
Intro to Rust LangIntro to Rust Lang

IntroductionIntroduction

Benjamin Owad, David Rudo, and Connor Tsui

1

Welcome!

2

Meet Ferris!
Ferris is Rust's mascot,
and ours too!

3

Why Rust?

4

Why Rust?
What is Rust?
How does Rust compare to other languages?
What are the biggest advantages of Rust?
What are the pitfalls of Rust?
Who is Rust for?

5

What is Rust?

Rust started as a personal project of Graydon Hoare, a Mozilla Research
employee, in 2006

Mozilla sponsored the project in 2009, and released the source code in 2010

The first stable release, Rust 1.0, was announced in 2015

From the official rust website, Rust is:

Fast
Reliable
Productive

6

file:///home/connor/CMU/rust-stuco/lectures/week1/rust-lang.org

What is Rust?
Compiled language
No runtime (no garbage collector)
Imperative, but with functional features
Strong static typing

7

Rust vs Python
Significantly faster
Much lower memory use
Multi-threaded
Comprehensive type system

8

Rust vs Java
No runtime overhead from the JVM or a garbage collector
Much lower memory use
Zero-cost abstractions
First-class support for modern paradigms

9

Rust vs C/C++
No segfaults!
No null pointers!
No buffer overflows!
No data races!
Memory safety as a guarantee through the type checker
Robust type system with functional patterns
Unified build system and dependency management

10

Rust Is Memory Safe
"C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you
do it blows your whole leg off" - Bjarne Stroustrup, creator of C++
Safety by default makes it much harder to shoot yourself in the foot
Memory accesses checked at compile-time
Powerful type system supports thread safety

11

Rust Is Low-Level
Compiles to machine code
No runtime (no garbage collector)
Memory can be allocated deliberately
Support for raw pointers
Support for inline assembly
Zero-overhead FFI

12

Rust Is Modern
Rust is only 8 years old
Algebraic and generic data types
Modern developer tooling
Included build system and dependency management
Macros / metaprogramming support

13

Pitfall: Learning curve
Writing Rust feels very different
The borrow checker can get in your way
No object oriented programming
That is what we are here for!

14

Pitfall: Ecosystem
Rust is only 8 years old
Smaller and less mature ecosystem compared to some older languages

There is a lot of momentum here

15

Other pitfalls
Compile time is slow
Using established C++ libraries requires complicated bindings
Programming in a systems language still takes more time than in a higher-
level language

16

Who is Rust for?
Rust is for those who benefit from its great features, and do not suffer from
its pitfalls
Which means Rust is not for everyone.

17

Course Goals
By the end of the semester, we want you all to:

Be able to read, write, and reason about Rust code
Become an intermediate to advanced Rust developer
Understand the importance of the Rust language
Be confident that you can use Rust going forward!

18

Cargo Basics

19

Hello World!
To create an executable, we need a main function:

// main.rs

fn main() {
 println!("Hello, world!");
}

To compile main.rs , use rustc .

$ rustc main.rs

20

Cargo
Rust has its own build system and package manager called Cargo.

Cargo is included with all Rust distributions, so no make files or third-party
build systems
Manages packages similar to pip for python or npm for node.js

21

Creating a new project
To create a new cargo project called hello_cargo , use cargo new .

$ cargo new hello_cargo
$ cd hello_cargo

You will find a few important things
.git repository and .gitignore

Cargo.toml

src/main.rs

We will come back Cargo.toml in future weeks

22

Building your project
To build your project, use cargo build .

$ cargo build
 Compiling hello_cargo v0.1.0 (<path>/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 1.00s

This creates an executable file at target/debug/hello_cargo

What if we want to actually run this executable?
We could run ./target/debug/hello_cargo , but this is a lot to type...

23

Running your project
To run your project, use cargo run .

$ cargo run
 Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.42s
 Running `target/debug/hello_cargo`
Hello, world!

Note that if you compiled with cargo build right before, you wouldn't see
the Compiling hello_cargo ... line

24

Check if your project compiles
To check your code for syntax and type errors, use cargo check

$ cargo check
 Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
 Finished dev [unoptimized + debuginfo] target(s) in 0.42s

Much faster than cargo build since it doesn't build the executable

Useful when programming to check if your code still compiles

25

Cargo recap
We can create a project using cargo new

We can build a project using cargo build

We can build and run a project in one step using cargo run

We can check a project for errors using cargo check

Cargo stores our executable in the target/debug directory

26

Variables and Mutability

27

Variables
Variables are values bound to a name. We define variables with the let keyword.

