
Intro to Rust LangIntro to Rust Lang

LifetimesLifetimes

1

Today: Lifetimes

We've used the term "lifetime" a few times before, and today we're going to

explore what exactly it means.

What is 'a lifetime?

How to think about lifetimes

Other perspectives...

2

Lifetimes

Lifetimes are all about references, and nothing else.

Informal definition:

Lifetimes provide a way for Rust to validate pointers at compile time

Formal definition:

Lifetimes are named regions of code that a reference must be valid for

Remember that references are just pointers with constraints!

3

Lifetimes vs Generics and Traits

Lifetimes are similar to trait bounds.

Traits ensure that a generic type has the behavior we want

Lifetimes ensure that references are valid for as long as we need them to be

4

Validating References

The main goal of lifetimes it to prevent dangling references.

fn main() {
let r;

 {
let x = 5;

 r = &x;
 }

println!("r: {}", r);
}

What is the issue with this code?

5

Validating References

error[E0597]: `x` does not live long enough
 --> src/main.rs:6:13
 |
6 | r = &x;
 | ^^ borrowed value does not live long enough
7 | }
 | - `x` dropped here while still borrowed
8 |
9 | println!("r: {}", r);
 | - borrow later used here

The value that r refers to has gone out of scope before we could use it

The scope of r is "larger" than the scope of x

6

The Borrow Checker

The Rust compiler's borrow checker will compare scopes

to determine whether all borrows are valid.

Here is the same code, but with a lifetime diagram:

fn main() {
let r; // ---------+-- 'a

// |
 { // |

let x = 5; // -+-- 'b |
 r = &x; // | |
 } // -+ |

// |
println!("r: {}", r); // |

} // ---------+

7

The Borrow Checker

fn main() {
let r; // ---------+-- 'a

// |
 { // |

let x = 5; // -+-- 'b |
 r = &x; // | |
 } // -+ |

// |
println!("r: {}", r); // |

} // ---------+

The borrow checker will compare the "size" of the two

lifetimes

r has a lifetime of 'a

r refers to a variable with lifetime 'b

b h h

8

Placating the Borrow Checker

We can fix this code by removing the scope.

fn main() {
let x = 5; // ----------+-- 'b

// |
let r = &x; // --+-- 'a |

// | |
println!("r: {}", r); // | |

// --+ |
} // ----------+

x now "outlives" r , so r can reference x

9

Generic Lifetimes

Let's try to write some string functions.

fn main() {
let string1 = String::from("abcd");
let string2 = "xyz";

let result = longest(string1.as_str(), string2);
println!("The longest string is {}", result);

}

We want this output:

The longest string is abcd

Let's implement longest !
10

longest

Here's a first attempt:

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

 x
 } else {
 y
 }
}

We don't want to take ownership, so we take &str inputs

11

longest error

Unfortunately, our attempt will not compile:

error[E0106]: missing lifetime specifier
 --> src/main.rs:9:33
 |
9 | fn longest(x: &str, y: &str) -> &str {
 | ---- ---- ^ expected named lifetime parameter
 |
 = help: this function's return type contains a borrowed value,
 but the signature does not say whether it is borrowed from `x` or `y`
help: consider introducing a named lifetime parameter
 |
9 | fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 | ++++ ++ ++ ++

12

longest error

The help text from the compiler error reveals some useful information:

 = help: this function's return type contains a borrowed value,
 but the signature does not say whether it is borrowed from `x` or `y`

Rust can't figure out if the reference returned refers to x or y

In fact, neither do we!

13

longest error

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

 x
 } else {
 y
 }
}

We don't know which execution path this code will take

We also don't know the lifetimes of the input references

Thus we cannot determine the lifetime we return!

We will need to annotate these references

14

Lifetime Annotation Syntax

We can annotate lifetimes with generic parameters that start with a ' , like 'a .

&i32 // a reference
&'a i32 // a reference with an explicit annotated lifetime
&'a mut i32 // a mutable reference with an explicit lifetime

&'hello usize // annotations can be any word or character,
&'world bool // as long as it starts with a tick (')

Annotations do not change the how long references live, they only describe

the relationship between lifetimes of references

An annotation by itself has little meaning

15

longest Lifetimes

Let's return back to our longest function.

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

 x
 } else {
 y
 }
}

What do we want the function signature to express?

What should the relationship be between the lifetimes of

the references?

16

longest Lifetimes

What exactly are we returning?

if x.len() > y.len() {
 x
} else {
 y
}

We return either x or y , which each have their own lifetimes

We want the returned reference to be valid as long as both input references

x and y are valid

So we want lifetimes of x and y to outlive the returned lifetime

17

longest Lifetimes

Since lifetimes are a kind of generic parameter, we must

declare them like normal generic type parameters.

