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Week 10

 We're in week 10! 

Thank you all for sticking with us!
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The Story So Far...

We have covered all of the basic features of Rust, as well as many of the intermediate
concepts

If you are confident you understand the past 9 lectures, you can probably say you are

proficient with Rust!

Now for the really interesting stuff...
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Finale

Here is the plan for the last ~3.5 lectures:

1. Smart Pointers and unsafe

2. Parallelism

3. Concurrency

4. Macros
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Epilogue

As much as we'd love to dive deep into each of these topics in depth, we simply do not

have time.

However...

The goal of this course was never to feed you information

The goal was to teach you the core ideas of Rust and how to think about it

We hope that you will take the knowledge from this class and use it to explore more

about this programming language yourself
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Final Project

Here are the high-level details about the final project:

We would like you to spend 6-8 hours developing a project of your choosing
This means a good faith attempt at completing a project

This bound includes time spent planning and thinking!

Your project should incorporate 1 of the 4 advanced topics we will talk about
We can make exceptions if you have a specific idea

If you have less than 400 homework points, you will need to do this

More details to come later!
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Smart Pointers

Rc<T>

RefCell<T>

Interior Mutability

Memory Leaks
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Motivation for Rc<T>
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Let's Make a List (again)

Let's say we wanted to make recursive-style list with Box
like before

enum List {
  Cons(i32, Box<List>),
  Nil,
}

use crate::List::{Cons, Nil};

fn main() {
  let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
  let b = Cons(3, Box::new(a));
  let c = Cons(4, Box::new(a));
}
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Cargo's Suggestion

   Compiling cons-list v0.1.0 (file:///projects/cons-list)
error[E0382]: use of moved value: `a`
  --> src/main.rs:11:30
   |
9  |     let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
   |         - move occurs because `a` has type `List`, which does not implement the `Copy` trait
10 |     let b = Cons(3, Box::new(a));
   |                              - value moved here
11 |     let c = Cons(4, Box::new(a));
   |                              ^ value used here after move

Cons  needs to own the data it holds (Recall: Box )

Using a  again when creating c , but a  has been moved
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References?

enum List<'a> {
    Cons(i32, &'a List<'a>),
    Nil,
}

use crate::List::{Cons, Nil};

fn main() {
  let nil = Nil;
  let a = Cons(10, &nil);
  let b = Cons(5, &a);
  let c = Cons(3, &a);
  let d = Cons(4, &a);
}

While it can be done, it's a little messy

Now we have to deal with lifetimes... gross
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Introducing Rc<T>
enum List {
  Cons(i32, Rc<List>),
  Nil,
}

use crate::List::{Cons, Nil};
use std::rc::Rc;

fn main() {
  let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
  let b = Cons(3, Rc::clone(&a));
  let c = Cons(4, Rc::clone(&a));
}

Short for reference counter

keeps track of the number of references to a value to determine dropping
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When to use Rc<T>
Allocate data on the heap for multiple parts of our program to read

Can’t determine at compile time which part will use the data last

Only used for single threaded scenarios (We'll talk about Arc<T>  next week)

Use Rc::new(T)  to create a new Rc<T>
Rc::clone()  isn't a deep clone, it increments the ref counter
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Cloning Demonstrated

fn main() {
    let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
    println!("count after creating a = {}", Rc::strong_count(&a));

    let b = Cons(3, Rc::clone(&a));
    println!("count after creating b = {}", Rc::strong_count(&a));
    
    {
        let c = Cons(4, Rc::clone(&a));
        println!("count after creating c = {}", Rc::strong_count(&a));
    }
    println!("count after c goes out of scope = {}", Rc::strong_count(&a));
}
// Rc::strong_count(&a) is now 0, cleaned up and dropped

count after creating a = 1
count after creating b = 2
count after creating c = 3
count after c goes out of scope = 2
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Rc<T>  Recap

Great for sharing immutable references without lifetimes

Should be used when last variable to use the data is unknown
Otherwise, make that variable the owner and have everything borrow

