Benjamin Owad, David Rudo, and Connor Tsui

Today: Box and Trait Objects

e Box<T>

e The Deref and Drop trait
e Trait Objects

e Object Safety

Motivation for Box<T>

Let's Make a List

Let's say we wanted to make recursive-style list

enum List {
Cons(i32, List),
Nit,

}

fn main() {

// List of 1,2,3

let list = Cons(1, Cons(2, Cons(3, Nil)));
b

Cargo's Suggestion

error [EQ072]: recursive type List has infinite size
——> src/main.rs:1:1

enum List {

NANNANNANNNNN

Cons(i32, List),
———— recursive without indirection

1

2

2 Cons(i32, Box<List>),

I
I
I
I
help: insert some indirection (e.g., a Box , 'Rc, or &) to break the cycle
|
|
| ++++ -

e Rustis upset because we've defined a type with infinite size

e The suggestion provided isto use a Box<List>

Indirection with Box<T>

let singleton = Cons(1, Box::new(Nil));
let list = Cons(1, Box::new(Cons(2, Box::new(Cons(3, Box::new(Nil))))));

e |nthe suggestion "indirection” means we store a pointer to a list rather than a list
directly
o Because a pointer has a fixed size our enum is no longer infinite!

e We create a Box withthe new function

Cost of Box<T>

e Box<T> is asimple smart pointer, it just allocates on the heap**

Boxes don't have performance overhead
o Except for the overhead of allocation and pointer indirection

e Box<T> is a pointer type that fully owns the data, treated the same as any other
owned value.

They provide no other "special” capabilities

When to use Box<T>

e \When you have a type of unknown size at compile time and you need its exact size

o List from before

e When you have a large amount of data and want to transfer ownership and ensure no
data is copied

o Copying a pointer is faster than copying a large chunk of data

e When you want to own a value and you care only that it's a type that implements a
particular trait rather than being of a specific type

o We'll get to this soon

Using Values in the Box

fn main() {
let x = 5;
let y = Box::new(x);

assert_eq! (5, x);
assert_eq!(5, *xy);

e Just like a reference we can dereference a Box<T> toget T

e Box<T> implementsthe Deref trait which customizes the behavior of

Deref Trait

The deref trait is defined as follows:

pub trait Deref {
type Target: ?Sized;

// Required method
fn deref(&self) —> &Self::Target;

e Behind the scenes x*y is actually *(y.deref())
o Note this does not recurse infinitely

o We are now able to treat smart pointers just like regular pointers!

10

Deref Coercion

fn hello(name: &str) {
println!("Hello, {name}!'");

¥

fn main() {
let m = Box::new(String::from("Rust"));
hello(&m);

}

e Converts areference to a type that implements the Deref trait into a reference to
another type
o Example: deref coercion can convert &String to &str because String
implements the Deref trait such that it returns &str

e Here we see Box<String> deref coercesto &str

11

Deref Coercion Rules

Note Rust will coerce mutable to immutable but not the reverse

e From &T to &U when T: Deref<Target=U>
e From &mut T to &mut U when T: DerefMut<Target=U>
e From &mut T to &U when T: Deref<Target=U>

12

&mut T to &mut U Example

fn foo(s: &mut [i32]) {
// Borrow a slice for a second.
}

// Vec<T> implements Deref<Target=[T]>.
let mut owned = vec![1, 2, 3];

foo(&mut owned);

13

&mut T to &U Example

fn foo(s: &[i32]) {
// Borrow a slice for a second.
}

// Vec<T> implements Deref<Target=[T]>.
let mut owned = vec![1, 2, 3];

foo(&mut owned);

14

The Drop Trait

pub trait Drop {
// Required method
fn drop(&mut self);

e Determines what happens when value goes out of scope (dropped)
e You can provide an implementation of Drop on any type

e This is how Rust doesn't need you to carefully clean up memory

15

Drop Trait Example

struct CustomSmartPointer {
data: String,
¥

impl Drop for CustomSmartPointer {
fn drop(&mut self) {
printin! ("Dropping CustomSmartPointer with data "{} !", self.data);
s

