Intrbgt:c))‘Rust Lang
" Closures and
Iterators SoZ

. f \
= e 4 . -
//\ - ~ e — "%
4 K’ v > o~ - = % ?-
/ '] v = = -~ . -

Today: Closures and Iterators

e Closures
e [terators
e Crate Highlights

Closures

What Is A Closure?

Closures are anonymous functions that can capture values from the scope in
which they're defined.

e Known as lambdas in "lesser languages" @

e You can save closures in variables or pass them as arguments to other
functions

Closure Syntax

let annotated_closure = |num: 132| -> 132 {
num

s

e This should feel very similar to functions we've seen...

e Like normal variables, Rust can derive closure type annotations from context!

Closures Simplified

fn add_one_vl (x: 132) -> 132 { x + 1 }
let add_one_v2 = |x: 132| -> 132 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| X + 1 ;

let _
let _

add_one_v3(3);
add_one_v4(4);

e v1 isthe equivalent function

e We can remove type parametersin v3
o This is similar to eliding the type parameterin let v = Vec: :new()

e For v4 ,we canremove the {} since the body is only one line

How about this?

let example_closure = |x| x;

let s
let n

example_closure(String::from("hello")),
example_closure(5);

e How would we describe the type of example_closure ?

Closure Types

let example_closure = |x| Xx;
let s = example_closure(String::from("hello"));
let n = example_closure(5);

error[E@308]: mismatched types
--> src/main.rs:5:29

5 let n = example_closure(5);

|

| eeeeeeeeeeeae- A- help: try using a conversion method: " .to_string()"
| | |

| | expected struct "String , found integer

| arguments to this function are incorrect

note: closure parameter defined here

--> src/main.rs:2:28

|
| let example_closure = |x| Xx;
| A

2

Closure Types

let example_closure = |x| Xx;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

e The first time we called example_closure with a String

e Rust inferred the type of example_closure to be String -> String

e Those types are now bound to the closure
o example_closure(5) will not type check

Capturing References

Closures can capture values from their environment in three ways:

e Borrowing immutably
e Borrowing mutably

e Taking ownership
o Moving the value into the closure

10

Immutable Borrowing in Closures

let list = vec![1, 2, 3],
println!("Before defining closure: {:?}", 1list);

let only_borrows = || { println!("From closure: {:?}", list); 1},

println!("Before calling closure: {:?}", list);
only_borrows(); // Prints "From closure: [1, 2, 3]"
println!("After calling closure: {:?}", list);

Before defining closure: [1, 2, 3]
Before calling closure: [1, 2, 3]
From closure: [1, 2, 3]

After calling closure: [1, 2, 3]

11

Immutable Borrowing in Closures

let list = vec![1, 2, 3],
println!("Before defining closure: {:?}", list),

let only_borrows = || { println!("From closure: {:?}", list); 1},

println!("Before calling closure: {:?}", list),;
only_borrows(); // Prints "From closure: [1, 2, 3]"
println! ("After calling closure: {:?}", list);

e Note how once a closure is defined, it's invoked in the same manner as a
function

e Because we can have many immutable borrows, Rust allows us to to print,
even with the closure holding a reference

12

Mutable Borrowing in Closures

What happens if we mutate captured variables from inside
the closure?

let mut list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list),

let borrows_mutably = || { list.push(7); };

borrows_mutably();
println! ("After calling closure: {:?}", list),;

e This seems like it should work...

13

Mutable Borrowing in Closures

error[E@596] : cannot borrow "borrows_mutably” as mutable, as it is not declared as mutable

--> syrc/main.xrs:7:5

|
5 |

|
|
6 |
7|
|

let borrows_mutably = || { list.push(7); 1},
---- calling "borrows_mutably requires mutable
binding due to mutable borrow of "list’

borrows_mutably();
ANNAANANANANANNAN cannot borrow as mutable

e A closure mutating its captured state is equivalent to mutating itself

o Calling borrows_mutably mutates the closure's internal state
= We'll discuss in the next section...