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {

 x
 } else {
 y
 }
}

This will compile now!

Remember that these lifetime annotations don't change

the lifetimes of any values
18

Lifetime Annotations in Functions

We can extrapolate a lot from a function's signature, even without the body.

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str;

This function takes two string slices (x and y) that live at least as long as the

lifetime 'a

The string slice returned (the longer of x or y) will also live at least as long

as 'a

19

Lifetime Annotations in Functions

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str;

When calling longest , the lifetime that is substituted for 'a is the

intersection of the lifetimes of x and y

In practice, this means the lifetime returned by longest is the same as the

smaller of the two input lifetimes

20

Borrow Checker Example 1

Let's look at some examples where the borrow checker is and isn't happy.

fn main() {
let string1 = String::from("long string is long");

 {
let string2 = String::from("xyz");
let result = longest(string1.as_str(), string2.as_str());
println!("The longest string is {}", result);

 }
}

string1 is valid in the outer scope

string2 is valid in the inner scope

result should only be valid in the smaller scope (by our lifetime annotations)

Since println! is in the smaller (inner) scope this works!

21

Borrow Checker Example 2

Let's reorder some things around.

fn main() {
let string1 = String::from("xyz");
let result;

 {
let string2 = String::from("long string is long");

 result = longest(string1.as_str(), string2.as_str());
 }

println!("The longest string is {}", result);
}

result should only be valid in the smaller (inner) scope,

but we try to reference it in the outer scope

22

Borrow Checker Example 2

Sure enough, this does not compile, and Rust gives us this error:

error[E0597]: `string2` does not live long enough
 --> src/main.rs:6:44
 |
6 | result = longest(string1.as_str(), string2.as_str());
 | ^^^^^^^^^^^^^^^^
 borrowed value does not live long enough
7 | }
 | - `string2` dropped here while still borrowed
8 | println!("The longest string is {}", result);
 | ------ borrow later used here

23

Borrow Checker Example 3

What if we knew (as the programmer) that string1 is always

longer than string2 ?

Let's switch the strings around:

let string1 = String::from("long string is long");
let result;
{

let string2 = String::from("xyz");
 result = longest(string1.as_str(), string2.as_str());
}
println!("The longest string is {}", result);

24

Borrow Checker Example 3

let string1 = String::from("long string is long");
let result;
{

let string2 = String::from("xyz");
 result = longest(string1.as_str(), string2.as_str());
}
println!("The longest string is {}", result);

Even though we know (as a human) that the reference will

be valid, the compiler does not know

25

Avoiding Lifetime Annotations

Suppose we wanted to always return the first input, x .

fn first<'a>(x: &'a str, y: &str) -> &'a str {
 x
}

We don't need to annotate y with 'a , because the return value doesn't care

about y 's lifetime

26

Lifetimes of Return Values

The lifetime of a return value must match the lifetime of one of

the inputs.

fn dangling<'a>(x: &str, y: &str) -> &'a str {
let result = String::from("really long string");

 result.as_str()
}

If it didn't depend on an input, then it would always be a

dangling reference!

27

Lifetime Elision

All references must have a lifetime. But we've seen many references without

lifetime annotations...

This is a version of a function we saw back in week 2:

fn first_word(s: &str) -> &str {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return &s[0..i];
 }
 }

 &s[..]
}

28

Story Time

Long ago, in the dark ages of the 2010s, every reference needed an explicit lifetime.

fn first_word<'a>(s: &'a str) -> &'a str {

Before Rust 1.0, every single & needed an explicit 'something annotation

This became incredibly repetitive, and so the Rust team programmed the

borrow checker to infer lifetime annotation patterns of certain situations

These patterns are called the lifetime elision rules

29

Lifetime Elision

Lifetime elision does not provide full inference, it will only infer when it is

absolutely sure it is correct

Lifetimes on function or method arguments are called input lifetimes, and

lifetimes on return values are called output lifetimes

There are only 3 lifetime elision rules, the first for input lifetimes, the last two

for output lifetimes

30

Lifetime Elision Rule 1

The first rule is that the compiler will assign a different lifetime parameter for each

input lifetime.

fn foo(x: &i32);
fn foo<'a>(x: &'a i32);

fn bar(x: &i32, y: &i32);
fn bar<'a, 'b>(x: &'a i32, y: &'b i32);

31

Lifetime Elision Rule 2

The second rule is that if there is only 1 input lifetime parameter, then it is

assigned to all output lifetimes.

fn foo(x: &i32) -> &i32;
fn foo<'a>(x: &'a i32) -> &'a i32;

fn bar(arr: &[i32]) -> (&i32, &i32);
fn bar<'a>(arr: &'a [i32]) -> (&'a i32, &'a i32);

32

Lifetime Elision Rule 3

If there are multiple input lifetime parameters, but the first parameter is &self or

&mut self , the lifetime of &self is assigned to all output lifetimes.

