
Intro to Rust LangIntro to Rust Lang

Crates, Closures,Crates, Closures,
and Iteratorsand Iterators
(oh my)

Benjamin Owad, David Rudo, and Connor Tsui

1

Today: Crates, Closures, and Iterators

Crate Highlights

Closures

Iterators

Loops vs. Iterators

2

Crate Highlights

3

rand
The standard library includes many things... but a random number generator isn't one of
them*.

Here's an example of using the rand crate:

use rand::prelude::*;

let mut rng = rand::thread_rng();
let y: f64 = rng.gen(); // generates a float between 0 and 1

let mut nums: Vec<i32> = (1..100).collect();
nums.shuffle(&mut rng);

4

rand
use rand::prelude::*;

let mut rng = rand::thread_rng();
let y: f64 = rng.gen(); // generates a float between 0 and 1

let mut nums: Vec<i32> = (1..100).collect();
nums.shuffle(&mut rng);

rand is the de facto crate for:
Generating random numbers

Creating probabilistic distributions

Providing randomness related algorithms (like vector shuffling)

5

clap
Often, we want our binary to take in command line arguments.

A very popular argument parser used in Rust programs is clap .

use clap::Parser;

#[derive(Parser, Debug)]
#[command(version, about, long_about = None)]
struct Args {
 #[arg(short, long)]
 name: String, // Name of the person to greet

 #[arg(short, long, default_value_t = 1)]
 count: u8, // Number of times to greet
}

Makes use of Rust's macro system to generate boilerplate code for us!
6

clap
Here's how you would use a clap struct called Args :

use clap::Parser;

// <-- snip -->
struct Args {
 // <-- snip -->
}

fn main() {
 let args = Args::parse(); // get-opt could never
 for _ in 0..args.count {
 println!("Hello {}!", args.name)
 }
}

7

clap
If we run the binary called demo :

$ demo --help
A simple to use, efficient, and full-featured Command Line Argument Parser

Usage: demo[EXE] [OPTIONS] --name <NAME>

Options:
 -n, --name <NAME> Name of the person to greet
 -c, --count <COUNT> Number of times to greet [default: 1]
 -h, --help Print help
 -V, --version Print version

$ demo --name Me
Hello Me!

Note that clap is not the only 3rd-party crate option!
8

anyhow
Have code that can throw multiple error types that you wish was one? Use this!

use anyhow::Result;

fn get_cluster_info() -> Result<ClusterMap> {
 let config = std::fs::read_to_string("cluster.json")?;
 let map: ClusterMap = serde_json::from_str(&config)?;
 Ok(map)
}

Both lines return different error types, but anyhow allows us to return both!

Makes errors more dynamic and ergonomic

9

anyhow
Another example:

use anyhow::{Context, Result};

fn main() -> Result<()> {
 // <-- snip -->
 it.detach().context("Failed to detach the important thing")?;

 let content = std::fs::read(path)
 .with_context(|| format!("Failed to read instrs from {}", path))?;
}

Other anyhow features include:

Downcasting to the original error types

Attaching custom context / error messages

More expressive custom errors 10

tracing
Framework for instrumenting Rust programs

Collects structured, event-based diagnostic information

First class support for async programs

Manages execution through periods of computation known as spans

Provides distinction of program events in terms of severity and custom messages

Extremely flexible for reformatting/changing

11

flamegraph
Rust powered flamegraph

generator with Cargo
support!

With a bit of setup, you can
generate this with cargo

flamegraph

Can support non-Rust

projects too

Relies on perf/dtrace

12

Closures

13

What Is A Closure?

Closures are anonymous functions that can capture values from the scope in which they're

defined.

Known as lambdas in "lesser languages"

You can save closures in a variable or pass as an argument to other functions

14

Closure Syntax

let annotated_closure = |num: u32| -> u32 {
 num
};

This looks very similar to functions, but Rust is smarter than this

Like normal variables, rust can derive closure type annotations from context!

