
Intro to Rust LangIntro to Rust Lang

Structs and EnumsStructs and Enums

Benjamin Owad, David Rudo, and Connor Tsui

1

Review: Ownership

Manual memory management is tricky
Prone to memory leaks or double frees

Garbage collection is slow and unpredictable

What if the compiler generated allocations and frees for us?
Rust does this for us through the ownership system

2

Review: Ownership Rules

Each value in Rust has an owner

A value can only have one owner at a time

When the owner goes out of scope, the value will be dropped

3

Review: Borrowing Rules

At any given time, you can have either:
One mutable reference (exclusive reference)

Any number of immutable references (shared references)

Memory access through references is guaranteed to be valid

4

Review Question 1

Why doesn't this compile?

fn main() {
 let s = String::from("yo");
 taker(s);
 println!("I *totally* still own {}", s);
}

fn taker(some_string: String) {
 println!("{} is mine now!", some_string);
}

5

Review Question 1

error[E0382]: borrow of moved value: `s`
 --> src/main.rs:4:42
 |
2 | let s = String::from("yo");
 | - move occurs because `s` has type `String`,
 | which does not implement the `Copy` trait
3 | taker(s);
 | - value moved here
4 | println!("I *totally* still own {}", s);
 | ^ value borrowed here after move
 |

Looks like taker does not still own s , after all

6

Review Question 1

note: consider changing this parameter type in function `taker` to borrow
 instead if owning the value isn't necessary
 --> src/main.rs:7:23
 |
7 | fn taker(some_string: String) {
 | ----- ^^^^^^ this parameter takes ownership of the value
 | |
 | in this function

Suggestion from the compiler: Rewrite taker to borrow some_string

Is it necessary for taker to own the value?

7

Review Question 1 (References Solution)

fn main() {
 let s = String::from("yo");
 taker(&s); // <-- Change to pass a reference to a String
 println!("I *totally* still own {}", s);
}

fn taker(some_string: &String) { // <-- Change to expect a reference to a String
 println!("{} is mine now!", some_string);
}

Let taker borrow the value instead of moving it and transferring ownership

8

Review Question 1 (Alternative Solution)

help: consider cloning the value if the performance cost is acceptable
 |
3 | taker(s.clone());
 | ++++++++

Making a clone (deep copy) allows this compile

If s represents a large String , cloning will be expensive

9

Review Question 2

Why doesn't this compile?

fn main() {
 let favorite_computers = Vec::new();
 add_to_list(favorite_computers,
 String::from("Framework Laptop"));
}

fn add_to_list(fav_items: Vec<String>, item: String) {
 fav_items.push(item);
}

10

Review Question 2

error[E0596]: cannot borrow `fav_items` as mutable, as it is not declared as mutable
 --> src/main.rs:8:5
 |
8 | fav_items.push(item);
 | ^^^^^^^^^ cannot borrow as mutable
 |
help: consider changing this to be mutable
 |
7 | fn add_to_list(mut fav_items: Vec<String>, item: String) {
 | +++

Missing one mut annotation

11

Review Question 2 (Solution)

fn cool_guy() {
 let favorite_computers = Vec::new();
 add_to_list(favorite_computers, String::from("Framework Laptop"));
}

// +++ Add `mut` here
fn add_to_list(mut fav_items: Vec<String>, item: String) {
 fav_items.push(item);
}

12

Review Question 2b

fn cool_guy() {
 let favorite_computers = Vec::new();
 add_to_list(favorite_computers, String::from("Framework Laptop"));
 println!("{:?}", favorite_computers); // <-- I want to print this!
}

fn add_to_list(mut fav_items: Vec<String>, item: String) {
 fav_items.push(item);
}

What if we want to print the list?

favorite_computers was moved in the add_to_list call

Same issue as review question 1

13

Review Question 2b (Solution)

Let's try a mutable reference instead of moving the entire value.

fn cool_guy() {
 let favorite_computers = Vec::new();
 add_to_list(&mut favorite_computers, String::from("Framework Laptop"));
 println!("{:?}", favorite_computers);
}

fn add_to_list(fav_items: &mut Vec<String>, item: String) {
 fav_items.push(item);
}

This now works as intended!

14

Review Question 3

Why doesn't this compile?

fn x_shouldnt_exist() {
 let mut v = vec![1, 2, 3, 4];
 let x = &v[3];
 v.pop(); // Removes last element in `v`
 println!("{}", x); // What is `x`?
}

15

Review Question 3

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
 --> src/main.rs:4:5
 |
3 | let x = &v[3];
 | - immutable borrow occurs here
4 | v.pop(); // Removes last element in `vec`
 | ^^^^^^^ mutable borrow occurs here
5 | println!("{}", x); // What is `x`?
 | - immutable borrow later used here

We cannot mutably borrow a value with an existing immutable borrow

In this case, if it were allowed, x would point to invalid memory!

