
Intro to Rust LangIntro to Rust Lang

Concurrency:Concurrency:
Async/AwaitAsync/Await

Benjamin Owad, David Rudo, and Connor Tsui

1

Async is Complicated

Rust is a systems programming language -- different design choices were made
Rust async != JavaScript async != C# async

Async is still evolving both as a feature in Rust and as a programming paradigm

Async is not a mutually exclusive feature, parallelism and concurrency can mix in Rust

We're going to keep this lecture primarily focused on the high level details of using

async rather than creating your own Futures

2

What is Asynchronous Code?

A concurrent programming model supported by many languages
All in slightly different forms under the hood

Allows for a large number of tasks on a few OS threads

Still preserves the "feel" of synchronous programming through async/await syntax

3

Rust Async vs Other Concurrency Models

OS threads
Very easy to express, but hard to synchronize and have overhead on startup

Event driven programming

Can be performant with callbacks

Causes overly verbose non-linear control flow (debugging nightmare)

Coroutines

Supports many tasks like async

Abstract away low-level details needed for systems programmers

Actor Model

A fine solution for many distributed systems using message passing

Leaves practical issues such as control flow and retry logic up to the user
4

What Makes Rust Async Special?

Futures are inert

Futures only make progress when polled, dropping a future stops progress

Async is zero-cost
Only pay for what you use (like iterators)

Async without heap allocation or dynamic dispatch

Great for low-resource systems

Rust has no built-in runtime

Provided by community crates such as Tokio

Single and Multithreaded runtimes are possible in Rust
Have different advantages/disadvantages

5

Threaded Download

fn get_two_sites() {
 // Spawn two threads to do work.
 let thread_one = thread::spawn(|| download("https://www.foo.com"));
 let thread_two = thread::spawn(|| download("https://www.bar.com"));

 // Wait for both threads to complete.
 thread_one.join().expect("thread one panicked");
 thread_two.join().expect("thread two panicked");
}

This is pretty wasteful, let's use async instead!

6

Async Download

async fn get_two_sites_async() {
 // Create two different "futures" which, when run to completion,
 // will asynchronously download the webpages.
 let future_one = download_async("https://www.foo.com");
 let future_two = download_async("https://www.bar.com");

 // Run both futures to completion at the same time.
 futures::join!(future_one, future_two);

 // Could've instead done:
 // future_one.await;
 // future_two.await;
 // But would've been slower since serial computation
}

7

Another Async Example

async fn hello_world() {
 println!("hello, world!");
}

fn main() {
 let future = hello_world(); // Nothing is printed
 future.await; // printing should happen now?
}

8

Another Async Example Error

5 | fn main() {
 | ---- this is not `async`
6 | let future = hello_world(); // Nothing is printed
7 | future.await; // printing should happen now?
 | ^^^^^ only allowed inside `async` functions and blocks

We can only use await in async code blocks (which main isn't)

We can fix this with an executor

9

Another Async Example Fixed

use futures::executor::block_on;

async fn hello_world() {
 println!("hello, world!");
}

fn main() {
 let future = hello_world(); // Nothing is printed
 block_on(future); // `future` is run and "hello, world!" is printed
}

block_on blocks the current thread until the provided future has finished

Other executors may provide more complex behavior
like scheduling multiple futures onto the same thread

10

Futures Simplified

trait SimpleFuture {
 type Output;
 fn poll(&mut self, wake: fn()) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

An async computation that can produce a value (even ())

Above is a simplified version of the trait

Futures are only advanced via the poll function

11

Polling

If a future completes it returns Poll::Ready(result) , else Poll::Pending

The future arranges for the wake() function to be called when more progress can be
made and makes the executor continue

This is how an executor is able to ensure progress without constant polling

IMPORTANT: What would happen if we put a long blocking function in our future?