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
}

28

Immutability
All variables in Rust are immutable by default.

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}

What happens when we try to compile this?

29

Immutability
When we try to compile, we get this error message:

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`
3 | println!("The value of x is: {}", x);
4 | x = 6;
 | ^^^^^ cannot assign twice to immutable variable

Let's follow the compiler's advice!
30

Mutability
To declare a variable as mutable, we use the mut keyword.

fn main() {
 let mut x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}

When we run the program now, we now get this:

$ cargo run
 <-- snip -->
The value of x is: 5
The value of x is: 6

31

Constants
Like immutable variables, constants are values bound to a name.

const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

Constants cannot be mut

Constants must have an explicit type
We will talk about types like u32 in a few slides

32

Scopes and Shadowing
You can create nested scopes within functions with curly braces {} .

fn main() {
 let x = 5;

 let x = x + 1;

 {
 let x = x * 2;
 println!("The value of x in the inner scope is: {}", x);
 }

 println!("The value of x is: {}", x);
}

Let's dissect this!
33

let x = 5;
let x = x + 1;
{
 let x = x * 2;
 println!("The value of x in the inner scope is: {}", x);
}
println!("The value of x is: {}", x);

x is bound to 5 first

A new variable x is created and bound to x + 1 , i.e. 6

An inner scope is created with the opening curly brace {

The third let statement shadows x

The shadowed x is set to x * 2 = 12

The inner scope ends with the closing curly brace }

x returns to being 6 again
34

let x = 5;
let x = x + 1;
{
 let x = x * 2;
 println!("The value of x in the inner scope is: {}", x);
}
println!("The value of x is: {}", x);

Let's run this now!

$ cargo run
 <-- snip -->
The value of x in the inner scope is: 12
The value of x is: 6

35

Aside: Shadowing vs Mutability
Mutability:

let mut spaces = " ";
spaces = spaces.len();

 |
2 | let mut spaces = " ";
 | ----- expected due to this value
3 | spaces = spaces.len();
 | ^^^^^^^^^^^^ expected `&str`, found `usize`
 |

Expected one type, got something else
We'll talk about types in a few slides!

36

Aside: Shadowing vs Mutability
Shadowing:

let spaces = " ";
let spaces = spaces.len();

Even though the types are different, the let keyword
allows us to redefine the spaces variable

37

Shadowing vs Mutability
Mutability lets us change the value of a variable

We get a compile time error if we try to modify a non- mut variable

Shadowing allows us to change what a variable's name refers to
In addition to changing the value, it can also change types

38

Types

39

Types
Like most languages, there are two main categories of Data Types.

Scalar Types
Integers
Floating-Points
Boolean
Character

Compound Types
Tuples
Arrays

40

Integers
Rust has similar integer types you would expect to see in C.

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

128-bit i128 u128

arch isize usize

41

Floating-Points
Rust has both a 32-bit and 64-bit floating-point type.

fn main() {
 let x = 2.0; // f64

 let y: f32 = 3.0; // f32
}

42

Numeric Operations
fn main() {
 // addition
 let sum = 5 + 10;

 // subtraction
 let difference = 95.5 - 4.3;

 // multiplication
 let product = 4 * 30;

 // division
 let quotient = 56.7 / 32.2;
 let truncated = -5 / 3; // Results in -1

 // remainder / modulo
 let remainder = 43 % 5;
}

43

Booleans
A boolean in Rust has two values true and false (as in most other languages).

fn main() {
 let t = true;

 let f: bool = false; // with explicit type annotation
}

Booleans are always 1 byte in size

44

Characters
Rust has a UTF-32 character type char .

fn main() {
 let c = 'z';
 let z: char = 'ℤ'; // with explicit type annotation
 let heart_eyed_cat = ' ';
}

Use char with single quotes ('a' vs. "a")

Due to char being UTF-32, a char is always 4 bytes in length

We will talk more about this and UTF-8 / UTF-32 in the future!

