
Intro to Rust LangIntro to Rust Lang

BoxBox and Trait and Trait
ObjectsObjects

Benjamin Owad, David Rudo, and Connor Tsui

1

Today: Box and Trait Objects

Box<T>

The Deref and Drop trait

Trait Objects

Object Safety

2

Motivation for Box<T>

3

Let's Make a List

Let's say we wanted to make recursive-style list

enum List {
 Cons(i32, List),
 Nil,
}

fn main() {
 // List of 1,2,3
 let list = Cons(1, Cons(2, Cons(3, Nil)));
}

4

Cargo's Suggestion

error[E0072]: recursive type `List` has infinite size
 --> src/main.rs:1:1
 |
1 | enum List {
 | ^^^^^^^^^
2 | Cons(i32, List),
 | ---- recursive without indirection
 |
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to break the cycle
 |
2 | Cons(i32, Box<List>),
 | ++++ +

Rust is upset because we've defined a type with infinite size

The suggestion provided is to use a Box<List>

5

Indirection with Box<T>
let singleton = Cons(1, Box::new(Nil));
let list = Cons(1, Box::new(Cons(2, Box::new(Cons(3, Box::new(Nil))))));

In the suggestion "indirection" means we store a pointer to a list rather than a list

directly
Because a pointer has a fixed size our enum is no longer infinite!

We create a Box with the new function

6

Cost of Box<T>
Box<T> is a simple smart pointer, it just allocates on the heap**

Boxes don't have performance overhead
Except for the overhead of allocation and pointer indirection

Box<T> is a pointer type that fully owns the data, treated the same as any other

owned value.

They provide no other "special" capabilities

7

When to use Box<T>

When you have a type of unknown size at compile time and you need its exact size

List from before

When you have a large amount of data and want to transfer ownership and ensure no

data is copied

Copying a pointer is faster than copying a large chunk of data

When you want to own a value and you care only that it’s a type that implements a
particular trait rather than being of a specific type

We'll get to this soon

8

Using Values in the Box
fn main() {
 let x = 5;
 let y = Box::new(x);

 assert_eq!(5, x);
 assert_eq!(5, *y);
}

Just like a reference we can dereference a Box<T> to get T

Box<T> implements the Deref trait which customizes the behavior of *

9

Deref Trait

The deref trait is defined as follows:

pub trait Deref {
 type Target: ?Sized;

 // Required method
 fn deref(&self) -> &Self::Target;
}

Behind the scenes *y is actually *(y.deref())

Note this does not recurse infinitely

We are now able to treat smart pointers just like regular pointers!

10

Deref Coercion

fn hello(name: &str) {
 println!("Hello, {name}!");
}

fn main() {
 let m = Box::new(String::from("Rust"));
 hello(&m);
}

Converts a reference to a type that implements the Deref trait into a reference to

another type
Example: deref coercion can convert &String to &str because String

implements the Deref trait such that it returns &str

Here we see Box<String> deref coerces to &str

11

Deref Coercion Rules

Note Rust will coerce mutable to immutable but not the reverse

From &T to &U when T: Deref<Target=U>

From &mut T to &mut U when T: DerefMut<Target=U>

From &mut T to &U when T: Deref<Target=U>

12

&mut T to &mut U Example

fn foo(s: &mut [i32]) {
 // Borrow a slice for a second.
}

// Vec<T> implements Deref<Target=[T]>.
let mut owned = vec![1, 2, 3];

foo(&mut owned);

13

&mut T to &U Example

fn foo(s: &[i32]) {
 // Borrow a slice for a second.
}

// Vec<T> implements Deref<Target=[T]>.
let mut owned = vec![1, 2, 3];

foo(&mut owned);

14

The Drop Trait

pub trait Drop {
 // Required method
 fn drop(&mut self);
}

Determines what happens when value goes out of scope (dropped)

You can provide an implementation of Drop on any type

This is how Rust doesn't need you to carefully clean up memory

15

Drop Trait Example

struct CustomSmartPointer {
 data: String,
}

impl Drop for CustomSmartPointer {
 fn drop(&mut self) {
 println!("Dropping CustomSmartPointer with data `{}`!", self.data);
 }
}

16

Drop Trait In

fn main() {
 let c = CustomSmartPointer {
 data: String::from("my stuff"),
 };
 let d = CustomSmartPointer {
 data: String::from("other stuff"),
 };
 println!("CustomSmartPointers created.");
}

CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
Dropping CustomSmartPointer with data `my stuff`!