14

Mutable Borrowing in Closures

help: consider changing this to be mutable

|
| let mut borrows_mutably = || { list.push(7); };
| +++

5

e As always, the compiler tells us how to fix our mistake!

15

Mutable Borrowing in Closures

let mut list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list),

let mut borrows_mutably = || { list.push(7),; };

borrows_mutably();
println! ("After calling closure: {:?}", list),

Before defining closure: [1, 2, 3]
After calling closure: [1, 2, 3, 7]

Closure Borrowing Rules

let mut list = vec![1, 2, 3];
let mut borrows_mutably = || { list.push(7); };

// println!("Before calling closure: {:?}", list); <-- Compiler error!
borrows_mutably();
println!("After calling closure: {:?}", list),

e Note how we can't have a println! before invoking borrows_mutably

e Rust only considers the invocation a borrow, not the definition
o Closures are lazy in this sense

17

Giving Closures Ownership

let mystery = {
let x = rand::random: :<u32>();
ly: u32| -> u32 { x + vy }

},

println! ("Mystery value is {}", mystery(5));

18

Giving Closures Ownership

error[E@373]: closure may outlive the current block, but it borrows "x ,
which i1s owned by the current block
--> src/main.rs:6:9

6 ly: u32| ->u32 { x +vy }
ANANAANNANNNANAN - "X 1s borrowed here

may outlive borrowed value "x°

4 let mystery = {

VAVAVAVAVAVAVAN

help: to force the closure to take ownership of "x°, use the "move Kkeyword

6 move |y: u32| -> u32 { x + vy }

Giving Closures Ownership

let mystery = {
let x = rand::random: :<u32>();
move |y: u32| -> u32 { x + vy }
// AAAN ADdD the "move” keyword!

s

println! ("Mystery value is {}", mystery(5));

e We can move values into closures instead of capturing references (borrowing)
o Note that you can't selectively move parameters, it's all or nothing

e move semantics with closures are important for thread safety!

20

Threads Sneak Peek

Let's briefly explore spawning a new thread with a closure.

fn main() {
let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

std: :thread: :spawn(move || println!("From thread: {:?}", list))
.join()
.unwrap(),;

21

Case for move : Thread Safety

fn main() {
let 1list = vec![1l, 2, 3],
println!("Before defining closure: {:?}", list),

std: :thread: :spawn(move || println!("From thread: {:?}", list))
.join()
.unwrap(),

}

e Why do we move instead of borrow?
o Child thread's println! only needs a reference to 1list ...

e Parent might drop 1list before the child thread runs
o Use after free in child thread! &

22

Handling Captured Values

e A closure body can do any of the following to a value:
o Move a captured value out of the closure

o Mutate a captured value
o Neither of the above
e It could also have captured nothing to begin with!

e The properties a closure has determines the function trait it implements

23

The FnNn traits

24

The Fn traits

What do you mean, function trait???

e Rust has 3 special traits that define the kind of closure we want to use

e The 3 traits are;

o FnOnce
O FnMut
© Fn

e Rust auto-implements these for closures and functions

25

The FnNn Traits:
Visualized

FnMut is also FnOnce

Fn is also FnMut and FnOnce

Fn
&context

FnMut
&mut context

FnOnce
context

26

The Fn traits

e FnOnce : Closures that can be called once

e FnMut : Closures that can mutate the
captured values

e Fn : Everything else!

Fn
&context

FnMut
&mut context

FnOnce
context

27

The Fn traits

e FnOnce : Closures that can be called once
o All closures and functions implement this, since all closures can be called
at least once

o However, closures that are exclusively FnOnce can only be called once
= e.g. A closure that moves captured values out of its body

e FnMut : Closures that can mutate the captured values
o Can be called more than once
e Fn : Everything else!
o Don't move values out, don't mutate, don't capture anything

28

FNOnce

A closure that moves captured values out of its body will only implement FnOnce ,
and not FnMut or Fn:

let my_str = String::from("x"),

// Returns "my_str , moving it out of the closure
let consume_and_xreturn = move || my_str;

e Why can this closure only be called once?
o It takes ownership of my_str , then gives ownership back to the caller

o my_str isnolonger accessible to our closure after it's called!