12

Futures in depth

May not need to know all this

13

Socket Read Future Example

pub struct SocketRead<'a> {
 socket: &'a Socket,
}

impl SimpleFuture for SocketRead<'_> {
 type Output = Vec<u8>;

 fn poll(&mut self, wake: fn()) -> Poll<Self::Output> {
 if self.socket.has_data_to_read() {
 // The socket has data -- read it into a buffer and return it.
 Poll::Ready(self.socket.read_buf())
 } else {
 // The socket does not yet have data.
 //
 // Arrange for `wake` to be called once data is available.
 // When data becomes available, `wake` will be called, and the
 // user of this `Future` will know to call `poll` again and
 // receive data.
 self.socket.set_readable_callback(wake);
 Poll::Pending
 }
 }
}

14

Composing Futures Example

pub struct AndThenFut<FutureA, FutureB> {
 first: Option<FutureA>,
 second: FutureB,
}

impl<FutureA, FutureB> SimpleFuture for AndThenFut<FutureA, FutureB>
where
 FutureA: SimpleFuture<Output = ()>,
 FutureB: SimpleFuture<Output = ()>,
{
 type Output = ();
 fn poll(&mut self, wake: fn()) -> Poll<Self::Output> {
 if let Some(first) = &mut self.first {
 match first.poll(wake) {
 // We've completed the first future -- remove it and start on the second!
 Poll::Ready(()) => self.first.take(),
 Poll::Pending => return Poll::Pending, // Couldn't yet complete the first future
 };
 }
 // Now that the first future is done, attempt to complete the second.
 self.second.poll(wake)
 }
}

15

Let's Talk Real Futures

trait Future {
 type Output;
 fn poll(
 // Note the change from `&mut self` to `Pin<&mut Self>`:
 self: Pin<&mut Self>,
 // and the change from `wake: fn()` to `cx: &mut Context<'_>`:
 cx: &mut Context<'_>,
) -> Poll<Self::Output>;
}

Pin ensures that our futures are unmovable in memory

Context<'_> holds info on the wake function as well as useful metadata

"Who" called the wake function

Value of type Waker

etc
16

Waker

Most futures do not complete on the first poll

Waker is used to ensure the future is polled when it's ready to make progress

Waker provides the following:
wake() to alert the executer that a task is ready to be polled

clone() so that it can be copied and stored

17

Timer Example

pub struct TimerFuture {
 shared_state: Arc<Mutex<SharedState>>,
}

/// Shared state between the future and the waiting thread
struct SharedState {
 /// Whether or not the sleep time has elapsed
 completed: bool,

 /// The waker for the task that `TimerFuture` is running on.
 /// The thread can use this after setting `completed = true` to tell
 /// `TimerFuture`'s task to wake up, see that `completed = true`, and
 /// move forward.
 waker: Option<Waker>,
}

18

Writing Our Future Implementation

impl Future for TimerFuture {
 type Output = ();
 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
 // Look at the shared state to see if the timer has already completed.
 let mut shared_state = self.shared_state.lock().unwrap();
 if shared_state.completed {
 Poll::Ready(())
 } else {
 shared_state.waker = Some(cx.waker().clone());
 Poll::Pending
 }
 }
}

19

TimerFuture Implementation

impl TimerFuture {
 /// Create a new `TimerFuture` which will complete after the provided timeout
 pub fn new(duration: Duration) -> Self {
 let shared_state = Arc::new(Mutex::new(SharedState {
 completed: false,
 waker: None,
 }));

 let thread_shared_state = shared_state.clone();
 thread::spawn(move || {
 thread::sleep(duration);
 let mut shared_state = thread_shared_state.lock().unwrap();
 // Signal that the timer has completed and wake up the latest task
 shared_state.completed = true;
 if let Some(waker) = shared_state.waker.take() {
 waker.wake()
 }
 });

 TimerFuture { shared_state }
 }
}

20

What Just Happened?

Our TimerFuture launches a thread with access to a shared state variable

In this thread, we sleep for a duration

Once that time has passed we update the shared state completed=true

We then tell the waker in our shared state to wake up the last future that polled it

In practice, we would never use a thread for something like this

21

Notable Takeaways

Futures are a very powerful tool

Futures and related functions can be implemented and managed in numerous ways
This is why Rust doesn't have a "default" runtime

Futures are designed to be "interruptible", to enable efficient polling
Don't put large blocking code in async functions!