16

Review Question 3b

What about this scenario?

fn please_dont_move() {
 let mut v = vec![1, 2, 3, 4];
 let x = &v[2];
 v.push(5); // Add an element to the end of `v`
 println!("{}", x); // What is `x`?
}

This time we aren't removing the last element, instead we're
adding more elements!

Surely nothing happens to x this time, right?

17

Review Question 3b

We still get the same error!

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
 --> src/main.rs:4:5
 |
3 | let x = &v[2];
 | - immutable borrow occurs here
4 | v.push(5);
 | ^^^^^^^^^ mutable borrow occurs here
5 | println!("{}", x); // What is `x`?
 | - immutable borrow later used here

In this case, what if pushing 5 onto v resizes the entire vector?

Resizing means allocating new memory, copying over data, then deallocating the
old memory

x would no longer point to valid memory!
18

Structs

19

Structs

A struct is a custom data type that lets you package together and name related values that

make up a meaningful group.

struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

To define a struct, we enter the keyword struct and name the entire group

Within the curly braces, we define fields

Each field is named and has an associated type

20

Instantiating Structs

We can create an instance of a struct using the name of the struct and key: value
pairs inside curly brackets.

fn init_connor() -> Student {
 Student {
 andrew_id: String::from("cjtsui"),
 stress_level: u64::MAX,
 grade: 80,
 attendance: vec![true, false, false, false, false, false, false],
 }
}

You don't have to specify fields in any order

You must define every field of the struct to create an instance

21

Accessing Fields

We can access fields of a struct using dot notation.

fn init_connor() -> Student {
 let mut connor = Student {
 andrew_id: String::from("cjtsui"),
 stress_level: u64::MAX,
 grade: 80,
 attendance: vec![true, false, false, false, false, false, false],
 };

 connor.grade = 60; // shh
 println!("{} has grade {}", connor.andrew_id, connor.grade);

 connor
}

Note that the entire instance must be mut to modify any field
22

Field Init Shorthand

We can use field init shorthand to remove repetitive wording.

fn init_student(andrew_id: String, grade: u8) -> Student {
 Student {
 andrew_id,
 grade,
 attendance: Vec::new(),
 stress_level: u64::MAX, //
 }
}

We can shorten andrew_id: andrew_id to simply andrew_id

23

Struct Update Syntax

There is a shorthand to use values from an existing struct to create a new one.

fn relax_student(prev_student: Student) -> Student {
 Student {
 stress_level: 0,
 grade: 100,
 ..prev_student
 }
}

Note that this moves the data of the old struct
prev_student is moved, so we can't use it again (unless...)

24

Tuple Structs

We can created named tuples called "tuple structs".

struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

fn main() {
 let red = Color(255, 0, 0);
 let origin = Point(0, 0, 0);
}

The same as structs, except without named fields

The same as tuples, except with an associated name

25

Unit Structs

We can declare "unit structs" as such:

struct AlwaysEqual;

fn main() {
 let subject = AlwaysEqual;
}

Structs that have no fields

Most commonly used as compile-time markers since they are zero-sized types

26

References in Structs

Can we store references inside structs?

struct Student {
 andrew_id: &str, // <- &str instead of String
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

27

Lifetimes Sneak Peek

error[E0106]: missing lifetime specifier
 --> src/main.rs:2:16
 |
2 | andrew_id: &str, // <- &str instead of String
 | ^ expected named lifetime parameter
 |
help: consider introducing a named lifetime parameter
 |
1 ~ struct Student<'a> {
2 ~ andrew_id: &'a str, // <- &str instead of String

We can store references in structs, but we need lifetime specifiers

We will talk about these in Week 8!

28

Struct Example

fn draw_rectangle(x: u32, y: u32, width: u32, height: u32) {}

fn draw_rectangle(rect_tuple: (u32, u32, u32, u32)) {}

struct Rectangle {
 x: u32,
 y: u32,
 width: u32,
 height: u32,
}

fn draw_rectangle(rect: Rectangle) {}

Which do you prefer?