e move keyword specifies that the closure takes ownership when it's created,

not when it's called
29

unwrap_or_else

All closures implement FnOnce , since all closures can be called once.

e This does not mean they can only be called once!

e One example is the unwrap_or_else method on Result

30

unwrap_or_else

unwrap_or_else processesthe Result<T, E> of a function.

let count = |s: &str| s.len();

assert_eq! (0Ok(2).unwrap_or_else(count), 2);
assert_eq! (Err("foobar").unwrap_or_else(count), 6);

e If successful, it unwraps the value from 0k(T) into T

e Otherwise, it takes E asinput to the closure

31

unwrap_or_else

Let's look at the definition of the unwrap_or_else method on Result<T> .

1mpl<T, E> Result<T, E> {
pub fn unwrap_or_else<F>(self, f: F) -> T
where
F: FnOnce(E) -> T

{
match self {
Some(x) => X,
None => f(e),
}
}

32

unwrap_or_else

First let's observe the function definition.

pub fn unwrap_or_else<F>(self, f: F) -> T
where

F: FnOnce(E) -> T
// <-- snip -->
e This method is generic over F
e F isthe type of the closure we provide when calling unwrap_or_else
e F must be able to be called once, take no arguments, and returna T for

Option<T>

33

unwrap_or_else

Now let's observe the function bodly.

{
match self {
Some(x) => X,
None => f(e),
}
}

e If the Option is Some , then extract the inner value
e Otherwise, call f once and return the value

e Note that f is not required to only be FnOnce here
o Itisvalid for f to be FnMut or Fn

34

FnNnMut

FnMut applies to closures that might mutate the captured values.

let mut x: usize = 1;
let mut add_two_to_x = || x += 2;
add_two_to_x();

e Use cases: Stateful operations on some shared resource
o Imagine x were a score on a scoreboard

e Note that this will not compile without the second mut
o mut signals that we are mutating our closure's environment

35

FnMut

Another simple example:

let mut base = String::from("");
let mut build_string = |addition| base.push_str(addition);

build_string("Ferris is ");
build_string("happy!");

println!("{}", base);

Ferris is happy!

36

FnNnMut

We can pass an FnMut closure as an argument to a function.

fn do_twice<F>(mut func: F)

where
F: FnMut (),
{
func () ;
func () ;
}

e Would do_twice accept a closure that's exclusively FnOnce ?
o No, because we call our closure twice

e How aboutan Fn closure?
o Yesl!

37

Fn

The Fn traitis a superset of FnOnce and FnMut .

e Fn applies to closures that:
o Don't move captured values out of their body

o Don't mutate captured values
o Don't capture anything from their environment

e Can be called more than once without mutating the environment
e Use cases:
o Stateless operations without side effects
= | 0gging, pretty printing

= Predicates* for sorting, searching, filtering

38

Fn

Fn applies to closures that don't capture anything from their environment:

let double = |x| x * 2, // captures nothing

assexrt! (double(2) == 4);

39

Fn

Fn also applies to closures that don't mutate captured variables:

let mascot = String::from("Ferris");
let is_mascot = |guess| guess == mascot; // "mascot immutably borrowed

assert! (is_mascot("Ferris")); // true
assert!(!is_mascot("Ferrari")); // false

40

Fn

The Fn usually represents pure functions, which means it makes sense to pass
them as inputs to other functions!

fn reduce<F, T>(reducer: F, data: &[T]) -> Option<T>
where

F: Fn(T, T) -> T,
{

// <-- snip -->

}

e We can specify the arguments and return types for Fn
e Functions are values!

