--- name: flow-nexus-neural description: Train and deploy neural networks in distributed E2B sandboxes with Flow Nexus version: 1.0.0 category: ai-ml tags: - neural-networks - distributed-training - machine-learning - deep-learning - flow-nexus - e2b-sandboxes requires_auth: true mcp_server: flow-nexus --- # Flow Nexus Neural Networks Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace. ## Prerequisites ```bash # Add Flow Nexus MCP server claude mcp add flow-nexus npx flow-nexus@latest mcp start # Register and login npx flow-nexus@latest register npx flow-nexus@latest login ``` ## Core Capabilities ### 1. Single-Node Neural Training Train neural networks with custom architectures and configurations. **Available Architectures:** - `feedforward` - Standard fully-connected networks - `lstm` - Long Short-Term Memory for sequences - `gan` - Generative Adversarial Networks - `autoencoder` - Dimensionality reduction - `transformer` - Attention-based models **Training Tiers:** - `nano` - Minimal resources (fast, limited) - `mini` - Small models - `small` - Standard models - `medium` - Complex models - `large` - Large-scale training #### Example: Train Custom Classifier ```javascript mcp__flow-nexus__neural_train({ config: { architecture: { type: "feedforward", layers: [ { type: "dense", units: 256, activation: "relu" }, { type: "dropout", rate: 0.3 }, { type: "dense", units: 128, activation: "relu" }, { type: "dropout", rate: 0.2 }, { type: "dense", units: 64, activation: "relu" }, { type: "dense", units: 10, activation: "softmax" } ] }, training: { epochs: 100, batch_size: 32, learning_rate: 0.001, optimizer: "adam" }, divergent: { enabled: true, pattern: "lateral", // quantum, chaotic, associative, evolutionary factor: 0.5 } }, tier: "small", user_id: "your_user_id" }) ``` #### Example: LSTM for Time Series ```javascript mcp__flow-nexus__neural_train({ config: { architecture: { type: "lstm", layers: [ { type: "lstm", units: 128, return_sequences: true }, { type: "dropout", rate: 0.2 }, { type: "lstm", units: 64 }, { type: "dense", units: 1, activation: "linear" } ] }, training: { epochs: 150, batch_size: 64, learning_rate: 0.01, optimizer: "adam" } }, tier: "medium" }) ``` #### Example: Transformer Architecture ```javascript mcp__flow-nexus__neural_train({ config: { architecture: { type: "transformer", layers: [ { type: "embedding", vocab_size: 10000, embedding_dim: 512 }, { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 }, { type: "global_average_pooling" }, { type: "dense", units: 128, activation: "relu" }, { type: "dense", units: 2, activation: "softmax" } ] }, training: { epochs: 50, batch_size: 16, learning_rate: 0.0001, optimizer: "adam" } }, tier: "large" }) ``` ### 2. Model Inference Run predictions on trained models. ```javascript mcp__flow-nexus__neural_predict({ model_id: "model_abc123", input: [ [0.5, 0.3, 0.2, 0.1], [0.8, 0.1, 0.05, 0.05], [0.2, 0.6, 0.15, 0.05] ], user_id: "your_user_id" }) ``` **Response:** ```json { "predictions": [ [0.12, 0.85, 0.03], [0.89, 0.08, 0.03], [0.05, 0.92, 0.03] ], "inference_time_ms": 45, "model_version": "1.0.0" } ``` ### 3. Template Marketplace Browse and deploy pre-trained models from the marketplace. #### List Available Templates ```javascript mcp__flow-nexus__neural_list_templates({ category: "classification", // timeseries, regression, nlp, vision, anomaly, generative tier: "free", // or "paid" search: "sentiment", limit: 20 }) ``` **Response:** ```json { "templates": [ { "id": "sentiment-analysis-v2", "name": "Sentiment Analysis Classifier", "description": "Pre-trained BERT model for sentiment analysis", "category": "nlp", "accuracy": 0.94, "downloads": 