This only applies to methods

Makes writing methods much nicer!

Examples to come later...

33

Lifetime Elision Example 1

Let's pretend we are the compiler, and let's attempt to apply the lifetime elision

rules to first_word .

fn first_word(s: &str) -> &str;

34

Lifetime Elision Example 1

We apply the first rule, which specifies that each parameter gets its own lifetime.

fn first_word<'a>(s: &'a str) -> &str;

35

Lifetime Elision Example 1

The second rule specifies that the lifetime of the single input parameter gets

assigned to all output lifetimes, so the signature becomes this:

fn first_word<'a>(s: &'a str) -> &'a str;

Since all references have lifetime annotations, we're done!

36

Lifetime Elision Example 2

So why didn't elision work with longest ? Let's trace it out!

We start with this signature without annotations:

fn longest(x: &str, y: &str) -> &str;

37

Lifetime Elision Example 2

Let's apply the first rule and get annotations for all inputs.

fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &str;

What now?

38

Lifetime Elision Example 2

fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &str;

The second rule doesn't apply here, because there is more than 1 input

lifetime ('a and 'b)

Since Rust cannot figure out what to do, it gives a compiler error to the

programmer so they can write the annotations themselves

39

Lifetimes in Structs

So far, all of the struct s we've looked at have held owned type fields.

If we want a struct to hold a reference, we need to annotate them.

struct ImportantExcerpt<'a> {
 part: &'a str,
 importance: i32,
}

fn main() {
let novel = String::from("Call me Ishmael. Some years ago...");
let first_sentence = novel.split('.').next().expect("Could not find a '.'");
let i = ImportantExcerpt {

 part: first_sentence,
 importance: 42,
 };
}

40

Lifetimes in Structs

struct ImportantExcerpt<'a> {
 part: &'a str,
 importance: i32,
}

As with generic data types, we declare the name of the generic lifetime

parameter inside angle brackets

This annotation means an instance of ImportantExcerpt can’t outlive the

reference it holds in its part field

41

Lifetimes in impl Blocks

Similarly, we need to annotate impl blocks with lifetime parameters.

impl<'a> ImportantExcerpt<'a> {
fn importance(&self) -> i32 {

self.importance
 }
}

42

Lifetimes in Methods

Here is an example where the third elision rule is applied:

impl<'a> ImportantExcerpt<'a> {
fn announce_and_return_part(&self, announcement: &str) -> &str {

println!("Attention please: {}", announcement);
self.part

 }
}

The first rule gives both &self and announcement their own lifetimes

The third rule gives the return lifetime the lifetime of &self

43

Putting it all together...

Let’s briefly look at the syntax of specifying generic type parameters, trait bounds,

and lifetimes all in one function!

fn longest_with_an_announcement<'a, T>(x: &'a str, y: &'a str, ann: T) -> &'a str
where
 T: Display,
{

println!("Announcement! {}", ann);

if x.len() > y.len() {
 x
 } else {
 y
 }
}

44

Lifetime Bounds

Lifetimes can be bounds, just like traits.

#[derive(Debug)]
struct Ref<'a, T: 'a>(&'a T);

Ref contains a reference, with a lifetime of 'a , to a generic type T

T is bounded such that any references in T must live at least as long as 'a

Additionally, the lifetime of Ref may not exceed 'a

45

Lifetime Bounds

Here is a similar example, but with a function instead of a struct .

fn print_ref<'a, T>(t: &'a T)
where
 T: Debug + 'a,
{

println!("print_ref(t) is {:?}", t);
}

T must implement Debug , and all references in T must outlive 'a

Additionally, 'a must outlive this function call

46

Lifetime Bounds

Putting the Ref and print_ref together:

#[derive(Debug)]
struct Ref<'a, T: 'a>(&'a T);

fn print_ref<'a, T>(t: &'a T)
where
 T: Debug + 'a,
{

println!("print_ref(t) is {:?}", t);
}

fn main() {
let x = vec![9, 8, 0, 0, 8];
let ref_x = Ref(&x);
print_ref(&ref_x);
// Prints to stdout: print_ref(t) is Ref([9, 8, 0, 0, 8])

}
47

Lifetime-bounded Lifetimes

We can have lifetimes that are bounded by other lifetimes.

