Benjamin Owad, David Rudo, and Connor Tsui

Today: Error Handling and Traits

Type Aliases

e Const Generics

Error Handling
o panic!
o Result<V, E>

e The Never Type

Traits
o Trait Bounds

o Copy vs Clone
o Supertraits

o Derivable Traits

Type Aliases

Type Aliases

You can declare a type alias to give a name to an already existing type.

type Kilometers = 132;

let x: 132 = 5;
let y: Kilometers = 5;

println!("x + y = {}", x + y); // Rust knows the types are really the same

Generic Type Aliases

You can also include generics in your type aliases.

type Grades = Vec<u8>;

fn main() {
let mut empty_grades = Grades::new();
empty_grades.push(42);

type Stack<T> = Vec<T>;

fn main() {
let mut stack: Stack<i32> = Stack::new();
stack.push(42);

Const Generics

Const Generics

struct ArrayPair<T, const N: usize> {
left: [T; NI,
right: [T; NI,

o Const Generics allow items to be generic over constant values

Const Generics

Here's an example of constructing an ArrayPair with generic constant 5 :

struct ArrayPair<T, const N: usize> {
left: [T; NI,
right: [T; NI,

I3

fn main() {
let pair = ArrayPair::<i32, 5> {
left: [0; 5],
right: [1; 5],
i

printin!("{:?}, {:?}", pair.left, pair.right);

(0, 0, 0, 0, 0], [1, 1, 1, 1, 1]

Const Generics Rules

Currently, const parameters may only be instantiated by const arguments of the
following forms:

o A literal (i.e. an integer, bool, or character)

e A standalone const parameter

o A concrete constant expression (enclosed by {}), involving no generic parameters

Const Generic Literals

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
fo0::<2024>(); // Okay: 2024 is a literal
}

o Note that any valid constant with the correct type usize can be a generic parameter

10

Standalone Const Parameter

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
foo::<M>(); // Okay: "M’ is a const parameter
let _: [u8; M]; // Okay: "M" is a const parameter

e Since M and N are const generic parameters of the same type, M is a valid

parameter

11

A Concrete Constant Expression

fn foo<const N: usize>() {}

fn bar<T, const M: usize>() {
foo::<{20 x 100 + 20 * 10 + 1}>(); // Okay: const expression
// contains no generic parameters

12

Bad Constant Expressions

fn foo<const N: usize>() {}
fn bar<T, const M: usize>() {
foo::<{ M + 1 }>(); // Error: const expression
// contains the generic parameter M, M+1 could overflow

foo::<{ std::mem::size_of::<T>() }>(); // Error: const expression
// contains the generic parameter 'T°

let _: [u8; std::mem::size_of::<T>()]; // Error: const expression
// contains the generic parameter "T°

13

Const Generic Design Patterns

fn alternating<const ODD: bool>(nums: &[usize]) {
let mut i = if ODD { 1 } else { 0 };

while 1 < nums.len() {
print!("{} ", nums[i]);
1 += 2;

o Const Generics allow for multiple compilations of the same function with slightly
different behavior

o Const Generics representing "optional flags" is a common pattern

14

Const Generic Design Patterns

fn alternating<const ODD: bool>(nums: &[usize]) {
// <—— snip ——>
s

fn main() {
let nums = [0, 1, 2, 3, 4, 5, 6, 71;

alternating::<false>(&nums);
println!();
alternating::<true>(&nums);

o

wN
U~
N O

15

Error Handling

16

What type_of Error?

In Rust there are two main types of errors we care about:
recoverable and unrecoverable errors (panics).

e Result<V, E>
o A return type for recoverable errors

e panic!
o A macro (notice the !) to invoke unrecoverable errors

17

The Result Type

Rust provides a Result type torepresent "success" and "failure"” states in code.

enum Result<T, E> {
0k(T),
Err(E),

e Notice how the "success" does not have to have the same type as the "error"

18

unwrap()

pub const fn unwrap(self) —> T {
match self {
Ok(val) => val,
Err => panic!("called "Option::unwrap()" on a "Err value"),

e Takes an enum like an Option<T> or Result<V, E> type and unwraps it to reveal
the inner value

e |t should only be used when you expect an inner value, otherwise it will panic
o Most common source of panics in Rust programs

19

unwrap()

Consider the following example from the Rust book:

use std::fs::File;

fn main() {
let greeting_file = File::open("hello.txt").unwrap();
}

e What happens if we don't have "hello. txt" ?