Provides almost no overhead

O(1) increment of counter

Potential allocation/de-allocation on heap
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RefCell<T>  and Interior Mutability

A safe abstraction over unsafe code™
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First, Cell<T>
use std::cell::Cell;

let c1 = Cell::new(5i32);
c1.set(15i32);

let c2 = Cell::new(10i32);
c1.swap(&c2);

assert_eq!(10, c1.into_inner()); // consumes cell
assert_eq!(15, c2.get()); // returns copy of value

Shareable, mutable container

Move values in and out of cell

Is used for Copy  types

where copying or moving values isn’t too resource intensive

If an option, should always be used for low overhead 17



RefCell<T>
Hold's sole ownership like Box<T>

Allows borrow checker rules to be enforced at runtime

Interface with .borrow()  or borrow_mut()

If borrowing rules are violated, panic!

Typically used when Rust's conservative checking "gets in the way"

It is not thread safe!

Use Mutex<T>  instead
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Interior Mutability

fn main() {
  let x = 5;
  let y = &mut x; // cannot borrow immutable x as mutable
}

It would be useful for a value to mutate itself in its methods but appear immutable to
other code

Code outside the value's methods wouldn't be able to mutate it

This can be achieved with RefCell<T>
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Interior Mutability with Mock Objects

pub trait Messenger {
    fn send(&self, msg: &str); // Note how this takes an &self NOT &mut self
}

pub struct LimitTracker<'a, T: Messenger> {
    messenger: &'a T,
    value: usize,
    max: usize,
}

LimitTracker  tracks a value against a maximum value and sends messages based
on how close to the maximum value the current value is

We want to mock a messenger for our limit tracker to keep track of messages for

testing
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Limit Tracker

impl<'a, T> LimitTracker<'a, T>
where
    T: Messenger,
{
    // --- snip ---
    pub fn set_value(&mut self, value: usize) {
        self.value = value;

        let percentage_of_max = self.value as f64 / self.max as f64;

        if percentage_of_max >= 1.0 {
            self.messenger.send("Error: You are over your quota!");
        } else if percentage_of_max >= 0.9 {
            self.messenger
                .send("Urgent warning: You've used up over 90% of your quota!");
        } else if percentage_of_max >= 0.75 {
            self.messenger
                .send("Warning: You've used up over 75% of your quota!");
        }
    }
}
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Our Mock Messenger

struct MockMessenger {
  sent_messages: Vec<String>,
}

impl MockMessenger {
  fn new() -> MockMessenger {
    MockMessenger { sent_messages: vec![] }
  }
}

impl Messenger for MockMessenger {
  fn send(&self, message: &str) {
    self.sent_messages.push(String::from(message));
  }
}

This code won't compile! self.sent_messages.push  requires &mut self
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Let's Use Interior Mutability

use std::cell::RefCell;

struct MockMessenger {
  sent_messages: RefCell<Vec<String>>,
}

impl MockMessenger {
  fn new() -> MockMessenger {
    MockMessenger {
      sent_messages: RefCell::new(vec![]),
    }
  }
}

impl Messenger for MockMessenger {
  fn send(&self, message: &str) {
    self.sent_messages.borrow_mut().push(String::from(message));
  }
}
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Managing Borrows

impl Messenger for MockMessenger {
  fn send(&self, message: &str) {
    let mut one_borrow = self.sent_messages.borrow_mut();
    let mut two_borrow = self.sent_messages.borrow_mut();

    one_borrow.push(String::from(message));
    two_borrow.push(String::from(message));
  }
}

We still use the &  and mut  syntax for RefCell

borrow  returns either a Ref  or RefMut  which

implement Deref
This means coercion applies: treat them like

normal references
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What Makes Each Smart Pointer Unique

Rc<T>  - Enables multiple owners of the same data

Box<T>  - Allows immutable or mutable borrows that are checked at compile time

RefCell<T>  - Allows immutable/mutable borrows that are checked at runtime
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Combining Smart Pointers: Rc<RefCell<T>>
#[derive(Debug)]
enum List {
  Cons(Rc<RefCell<i32>>, Rc<List>),
  Nil,
}