29

Printing Structs

What if we wanted to print these structs for debugging?

struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

fn main() {
 let connor = init_connor();

 println!("{:?}", connor);
}

30

Printing Structs

We get an error if we try to print something that is not printable:

fn main() {
 let connor = init_connor();

 println!("{:?}", connor);
}

error[E0277]: `Student` doesn't implement `Debug`
 --> src/main.rs:11:22
 |
11 | println!("{:?}", connor);
 | ^^^^^^ `Student` cannot be formatted using `{:?}`
 |
 = help: the trait `Debug` is not implemented for `Student`

31

Traits Sneak Peek

What's this all about?

error[E0277]: `Student` doesn't implement `Debug`
<-- snip -->
 = help: the trait `Debug` is not implemented for `Student`

More on traits in Week 5!

They define shared functionality and behavior between types

32

Derived Traits

As is often the case, the compiler provides a helpful suggestion.

help: consider annotating `Student` with `#[derive(Debug)]`
 |
2 + #[derive(Debug)]
3 | struct Student {
 |

For now, let's just follow the advice blindly

33

Derived Traits

As a quick overview, derived traits allow us to quickly add functionality to our types.

#[derive(Debug)]
struct Student {
 andrew_id: String,
 attendance: Vec<bool>,
 grade: u8,
 stress_level: u64,
}

We can derive a trait using the derive macro

This will allow us to print this struct!

34

Derived Traits

We can try again now:

#[derive(Debug)]
struct Student {
 // <-- snip -->
}

fn main() {
 let connor = init_connor();

 println!("{:?}", connor);
}

Student { andrew_id: "cjtsui", attendance: [true, false], grade: 80, stress_level: 18446744073709551615 }

We are given a relatively nice output for free!

35

Methods

36

Struct Methods

Suppose we wanted to write a function that was only dependent on the data inside a single

instance of a struct.

struct Rectangle {
 x: u32,
 y: u32,
 width: u32,
 height: u32,
}

What if we wanted to get the area of this rectangle?

37

Struct Methods

Methods are like functions, but their first parameter is always self , and they are always
defined within the context of a struct.

struct Rectangle {
 x: u32,
 y: u32,
 width: u32,
 height: u32,
}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

38

Method Syntax

Let's dive a bit deeper into this:

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

We start with an impl block for Rectangle

We use &self instead of rectangle: &Rectangle
&self is actually syntactic sugar for self: &Self

In impl blocks, Self is shorthand for the type being implemented

So &Self is the same as &Rectangle

39

Calling Methods

We can call a method using dot notation.

fn main() {
 let rect = Rectangle { x: 0, y: 0, width: 42, height: 98 };

 println!("Area: {}", rect.area());
}

Note that we don't need to pass anything in for self

40

Consuming Methods

What would happen if we didn't borrow with &self and instead use self ?

impl Rectangle {
 fn area(self) -> u32 {
 self.width * self.height
 }
}

fn main() {
 let rect = Rectangle { width: 42, height: 98 };
 println!("Area: {}", rect.area());
 // println!("Width: {}", rect.width); <-- Cannot do this
}

We take in self and "consume" it by taking ownership

41

&mut self
We can take a mutable reference to our struct as well.

impl Rectangle {
 fn change_width(&mut self, new_width: u32) {
 self.width = new_width;
 }
}

fn main() {
 let mut rect = Rectangle { x: 0, y: 0, width: 42, height: 98 };
 rect.change_width(100);

 println!("{:?}", rect);
}

Follows the same rules for mutable references as before

42

Associated Functions

We can define an associated function in impl blocks that do not take self .

impl Rectangle {
 fn create_square(x: u32, y: u32, side_length: u32) -> Self {
 Self { x, y, width: side_length, height: side_length }
 }
}

fn main() {
 let square = Rectangle::create_square(0, 0, 213);
}

A reminder that Self is shorthand for Rectangle here

We cannot use dot notation for these functions
Instead we use the struct name and the :: operator

43

Aside: What About -> ?
p1.distance(&p2);
(&p1).distance(&p2); // This is the same!

In C and C++, you use . for direct access and -> for access through a pointer

Rust instead has automatic referencing and dereferencing

When you call object.something() , Rust will automatically add in the & , &mut , or

* so that object matches the signature of the method
Makes ownership and borrowing more ergonomic

44

Enums

45

Enums

Defines a type with multiple possible variants

Manifestation of the algebraic data type known as the "sum type"
Structs are "product types"

Sum types hold a value that takes on one of several distinct variants.
Think of sum types as a value that can be of type A or B

46

Enum Definition

IP addresses have two major standards, IPv4 and IPv6.

enum IpAddrKind {
 V4,
 V6,
}

IP addresses can be either IPv4 or IPv6

We can express this concept in code with an enum consisting of V4 and V6 variants

In general, we enumerate variants of a sum type as fields in an enum

47

Enum Variants

We can make a value of type IpAddrKind as such:

let four = IpAddrKind::V4;
let six = IpAddrKind::V6;

The :: operator represents a namespace

V4 is in the namespace of IpAddrKind

Useful syntax, because we can see both values are of the same type: IpAddrKind

48

Enum Variants

We can define a function that takes an IpAddrKind :

fn route(ip_kind: IpAddrKind) {}

And call it with any of the variants:

route(IpAddrKind::V4);
route(IpAddrKind::V6);

49

Enums vs Structs

At the moment, IpAddrKind only encodes the kind of address, and the address itself has

to be stored elsewhere.

