--- name: hive-mind-advanced description: Advanced Hive Mind collective intelligence system for queen-led multi-agent coordination with consensus mechanisms and persistent memory version: 1.0.0 category: coordination tags: [hive-mind, swarm, queen-worker, consensus, collective-intelligence, multi-agent, coordination] author: Claude Flow Team --- # Hive Mind Advanced Skill Master the advanced Hive Mind collective intelligence system for sophisticated multi-agent coordination using queen-led architecture, Byzantine consensus, and collective memory. ## Overview The Hive Mind system represents the pinnacle of multi-agent coordination in Claude Flow, implementing a queen-led hierarchical architecture where a strategic queen coordinator directs specialized worker agents through collective decision-making and shared memory. ## Core Concepts ### Architecture Patterns **Queen-Led Coordination** - Strategic queen agents orchestrate high-level objectives - Tactical queens manage mid-level execution - Adaptive queens dynamically adjust strategies based on performance **Worker Specialization** - Researcher agents: Analysis and investigation - Coder agents: Implementation and development - Analyst agents: Data processing and metrics - Tester agents: Quality assurance and validation - Architect agents: System design and planning - Reviewer agents: Code review and improvement - Optimizer agents: Performance enhancement - Documenter agents: Documentation generation **Collective Memory System** - Shared knowledge base across all agents - LRU cache with memory pressure handling - SQLite persistence with WAL mode - Memory consolidation and association - Access pattern tracking and optimization ### Consensus Mechanisms **Majority Consensus** Simple voting where the option with most votes wins. **Weighted Consensus** Queen vote counts as 3x weight, providing strategic guidance. **Byzantine Fault Tolerance** Requires 2/3 majority for decision approval, ensuring robust consensus even with faulty agents. ## Getting Started ### 1. Initialize Hive Mind ```bash # Basic initialization npx claude-flow hive-mind init # Force reinitialize npx claude-flow hive-mind init --force # Custom configuration npx claude-flow hive-mind init --config hive-config.json ``` ### 2. Spawn a Swarm ```bash # Basic spawn with objective npx claude-flow hive-mind spawn "Build microservices architecture" # Strategic queen type npx claude-flow hive-mind spawn "Research AI patterns" --queen-type strategic # Tactical queen with max workers npx claude-flow hive-mind spawn "Implement API" --queen-type tactical --max-workers 12 # Adaptive queen with consensus npx claude-flow hive-mind spawn "Optimize system" --queen-type adaptive --consensus byzantine # Generate Claude Code commands npx claude-flow hive-mind spawn "Build full-stack app" --claude ``` ### 3. Monitor Status ```bash # Check hive mind status npx claude-flow hive-mind status # Get detailed metrics npx claude-flow hive-mind metrics # Monitor collective memory npx claude-flow hive-mind memory ``` ## Advanced Workflows ### Session Management **Create and Manage Sessions** ```bash # List active sessions npx claude-flow hive-mind sessions # Pause a session npx claude-flow hive-mind pause # Resume a paused session npx claude-flow hive-mind resume # Stop a running session npx claude-flow hive-mind stop ``` **Session Features** - Automatic checkpoint creation - Progress tracking with completion percentages - Parent-child process management - Session logs with event tracking - Export/import capabilities ### Consensus Building The Hive Mind builds consensus through structured voting: ```javascript // Programmatic consensus building const decision = await hiveMind.buildConsensus( 'Architecture pattern selection', ['microservices', 'monolith', 'serverless'] ); // Result includes: // - decision: Winning option // - confidence: Vote percentage // - votes: Individual agent votes ``` **Consensus Algorithms** 1. **Majority** - Simple democratic voting 2. **Weighted** - Queen has 3x voting power 3. **Byzantine** - 2/3 supermajority