45

Tuples
A tuple is a way of grouping together a number of values with a variety of types.

fn main() {
 let tup: (i32, f64, u8) = (500, 6.4, 1);
}

46

Tuples
You can destructure tuples like so:

fn main() {
 let tup = (500, 6.4, 1);

 let (x, y, z) = tup;

 println!("The value of y is: {}", y);
}

47

Tuples
You can also access specific elements in the tuples like so:

fn main() {
 let x: (i32, f64, u8) = (500, 6.4, 1);

 let five_hundred = x.0;

 let six_point_four = x.1;

 let one = x.2;
}

48

Arrays
To store a collection of multiple values, we use arrays.

fn main() {
 let a = [1, 2, 3, 4, 5];
 let months = ["January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"];
}

Unlike tuples, all elements must be the same type
The number of elements is always fixed at compile time

If you want a collection that grows and shrinks, use a vector (lecture 4)
Similar to stack-allocated arrays you would see in C

49

Arrays
We define an array's type be specifying the type of the elements and the length of
the array.

let a: [i32; 5] = [1, 2, 3, 4, 5];

We can also initialize the array such that every element has the same value.

let a = [3; 5];
// let a = [3, 3, 3, 3, 3];

50

Arrays
To access an array element, we use square brackets.

fn main() {
 let a = [1, 2, 3, 4, 5];

 let first = a[0];
 let second = a[1];
}

Rust will ensure that the index is within bounds at runtime
This is not done in C/C++

51

Functions, Statements, and Expressions

52

Functions
Like most programming languages, Rust has functions.

fn main() {
 println!("Hello, world!");
 another_function();
}

fn another_function() {
 println!("Another function.");
}

$ cargo run
 <-- snip -->
Hello, world!
Another function.

53

Functions
All parameters / arguments to functions must be given an explicit type.

fn main() {
 print_labeled_measurement(5, 'h');
}

fn print_labeled_measurement(value: i32, unit_label: char) {
 println!("The measurement is: {}{}", value, unit_label);
}

$ cargo run
 <-- snip -->
The measurement is: 5h

54

Returning from Functions
You can return values back to the caller of a function with the return keyword.

fn main() {
 let x = plus_one(5);
 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 return x + 1;
}

$ cargo run
 <-- snip -->
The value of x is: 6

55

Returning from Functions
You can also omit the return keyword.

fn plus_one(x: i32) -> i32 {
 x + 1
}

$ cargo run
 <-- snip -->
The value of x is: 6

Why are we allowed do this?

56

Statements and Expressions
All functions are a series of statements optionally ending in an expression.

fn main() {
 let x = 6; // Statement
 let y = 2 + 2; // Statement resulting from the expression "2 + 2"
 2 + 2; // Expression ending in a semicolon,
 // which turns the expression into a statement with no effect
}

Statements are instructions that do some action and don't return a value
Expressions evaluate / return to a resultant value

57

Statements and Expressions
Statements

let y = 6; is a statement and does not return a value

You cannot write x = y = 6

Expressions
2 + 2 is an expression

Calling a function is an expression
A scope is also an expression

If you add a semicolon to an expression, it turns into a statement
If a scope is an expression, can scopes return values?

58

Statements and Expressions
Observe the following code where a scope returns a value.

fn main() {
 let y = {
 let x = 3;
 x + 1
 };

 println!("The value of y is: {}", y);
}

Notice that there is no semicolon after x + 1

Scopes return the value of their last expression
Since functions are scopes, they can also return values in this way!

59

Function Return Types
Let's revisit this code snippet.

fn main() {
 let x = plus_one(5);
 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1
}

Functions must have a specific return value, or return nothing
No return type is equivalent to returning the unit type ()

Notice again that there is no semicolon after x + 1

60

Suppose we did add a semicolon:

fn plus_one(x: i32) -> i32 {
 x + 1;
}

We get this error:

error[E0308]: mismatched types
 --> src/main.rs:7:24
 |
7 | fn plus_one(x: i32) -> i32 {
 |

-- ^^^ expected `i32`, found `()`
 | |
 | implicitly returns `()` as its body has no tail or `return` expression
8 | x + 1;
 | - help: remove this semicolon to return this value

61

Control Flow

62

if Expressions
We can define runtime control flow with if .

fn main() {
 let number = 3;

 if number < 5 {
 println!("condition was true");
 } else {
 println!("condition was false");
 }
}