Common type seen in Rust

Enables multiple owners of mutable data (with runtime checks)

Extremely powerful, but comes with some overhead
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Rc<RefCell<T>>  List

let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;

println!("a after = {:?}", a);
println!("b after = {:?}", b);
println!("c after = {:?}", c);

a after = Cons(RefCell { value: 15 }, Nil)
b after = Cons(RefCell { value: 3 }, Cons(RefCell { value: 15 }, Nil))
c after = Cons(RefCell { value: 4 }, Cons(RefCell { value: 15 }, Nil))
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Let's Try Another List

enum List {
  Cons(i32, RefCell<Rc<List>>),
  Nil,
}

impl List {
  fn tail(&self) -> Option<&RefCell<Rc<List>>> {
    match self {
      Cons(_, item) => Some(item),
      Nil => None,
    }
  }
}

This implementation allows modifying the list structure instead of list values

Now we have a function tail  that gets the rest of our list
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What Happens?

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

println!("a initial rc count = {}", Rc::strong_count(&a));
println!("a next item = {:?}", a.tail());

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

println!("a rc count after b creation = {}", Rc::strong_count(&a));
println!("b initial rc count = {}", Rc::strong_count(&b));
println!("b next item = {:?}", b.tail());

if let Some(link) = a.tail() {
  *link.borrow_mut() = Rc::clone(&b);
}

println!("b rc count after changing a = {}", Rc::strong_count(&b));
println!("a rc count after changing a = {}", Rc::strong_count(&a));

println!("a next item = {:?}", a.tail());
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Answer

Exited with signal 6 (SIGABRT): abort program

a initial rc count = 1
a next item = Some(RefCell { value: Nil })
a rc count after b creation = 2
b initial rc count = 1
b next item = Some(RefCell { value: Cons(5, RefCell { value: Nil }) })
b rc count after changing a = 2
a rc count after changing a = 2
a next item = Some(RefCell { value: Cons(10, RefCell { value: Cons(5, RefCell...

We see that at the end we have a reference cycle!
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Let's Look Closer

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));
// a is Cons(5, Nil)

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));
// b is Cons(10, a) = Cons(10, Cons(5, Nil))

if let Some(link) = a.tail() {
    // link is Nil (pointed to by a)
    *link.borrow_mut() = Rc::clone(&b);
    // link is now b = Cons(10, a)
}
// a = Cons(5, link) = Cons(5, b) = Cons(5, Cons(10, a))
// ^^^ reference cycle of a made!

This can cause a memory leak!

Rc  only frees when the strong_count  is 0
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Avoiding Reference Cycles

We know Rc::clone  increases the strong_count

You can create a Weak<T>  reference to a value with Rc::downgrade
This increases the weak_count  and can be nonzero when the Rc  is freed

To ensure valid references, Weak<T>  must be upgraded before any use
Returns an Option<Rc<T>>
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Weak<T>  Trees

use std::cell::RefCell;
use std::rc::{Rc, Weak};

#[derive(Debug)]
struct Node {
  value: i32,
  parent: RefCell<Weak<Node>>,
  children: RefCell<Vec<Rc<Node>>>,
}
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Weak<T>  Trees In Action

fn main() {
  let leaf = Rc::new(Node {
    value: 3,
    parent: RefCell::new(Weak::new()),
    children: RefCell::new(vec![]),
  });

  println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());

  let branch = Rc::new(Node {
    value: 5,
    parent: RefCell::new(Weak::new()),
    children: RefCell::new(vec![Rc::clone(&leaf)]),
  });

  *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

  println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());
} // Tree is effectively dropped even with parent references!
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Unsafe Rust
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Into the Woods

So far, we've only seen code where memory safety is guaranteed at compile time.

Rust has a second language hidden inside called unsafe Rust

unsafe  Rust does not enforce memory safety guarantees
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Why unsafe ?
Static analysis is conservative

By definition, it enforces soundness rather than completeness

We need a way to tell the compiler: "Trust me, I know what I'm doing"

Additionally, computer hardware is inherently unsafe
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unsafe  in 2024

Rust's precise requirements for unsafe  code are still being determined

There's an entire book dedicated to unsafe  Rust called the Rustonomicon
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What is unsafe , really?
If you take anything away from today, it should be this:

Unsafe code is the mechanism Rust gives developers for taking advantage of
invariants that, for whatever reason, the compiler cannot check.