While the previous future launched a thread, this is uncommon

IO related async code uses epoll or other related polling calls

22

High Level Usage of Async/Await

You can wake up now

23

async Blocks

async fn foo() -> u8 { 5 }

fn bar() -> impl Future<Output = u8> {
 async {
 let x: u8 = foo().await;
 x + 5
 }
}

The async block results in a type of Future<Output=u8>

foo() is also a type that implements Future<Output=u8>
foo().await will result in a value of type u8

24

async move
fn move_block() -> impl Future<Output = ()> {
 let my_string = "foo".to_string();
 async move {
 // ...
 println!("{my_string}");
 }

 // println!("{my_string}"); will not compile
}

Just like with closures, move gives an async block ownership of a variable

Otherwise we had to handle future's that hold references

25

async Lifetimes

// This function:
async fn foo(x: &u8) -> u8 { *x }

// Is equivalent to this function:
fn foo_expanded<'a>(x: &'a u8) -> impl Future<Output = u8> + 'a {
 async move { *x }
}

Unlike typical functions, async fn are bounded by their argument's lifetimes

This is because we're really putting a lifetime on the Future trait object

26

async Lifetime Issues

fn foo() -> impl Future<Output = u8> {
 let x = 5;
 borrow_x(&x) // async function
}

async fn must be .await ed while its non-static
arguments are still valid

Calling await immediately is one solution

foo.await

27

async Lifetime Solutions

fn good() -> impl Future<Output = u8> {
 async {
 let x = 5;
 borrow_x(&x).await
 }
}

Another is to use an async block to bundle the arguments with an async fn call

This is now a 'static future

28

Streams

trait Stream {
 /// The type of the value yielded by the stream.
 type Item;

 fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>)
 -> Poll<Option<Self::Item>>;
}

Very similar to a Future but returns multiple values instead

Functionally like an iterator

poll returns Ready(Some(T)) or Ready(None) when the stream is done

29

Streams in Channels

async fn send_recv() {
 const BUFFER_SIZE: usize = 10;
 let (mut tx, mut rx) = mpsc::channel::<i32>(BUFFER_SIZE);

 tx.send(1).await.unwrap();
 tx.send(2).await.unwrap();
 drop(tx);

 // `StreamExt::next` is similar to `Iterator::next`, but returns a
 // type that implements `Future<Output = Option<T>>`.
 assert_eq!(Some(1), rx.next().await);
 assert_eq!(Some(2), rx.next().await);
 assert_eq!(None, rx.next().await);
}

This is a small teaser for asynchronous channels

30

Executing Multiple Futures at a Time

Sometimes .await isn't enough

31

Who Was Paying Attention?

async fn get_book_and_music() -> (Book, Music) {
 let book_future = get_book();
 let music_future = get_music();
 (book_future.await, music_future.await)
}

Which will finish executing first?

book_future

music_future

This is non-deterministic

All of the above

32

Who Was Paying Attention?

async fn get_book_and_music() -> (Book, Music) {
 let book_future = get_book();
 let music_future = get_music();
 (book_future.await, music_future.await)
}

Remember, futures are inert

Rust won't do any work until they're actively .await ed

This means book_future and music_future will be polled to completion in series

rather than concurrently
Note: polled to completion concurrently IS NOT running concurrently

33

What We Really Want is join!
use futures::join;

async fn get_book_and_music() -> (Book, Music) {
 let book_fut = get_book();
 let music_fut = get_music();
 join!(book_fut, music_fut)
}

We still get a tuple containing the output of each Future

But now we've "joined" them to be polled together

34

select!
use futures::{future, select};

async fn count() {
 let mut a_fut = future::ready(4);
 let mut b_fut = future::ready(6);
 let mut total = 0;

 loop {
 select! {
 a = a_fut => total += a,
 b = b_fut => total += b,
 complete => break,
 default => unreachable!(), // never runs (futures are ready, then complete)
 };
 } // value at end of loop should be 10
}

This runs multiple futures, but quits polling other futures after the first responds

select follows the syntax <pattern> = <expression> => <code>
35

Spawning

Here's a common asynchronous scenario:

Imagine we have a web server that needs to accept connections
We don't want to block the main thread

async_std::task::spawn will create and run a new task that handles connections
It takes a Future and returns a JoinHandle which can be .await ed

Note that async_std is

36

Spawning Example

async fn process_request(stream: &mut TcpStream) -> Result<(), std::io::Error>{
 stream.write_all(b"HTTP/1.1 200 OK\r\n\r\n").await?;
 stream.write_all(b"Hello World").await?;
 Ok(())
}

async fn main() {
 let listener = TcpListener::bind("127.0.0.1:8080").await.unwrap();
 loop {
 // Accept a new connection
 let (mut stream, _) = listener.accept().await.unwrap();
 // Now process this request without blocking the main loop
 task::spawn(async move {process_request(&mut stream).await});
 }
}

Note that spawn requires an asynchronous runtime!