63

if Expressions
if expressions must condition on a boolean expression.

fn main() {
 let number = 3;

 if number {
 println!("number was three");
 }
}

error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if number {
 | ^^^^^^ expected `bool`, found integer

64

else if Branching
You can handle multiple conditions with else if

fn main() {
 let number = 6;

 if number % 4 == 0 {
 println!("divisible by 4");
 } else if number % 3 == 0 {
 println!("divisible by 3");
 } else if number % 2 == 0 {
 println!("divisible by 2");
 } else {
 println!("not divisible by 4, 3, or 2");
 }
}

65

if s are Expressions!
Since if expressions are expressions, we can bind the result of an if expression
to a variable.

fn main() {
 let condition = true;
 let number = if condition { 5 } else { 6 };

 println!("The value of number is: {}", number);
}

if expressions must always return the same type in all branches

66

Loops
There are 3 kinds of loops in Rust.

loop

while

for

67

loop loops
loop will loop forever until you tell it to stop with break .

fn main() {
 let mut counter = 0;

 loop {
 counter += 1;

 if counter == 10 {
 break;
 }
 }

 println!("The counter is {}", counter);
}

break and continue apply to the innnermost loop where they are called
68

loop s are Expressions
Like everything else, you can return a value from a loop .

fn main() {
 let mut counter = 0;

 let result = loop {
 counter += 1;

 if counter == 10 {
 break counter * 2;
 }
 };

 println!("The result is {}", result);
}

69

Loop Labels
You can label loops to use with break and continue to specify which loop it
applies to.

fn main() {
 'outer: loop {
 println!("Entered the outer loop");

 'inner: loop {
 println!("Entered the inner loop");
 // break; // <-- This would break only the inner loop

 // This breaks the outer loop
 break 'outer;
 }

 println!("This point will never be reached");
 }
 println!("Exited the outer loop");
} 70

fn main() {
 'outer: loop {
 println!("Entered the outer loop");
 'inner: loop {
 println!("Entered the inner loop");
 break 'outer;
 }
 println!("This point will never be reached");
 }
 println!("Exited the outer loop");
}

Entered the outer loop
Entered the inner loop
Exited the outer loop

Applies to while and for loops too

71

while loops
Just like other languages, we have while loops that stop after some condition.

fn main() {
 let mut number = 3;

 while number != 0 {
 println!("{}!", number);

 number -= 1;
 }

 println!("LIFTOFF!!!");
}

72

for loops
We can also loop through collections with a for loop.

fn main() {
 let a = [10, 20, 30, 40, 50];

 for element in a {
 println!("the value is: {}", element);
 }
}

73

for loops and ranges
To loop over a range, use the .. syntax to create a range.

fn main() {
 for number in 1..4 {
 println!("{}...", number);
 }
 println!("SURPRISE!!!");
}

74

Recap
Variables and Mutability
Scalar and Compound Data Types
Functions, Statements, and Expressions
Control Flow

75

Course Logistics

76

Course Logistics: Grading
Attendance is 50% of your grade

We have to take attendance every lecture
You only get 2 unexcused absences

Programming assignments are the other 50%
You need 60% to pass this course

77

Course Logistics: Communication
Discord
Piazza
Email
Talk to us!

If you can't make it to lecture, tell us beforehand
If you have feedback for us, feel free to tell us!
Let us know of any ideas you have for this or future semesters!
If you have any sort of concern, talk to us!

78

https://discord.gg/hKSYvnvD
https://piazza.com/cmu/spring2024/98008/home

Course Logistics: Homework
Homeworks are designed to take less than an hour per week
If you are spending more than that, please let us know!
Autograded assignments through Gradescope
7 late days

Can use them any time in the semester
Can use at most 7 late days for a specific assignment
You can ask us for more late days if you ask in advance...

79

Installing Rust
Go to rust-lang.org/tools/install
Read and follow the instructions for installing rustup

Let us know if you run into trouble!

80

file:///home/connor/CMU/rust-stuco/lectures/week1/rust-lang.org/tools/install

Homework 1
This first homework consists of 8 small puzzles and 4 simple function
implementations
The objective is to build confidence with Rust syntax and experience
interpreting error messages
Refer to README.md for further instructions

Please let us know if you have any questions!

81

Next Lecture: Ownership
Thanks for coming!

82