41

fn vs. Fn

Rust also has function pointers, denoted fn (instead of Fn).

fn add_one(x: 132) -> 132 {
X + 1

}

fn do_twice(f: fn(i32) -> 132, arg: 132) -> 132 {
f(arg) + f(arg)
}

fn main() {
let answer = do_twice(add_one, 5);

}

e fn isatype* thatimplements all 3 closure traits Fn, FnMut , and FnOnce

42

Recap: Closure Traits

e Fn, FnMut, FnOnce describe different groups of closures
o You don't impl them, they apply to a closure automatically if appropriate

o Assingle closure can implement one or multiple of these traits
e FnOnce - call atleast once, environment may be consumed
e FnMut - call multiple times, environment may change

e Fn - call multiple times, environment doesn't change

43

Iterators

e Sorry functional haters... it's show time!

44

What is an Iterator?

e [terators allow you to perform some task on a sequence of elements
e [terators manage iterating over each item and determining termination

e Rust iterators are lazy
o This means we don't pay a cost until we consume the iterator

45

The Iterator Trait

All iterators must implement the Iterator trait:

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// methods with default implementations elided

e Keep generating Some(item)

e When the Iterator is finished, None is returned

46

type Item

What's going on with the type Item ?

pub trait Iterator ({
type Item;

fn next(&mut self) -> Option<Self::Item>;

// <-- methods with default implementations elided -->

e This is an associated type

e To define Iterator you must define the Item you're iterating over

e Different from generic types!
o There can only be one way to iterate over something

iy

Custom Iterator Example

Let's say we want to implement an iterator that generates the Fibonacci sequence.

struct Fibonacci {
curr: u32,
next: u32Z,

e First need to declare the struct that canimplement Iterator

e We need to store two numbers to compute the next element

48

Fibonacci Example

impl Iterator for Fibonacci {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
let current = self.curr;

self.curx
self.next

self.next;
current + self.next;

// No endpoint to a Fibonacci sequence - "Some 1is always returned.
Some(current)

e Notice Self::Item is aliased to u32

49

Iterating Explicitly

let vl = vec![1, 2, 3];
let mut vl_iter = vl.itex();

assert_eq!(vl_iter.next(), Some(&1l));
assert_eq!(vl_iter.next(), Some(&2));
assert_eq!(vl_iter.next(), Some(&3));
assert_eq!(vl_iter.next(), None);

e Here we see how the next method is used

e Notice how v1 _iter is mutable
o When we call next() we've consumed that iterator element

o The iterator's internal state has changed

o Note that iter() providesimmutable borrowsto vi's elements

50

Vec Iterators

let vl = vec![1l, 2, 3];

for val in vl.iterxr() {
println!("Got: {}", val);
}

for val in &v1l {
println!("Got: {}", val);

e These do the same thing!
o Note that this is not syntax sugar

e We saw this code before in lecture 4
o Except now we explicitly create the iterator that Rust did for us

51

Syntactic Sugar: Tor loops

let vl = vec![1, 2, 3];

for val in vl.iter() {
println!("Got: {}", val),
}

let mut vl_iter = vl.itex();

while let Some(val) = vl_iter.next() {
println!("Got: {}", val),

}

e The for loop is syntax sugar

52

Iterators and Mutable Borrows

We can use the iter_mut() on Vec to getan iterator over mutable references.

let mut vec = vec![1l, 2, 3]; // Note that we need vec to be mutable
let mut mutable _iter = vec.iter _mut();

while let Some(val) = mutable_iter.next() {

*val += 1;

}

println! ("{:?}", vec),;

[2, 3, 4]

e Before we saw that vi.iter() gave us an iterator over &i32

e Now, we see that vl.iter_mut() gives us an iterator over &mut i32

53

More Mutable Iteration

let mut vec = vec![1l, 2, 3];

let mut mutable_iter = vec.iter mut();
while let Some(val) = mutable_iter.next() {
*val += 1;

}

for val in vec.iter mut() {
*val += 1;

for val in &mut vec {
*val += 1;

e All of these do the same thing!