15

Closures Simplified

fn add_one_v1 (x: u32) -> u32 { x + 1 }
let add_one_v2 = |x: u32| -> u32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

let _ = add_one_v3(3);
let _ = add_one_v4(4);

v1 is the equivalent function

We can remove type parameters in v3
This is similar to eliding the type parameter in let v = Vec::new()

For v4 , we can remove the {} since the body is only one line

16

How about this?

let example_closure = |x| x;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

17

Annotations Are Still Important

let example_closure = |x| x;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

error[E0308]: mismatched types
 --> src/main.rs:5:29
 |
5 | let n = example_closure(5);
 | --------------- ^- help: try using a conversion method: `.to_string()`
 | | |
 | | expected struct `String`, found integer
 | arguments to this function are incorrect
 |
note: closure parameter defined here
 --> src/main.rs:2:28
 |
2 | let example_closure = |x| x;
 | ^

18

So What Happened Here?

let example_closure = |x| x;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

The first time we called example_closure with a String

Rust inferred the type of x and the return type to be String

Those types are now bound to the closure

example_closure(5) will not type check

19

Capturing References

Closures can capture values from their environment in three ways:

Borrowing immutably

Borrowing mutably

Taking ownership
i.e. moving the value to the closure

20

Immutable Borrowing in Closures

let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let only_borrows = || println!("From closure: {:?}", list);

println!("Before calling closure: {:?}", list);
only_borrows();
println!("After calling closure: {:?}", list);

Note how once a closure is defined, it's invoked in the same manner as a function

Because we can have many immutable borrows, Rust allows us to to print, even with

the closure holding a reference

21

Mutable Borrowing in Closures

let mut list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let borrows_mutably = || list.push(7);

borrows_mutably();
println!("After calling closure: {:?}", list);

This seems like it would work...

22

Mutable Borrowing in Closures

error[E0596]: cannot borrow `borrows_mutably` as mutable, as it is not declared as mutable
 --> src/main.rs:7:5
 |
5 | let borrows_mutably = || list.push(7);
 | ---- calling `borrows_mutably` requires mutable
 | binding due to mutable borrow of `list`
6 |
7 | borrows_mutably();
 | ^^^^^^^^^^^^^^^ cannot borrow as mutable
 |
help: consider changing this to be mutable
 |
5 | let mut borrows_mutably = || list.push(7);
 | +++

Mutability must always be explicitly stated

Rust only considers the invocation a borrow, not the definition

23

Mutable Borrowing in Closures

let mut list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let mut borrows_mutably = || list.push(7);

borrows_mutably();
println!("After calling closure: {:?}", list);

Before defining closure: [1, 2, 3]
After calling closure: [1, 2, 3, 7]

Note how we can't have a println! before invoking borrows_mutably like before

borrows_mutably isn't called again, so Rust knows the borrowing has ended
This is why we can call println! after

24

Giving Closures Ownership

let mystery = {
 let x = rand::random::<u32>();
 |y: u32| -> u32 { x + y }
};

println!("Mystery value is {}", mystery(5));

error[E0373]: closure may outlive the current block, but it borrows `x`,
 which is owned by the current block
 --> src/main.rs:6:9
 |
6 | |y: u32| -> u32 { x + y }
 | ^^^^^^^^^^^^^^^ - `x` is borrowed here
 | |
 | may outlive borrowed value `x`
 |
 |
4 | let mystery = {
 | ^^^^^^^
help: to force the closure to take ownership of `x`, use the `move` keyword
 |
6 | move |y: u32| -> u32 { x + y }
 | ++++

25

Giving Closures Ownership

let mystery = {
 let x = rand::random::<u32>();
 move |y: u32| -> u32 { x + y }
};

println!("Mystery value is {}", mystery(5));

We can tell a closure to own a value using the move
keyword

This is important for thread safety in Rust!

26

Thread sneak peek

Let's briefly explore spawning a new thread with a closure.

fn main() {
 let list = vec![1, 2, 3];
 println!("Before defining closure: {:?}", list);

 std::thread::spawn(move || println!("From thread: {:?}", list))
 .join()
 .unwrap();
}

The println! technically only needs an immutable reference to list

But what would happen if the parent thread dropped list before the child thread
ran?

Use after free!
27

Handling Captured Values

A closure body can do any of the following to a value:
Move a captured value out of the closure

Mutate a captured value

Neither of the above

It could also have captured nothing to begin with!

The properties a closure has determines its function trait

28

The Fn traits

What do you mean, function trait???