20

unwrap()

fn main() {
let greeting_file = File::open("hello.txt").unwrap();
s

thread 'main' panicked at src/main.rs:4:49:
called "Result::unwrap() on an "Err value:
Os { code: 2, kind: NotFound, message: "No such file or directory" }

e This error message isn't the best...

A

expect()

We can do better than this if we expect this error and know what message to print to the
user if something goes wrong.

fn main() {
let greeting_file = File::open("hello.txt")
.expect("'hello.txt' should be included in this project");

Now we get:

thread 'main' panicked at src/main.rs:5:33:
‘hello.txt' should be included in this project:
Os { code: 2, kind: NotFound, message: "No such file or directory" }

22

Panics

Panics in Rust are unrecoverable errors. They can happen in many different ways:

o Out of bounds slice indexing
e |Integer overflow (only in debug mode)
e .unwrap() ona None or Err

e Callstothe panic! macro

23

More Panics

There are other useful macros that panic:
e assert!, assert_eq!, assert_ne!
o Conditionally panics based on inputs

e unimplemented! |/ todo!
o Usually used while something is in progress

e unreachable!
o Can help the compiler optimize a code segment away

24

Using Results 1

To have recoverable errors, we should use results.

fn integer_divide(a: 132, b: i32) —> Result<i32, String> {

if b == 0 {

Err("Divide by zero".to_string())
} else {

Ok(a/b)
I3

o Here, the "success" typeisan i32 , and the "failure” a String

e The caller has to handle both cases

25

Using Results 2

Result<T, E> is generic, so we can create our own failure/error types!

enum ArithError {
DivideByZero,
IllegalShift(i32)
}

fn shift_and_divide(x: i32, div: i32, shift: i32) —-> Result<i32, ArithError> {
if shift <= 0 {
Err(ArithError::I1legalShift(shift))
} else if div == 0 {
Err(ArithError::DivideByZero)
} else {
Ok((x << shift) / div)
¥

e Creating your own "error" enum like ArithError is a common pattern

26

The ? Operator

To make error handling more ergonomic, Rust provides the ? operator.

let x = potential _fail()?;

let x = match potential_fail() {
Ok(v) => v
Err(e) => return Err(e.into()), // Error is propagated up a level

e |[f potential_fail returnsan Err ,return early
e Else we can unwrap the inner value and continue

o Think of the ? as quick way to see where a function short-circuit returns on failure

27

The ? Operator Example

use std::num::ParselIntError; // a built-in error type

fn multiply(
first _number_str: &str,
second_number_str: &str,

) —> Result<i32, ParseIntError> {

let first_number = first_number_str.parse::<i32>()?;
let second_number = second_number_str.parse::<i32>()?;

Ok(first_number *x second_number)

o |f either of the parse calls fail, we return their Err values

e Otherwise, we store the parsed values

28

The ? Operator Example

If parse fails, we will getthe parse function's Err values as expected.

fn print(result: Result<i32, ParseIntError>) {
match result {
Ok(n) => println!("n is {}", n),
Err(e) = println!("Error: {}", e),

}

fn main() {
print(multiply("10", "2"));
print(multiply("ten", "2"));

n is 20
Error: invalid digit found 1in string

29

The ? Operator

We can also chain multiple ? together:

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() —> Result<String, io::Error> {
let mut username = String::new();

File::open("hello.txt")?.read_to_string(&mut username)?;

Ok (username)

30

The Never Type

31

Functions that never return

Consider the following code, what should the type of x be?

let x = loop { println!("forever"); };

e loop neverterminates, so what type should x be?

e This is not immediately obvious, right?

32

The "Never" Type - !
Rust has a special type called ! , or the "never type", for this exact reason.
Another example:

fn bar() —> ! {
loop {}
}

33

What's the point?

Why have a type that never has a value? Consider the following:

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

r;

e Recall match statements can only return 1 type

e continue hasthe ! type
o Rust knows this can't be value and allows guess: u32

o Thisis why we can have panic! ina match statement like unwrap()

34

What elseis ! ?

panic!
break
continue

Everything that doesn't return a value - typically related to control flow
o print! and assert! return () ,sotheydon'tuse !