Jon Gjengset, Rust for Rustaceans
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What unsafe  is not

It's important to understand that unsafe  is not a way to skirt the rules of Rust.

Ownership

Borrow Checking

Lifetimes

unsafe  is a way to enforce these rules using reasoning beyond the compiler

The onus is on you to ensure the code is safe
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The unsafe  Keyword

There are 2 ways to use the unsafe  keyword in Rust. The first is marking a function as
unsafe .

impl<T> SomeType<T> {
    pub unsafe fn decr(&self) {
        self.some_usize -= 1;
    }
}

Here, the unsafe  keyword serves as a warning to the caller

There may be additional invariants that must be upheld before calling decr
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The unsafe  Keyword

The second way is marking an expression as unsafe

impl<T> SomeType<T> {
    pub fn as_ref(&self) -> &T {
        unsafe { &*self.ptr }
    }
}
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The unsafe  Contracts

impl<T> SomeType<T> {
    pub unsafe fn decr(&self) {
        self.some_usize -= 1;
    }

    pub fn as_ref(&self) -> &T {
        unsafe { &*self.ptr }
    }
}

The first requires the caller to be careful

The second assumes the caller was careful when invoking decr
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The unsafe  Contracts

Imagine is SomeType<T>  was really Rc<T> :

impl<T> Rc<T> {
    pub unsafe fn decr(&self) {
        self.count -= 1;
    }

    pub fn as_ref(&self) -> &T {
        unsafe { &*self.ptr }
    }
}

When self.count  hits 0, T  is dropped

What if someone else constructed &T  without incrementing count ?

As long as nobody corrupts the reference count, this code is safe
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Unsafe Superpowers

So what can we do with unsafe ?

With unsafe , we get 5 superpowers! We can:

1. Call an unsafe  function or method

2. Access or modify a mutable static variable

3. Implement an unsafe  trait

4. Access fields of union s
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Unsafe Superpowers

1. Call an unsafe  function or method

2. Access or modify a mutable static variable

3. Implement an unsafe  trait

4. Access fields of union s

These 4 things aren't all that interesting, so why the big fuss?
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THE UNSAFE SUPERPOWER

The biggest superpower of all is superpower 5!

Dereference a raw pointer

That's it

But honestly, it's enough to wreak all sorts of havoc
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Raw Pointers

Unsafe Rust has 2 types of Raw Pointers:

*const T  is an immutable raw pointer

*mut T  is a mutable raw pointer

Note that the asterisk *  is part of the type name

Immutable here means that the pointer can't directly be reassigned after being

dereferenced
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Pointers vs References

Raw Pointers themselves are allowed to do some special things:

They can ignore borrowing rules by have multiple immutable and mutable pointers to

the same location

They are not guaranteed to point to valid memory

They don't implement any automatic cleanup

They can be NULL
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Raw Pointers Example

Here's an example of creating raw pointers.

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

We have both an immutable and mutable pointer pointing to the same place

Notice how there is no unsafe  keyword here

We can create raw pointers safely, we just cannot dereference them
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Raw Pointers Example

Here is another example of creating a raw pointer.

let address: usize = 0xDEADBEEF;
let r = address as *const i32;

We construct a pointer to (likely) invalid memory

Again, no unsafe  keyword necessary here!
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Raw Pointers and unsafe
Let's actually try and dereference these pointers.

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

unsafe {
    println!("r1 is: {}", *r1);
    println!("r2 is: {}", *r2);
}

There's no undefined behavior here? Right?

Right?

 Right 
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Calling unsafe  Functions

Calling unsafe  functions is similar, we must call them in an unsafe  block.

unsafe fn dangerous() {}

fn main() {
    unsafe {
        dangerous();
    }
}

We would get an error if we called dangerous  without the unsafe  block!
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Using extern  Functions

Sometimes, we might need to interact with code from another language.