37

The Power of Async Runtime

ft. Tokio

38

Why Use Async Runtimes?

Writing code that primarily manages multiple IO operations

Interfacing with libraries that depend on an async runtime

Need non-blocking versions of std library api functions for your async code

39

When is Using Async Runtimes Bad?

Trying to speed up CPU-bound computations

Just use threads or Rayon

Reading a lot of files
OSes tend to not provide async file APIs

A thread pool will serve just as well

Sending a single web request
Async runtimes are meant to help manage multiple tasks at a time

Use reqwest instead

40

Async Message Passing

use tokio::sync::mpsc;

#[tokio::main]
async fn main() {
 let (tx, mut rx) = mpsc::channel(32);
 let tx2 = tx.clone();

 tokio::spawn(async move {
 tx.send("sending from first handle").await.unwrap();
 });

 tokio::spawn(async move {
 tx2.send("sending from second handle").await.unwrap();
 });

 while let Some(message) = rx.recv().await {
 println!("GOT = {}", message);
 }
}

41

Why Async Message Passsing?

An option for maintaining shared state

A convenient way to link async code with sync code
Async server handling sends data to sync processing thread

Most libraries provide tailored channels for specific use cases
Ex: Tokio mpsc , oneshot , broadcast , watch

42

Mutex With Async

Within an async runtime, mutexes are allowed

Can be used easily if low contention is expected

If high contention is an issue:

Restructure the code to avoid the mutex

Shard the mutex

Message passing

Use an async mutex (comes at a higher cost)

43

Async Mutex Example

use tokio::sync::Mutex; // note! This uses the Tokio mutex

// This compiles!
// (but restructuring the code would be better in this case)
async fn increment_and_do_stuff(mutex: &Mutex<i32>) {
 let mut lock = mutex.lock().await;
 *lock += 1;

 do_something_async().await;
} // lock goes out of scope here

44

Bridging with Synchronous Code -- Option 1

// Snippet example from Tokio Redis project
impl BlockingSubscriber {
 pub fn get_subscribed(&self) -> &[String] {
 self.inner.get_subscribed()
 }

 pub fn next_message(&mut self) -> crate::Result<Option<Message>> {
 self.rt.block_on(self.inner.next_message())
 }

 pub fn subscribe(&mut self, channels: &[String]) -> crate::Result<()> {
 self.rt.block_on(self.inner.subscribe(channels))
 }
}

Build a synchronous interface to async code

Call block_on on futures synchronous code needs
45

Bridging with Synchronous Code -- Option 2

fn main() {
 let runtime = Builder::new_multi_thread().worker_threads(1).enable_all().build().unwrap();

 let mut handles = Vec::with_capacity(10);
 for i in 0..10 {
 handles.push(runtime.spawn(my_bg_task(i)));
 }

 // Do something time-consuming while the background tasks execute.
 std::thread::sleep(Duration::from_millis(750));
 println!("Finished time-consuming task.");

 // Wait for all of them to complete.
 for handle in handles {
 // The `spawn` method returns a `JoinHandle`. A `JoinHandle` is
 // a future, so we can wait for it using `block_on`.
 runtime.block_on(handle).unwrap();
 }
}

Spawning async jobs on the run time
46

Bridging with Synchronous Code -- Option 3

pub fn new() -> TaskSpawner {
 let (send, mut recv) = mpsc::channel(16);
 let rt = Builder::new_current_thread().enable_all().build().unwrap();

 std::thread::spawn(move || {
 rt.block_on(async move {
 while let Some(task) = recv.recv().await {
 tokio::spawn(handle_task(task));
 }
 });
 });

 TaskSpawner {
 spawn: send,
 }
}
// Sync code that sends message to async running thread
pub fn spawn_task(&self, task: Task) {
 match self.spawn.blocking_send(task) {
 // <--- snip --->
 }
}

Message passing from async to sync code and vice versa 47

Takeaways

Async/Await is a powerful tool

There are lots of libraries to help manage asynchronous tasks

Is not a drop-in replacement for standard parallelism

Has slightly different rules and best practices compared to other concurrent models

48

Next Lecture: Macros

Thank you for coming!

49