We could do this using structs:

enum IpAddrKind {
 V4, // IPv4 addresses look like `8.8.8.8`
 V6, // IPv6 addresses look like `2001:4860:4860:0:0:0:0:8888`
}

struct IpAddr {
 kind: IpAddrKind,
 address: String,
}

When we have an IpAddr struct, we could check the kind field to determine how to
interpret the address field

50

Enums Can Hold Data

Instead of using structs to hold data, we can have the enums themselves hold data.

enum IpAddr {
 V4(String),
 V6(String),
}

let home = IpAddr::V4(String::from("127.0.0.1"));

let loopback = IpAddr::V6(String::from("::1"));

Much cleaner than before!

51

Enum Associated Data

Each enum can also hold different types and different amounts of data.

enum IpAddr {
 V4(u8, u8, u8, u8),
 V6(String),
}

let home = IpAddr::V4(127, 0, 0, 1);

let loopback = IpAddr::V6(String::from("::1"));

Cleaner than carrying around a String that we need to parse

52

Aside: std::net::IpAddr
The Rust Standard Library actually has its own implementation of IpAddr .

struct Ipv4Addr {
 // --snip--
}

struct Ipv6Addr {
 // --snip--
}

enum IpAddr {
 V4(Ipv4Addr),
 V6(Ipv6Addr),
}

53

Enum Example

Let's take a look at another example of an enum that models data with variants.

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

Quit has no associated data

Move has named fields like a struct

Write includes a single String

ChangeColor includes 3 i32 values

54

Enums vs Structs

How would this look if we just used structs?

struct QuitMessage; // unit struct
struct MoveMessage {
 x: i32,
 y: i32,
}
struct WriteMessage(String); // tuple struct
struct ChangeColorMessage(i32, i32, i32); // tuple struct

Each of these structs has a separate type
We couldn't easily define a function to take in all of these types

55

Enum Methods

We can define impl blocks for enums as well as structs.

struct Message {
 Write(string),
 // <-- snip -->
}

impl Message {
 fn call(&self) {
 // <-- snip -->
 }
}

let m = Message::Write(String::from("hello"));
m.call();

self holds the value of the enum
Same borrowing semantics as with structs

56

The Option Type

57

NULL
NULL is a pointer that does not point to a valid object or value.

I call it my billion-dollar mistake...

My goal was to ensure that all use of references should be absolutely safe, with
checking performed automatically by the compiler.

But I couldn’t resist the temptation to put in a null reference, simply because it was so
easy to implement.

This has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years.

— Tony Hoare, "inventer of NULL ", 2009

The issue is not the concept of NULL , rather its implementation

We still want a way to express that a value could be something or nothing
58

The Option Type

The standard library defines an enum Option<T> :

enum Option<T> {
 None,
 Some(T),
}

We can return either None or Some , where Some contains a value

The <T> is a generic type parameter which means it can hold any type
We'll talk about this next week!

59

The Option Type

Here are some examples of Option<T> :

enum Option<T> {
 None,
 Some(T),
}

let some_number = Some(5);
let some_char = Some('e');

let absent_number: Option<i32> = None;

Rust will infer that some_number has type Option<i32> and some_char has type
Option<char>

We still have to annotate absent_number with Option<i32>

60

Option<T> vs NULL
So why is Option<T> better than NULL ? Consider this:

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = x + y;

What might be wrong with this?

61

Option<T> vs NULL
If we try to compile this, we get an compile-time error.

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = x + y;

error[E0277]: cannot add `Option<i8>` to `i8`
 --> src/main.rs:6:17
 |
6 | let sum = x + y;
 | ^ no implementation for `i8 + Option<i8>`
 |
 = help: the trait `Add<Option<i8>>` is not implemented for `i8`

Instead of runtime error, we catch the error immediately at compile time!
62

Working With Option<T>
We still need a way to extract the number out of the Some(5) .

let x: i8 = 5;
let y: Option<i8> = Some(5);
let sum = x + y;

if y.is_none() {
 // do something
} else if y.is_some() {
 // How do we even extract the `5` out???
 // Something like `y.get() + x`???
}

This syntax is also kind of ugly...