Rust has 3 special traits that define the kind of closure we want to use

The 3 traits are:

FnOnce

FnMut

Fn

29

The Fn traits

FnOnce applies to closures that can be called once

If a closure moves captured values out of its body, it can only be called once, thus
it implements FnOnce

FnMut applies to closures that might mutate the captured values
These closures can be called more than once

Fn applies to all other types of closures

Closures that don't move values out

Closures that don't mutate

Closures that don't capture anything

30

Closure Traits
Visualized

Fn is also FnMut and FnOnce

FnMut is also FnOnce

31

FnOnce
Let's look at some examples of FnOnce .

let my_str = String::from("x");
let consume_and_return = move || my_str;

Recall that Rust will never implicitly clone my_str

This closure consumes my_str by giving ownership back to the caller

Closures that can be called once implement FnOnce

All closures implement this trait, since all closures can be called

A closure that moves captured values out of its body will only implement FnOnce ,

and not FnMut or Fn

32

unwrap_or_else
Let's look at the definition of the unwrap_or_else method on Option<T> .

impl<T> Option<T> {
 pub fn unwrap_or_else<F>(self, f: F) -> T
 where
 F: FnOnce() -> T
 {
 match self {
 Some(x) => x,
 None => f(),
 }
 }
}

33

unwrap_or_else
First let's observe the function definition.

pub fn unwrap_or_else<F>(self, f: F) -> T
where
 F: FnOnce() -> T
// <-- snip -->

This method is generic over F

F is the type of the closure we provide when calling unwrap_or_else

F must be able to be called once, take no arguments, and return a T

34

unwrap_or_else
Now let's observe the function body.

{
 match self {
 Some(x) => x,
 None => f(),
 }
}

If the Option is Some , then extract the inner value

Otherwise, call f once and return the value

Note that f is not required to only be FnOnce here, it could be FnMut or Fn

35

FnMut
Recall that FnMut applies to closures that might mutate the captured values.

let mut x: usize = 1;
let mut add_two_to_x = || x += 2;
add_two_to_x();

Note that this will not compile without the mut add_two_to_x
mut signals that we are mutating our closure's environment

36

FnMut
Another simple example:

let mut base = String::from("");
let mut build_string = |addition| base.push_str(addition);

build_string("Ferris is ");
build_string("happy!");

println!("{}", base);

Ferris is happy!

37

FnMut
Just like in unwrap_or_else , we can pass a FnMut closure to a function.

fn do_twice<F>(mut func: F)
where
 F: FnMut(),
{
 func();
 func();
}

38

Fn
Finally, the Fn trait is a superset of FnOnce and FnMut .

let double = |x| x * 2; // captures nothing

let mascot = String::from("Ferris");
let is_mascot = |guess| mascot == guess; // mascot borrowed as immutable

let my_sanity = ();
let cmu = move || {my_sanity;}; // captures sanity and never gives it back...

Fn applies to closures that:

Don't move captured values out of their body

Don't mutate captured values

Don't capture anything from their environment

Can be called more than once without mutating the environment
39

Fn
fn reduce<F, T>(reducer: F, data: &[T]) -> Option<T>
where
 F: Fn(T, T) -> T,
{
 // <-- snip -->
}

We can specify the arguments and return types for Fn

While this example is generic, we could've replaced T with a concrete type

40

fn ?
Rust also has function pointers, denoted fn (instead of Fn).

fn add_one(x: i32) -> i32 {
 x + 1
}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
 f(arg) + f(arg)
}

fn main() {
 let answer = do_twice(add_one, 5);
}

fn is a type* that implements all 3 closure traits Fn , FnMut , and FnOnce

41

Recap: Closure Traits

Fn , FnMut , FnOnce describe different groups of closures
You don't impl them, they apply to a closure automatically if appropriate

A single closure can implement one or multiple of these traits

FnOnce - call at least once, environment may be consumed

FnMut - call multiple times, environment may change

Fn - call multiple times, environment doesn't change

42

Iterators

Sorry functional haters

43

What is an Iterator?

Iterators allow you to perform some task on a sequence of elements

Iterators manage iterating over each item and determining termination

Rust iterators are lazy

This means we don't pay a cost until we consume the iterator

44

The Iterator Trait

All iterators must implement the Iterator trait:

pub trait Iterator {
 type Item;

 fn next(&mut self) -> Option<Self::Item>;

 // methods with default implementations elided
}

Keep generating Some(item)

When the Iterator is finished, None is returned

45

type Item
What's going on with the type Item ?

pub trait Iterator {
 type Item;

 fn next(&mut self) -> Option<Self::Item>;

 // methods with default implementations elided
}

This is an associated type

To define Iterator you must define the Item you're iterating over

Different from generic types!
There can only be one way to iterate over something

46

Custom Iterator Example

Let's say we want to implement an iterator that generates the Fibonacci sequence.

struct Fibonacci {
 curr: u32,
 next: u32,
}

First need to declare the struct that can implement Iterator

We need to store two numbers to compute the next element

47

Fibonacci Example

impl Iterator for Fibonacci {
 type Item = u32;

 // We use Self::Item in the return type, so we can change
 // the type without having to update the function signatures.
 fn next(&mut self) -> Option<Self::Item> {
 let current = self.curr;

 self.curr = self.next;
 self.next = current + self.next;

 // No endpoint to a Fibonacci sequence - `Some` is always returned.
 Some(current)
 }
}

Notice Self::Item is aliased to u32
48

Vec Iterators

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();
for val in v1_iter {
 println!("Got: {}", val);
}

for val in v1 {
 println!("Got: {}", val);
}

These do the same thing!