35

Traits

36

Traits

A trait defines functionality a particular type has and can share with other types.

trait Shape {

// Associated function signature; Self refers to the implementer type.
fn new_shape() —> Self;

// Method signature to be implemented by a struct.
fn area(&self) —> f32;

fn name(&self) —> String;

e Traits are defined with the trait keyword

e They act as an interface for structs
o They can cannot be constructed directly, only applied onto structs

37

Trait Definitions

So how do we use traits? We impl ement them for a struct:

struct Rectangle {
height: 32,
width: f32

¥

impl Shape for Rectangle {
fn new_shape() —> Self {
Rectangle { height: 1.0, width: 1.0 }
s

// <—— snip ——>

38

Default Trait Implementations

Traits can also provide a default implementation of functions.

trait Shape {
// <—— snip ——>

// Default method implementation (can be overriden)

fn print(&self) {
println!("{} has an area of {}", self.name(), self.area());
+

e These can be overriden by any impl Shape for MyStruct

39

Overriding Default Trait Implementations

We can simply override functions as such:

impl Shape for Rectangle {
// <— snip ——>

fn print(&self) {
println!("I am a rectangle! :)");
s

40

Traits in Action

What happens we try and construct a Shape ?

let rec = Shape::inew_unit();

41

Traits !'= Types

let rec = Shape::new_unit();

error[EQ790]: cannot call associated function on trait without
specifying the corresponding " impl type
——> src/main.rs:20:15
|
3 | fn new_shape() —> Self;
| @ —— “Shape::new_shape” defined here

20 let rec = Shape::new_shape();

| AAAAAAAAAAAAAAN cannot call associated function of trait

|
help: use the fully—qualified path to the only available implementation

20 | let rec = <Rectangle as Shape>::new_shape();
| S ot S o e -

e Traits are abstract, we cannot construct a trait by itself

42

Traits in Action

To use the Shape trait, Rust must know who is implementing it.

let rec: Rectangle = Shape::new_unit();
let rec = <Rectangle as Shape>::new_shape();

43

Super Traits

Rust doesn't have "inheritance"”, but you can define a trait as being a superset of another
trait.

trait Person {
fn name(&self) —> String;
I

trait Student: Person {
fn university(&self) —> String;
}

e Person is asupertrait of Student
e Student is a subtrait of Person

e Implementing Student on atype requires youto also impl Person

44

Even Super-er Traits

trait Programmer {
fn fav_language(&self) —> String;
5

// CompSciStudent is a subtrait of both Programmer and Student

trait CompSciStudent: Programmer + Student {
fn git_username(&self) —> String;
¥

o \WWe can make a trait a subtrait of multiple traits with the + operator

e Implementing CompSciStudent will now require youto impl both supertraits

45

Recap: Traits

e Traits define shared behavior among types in an abstract way
e |Instead of inheritance, Rust has supertraits

e Traits are similar to:
o Interfaces

o Abstract [Virtual Classes

46

Derivable Traits

47

Deriveable Traits

Back in week 3, we saw this example:

#[derive(Debug)]

struct Student {
andrew_id: String,
attendance: Vec<bool>,
grade: u8,
stress_level: ub4,

Student { andrew_id: "cjtsui'", attendance: [true, falsel, grade: 42, stress_level: 1000 }

o Recall that we were not able to print out this struct without the
#[derive(Debug)]

48

Debug Trait

The Debug trait is defined as such in the standard library:

pub trait Debug {
// Required method
fn fmt(&self, f: &mut Formatter<' >) —> Result<(), Error>;

o We could implement this trait for Student ourselves
o It would likely be tedious...

49

Debug Trait

impl fmt::Debug for Student {

fn fmt(&self, f: &mut fmt::Formatter<' >) —-> fmt::Result {
write!(f, "Student {{ ")?;
write!(f, "andrew _id: {:?}, ", self.andrew _id)?;
write!(f, "attendance: {:?}, ", self.attendance)?;
write!(f, "grade: {:?}, ", self.grade)?;
write!(f, "stress_level: {:?}, ", self.stress _level)?;
write! (f, "}}")

Student { andrew_id: "cjtsui", attendance: [true, false], grade: 42, stress_level: 1000 }

e Editor's note: it was indeed tedious

50

Deriveable Traits

Luckily, Rust can derive traits for us when there there is an obvious and common
implementation.

e The compiler can provide basic implementations for some traits via the
#lderive]

e struct X can #[derive] atraitif all the fields of X can derive that trait

e These traits can still be manually implemented if a more complex behavior is required

51

https://doc.rust-lang.org/reference/attributes.html

Deriveable Traits

Let's break this down.

#[derive(Debug)]

struct Student {
andrew_id: String,
attendance: Vec<bool>,
grade: u8,
stress_level: ub4,

e Every single field is printable
e |tis then reasonable that the struct itself should also be printable!

o Are there other traits that follow the same logic with structs?