// Takes in a `&'a i32` and return a `&'b i32` as a result of coercion
fn choose_first<'a: 'b, 'b>(first: &'a i32, _: &'b i32) -> &'b i32 {
 first
}

fn main() {
let first = 2; // Longer lifetime

 {
let second = 3; // Shorter lifetime
println!("{} is the first", choose_first(&first, &second));

 }
}

'a: 'b reads as "lifetime 'a outlives 'b "
48

The 'static Lifetime

There is a special lifetime called 'static .

let s: &'static str = "I have a static lifetime";

'static implies that the reference will live until the end of the program (it is

valid until the program stops running)

Here, s is stored in the program binary, so it will always be valid!

49

'static Error Messages

You may see suggestions to use the 'static lifetime in error messages.

fn foo() -> &i32 {
let x = 5;

 &x
}

help: consider using the `'static` lifetime, but this is uncommon unless you're
 returning a borrowed value from a `const` or a `static`
 |
2 | fn foo() -> &'static i32 {
 | +++++++

Before making a change, think about if your reference will really live until the

end of the program

You may actually be trying to create a dangling reference!
50

'static vs static

There are two common ways to make a variable with a 'static lifetime.

1. Make a string literal with has type &'static str

2. Make a constant with the static declaration

51

'static vs static Example

static NUM: i32 = 42;
static NUM_REF: &'static i32 = &NUM;

fn main() {
let msg: &'static str = "Hello World";
println!("{msg} {NUM_REF}!");

}

Hello World 42!

52

'static Memory Leaks

There is a third way: we can create 'static values by leaking memory.

fn random_vec() -> &'static [usize; 100] {
let mut rng = rand::thread_rng();
let mut boxed = Box::new([0; 100]);

 boxed.try_fill(&mut rng).unwrap();
Box::leak(boxed)

}

fn main() {
let first: &'static [usize; 100] = random_vec();
let second: &'static [usize; 100] = random_vec();
assert_ne!(first, second)

}

This allows us to dynamically create a 'static reference!
53

The 'static Bound

'static can also be used as a type bound. However...

There is a subtle difference between the 'static lifetime and the 'static

bound

The 'static bound means that the type does not contain any non-static

references

This means that all owned data implicitly has a 'static bound, since owned

data holds no references

54

'static Bound Example

Here's an example of using a 'static bound.

fn print_it(input: impl Debug + 'static) {
println!("'static value passed in is: {:?}", input);

}

fn main() {
// i is owned and contains no references,
// thus it has a 'static bound
let i = 5;
print_it(i);

// oops, &i only has the lifetime defined by
// the scope of main, so it's not 'static
print_it(&i);

}
55

'static Bound Example

We get a compiler error:

error[E0597]: `i` does not live long enough
 --> src/lib.rs:15:15
 |
15 | print_it(&i);
 | ---------^^--
 | | |
 | | borrowed value does not live long enough
 | argument requires that `i` is borrowed for `'static`
16 | }
 | - `i` dropped here while still borrowed

56

Review

Rust has lifetimes to prevent dangling references

The borrow checker will ensure that lifetimes are always valid

Rust will allow you elide lifetime annotations in some situations

57

Further Reading

You can find some more examples here: Rust By Example

If you want to go really in depth, read the Rustonomicon chapter on lifetimes

58

https://doc.rust-lang.org/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/nomicon/lifetimes.html

Another Perspective

What is 'a lifetime?

This is a great video made by leddoo that explains another way to think

about lifetimes!

Instead of lifetimes as regions of code or scopes, what if we thought about

lifetimes as regions of memory?

Let's watch it together!

59

https://www.youtube.com/watch?v=gRAVZv7V91Q

Watch Party

What is 'a lifetime?

60

https://www.youtube.com/watch?v=gRAVZv7V91Q

What is 'a lifetime?

Some quick points:

Thinking about lifetimes as regions of code can be confusing

Instead, think about lifetimes as regions of valid memory

Both interpretations are valid!

61

Feedback

Please fill out the feedback form (on Piazza).

It will help us make this semester better for you

It will also help make future offerings of this course better for others!

Feedback is anonymous, so please be honest

You will receive a homework's worth of extra credit!

62

https://forms.gle/HGE62Duah9YRcJRa7

Next Lecture: Smart Pointers and

Trait Objects

Thanks for coming!

Slides created by:

Connor Tsui, Benjamin Owad, David Rudo,

Jessica Ruan, Fiona Fisher, Terrance Chen

63