required ### Collective Memory **Storing Knowledge** ```javascript // Store in collective memory await memory.store('api-patterns', { rest: { pros: [...], cons: [...] }, graphql: { pros: [...], cons: [...] } }, 'knowledge', { confidence: 0.95 }); ``` **Memory Types** - `knowledge`: Permanent insights (no TTL) - `context`: Session context (1 hour TTL) - `task`: Task-specific data (30 min TTL) - `result`: Execution results (permanent, compressed) - `error`: Error logs (24 hour TTL) - `metric`: Performance metrics (1 hour TTL) - `consensus`: Decision records (permanent) - `system`: System configuration (permanent) **Searching and Retrieval** ```javascript // Search memory by pattern const results = await memory.search('api*', { type: 'knowledge', minConfidence: 0.8, limit: 50 }); // Get related memories const related = await memory.getRelated('api-patterns', 10); // Build associations await memory.associate('rest-api', 'authentication', 0.9); ``` ### Task Distribution **Automatic Worker Assignment** The system intelligently assigns tasks based on: - Keyword matching with agent specialization - Historical performance metrics - Worker availability and load - Task complexity analysis ```javascript // Create task (auto-assigned) const task = await hiveMind.createTask( 'Implement user authentication', priority: 8, { estimatedDuration: 30000 } ); ``` **Auto-Scaling** ```javascript // Configure auto-scaling const config = { autoScale: true, maxWorkers: 12, scaleUpThreshold: 2, // Pending tasks per idle worker scaleDownThreshold: 2 // Idle workers above pending tasks }; ``` ## Integration Patterns ### With Claude Code Generate Claude Code spawn commands directly: ```bash npx claude-flow hive-mind spawn "Build REST API" --claude ``` Output: ```javascript Task("Queen Coordinator", "Orchestrate REST API development...", "coordinator") Task("Backend Developer", "Implement Express routes...", "backend-dev") Task("Database Architect", "Design PostgreSQL schema...", "code-analyzer") Task("Test Engineer", "Create Jest test suite...", "tester") ``` ### With SPARC Methodology ```bash # Use hive mind for SPARC workflow npx claude-flow sparc tdd "User authentication" --hive-mind # Spawns: # - Specification agent # - Architecture agent # - Coder agents # - Tester agents # - Reviewer agents ``` ### With GitHub Integration ```bash # Repository analysis with hive mind npx claude-flow hive-mind spawn "Analyze repo quality" --objective "owner/repo" # PR review coordination npx claude-flow hive-mind spawn "Review PR #123" --queen-type tactical ``` ## Performance Optimization ### Memory Optimization The collective memory system includes advanced optimizations: **LRU Cache** - Configurable cache size (default: 1000 entries) - Memory pressure handling (default: 50MB) - Automatic eviction of least-used entries **Database Optimization** - WAL (Write-Ahead Logging) mode - 64MB cache size - 256MB memory mapping - Prepared statements for common queries - Automatic ANALYZE and OPTIMIZE **Object Pooling** - Query result pooling - Memory entry pooling - Reduced garbage collection pressure ### Performance Metrics ```javascript // Get performance insights const insights = hiveMind.getPerformanceInsights(); // Includes: // - asyncQueue utilization // - Batch processing stats // - Success rates // - Average processing times // - Memory efficiency ``` ### Task Execution **Parallel Processing** - Batch agent spawning (5 agents per batch) - Concurrent task orchestration - Async operation optimization - Non-blocking task assignment **Benchmarks** - 10-20x faster batch spawning - 2.8-4.4x speed improvement overall - 32.3% token reduction - 84.8% SWE-Bench solve rate ## Configuration ### Hive Mind Config ```javascript { "objective": "Build microservices", "name": "my-hive", "queenType": "strategic", // strategic | tactical | adaptive "maxWorkers": 8, "consensusAlgorithm": "byzantine", // majority | weighted | byzantine "autoScale": true, "memorySize": 100, // MB "taskTimeout": 60, // minutes "encryption": false } ``` ### Memory Config ```javascript { "maxSize": 100, // MB "compressionThreshold": 1024, // bytes "gcInterval": 300000, // 5 minutes "cacheSize": 1000, "cacheMemoryMB": 50, "enablePooling": true, "enableAsyncOperations": true } ``` ## Hooks Integration Hive Mind integrates with Claude Flow hooks for automation: **Pre-Task Hooks** - Auto-assign agents by file type - Validate objective complexity - Optimize topology selection - Cache search patterns **Post-Task Hooks** - Auto-format deliverables - Train neural patterns - Update collective memory - Analyze performance bottlenecks **Session Hooks** - Generate session summaries - Persist checkpoint data - Track comprehensive metrics - Restore execution context ## Best Practices ### 1. Choose the Right Queen Type **Strategic Queens** - For research, planning, and analysis ```bash npx claude-flow hive-mind spawn "Research ML frameworks" --queen-type strategic ``` **Tactical Queens** - For implementation and execution ```bash npx claude-flow hive-mind spawn "Build authentication" --queen-type tactical ``` **Adaptive Queens** - For optimization and dynamic tasks ```bash npx claude-flow hive-mind spawn "Optimize performance" --queen-type adaptive ``` ### 2. Leverage Consensus Use consensus for critical decisions: - Architecture pattern selection - Technology stack choices - Implementation approach - Code review approval - Release readiness ### 3. Utilize Collective Memory **Store Learnings** ```javascript // After successful pattern implementation await memory.store('auth-pattern', { approach: 'JWT with refresh tokens', pros: ['Stateless', 'Scalable'], cons: ['Token size', 'Revocation complexity'], implementation: {...} }, 'knowledge', { confidence: 0.95 }); ``` **Build Associations** ```javascript // Link related concepts await memory.associate('jwt-auth', 'refresh-tokens', 0.9); await memory.associate('jwt-auth', 'oauth2', 0.7); ``` ### 4. Monitor Performance ```bash # Regular status checks npx claude-flow hive-mind status # Track metrics npx claude-flow hive-mind metrics # Analyze memory usage npx claude-flow hive-mind memory ``` ### 5. Session Management **Checkpoint Frequently** ```javascript // Create checkpoints at key milestones await sessionManager.saveCheckpoint( sessionId, 'api-routes-complete', { completedRoutes: [...], remaining: [...] } ); ``` **Resume Sessions** ```bash # Resume from any previous state npx claude-flow hive-mind resume ``` ## Troubleshooting ### Memory Issues **High Memory Usage** ```bash # Run garbage collection npx claude-flow hive-mind memory --gc # Optimize database npx claude-flow hive-mind memory --optimize # Export and clear npx claude-flow hive-mind memory --export --clear ``` **Low Cache Hit Rate** ```javascript // Increase cache size in config { "cacheSize": 2000, "cacheMemoryMB": 100 } ``` ### Performance Issues **Slow Task Assignment** ```javascript // Enable worker type caching // The system caches best worker matches for 5 minutes // Automatic - no configuration needed ``` **High Queue Utilization** ```javascript // Increase async queue concurrency { "asyncQueueConcurrency": 20 // Default: min(maxWorkers * 2, 20) } ``` ### Consensus Failures **No Consensus Reached (Byzantine)** ```bash # Switch to weighted consensus for more decisive results npx claude-flow hive-mind spawn "..." --consensus weighted # Or use simple majority npx claude-flow hive-mind spawn "..." --consensus majority ``` ## Advanced Topics ### Custom Worker Types Define specialized workers in `.claude/agents/`: ```yaml name: security-auditor type: specialist capabilities: - vulnerability-scanning - security-review - penetration-testing - compliance-checking priority: high ``` ### Neural Pattern Training The system trains on successful patterns: ```javascript // Automatic pattern learning // Happens after successful task completion // Stores in collective memory // Improves future task matching ``` ### Multi-Hive Coordination Run multiple hive minds simultaneously: ```bash # Frontend hive npx claude-flow hive-mind spawn "Build UI" --name frontend-hive # Backend hive npx claude-flow hive-mind spawn "Build API" --name backend-hive # They share collective memory for coordination ``` ### Export/Import Sessions ```bash # Export session for backup npx claude-flow hive-mind export --output backup.json # Import session npx claude-flow hive-mind import backup.json ``` ## API Reference ### HiveMindCore ```javascript const hiveMind = new HiveMindCore({ objective: 'Build system', queenType: 'strategic', maxWorkers: 8, consensusAlgorithm: 'byzantine' }); await hiveMind.initialize(); await hiveMind.spawnQueen(queenData); await hiveMind.spawnWorkers(['coder', 'tester']); await hiveMind.createTask('Implement feature', 7); const decision = await hiveMind.buildConsensus('topic', options); const status = hiveMind.getStatus(); await hiveMind.shutdown(); ``` ### CollectiveMemory ```javascript const memory = new CollectiveMemory({ swarmId: 'hive-123', maxSize: 100, cacheSize: 1000 }); await memory.store(key, value, type, metadata); const data = await memory.retrieve(key); const results = await memory.search(pattern, options); const related = await memory.getRelated(key, limit); await memory.associate(key1, key2, strength); const stats = memory.getStatistics(); const analytics = memory.getAnalytics(); const health = await memory.healthCheck(); ``` ### HiveMindSessionManager ```javascript const sessionManager = new HiveMindSessionManager(); const sessionId = await sessionManager.createSession( swarmId, swarmName, objective, metadata ); await sessionManager.saveCheckpoint(sessionId, name, data); const sessions = await sessionManager.getActiveSessions(); const session = await sessionManager.getSession(sessionId); await sessionManager.pauseSession(sessionId); await sessionManager.resumeSession(sessionId); await sessionManager.stopSession(sessionId); await sessionManager.completeSession(sessionId); ``` ## Examples ### Full-Stack Development ```bash # Initialize hive mind npx claude-flow hive-mind init # Spawn full-stack hive npx claude-flow hive-mind spawn "Build e-commerce platform" \ --queen-type strategic \ --max-workers 10 \ --consensus weighted \ --claude # Output generates Claude Code commands: # - Queen coordinator # - Frontend developers (React) # - Backend developers (Node.js) # - Database architects # - DevOps engineers # - Security auditors # - Test engineers # - Documentation specialists ``` ### Research and Analysis ```bash # Spawn research hive npx claude-flow hive-mind spawn "Research GraphQL vs REST" \ --queen-type adaptive \ --consensus byzantine # Researchers gather data # Analysts process findings # Queen builds consensus on recommendation # Results stored in collective memory ``` ### Code Review ```bash # Review coordination npx claude-flow hive-mind spawn "Review PR #456" \ --queen-type tactical \ --max-workers 6 # Spawns: # - Code analyzers # - Security reviewers # - Performance reviewers # - Test coverage analyzers # - Documentation reviewers # - Consensus on approval/changes ``` ## Skill Progression ### Beginner 1. Initialize hive mind 2. Spawn basic swarms 3. Monitor status 4. Use majority consensus ### Intermediate 1. Configure queen types 2. Implement session management 3. Use weighted consensus 4. Access collective memory 5. Enable auto-scaling ### Advanced 1. Byzantine fault tolerance 2. Memory optimization 3. Custom worker types 4. Multi-hive coordination 5. Neural pattern training 6. Session export/import 7. Performance tuning ## Related Skills - `swarm-orchestration`: Basic swarm coordination - `consensus-mechanisms`: Distributed decision making - `memory-systems`: Advanced memory management - `sparc-methodology`: Structured development workflow - `github-integration`: Repository coordination ## References - [Hive Mind Documentation](https://github.com/ruvnet/claude-flow/docs/hive-mind) - [Collective Intelligence Patterns](https://github.com/ruvnet/claude-flow/docs/patterns) - [Byzantine Consensus](https://github.com/ruvnet/claude-flow/docs/consensus) - [Memory Optimization](https://github.com/ruvnet/claude-flow/docs/memory) --- **Skill Version**: 1.0.0 **Last Updated**: 2025-10-19 **Maintained By**: Claude Flow Team **License**: MIT