Rust has the keyword extern  that facilitates the use of a Foreign Function Interface
(FFI)

Since other languages will not have Rust's safety guarantees, we will have no idea if
they are safe to call or not!
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extern "C"
Let's see how we would set up integration with the abs  function from the C standard

library.

extern "C" {
    fn abs(input: i32) -> i32;
}

fn main() {
    unsafe {
        println!("Absolute value of -3 according to C: {}", abs(-3));
    }
}

The "C"  defines the Application Binary Interface (ABI) that the external function

uses

We have no idea if abs  is doing what it is supposed to be doing, so it is on us as the
programmer to ensure safety 55



extern "C"
We can also use extern  to allow other languages to call Rust code!

#[no_mangle]
pub extern "C" fn call_from_c() {
    println!("Just called a Rust function from C!");
}

Note how the usage of extern  does not require unsafe
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Mutable Static Variables

We can mutate global static variables with unsafe .

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
    unsafe {
        COUNTER += inc;
    }
}

fn main() {
    add_to_count(3);

    unsafe {
        println!("COUNTER: {}", COUNTER);
    }
}
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Last 2 Superpowers

The last 2 superpowers are implementing an unsafe  trait and accessing fields of a
union .

We may or may not cover unsafe  traits next week
(specifically Send  and Sync )

union s are primarily used to interface with unions in C code
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How to use unsafe  code

Just because a function contains unsafe  code doesn't mean need to mark the entire

function as unsafe

Often, we want to write unsafe  code that we know is actually safe

A common abstraction is to wrap unsafe  code in a safe function
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split_at_mut
Let's take a look at split_at_mut  from the standard library.

let mut v = vec![1, 2, 3, 4, 5, 6];

let r = &mut v[..];

let (a, b) = r.split_at_mut(3);

assert_eq!(a, &mut [1, 2, 3]);
assert_eq!(b, &mut [4, 5, 6]);
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split_at_mut
fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]);

Unfortunately, we cannot write this function using only safe Rust

How would we attempt it?

61



split_at_mut  Implementation

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
    let len = values.len();

    assert!(mid <= len);

    (&mut values[..mid], &mut values[mid..])
}

What is the issue with this?

Can you figure out what the compiler will tell us just by looking at the function

signature?
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split_at_mut  Compiler Error

If we try to compile, we get this error:

$ cargo run
   Compiling unsafe-example v0.1.0 (file:///projects/unsafe-example)
error[E0499]: cannot borrow `*values` as mutable more than once at a time
 --> src/main.rs:6:31
  |
1 | fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
  |                         - let's call the lifetime of this reference `'1`
...
6 |     (&mut values[..mid], &mut values[mid..])
  |     --------------------------^^^^^^--------
  |     |     |                   |
  |     |     |                   second mutable borrow occurs here
  |     |     first mutable borrow occurs here
  |     returning this value requires that `*values` is borrowed for `'1`

For more information about this error, try `rustc --explain E0499`.
error: could not compile `unsafe-example` due to previous error
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split_at_mut  Implementation

Let's try again with unsafe .

use std::slice;

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
    let len = values.len();
    let ptr = values.as_mut_ptr();

    assert!(mid <= len);

    unsafe {
        (
            slice::from_raw_parts_mut(ptr, mid),
            slice::from_raw_parts_mut(ptr.add(mid), len - mid),
        )
    }
}
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split_at_mut  Implementation

unsafe {
    (
        slice::from_raw_parts_mut(ptr, mid),
        slice::from_raw_parts_mut(ptr.add(mid), len - mid),
    )
}

from_raw_parts_mut  is unsafe  because it takes a raw pointer and must trust it is

valid

Since the ptr  came from a valid slice, we know it is valid!
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from_raw_parts_mut  Safety Contract

Here is the actual safety contract for from_raw_parts_mut :