52

Clone

Recall the Clone trait from week 2.

let mut foo = vec![1, 2, 31;
let mut foo2 = foo.clone(); // explicit duplication of an object

foo.push(4); // foo = [1,2,3,4]
let y = foo2.pop(); // y=3, foo2 = [1, 2]
e Atype that implements Clone can be duplicated [deep copied

e The new value is independent of the original value and can be modified without
affecting the original value

53

Clone

We can also derive Clone for Student !

#[derive(Clone)]

struct Student {
andrew_id: String,
attendance: Vec<bool>,
grade: u8§,
stress_level: ub4,

e Each field is cloneable

e So the entire struct should also be cloneable!

54

#[derive(Clone)] Behind The Scenes

struct Student {
andrew_id: String,
attendance: Vec<bool>,
grade: u8,
stress_level: ub4,

¥

impl Clone for Student {
fn clone(&self) —> Self {
Self {
andrew_id: self.andrew_id.clone(),
attendance: self.attendance.clone(),
grade: self.grade.clone(),
stress_level: self.stress_level.clone(),

58

Derive Traits

Here's a list of other traits that can be derived:

o Comparison traits: Eq, PartialEq, Ord, PartialOrd

Clone ,tocreatea T froma &T

Copy , to give a type "copy semantics" instead of "move semantics"”
Hash , to compute a hash from &T

Default , to create an empty instance of a data type

Debug , to format a value using the {:?} formatter

56

Copy

Recall that the Copy is a marker for types whose values can be duplicated simply by
copying bits.

The only types that are Copy are:
o Allintegertypes: u8, i32 ,etc
e bool

o Allfloating point types: 32, f64 ,etc
e char type

51/

Copy

Here is the definition of Copy in the standard library:

pub trait Copy: Clone {}

e Notice how therre are no methods associated with Copy
o This is because Copy is always a simple bitwise copy

e Copy is asubtrait of Clone

58

What Can #[derive(Copy)]?

Since Clone is a supertrait of Copy , we must derive Clone first to derive Copy .

#[derive(Clone, Copy)]l
pub struct Cat {
age: u32,
name: &'static str // reference to a string literal

e Note that we cannot force impl Copy ourselves whenever
#[derive(Clone, Copy)] doesn't work, so always use #[derive] for Copy

59

When #[derive] Fails

What happens if a field is not Copy ?

#[derive(Copy)]

pub struct Stuff<T> {
singleton: T,
many: Vec<T>,

error[EQ204]: the trait Copy cannot be implemented for this type
——> src/main.rs:4:10

4 | #[derive(Copy)]

NANNN

7 many: Vec<T>,
____________ this field does not implement " Copy’

= note: this error originates in the derive macro "Copy’

60

Deriving Default

What if we tried to derive Default instead?

pub trait Default: Sized {
// Required method
fn default() —> Self;

#[derive(Default)]
pub struct Stuff<T> {
singleton: T,
many: Vec<T>,

e This actually compiles, even though T is not Default !
o However...

61

When #[derive(Default)] Fails

We can only derive Default if every generictype T usedis
also Default .

// No #[derive(Default)] here!
struct Nope;

fn main() {
let d: Stuff<Nope> = Stuff::default();
I3

e Nope isnot Default

62

When #[derive(Default)] Fails

We get this error only after trying to construct Stuff<Nope> .

error[EQ277]: the trait bound "Nope: Default™ is not satisfied
——> src/main.rs:10:26

10 let d: Stuff<Nope> = Stuff::default();

|
| AAAn the trait "Default™ is not implemented for "Nope®
|

help: the trait "Default is implemented for “~Stuff<T>"

63

#[derive] vs Manual Implementation

Sometimes we can't derive a trait, or need a more complex behavior than what the #
[derive] will provide.

pub trait Default: Sized {
// Required method
fn default() —> Self;

¥

struct SomeOptions {
foo: 132,
bar: 32,

e Defaults for both i32 and f32 is @

e We don't always want this behaviour

o4

Example: Default

We can still manaully implement all of the derivable traits.

impl Default for SomeOptions {
fn default() —> Self {
SomeOptions Ao
foo: 12,
bar: 20.0,

e #[derive(Default)] would make both of those values @

e |[nstead we manualy set them to values we want

65

Aside: The Orphan Rule

Rust has a specific rule for trait implementations.
You cannot provide implementations of a trait for a type unless:

e You created the type

e You created the trait

66

Aside: The Orphan Rule

The orphan rule basically means you cannot implement someone else's trait for someone
else's type.