1523, "tier": "free" }, { "id": "image-classifier-resnet", "name": "ResNet Image Classifier", "description": "ResNet-50 for image classification", "category": "vision", "accuracy": 0.96, "downloads": 2341, "tier": "paid" } ] } ``` #### Deploy Template ```javascript mcp__flow-nexus__neural_deploy_template({ template_id: "sentiment-analysis-v2", custom_config: { training: { epochs: 50, learning_rate: 0.0001 } }, user_id: "your_user_id" }) ``` ### 4. Distributed Training Clusters Train large models across multiple E2B sandboxes with distributed computing. #### Initialize Cluster ```javascript mcp__flow-nexus__neural_cluster_init({ name: "large-model-cluster", architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid topology: "mesh", // mesh, ring, star, hierarchical consensus: "proof-of-learning", // byzantine, raft, gossip daaEnabled: true, // Decentralized Autonomous Agents wasmOptimization: true }) ``` **Response:** ```json { "cluster_id": "cluster_xyz789", "name": "large-model-cluster", "status": "initializing", "topology": "mesh", "max_nodes": 100, "created_at": "2025-10-19T10:30:00Z" } ``` #### Deploy Worker Nodes ```javascript // Deploy parameter server mcp__flow-nexus__neural_node_deploy({ cluster_id: "cluster_xyz789", node_type: "parameter_server", model: "large", template: "nodejs", capabilities: ["parameter_management", "gradient_aggregation"], autonomy: 0.8 }) // Deploy worker nodes mcp__flow-nexus__neural_node_deploy({ cluster_id: "cluster_xyz789", node_type: "worker", model: "xl", role: "worker", capabilities: ["training", "inference"], layers: [ { type: "transformer_encoder", num_heads: 16 }, { type: "feed_forward", units: 4096 } ], autonomy: 0.9 }) // Deploy aggregator mcp__flow-nexus__neural_node_deploy({ cluster_id: "cluster_xyz789", node_type: "aggregator", model: "large", capabilities: ["gradient_aggregation", "model_synchronization"] }) ``` #### Connect Cluster Topology ```javascript mcp__flow-nexus__neural_cluster_connect({ cluster_id: "cluster_xyz789", topology: "mesh" // Override default if needed }) ``` #### Start Distributed Training ```javascript mcp__flow-nexus__neural_train_distributed({ cluster_id: "cluster_xyz789", dataset: "imagenet", // or custom dataset identifier epochs: 100, batch_size: 128, learning_rate: 0.001, optimizer: "adam", // sgd, rmsprop, adagrad federated: true // Enable federated learning }) ``` **Federated Learning Example:** ```javascript mcp__flow-nexus__neural_train_distributed({ cluster_id: "cluster_xyz789", dataset: "medical_images_distributed", epochs: 200, batch_size: 64, learning_rate: 0.0001, optimizer: "adam", federated: true, // Data stays on local nodes aggregation_rounds: 50, min_nodes_per_round: 5 }) ``` #### Monitor Cluster Status ```javascript mcp__flow-nexus__neural_cluster_status({ cluster_id: "cluster_xyz789" }) ``` **Response:** ```json { "cluster_id": "cluster_xyz789", "status": "training", "nodes": [ { "node_id": "node_001", "type": "parameter_server", "status": "active", "cpu_usage": 0.75, "memory_usage": 0.82 }, { "node_id": "node_002", "type": "worker", "status": "active", "training_progress": 0.45 } ], "training_metrics": { "current_epoch": 45, "total_epochs": 100, "loss": 0.234, "accuracy": 0.891 } } ``` #### Run Distributed Inference ```javascript mcp__flow-nexus__neural_predict_distributed({ cluster_id: "cluster_xyz789", input_data: JSON.stringify([ [0.1, 0.2, 0.3], [0.4, 0.5, 0.6] ]), aggregation: "ensemble" // mean, majority, weighted, ensemble }) ``` #### Terminate Cluster ```javascript mcp__flow-nexus__neural_cluster_terminate({ cluster_id: "cluster_xyz789" }) ``` ### 5. Model Management #### List Your Models ```javascript mcp__flow-nexus__neural_list_models({ user_id: "your_user_id", include_public: true }) ``` **Response:** ```json { "models": [ { "model_id": "model_abc123", "name": "Custom Classifier v1", "architecture": "feedforward", "accuracy": 0.92, "created_at": "2025-10-15T14:20:00Z", "status": "trained" }, { "model_id": "model_def456", "name": "LSTM Forecaster", "architecture": "lstm", "mse": 0.0045, "created_at": "2025-10-18T09:15:00Z", "status": "training" } ] } ``` #### Check Training Status ```javascript mcp__flow-nexus__neural_training_status({ job_id: "job_training_xyz" }) ``` **Response:** ```json { "job_id": "job_training_xyz", "status": "training", "progress": 0.67, "current_epoch": 67, "total_epochs": 100, "current_loss": 0.234, "estimated_completion": "2025-10-19T12:45:00Z" } ``` #### Performance Benchmarking ```javascript mcp__flow-nexus__neural_performance_benchmark({ model_id: "model_abc123", benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive }) ``` **Response:** ```json { "model_id": "model_abc123", "benchmarks": { "inference_latency_ms": 12.5, "throughput_qps": 8000, "memory_usage_mb": 245, "gpu_utilization": 0.78, "accuracy": 0.92, "f1_score": 0.89 }, "timestamp": "2025-10-19T11:00:00Z" } ``` #### Create Validation Workflow ```javascript mcp__flow-nexus__neural_validation_workflow({ model_id: "model_abc123", user_id: "your_user_id", validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive }) ``` ### 6. Publishing and Marketplace #### Publish Model as Template ```javascript mcp__flow-nexus__neural_publish_template({ model_id: "model_abc123", name: "High-Accuracy Sentiment Classifier", description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy", category: "nlp", price: 0, // 0 for free, or credits amount user_id: "your_user_id" }) ``` #### Rate a Template ```javascript mcp__flow-nexus__neural_rate_template({ template_id: "sentiment-analysis-v2", rating: 5, review: "Excellent model! Achieved 95% accuracy on my dataset.", user_id: "your_user_id" }) ``` ## Common Use Cases ### Image Classification with CNN ```javascript // Initialize cluster for large-scale image training const cluster = await mcp__flow-nexus__neural_cluster_init({ name: "image-classification-cluster", architecture: "cnn", topology: "hierarchical", wasmOptimization: true }) // Deploy worker nodes await mcp__flow-nexus__neural_node_deploy({ cluster_id: cluster.cluster_id, node_type: "worker", model: "large", capabilities: ["training", "data_augmentation"] }) // Start training await mcp__flow-nexus__neural_train_distributed({ cluster_id: cluster.cluster_id, dataset: "custom_images", epochs: 100, batch_size: 64, learning_rate: 0.001, optimizer: "adam" }) ``` ### NLP Sentiment Analysis ```javascript // Use pre-built template const deployment = await mcp__flow-nexus__neural_deploy_template({ template_id: "sentiment-analysis-v2", custom_config: { training: { epochs: 30, batch_size: 16 } } }) // Run inference const result = await mcp__flow-nexus__neural_predict({ model_id: deployment.model_id, input: ["This product is amazing!", "Terrible experience."] }) ``` ### Time Series Forecasting ```javascript // Train LSTM model const training = await mcp__flow-nexus__neural_train({ config: { architecture: { type: "lstm", layers: [ { type: "lstm", units: 128, return_sequences: true }, { type: "dropout", rate: 0.2 }, { type: "lstm", units: 64 }, { type: "dense", units: 1 } ] }, training: { epochs: 150, batch_size: 64, learning_rate: 0.01, optimizer: "adam" } }, tier: "medium" }) // Monitor progress const status = await mcp__flow-nexus__neural_training_status({ job_id: training.job_id }) ``` ### Federated Learning for Privacy ```javascript // Initialize federated