Items are dropped in reverse order of creation

17

Dropping Manually

let c = CustomSmartPointer {
 data: String::from("some data"),
};
println!("CSM created.");
c.drop();
println!("CSM dropped before the end of main.");

error[E0040]: explicit use of destructor method
 --> src/main.rs:16:7
 |
16 | c.drop();
 | --^^^^--
 | | |
 | | explicit destructor calls not allowed
 | help: consider using `drop` function: `drop(c)`

Rust won't let you explicitly call the drop function to

avoid double drops
18

Dropping Manually

fn main() {
 let c = CustomSmartPointer {
 data: String::from("some data"),
 };
 println!("CustomSmartPointer created.");
 drop(c);
 println!("CustomSmartPointer dropped before the end of main.");
}

This code works since we use std::mem::drop instead
This is different that calling c.drop()

You can think of this as drop taking ownership of c and dropping it

Actual source code: pub fn drop<T>(_x: T) {}

19

Object-Oriented Features of Rust

20

What we know

pub struct AveragedCollection {
 list: Vec<i32>,
 average: f64,
}

impl AveragedCollection {
 pub fn add(&mut self, value: i32) {
 self.list.push(value);
 self.update_average();
 }
}

Encapsulation with impl blocks

Public and private methods with crates and pub

21

Inheritence?

Rust structs cannot inherit methods or data from another struct

If we want code re-use:
We have traits (and even super traits)

If we want polymorphism:
Rust has something called "trait objects"

22

Polymorphism

Polymorphism != Inheritence

Polymorphism = "Code that can work with multiple data types"

For inheritence this is usually subclases

Rust polymorphism:
Generics - Abstract over different possible types

Trait bounds - Impose constraints on what types must provide

23

Trait Objects

pub trait Draw {
 fn draw(&self);
}

pub struct Screen {
 pub components: Vec<Box<dyn Draw>>,
}

We want to implement a struct Screen
It holds a Vector of Drawable items

We use the dyn keyword to describe any type that implements Draw

We need to use a box since Rust doesn't know the size of dyn Draw

24

Trait Objects and Closures

fn returns_closure() -> Box<dyn Fn(i32) -> i32> {
 Box::new(|x| x + 1)
}

fn main() {
 let closure = returns_closure();
 print!("{}", closure(5)); // prints 6
}

We can use trait objects to return dynamic types

A Box is needed since dyn Fn has no known size

Now with dereferencing coercion this isn't an awkward type to use!

25

Working With Trait Objects

impl Screen {
 pub fn run(&self) {
 for component in self.components.iter() {
 component.draw();
 }
 }
}

Note this is different than a struct that uses trait bounds

A generic parameter can only be substituted with one concrete type at a time

Trait objects allow for multiple concrete types to fill in for the trait object at runtime

26

Generic Version

pub struct Screen<T: Draw> {
 pub components: Vec<T>,
}

impl<T> Screen<T>
where
 T: Draw,
{
 pub fn run(&self) {
 for component in self.components.iter() {
 component.draw();
 }
 }
}

What's wrong with this version?
Well if we wanted a screen with multiple different types in it, it'd be much harder

27

Dynamically Sized Types

Recall that we needed a Box<dyn Draw> before.

dyn Draw is an example of a dynamically sized type (DST)

Pointers to DSTs are double the size

Stores the a vtable pointer with it

28

DST Rules

Traits may be implemented for DSTs

Unlike with generic type parameters, Self: ?Sized is the default in trait
definitions

They can be type arguments to generic type parameters having the special ?Sized

bound

Ex: struct Bar<T: ?Sized>(T);
? marks an anti-trait (specifies a type doesn't implement a trait)

29

Next Lecture: ISD

Instructors still debating

Thanks for coming!

30