54

Iterators and Ownership

If we want an iterator to iterate over owned values, we usually use into_iter() .

let mut vec = vec![1l, 2, 3];

let owned_iter = vec.into_itex(); // vec 1s *consumed*
for val 1in owned_iter {
println! ("I own {}", val);

}

// owned_iter has been consumed

e To make an iterator that owns its values we have into_iter()
e into iter() isthe sole method onthe IntoIterator trait

e This is what the for loops are actually consuming

55

Consuming Iterators

The standard library has many functions for using iterators.
let vl = vec![1, 2, 3];
let vl _iter = vl.itex();
let total: 132 = v1 _itexr.sum(); // "~.sum() consumes vl iter

assert_eq! (total, 6);

e Most of these functions consume iterators

56

Other consuming functions

® fn sum(self)

e fn max(self)

e fn count(self)

e fn map(self, f: F)

e fn filter(self, predicate: P)
e fn fold(self, init: B, f: F)

e fn collect(self)
o Coming soon...

e Many, many more!

57

Producing Iterators

let v1: Vec<i32> = vec![1, 2, 3];

vl.iter().map(|x| x + 1);

e This code seems fine...

58

Producing Iterators

warning: unused "Map that must be used
--> src/main.rs:4:5

4 vl.iter().map(|x| x + 1);
VAY

= note: iterators are lazy and do nothing unless consumed
= note: "#[warn(unused_must_use)] on by default

e Zero-cost abstractions at work

e Rust won't make us pay for our iterator until we use it
o It will compile and warn us of unused data

59

Producing Iterators

let v2: Vec<i32> = (1..4).map(|x| x + 1).collect();

println! ("{:?}", v2);

[2, 3, 4]

e We use collect() to tell Rust we're done modifying our iterator and want to
convert our changes to a Vec

e collect isasuper common method on iterators
o If you don't use collect , no computation is performed

o collect isthe method that executes all of the desired operations!

60

Filter

fn filter_by(list: Vec<i32>, val: 132) -> Vec<i32> {
list.into_iter().filter(|x| x == val).collect()

}

--> src/main.rs:2:35

2 list.into_iter().filter(|x| x == val).collect()

e Some iterator functions take a reference instead of
ownership

e Note how our filter closure captures the input val for
our filtering needs!

|

|

| AN no implementation for "&i32 == i32°
I

61

Filter

list.into_iter().filter(|&x| x == val).collect()

or

list.into_iter().filter(|x| *x == val).collect()

e We either explicitly match on the reference or
dereference

62

Chaining It Together

let iter = (0..100).map(|x| x*x).skip(1l).filter(|y| v % 3 == 0);

for x in iter.take(5) {
print!("{}, ", X);
}

e You can read this as:
o Print first 5 square numbers

o Skipping O
o Only divisible by 3

e Note that filter doesn't need a dereference for %

63

Chaining It Together

let iter = (0..100) .map(|x| x*x).skip(1l).filter(|y| v % 3 == 0);
println! ("{:?}", iter);

for x in iter.take(5) {
print!("{}, ", x);
}

Filter { itexr: Skip { iter: Map { iter: 0..100 }, n: 1 } }
9, 36, 81, 144, 225,

e Notice how iter is just a bunch of metadata
o Lazy iterators on display!

Iterator Recap

e [terators is an extremely powerful structure in Rust
e View the std library for more info on Iterator methods
e Rules regarding closures and ownership still apply

e [terators are lazy
o Remember touse .collect() !

65

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Crate Highlights

66

rand

The standard library includes many things... but a random number generator isn't
one of them*.

Here's an example of using the rand crate:

use rand: :prelude::*;

let mut rng = rand::thread_xrng();
let y: f64 = rng.gen(); // generates a float between @ and 1

let mut nums: Vec<i32> = (1..100).collect();
nums.shuffle(&mut rng);

67/

Yand

use rand: :prelude::*;

let mut rng = rand::thread_xrng();
let y: f64 = rng.gen(); // generates a float between @ and 1

let mut nums: Vec<i32> = (1..100).collect();
nums.shuffle(&mut rng);

e rand is the de facto crate for:
o Generating random numbers

o Creating probabilistic distributions

o Providing randomness related algorithms (like vector shuffling)

68

clap

Often, we want our binary to take in command line arguments. A very popular
argument parser used in Rust programs is clap .

use clap::Parser;

#[derive(Parser, Debug)]
#[command(version, about, long_about = None)]
struct Args {