63

Pattern Matching

64

match
Rust has a powerful control flow construct called match .

You can compare a value against a series of patterns

You can execute code based on which pattern matches

Patterns can be made up of literal values, variable names, wildcards, etc.

65

Pattern Matching

Here's an example of a coin sorting function that returns the value of the coin.

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter,
}

fn value_in_cents(coin: Coin) -> u8 {
 match coin {
 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
 }
}

66

Pattern Matching

Let's break this down:

match coin {
 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
}

First we write match , followed by an expression (in this case coin)

Similar to if branch, but the expression does not need to be a bool

Each arm has a pattern, followed by => , followed by another expression

The patterns here are the Coin enum variants

The expressions here are just the values of each coin
67

Pattern Matching

Here's another similar example.

fn value_in_cents(coin: Coin) -> u8 {
 let res = match coin {
 Coin::Penny => {
 println!("Lucky penny!");
 1
 }
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
 };
 res
}

The match arms can be any valid expression, including code blocks!

68

Binding Patterns: Quarters

Patterns can bind to specific parts of the values that match the pattern.

#[derive(Debug)] // Allows us to print `UsState`
enum UsState {
 Alabama,
 Alaska,
 // --snip--
}

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter(UsState), // Quarters have states on them
}

69

Binding Patterns: Quarters

fn value_in_cents(coin: Coin) -> u8 {
 match coin {
 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter(state) => {
 println!("State quarter from {:?}!", state);
 25
 }
 }
}

We bind the variable state to the UsState that the Quarter variant holds!

70

Binding Patterns: Option<T>
Let's revisit the example from before.

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = match y {
 Some(num) => Some(x + num),
 // ^^^ `num` binds to 5
 None => None,
};

println!("{:?}", sum); // Prints "Some(10)"

Clean, and we can access the value in the Some variant easily

71

Matches Are Exhaustive

The match patterns must cover all possible values that the

matched expression may take.

What happens when we miss a case?

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = match y {
 Some(num) => x + num,
};

72

Matches Are Exhaustive

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = match y {
 Some(num) => x + num,
};

error[E0004]: non-exhaustive patterns: `None` not covered
 --> src/main.rs:6:21
 |
6 | let sum = match y {
 | ^ pattern `None` not covered

Forces us to explicitly handle the None case

Protecting us from the billion-dollar mistake!

73

Catch-all Pattern

Sometimes we don't need to do something special for every case, and can instead have a
fallback case.

fn add_fancy_hat() {}
fn remove_fancy_hat() {}
fn move_player(num_spaces: u8) {}

let dice_roll = 9;
match dice_roll {
 3 => add_fancy_hat(),
 7 => remove_fancy_hat(),
 other => move_player(other),
}

other matches anything not covered by previous patterns

74

_ Pattern

If we don't need the matched value, we can use _ instead.

fn add_fancy_hat() {}
fn remove_fancy_hat() {}
fn reroll() {}

let dice_roll = 9;
match dice_roll {
 3 => add_fancy_hat(),
 7 => remove_fancy_hat(),
 _ => reroll(),
}

_ matches anything, but it doesn't bind the value

75

Concise Control Flow with if let
Sometimes we just want to match against 1 pattern while ignoring the rest.

if let provides a more concise way to do this:

if let Coin::Penny = coin {
 println!("Lucky penny!");
}

Works with else if let <pattern> = <expr> and else as well

76

if let Example

Here's another example of the same program written 2 different ways:

let mut count = 0;
match coin {
 Coin::Quarter(state) => println!("State quarter from {:?}!", state),
 _ => count += 1,
}

let mut count = 0;
if let Coin::Quarter(state) = coin {
 println!("State quarter from {:?}!", state);
} else {
 count += 1;
}

77

Pattern Matching

Pattern Matching is an incredibly powerful tool.

Gives you more utilities for managing a program’s control flow

Allows you to you quickly and cleanly case on structures, typically enums

Very useful for compilers and parsers

Rust has many more patterns than we have time to cover!
Read Chapter 18 of the Rust Book to find out more!

Will take less than 20 minutes

78

https://doc.rust-lang.org/book/ch18-00-patterns.html

Homework 3

This is the first homework where you will need to actually synthesize code!

You have been tasked with implementing two types of Pokemon:

Charmander struct

Eevee struct that can evolve into EvolvedEevee
EvolvedEevee is an enum representing different evolutions

We highly recommend reading Chapter 18 of the Rust book if you have time!

79

https://doc.rust-lang.org/book/ch18-00-patterns.html

Next Lecture: Standard Collections
and Generics

Thanks for coming!

80