/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `data` must be [valid] for both reads and writes for `len * mem::size_of::<T>()` many bytes,
///   and it must be properly aligned. This means in particular:
///
///     * The entire memory range of this slice must be contained within a single allocated object!
///       Slices can never span across multiple allocated objects.
///     * `data` must be non-null and aligned even for zero-length slices. One
///       reason for this is that enum layout optimizations may rely on references
///       (including slices of any length) being aligned and non-null to distinguish
///       them from other data. You can obtain a pointer that is usable as `data`
///       for zero-length slices using [`NonNull::dangling()`].
///
/// * `data` must point to `len` consecutive properly initialized values of type `T`.
///
/// * The memory referenced by the returned slice must not be accessed through any other pointer
///   (not derived from the return value) for the duration of lifetime `'a`.
///   Both read and write accesses are forbidden.
///
/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`,
///   and adding that size to `data` must not "wrap around" the address space.
///   See the safety documentation of [`pointer::offset`]. 66



from_raw_parts_mut  Misuse

We could very easily misuse from_raw_parts_mut  if we wanted to...

use std::slice;

let address: usize = 0xDEADBEEF;
let r = address as *mut i32;

let values: &[i32] = unsafe { slice::from_raw_parts_mut(r, 10000) };

This might seem ridiculous, but when you always assume your code is safe...
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With Great Power...

What could go wrong?

Probably not much, if you're careful

If you do get something wrong though...

With unsafe , you hold great responsibility
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Undefined Behavior

If you get something wrong, your program now has undefined behavior.

It should go without saying that undefined behavior is bad

The best scenario is you get a visible error:

Segfaults

Unexpected deadlocks

Garbled output

Panics that don't exit the program

The worst case...
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Undefined Behavior

The worst case scenario is that your program state is invisibly corrupted.

Data races

Transactions aren't atomic

Backups are corrupted

Security leaks

Schrödinger’s Bug
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Interacting with Safe Rust

Unsafe code is not defined.

The compiler could eliminate the entire unsafe  block if it wanted to

It could also miscompile surrounding, safe code!

In a lot of ways, unsafe  Rust is far worse than C/C++ because it assumes all of
Rust's safety guarantees
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Safe unsafe : Valid References

You may recall that all references must be valid. A valid reference:

must never dangle

must always be aligned

must always point to a valid value for their target type

must either be immutably shared or mutably exclusive

Plus more guarantees relating to lifetimes
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Other Validity Requirements

Some primitive types have other guarantees:

bool  is 1 byte, but can only hold 0x00  or 0x01

char  cannot hold a value above char::MAX

Most Rust types cannot be constructed from uninitialized memory

If Rust didn't enforce this, it wouldn't be able to make niche optimizations
Option<&T>  is a good example

What if Option<Option<bool>>  used 0x00  through 0x03 ?

It doesn't matter if Rust does make the optimization, all that matters is that it is
allowed to whenever it wants
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Even More Validity Requirements

Here are some even more requirements:

Owned Pointer Types (like Box  and Vec ) are subject to optimizations assuming the

pointer to memory is not shared or aliased anywhere

You can never assume the layout of a type when casting

All code must prepared to handle panic! s and stack unwinding

Stack unwinding drops everything in the current scope, returns from that scope, drops
everything in that scope, returns, etc...

All variables are subject to something called the Drop Check, and if you drop

something incorrectly, you might cause undefined behavior
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Fighting with unsafe
That was a lot, right?

Remember that it is very possible to write safe unsafe  code

A lot of the time, it isn't actually that difficult

Being careful is half the battle

Being absolutely sure you actually need unsafe  is the other half
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Working with unsafe
It is tempting to reason about unsafety locally.

Consider whether the code in the unsafe  block is safe in the context of both the rest

of the codebase, and in the context of other people using your library

Encapsulate the unsafety as best you can

Read and write documentation!

Use tools like Miri  to verify your code!

Make sure to formally reason about your program
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Recap: unsafe
With unsafe , we have great powers

But we must accept the responsibility of leveraging those powers

There are consequences to writing unsafe unsafe  code

unsafe  is a way to promise to the compiler that the indicated code is safe
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Next Lecture: Parallelism

Thanks for coming!
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