args :

use clap::Parser;

// <-- snip -->
struct Args {

// <-- snip -->
}

fn main() {
let args = Args::parse(); // get-opt could never
for _ in 0..args.count {

println!("Hello {}!", args.name)
 }
}

70

clap

If we run the binary called demo :

$ demo --help
A simple to use, efficient, and full-featured Command Line Argument Parser

Usage: demo[EXE] [OPTIONS] --name <NAME>

Options:
 -n, --name <NAME> Name of the person to greet
 -c, --count <COUNT> Number of times to greet [default: 1]
 -h, --help Print help
 -V, --version Print version

$ demo --name Me
Hello Me!

Note that clap is not the only 3rd-party crate option! 71

anyhow

Have code that can throw multiple error types that you wish was one? Use this!

use anyhow::Result;

fn get_cluster_info() -> Result<ClusterMap> {
let config = std::fs::read_to_string("cluster.json")?;
let map: ClusterMap = serde_json::from_str(&config)?;
Ok(map)

}

Both lines return different error types, but anyhow allows us to return both!

Makes errors more dynamic and ergonomic

72

anyhow

Another example:

it.detach().context("Failed to detach the important thing")?;

let content = std::fs::read(path)
 .with_context(|| format!("Failed to read from {}", path))?;

Other anyhow features include:

Downcasting to the original error types

Attaching custom context / error messages

More expressive custom errors

73

Error Handling Libraries

In addition to anyhow , there is also thiserror and snafu .

anyhow : Use in binaries where you don't care what kind of error has occurred

thiserror : Use in libraries where you do care what exactly happened

snafu : Newer crate, combines the functionality of both!

74

https://docs.rs/anyhow/latest/anyhow/
https://docs.rs/thiserror/latest/thiserror/
https://docs.rs/snafu/latest/snafu/

flamegraph

Rust powered flamegraph

generator with Cargo

support!

With a bit of setup, you

can generate this with

cargo flamegraph .

Can support non-

Rust projects too

Relies on perf or

dtrace

75

Next Lecture: Ownership Revisited

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

76