cluster const cluster = await mcp__flow-nexus__neural_cluster_init({ name: "federated-medical-cluster", architecture: "transformer", topology: "mesh", consensus: "proof-of-learning", daaEnabled: true }) // Deploy nodes across different locations for (let i = 0; i < 5; i++) { await mcp__flow-nexus__neural_node_deploy({ cluster_id: cluster.cluster_id, node_type: "worker", model: "large", autonomy: 0.9 }) } // Train with federated learning (data never leaves nodes) await mcp__flow-nexus__neural_train_distributed({ cluster_id: cluster.cluster_id, dataset: "medical_records_distributed", epochs: 200, federated: true, aggregation_rounds: 100 }) ``` ## Architecture Patterns ### Feedforward Networks Best for: Classification, regression, simple pattern recognition ```javascript { type: "feedforward", layers: [ { type: "dense", units: 256, activation: "relu" }, { type: "dropout", rate: 0.3 }, { type: "dense", units: 128, activation: "relu" }, { type: "dense", units: 10, activation: "softmax" } ] } ``` ### LSTM Networks Best for: Time series, sequences, forecasting ```javascript { type: "lstm", layers: [ { type: "lstm", units: 128, return_sequences: true }, { type: "lstm", units: 64 }, { type: "dense", units: 1 } ] } ``` ### Transformers Best for: NLP, attention mechanisms, large-scale text ```javascript { type: "transformer", layers: [ { type: "embedding", vocab_size: 10000, embedding_dim: 512 }, { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 }, { type: "global_average_pooling" }, { type: "dense", units: 2, activation: "softmax" } ] } ``` ### GANs Best for: Generative tasks, image synthesis ```javascript { type: "gan", generator_layers: [...], discriminator_layers: [...] } ``` ### Autoencoders Best for: Dimensionality reduction, anomaly detection ```javascript { type: "autoencoder", encoder_layers: [ { type: "dense", units: 128, activation: "relu" }, { type: "dense", units: 64, activation: "relu" } ], decoder_layers: [ { type: "dense", units: 128, activation: "relu" }, { type: "dense", units: input_dim, activation: "sigmoid" } ] } ``` ## Best Practices 1. **Start Small**: Begin with `nano` or `mini` tiers for experimentation 2. **Use Templates**: Leverage marketplace templates for common tasks 3. **Monitor Training**: Check status regularly to catch issues early 4. **Benchmark Models**: Always benchmark before production deployment 5. **Distributed Training**: Use clusters for large models (>1B parameters) 6. **Federated Learning**: Use for privacy-sensitive data 7. **Version Models**: Publish successful models as templates for reuse 8. **Validate Thoroughly**: Use validation workflows before deployment ## Troubleshooting ### Training Stalled ```javascript // Check cluster status const status = await mcp__flow-nexus__neural_cluster_status({ cluster_id: "cluster_id" }) // Terminate and restart if needed await mcp__flow-nexus__neural_cluster_terminate({ cluster_id: "cluster_id" }) ``` ### Low Accuracy - Increase epochs - Adjust learning rate - Add regularization (dropout) - Try different optimizer - Use data augmentation ### Out of Memory - Reduce batch size - Use smaller model tier - Enable gradient accumulation - Use distributed training ## Related Skills - `flow-nexus-sandbox` - E2B sandbox management - `flow-nexus-swarm` - AI swarm orchestration - `flow-nexus-workflow` - Workflow automation ## Resources - Flow Nexus Docs: https://flow-nexus.ruv.io/docs - Neural Network Guide: https://flow-nexus.ruv.io/docs/neural - Template Marketplace: https://flow-nexus.ruv.io/templates - API Reference: https://flow-nexus.ruv.io/api --- **Note**: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use `npx flow-nexus@latest register`.