16

Drop Trait In

fn main() {
let ¢ = CustomSmartPointer {
data: String::from("my stuff"),
&

let d = CustomSmartPointer {
data: String::from("other stuff"),
};

println!("CustomSmartPointers created.");

CustomSmartPointers created.
Dropping CustomSmartPointer with data other stuff !
Dropping CustomSmartPointer with data my stuff !

e [tems are dropped in reverse order of creation

17

Dropping Manually

let ¢ = CustomSmartPointer {
data: String::from("some data"),
}.

p;intln!("CSM created.");
c.drop();
println!("CSM dropped before the end of main.");

error [EQ040] : explicit use of destructor method
——> src/main.rs:16:7

16 c.drop();

Yo Vo Vo Vo NEENES

explicit destructor calls not allowed

e Rust won't let you explicitly call the drop function to
avoid double drops

|
help: consider using “drop function: “drop(c)"

18

Dropping Manually

fn main()
let ¢ = CustomSmartPointer {
data: String::from("some data"),
};

println! ("CustomSmartPointer created.");
drop(c);
println! ("CustomSmartPointer dropped before the end of main.");

{
C

e This code works since we use std::mem::drop instead
o This is different that calling c.drop()

e You can think of thisas drop taking ownership of ¢ and dropping it
o Actual source code: pub fn drop<T>(_x: T) {}

19

Object-Oriented Features of Rust

20

What we know

pub struct AveragedCollection {
list: Vec<i32>,
average: fo4,

}

impl AveragedCollection {
pub fn add(&mut self, value: i32) {
self.list.push(value);
self.update_average();

e Encapsulation with imp1l blocks

e Public and private methods with crates and pub

21

Inheritence?

e Rust structs cannot inherit methods or data from another struct

e |f we want code re-use:
o We have traits (and even super traits)

e |f we want polymorphism:
o Rust has something called "trait objects”

22

Polymorphism

e Polymorphism != Inheritence

e Polymorphism = "Code that can work with multiple data types"
o For inheritence this is usually subclases

e Rust polymorphism:
o Generics - Abstract over different possible types

o Trait bounds - Impose constraints on what types must provide

23

Trait Objects

pub trait Draw {
fn draw(&self);

}

pub struct Screen {
pub components: Vec<Box<dyn Draw>>,

}

e We want to implement a struct Screen
o |t holds a Vector of Drawable items

o We use the dyn keyword to describe any type that implements Draw
= \We need to use a box since Rust doesn't know the size of dyn Draw

24

Trait Objects and Closures

fn returns_closure() —> Box<dyn Fn(i32) —> i32> {
Box::new(|x| x + 1)

}

fn main() {
let closure = returns_closure();
print!("{}", closure(5)); // prints 6

¥

e We can use trait objects to return dynamic types

e A Boxis neededsince dyn Fn has no known size

e Now with dereferencing coercion this isn't an awkward type to use!

25

Working With Trait Objects

impl Screen {
pub fn run(&self) {
for component in self.components.iter() {
component.draw();
s

}
}

e Note this is different than a struct that uses trait bounds
e A generic parameter can only be substituted with one concrete type at a time

e Trait objects allow for multiple concrete types to fill in for the trait object at runtime

26

Generic Version

pub struct Screen<T: Draw> {
pub components: Vec<T>,
Iy

impl<T> Screen<T>
where

T: Draw,
{

pub fn run(&self) {
for component in self.components.iter() {
component.draw();
s

e What's wrong with this version?
o Well if we wanted a screen with multiple different types in it, it'd be much harder

27

Dynamically Sized Types

e Recall that we needed a Box<dyn Draw> before.
e dyn Draw is an example of a dynamically sized type (DST)

e Pointers to DSTs are double the size
o Stores the a vtable pointer with it

28

DST Rules

e Traits may be implemented for DSTs
o Unlike with generic type parameters, Self: ?Sized isthe default in trait
definitions

e They can be type arguments to generic type parameters having the special ?Sized
bound

e EX: struct Bar<T: ?Sized>(T);
o ? marks an anti-trait (specifies a type doesn't implement a trait)

29

Next Lecture: ISD

Instructors still debating

e Thanks for coming!

30