We saw this code before in lecture 4

Except now we explicitly create the iterator that Rust did for us

49

Iterating Explicitly

let v1 = vec![1, 2, 3];

let mut v1_iter = v1.iter();

assert_eq!(v1_iter.next(), Some(&1));
assert_eq!(v1_iter.next(), Some(&2));
assert_eq!(v1_iter.next(), Some(&3));
assert_eq!(v1_iter.next(), None);

Here we see how the required next function operates

Notice how v1_iter is mutable
When we call next() we've consumed that iterator element

The iterator's internal state has changed

Note that iter() provides immutable borrows to v1 's elements
50

Iterators and Mutable Borrows

let mut vec = vec![1, 2, 3]; // Note we need vec to be mutable
let mut mutable_iter = vec.iter_mut();

while let Some(val) = mutable_iter.next() {
 *val += 1;
}

println!("{:?}", vec);

[2, 3, 4]

Before we saw that v1.iter() gave us references to elements

We can use iter_mut() for &mut

51

Iterators and Ownership

let mut vec = vec![1, 2, 3];
let owned_iter = vec.into_iter(); // vec is *consumed*
for val in owned_iter {
 println!("{}", val);
}
// owned_iter is consumed

To make an iterator that owns its values we have into_iter()

This is what consuming for loops do under the hood

52

Consuming Iterators

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

let total: i32 = v1_iter.sum(); // .sum() takes ownership of v1_iter

assert_eq!(total, 6);

The standard library has many functions for iterators

Some of these functions consume the iterator

53

Other consuming functions

collect(self) - Coming soon

fold(self, init: B, f: F)

count(self)

54

Producing Iterators

let v1: Vec<i32> = vec![1, 2, 3];

v1.iter().map(|x| x + 1);

This code seems fine...

55

Producing Iterators

warning: unused `Map` that must be used
 --> src/main.rs:4:5
 |
4 | v1.iter().map(|x| x + 1);
 | ^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: iterators are lazy and do nothing unless consumed
 = note: `#[warn(unused_must_use)]` on by default

warning: `iterators` (bin "iterators") generated 1 warning
 Finished dev [unoptimized + debuginfo] target(s) in 0.47s
 Running `target/debug/iterators`

Zero-cost abstractions at work

Rust won't make us pay for our iterator until we use it

It will compile and warn us of unused data
56

Producing Iterators

let v2: Vec<_> = (1..4).map(|x| x + 1).collect();

println!("{:?}", v2);

[2, 3, 4]

We use collect() to tell Rust we're done modifying our iterator and want to convert
our changes to a Vec

57

Filter

fn filter_by(list : Vec<i32>, val : i32) -> Vec<i32> {
 list.into_iter().filter(|x| x == val).collect()
}

--> src/main.rs:2:35
 |
2 | list.into_iter().filter(|x| x == val).collect()
 | ^^ no implementation for `&i32 == i32`
 |

Some iterator functions take a reference instead of
ownership

Note how our filter closure captures val for our filtering

needs

58

Filter

list.into_iter().filter(|&x| x == val).collect()

or

list.into_iter().filter(|x| *x == val).collect()

We either explicitly match on the reference or dereference

59

Chaining It Together

let iter = (0..100).map(|x| x*x).skip(1).filter(|y| y % 3 == 0);
println!("{:?}", iter);
// Filter { iter: Skip { iter: Map { iter: 0..100 }, n: 2 } }
for x in iter.take(5) {
 print!("{}, ", x); // 9, 36, 81, 144, 225,
}

Read as: Print first 5 squares skipping 0 divisible by 3

Note filter doesn't need a deref here for %

60

Iterator Recap

Iterators is an extremely powerful structure in Rust

View std library for more info on functions

Rules regarding closures and ownership still apply

iter

iter_mut

into_iter

Iterators are lazy

Remember .collect() !

61

Next Lecture: ISD

Instructors still debating

Thanks for coming!

62