Examples:

e You cannot implement Hash for Vec<T>
e You cannot implement PartialOrd for String

o [he real reason is that these trait implementations actually already exist, but this will
become clearer when we talk about 3rd party crates.

Y

Trait Mix Ups

Consider the following:

trait Pilot {
fn fly(&self);
}

trait Wizard {
fn fly(&self);
¥

struct Human;

638

Trait Mix Ups

Let's say we implement both traits for Human , which both have the fly method, as well
asourown fly implementation.

impl Pilot for Human {
fn fly(&self) {
println!("This is your captain speaking.");
I3

¥

impl Wizard for Human {
fn fly(&self) {
println! ("Up!'");
I3

}

impl Human {
fn fly(&self) {
println! ("swaving arms furiously%*");
¥

69

Trait Mix Ups

What happens here?

fn main() {
let person = Human;
person.fly();

/0

Trait Mix Ups

Here, Rust uses .fly() from Human .

fn main() {
let person = Human;

person.fly();

How do we call every version of . fly() ?

fn main() {
let person = Human;
Pilot::fly(&person); // fly takes &self as a parameter
Wizard::fly(&person);
person.fly();

71

Even Worse Trait Mix Ups

Last time we got lucky because fly took &self as a parameter. What would we do if
that wasn't the case?

fn main() {
let person = Human;
<person as Pilot>::fly()
<person as Wizard>::fly(
person.fly();

);

e This is considered the fully qualified syntax of a trait

/2

Trait Bounds

If we want to ensure that a generic argument implements a trait, we can use trait bounds.

pub fn notify<T: Summary>(item: &T) {
println!("Breaking news! {}", item.summarize());
s

e Wecanonlycall item.summarize() because T is Summary

/3

Argument Position 1impl Trait

You can annotate the generic type with a trait bound, or you can use impl Trait asthe
type of the argument.
fn get_csv_lines<R: std::io::BufRead>(src: R) —> u32;

fn get_csv_lines(src: impl std::io::BufRead) —> u32;

e The second line is called an argument-position impl trait (APIT).

e There is a slight difference here which we won't cover, just know that these aren't
completely identical
o Watch for more information

74

https://youtu.be/CWiz_RtA1Hw?si=nJ4lFAJz7Uczz50I&t=882

Return Position 1mpl Trait

If your function returns a type that implements MyTrait , you can write its return type as -
> impl MyTrait .

fn to_key<T>(v: Vec<T>) —> impl Hash;

e This is called return-position impl trait (RPIT)
e Starting in Rust 1.75, you can use .

e These are no longer generics, but are instead existential types
o Read blog for more information

/&

https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html
https://varkor.github.io/blog/2018/07/03/existential-types-in-rust.html

where Clauses

Trait bounds are awesome, but sometimes too many can be verbose.

fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) —> i32;

This can be cumbersome to write, so we have where clauses!

fn some_function<T, U>(t: &T, u: &U) —> i32
where

T: Display + Clone,

U: Clone + Debug,

e Now we don't need ultrawide monitors to code in Rust!

/6

Conditional Implementation

Say we have a struct Pair .

use std::fmt::Display;

struct Pair<T> {
x: T,
y: T,

I3

impl<T> Pair<T> A
fn new(x: T, y: T) —> Self {
Self { x, y }
s

77

Conditional Implementation

We can conditionally implement methods based on the traits the generic parameters
implement.

impl<T: Display + PartialOrd> Pair<T> A
fn cmp_display(&self) {
if self.x >= self.y {
println!("The largest member is x = {}", self.x);
} else {
println!("The largest member is y = {}", self.y);
¥

e T mustimplement Display to be printed
e T mustimplement PartialOrd to be compared

e cmp_display will existfora Pair<i32> butnotfor Pair<T: !'PartialOrd>

/8

Homework 5

You'll be parsing some files to implement Reader and Summary traits
o The parse methods will returna Result , which means they can fail

Parsing strings in Rust is tricky, so you will only need to do half of this homework to
receive full credit
o The second half is all extra credit!

Even though this week focused on Errors and Traits, this homework will heavily test
your familiarity with the

o Please do not hesistate to reach out for help!

79

https://doc.rust-lang.org/std/string/struct.String.html

Next Lecture: Modules and Testing

Thanks for coming!

80