#[arg(short, long)]

name: String, // Name of the person to greet

#[arg(short, long, default_value_t = 1)]
count: u8, // Number of times to greet

e Makes use of Rust's macro system to generate boilerplate code for us!

clap

Here's how you would use a clap struct called Axgs :

use clap::Parser;

// <-- snip -->
struct Args {
// <-- snip -->

}

fn main() {
let args = Args::parse(),; // get-opt could never

for _ in @..args.count {
println!("Hello {}!", args.name)

}

70

clap

If we run the binary called demo :

$ demo --help
A simple to use, efficient, and full-featured Command Line Argument Parser

Usage: demo[EXE] [OPTIONS] --name <NAME>

Options:
-n, --name <NAME> Name of the person to greet
-Cc, --count <COUNT> Number of times to greet [default: 1]
-h, --help Print help
-V, --version Print version

$ demo --name Me
Hello Me!

e Note that clap is not the only 3rd-party crate option! 7

anyhow

Have code that can throw multiple error types that you wish was one? Use this!

use anyhow: :Result;

fn get_cluster_info() -> Result<ClusterMap> {
let config = std::fs::read_to_string("cluster.json")?;
let map: ClusterMap = serde_json::from_str(&config)?;
Ok (map)

e Both lines return different error types, but anyhow allows us to return both!

e Makes errors more dynamic and ergonomic

/2

anyhow

Another example:

it.detach().context("Failed to detach the important thing")?;

let content = std::fs::read(path)
.with_context(|| format!("Failed to read from {}", path))?;

Other anyhow features include:

e Downcasting to the original error types
e Attaching custom context / error messages

e More expressive custom errors

VE

Error Handling Libraries

In addition to anyhow , there is also thiserror and snafu.

e anyhow : Use in binaries where you don't care what kind of error has occurred
e thiserror : Use in libraries where you do care what exactly happened

e snafu : Newer crate, combines the functionality of both!

74

https://docs.rs/anyhow/latest/anyhow/
https://docs.rs/thiserror/latest/thiserror/
https://docs.rs/snafu/latest/snafu/

flamegraph

Rust powered flamegraph
generator with Cargo
support!

With a bit of setup, you " ! | | R

. . S
Ca n e n e ra te t h I S W I t h st.. stress2’rayon_core::registry.. - | B3 str..
g stress2” _LTcore..iter..adapters..] - B stress2.. |Mlls.. s% 1] [| stress2..
|| = N .. || |stress2®_LTp.. stress2”c..
stress2” rayon_core::registry::Worker.. i. |l | :- SEESS2R | stress2” _s| ~ stress2’s..
stress2’ _LTcore..option..Option$LT.. . | stress2’ sled::tree::Tree::pal - |
C a I'g O f 1 a m e g I' a p h |stress2" rayon_core: :registry: :WorkerThread:... ||[B% [stress2'c..
° stress2 " rayon_core: :registry::WorkerThread::.. [stress2” sled::tree: :Tree::get::h26970a7c80f6d5f2 [ERSErEsS stress2 " stre..
stress2” stress2::run::hd433691d5f982187
stress2 ' stress2::mai u7b$$u7bsclosure$u7d$$u7ds: :h88859a9c9c8638d8

ys_common::backtrace::__rust_begin_short_backtrace::he4c5b9830324d077
hread: :Builder::spawn_unchecked::_$u7b$$u7bsclosure$u7d$$u7ds::_$u7b$$u7bsclosure$u7d$$u7ds: :hacd2..
stress2’_LTstd..panic..AssertUnwindSafeLTF$GT$$u20asu20$core..ops..function..FnOnce$LT$$LP$$RP$SGT$$GTS: :c..

stress2's
stress2’s

stress2’_LTstd..panic..AssertUnwindSafes$LT..

e Can support non-
Rust projects too

e Relies on perf or

dtrace
75

Next Lecture: Ownership Revisited

Thanks for coming!

Slides created by:
Connor Tsui, Benjamin Owad, David Rudo,
Jessica Ruan, Fiona Fisher, Terrance Chen

76

