#install.packages("matR", repo="http://dunkirk.mcs.anl.gov/~braithwaite/R", type="source") library(matR) #install.packages("RJSONIO") library(RJSONIO) setwd("/Users/metagenomics/Desktop/Ryan co-occurrence code/revision_work/") msession$setAuth("") body.data<-c(Sample1="4456844.3", Sample2="4456777.3", Sample3="4456720.3", Sample4="4456744.3", Sample5="4456753.3", Sample6="4456853.3", Sample7="4456760.3", Sample8="4456695.3", Sample9="4456705.3", Sample10="4456739.3", Sample11="4456724.3", Sample12="4456881.3", Sample13="4456793.3", Sample14="4456696.3", Sample15="4456737.3", Sample16="4456867.3", Sample17="4456776.3", Sample18="4456854.3", Sample19="4456788.3", Sample20="4456730.3", Sample21="4456798.3", Sample22="4456803.3", Sample23="4456813.3", Sample24="4456714.3", Sample25="4456709.3", Sample26="4456810.3", Sample27="4456823.3", Sample28="4456770.3", Sample29="4456715.3", Sample30="4456771.3", Sample31="4456746.3", Sample32="4456712.3", Sample33="4456828.3", Sample34="4456839.3", Sample35="4456758.3", Sample36="4456708.3", Sample37="4456778.3", Sample38="4456780.3", Sample39="4456845.3", Sample40="4456686.3", Sample41="4456878.3", Sample42="4456785.3", Sample43="4456680.3", Sample44="4456872.3", Sample45="4456859.3", Sample46="4456743.3", Sample47="4456762.3", Sample48="4456707.3", Sample49="4456861.3", Sample50="4456773.3", Sample51="4456794.3", Sample52="4456718.3", Sample53="4456838.3", Sample54="4456819.3", Sample55="4456775.3", Sample56="4456875.3", Sample57="4456670.3", Sample58="4456873.3", Sample59="4456669.3", Sample60="4456691.3", Sample61="4456710.3", Sample62="4456827.3", Sample63="4456706.3", Sample64="4456864.3", Sample65="4456688.3", Sample66="4456874.3", Sample67="4456748.3", Sample68="4456761.3", Sample69="4456855.3", Sample70="4456812.3", Sample71="4456784.3", Sample72="4456816.3", Sample73="4456721.3", Sample74="4456682.3", Sample75="4456809.3", Sample76="4456764.3", Sample77="4456862.3", Sample78="4456824.3", Sample79="4456825.3", Sample80="4456781.3", Sample81="4456672.3", Sample82="4456840.3", Sample83="4456741.3", Sample84="4456759.3", Sample85="4456866.3", Sample86="4456687.3", Sample87="4456722.3", Sample88="4456835.3", Sample89="4456738.3", Sample90="4456786.3", Sample91="4456698.3", Sample92="4456694.3", Sample93="4456868.3", Sample94="4456683.3", Sample95="4456674.3", Sample96="4456787.3", Sample97="4456774.3", Sample98="4456791.3", Sample99="4456804.3", Sample100="4456805.3", Sample101="4456750.3", Sample102="4456848.3", Sample103="4456820.3", Sample104="4456717.3", Sample105="4456818.3", Sample106="4456685.3", Sample107="4456832.3", Sample108="4456701.3", Sample109="4456789.3", Sample110="4456697.3", Sample111="4456801.3", Sample112="4456811.3", Sample113="4456817.3", Sample114="4456797.3", Sample115="4456734.3", Sample116="4456846.3", Sample117="4456808.3", Sample118="4456727.3", Sample119="4456869.3", Sample120="4456826.3", Sample121="4456700.3", Sample122="4456735.3", Sample123="4456837.3", Sample124="4456858.3", Sample125="4456865.3", Sample126="4456831.3", Sample127="4456768.3", Sample128="4456870.3", Sample129="4456857.3", Sample130="4456836.3", Sample131="4456728.3", Sample132="4456755.3", Sample133="4456745.3", Sample134="4456830.3", Sample135="4456843.3", Sample136="4456880.3", Sample137="4456792.3", Sample138="4456863.3", Sample139="4456767.3", Sample140="4456740.3", Sample141="4456690.3", Sample142="4456713.3", Sample143="4456799.3", Sample144="4456704.3", Sample145="4456815.3", Sample146="4456847.3", Sample147="4456766.3", Sample148="4456729.3", Sample149="4456860.3", Sample150="4456829.3", Sample151="4456877.3", Sample152="4456731.3", Sample153="4456751.3", Sample154="4456763.3", Sample155="4456779.3", Sample156="4456852.3", Sample157="4456790.3", Sample158="4456742.3", Sample159="4456765.3", Sample160="4456782.3", Sample161="4456871.3", Sample162="4456849.3", Sample163="4456678.3", Sample164="4456668.3", Sample165="4456676.3", Sample166="4456732.3", Sample167="4456800.3", Sample168="4456692.3", Sample169="4456796.3", Sample170="4456807.3", Sample171="4456711.3", Sample172="4456879.3", Sample173="4456679.3", Sample174="4456747.3", Sample175="4456822.3", Sample176="4456689.3", Sample177="4456850.3", Sample178="4456736.3", Sample179="4456733.3", Sample180="4456756.3", Sample181="4456677.3", Sample182="4456681.3", Sample183="4456821.3", Sample184="4456802.3", Sample185="4456673.3", Sample186="4456723.3", Sample187="4456876.3", Sample188="4456699.3", Sample189="4456671.3", Sample190="4456772.3", Sample191="4456851.3", Sample192="4456703.3", Sample193="4456749.3", Sample194="4456834.3", Sample195="4456716.3", Sample196="4456842.3", Sample197="4456693.3", Sample198="4456795.3", Sample199="4456814.3", Sample200="4456725.3", Sample201="4456754.3", Sample202="4456833.3", Sample203="4456719.3", Sample204="4456702.3", Sample205="4456675.3", Sample206="4456806.3", Sample207="4456769.3", Sample208="4456752.3", Sample209="4456726.3", Sample210="4456856.3", Sample211="4456841.3", Sample212="4456684.3", Sample213="4456757.3", Sample214="4456783.3" ) #three different pulls from MGRAST here for each level of organization cc.order<-collection(body.data, Order=c(entry="counts",annot="organism",level="order",source="M5RNA")) cc.family<-collection(body.data, Family=c(entry="counts",annot="organism",level="family",source="M5RNA")) cc.genus<-collection(body.data, Genus=c(entry="counts",annot="organism",level="genus",source="M5RNA")) #try to figure out how to pull this data more appropriately from cc.order mm.order<-metadata(cc.order) write.csv(as.matrix(mm.order["original_sample",bygroup=TRUE]), "body_data_sample_info1.csv") write.csv(as.matrix(mm[.order"host_individual",bygroup=TRUE]), "body_data_sample_info2.csv") data.body.table<-t(cc.order$Order) head(data.body.table) write.csv(data.body.table, "body_data_order.csv") ####lauber soils### soil.data<-c(Sample1="mgm4455737.3", Sample2="mgm4455738.3", Sample3="mgm4455739.3", Sample4="mgm4455740.3", Sample5="mgm4455741.3", Sample6="mgm4455742.3", Sample7="mgm4455743.3", Sample8="mgm4455744.3", Sample9="mgm4455745.3", Sample10="mgm4455746.3", Sample11="mgm4455747.3", Sample12="mgm4455748.3", Sample13="mgm4455749.3", Sample14="mgm4455750.3", Sample15="mgm4455751.3", Sample16="mgm4455752.3", Sample17="mgm4455753.3", Sample18="mgm4455754.3", Sample19="mgm4455755.3", Sample20="mgm4455756.3", Sample21="mgm4455757.3", Sample22="mgm4455758.3", Sample23="mgm4455759.3", Sample24="mgm4455760.3", Sample25="mgm4455761.3", Sample26="mgm4455762.3", Sample27="mgm4455763.3", Sample28="mgm4455764.3", Sample29="mgm4455765.3", Sample30="mgm4455766.3", Sample31="mgm4455767.3", Sample32="mgm4455769.3", Sample33="mgm4455770.3", Sample34="mgm4455771.3", Sample35="mgm4455772.3", Sample36="mgm4455773.3", Sample37="mgm4455774.3", Sample38="mgm4455775.3", Sample39="mgm4455776.3", Sample40="mgm4455777.3", Sample41="mgm4455778.3", Sample42="mgm4455779.3", Sample43="mgm4455780.3", Sample44="mgm4455781.3", Sample45="mgm4455782.3", Sample46="mgm4455783.3", Sample47="mgm4455784.3", Sample48="mgm4455785.3", Sample49="mgm4455786.3", Sample50="mgm4455787.3", Sample51="mgm4455788.3", Sample52="mgm4455789.3", Sample53="mgm4455790.3", Sample54="mgm4455791.3", Sample55="mgm4455792.3", Sample56="mgm4455793.3", Sample57="mgm4455794.3", Sample58="mgm4455795.3", Sample59="mgm4455796.3", Sample60="mgm4455797.3", Sample61="mgm4455798.3", Sample62="mgm4455799.3", Sample63="mgm4455800.3", Sample64="mgm4455801.3", Sample65="mgm4455802.3", Sample66="mgm4455803.3", Sample67="mgm4455804.3", Sample68="mgm4455805.3", Sample69="mgm4455806.3", Sample70="mgm4455807.3", Sample71="mgm4455808.3", Sample72="mgm4455809.3", Sample73="mgm4455810.3", Sample74="mgm4455811.3", Sample75="mgm4455812.3", Sample76="mgm4455813.3", Sample77="mgm4455814.3", Sample78="mgm4455815.3", Sample79="mgm4455816.3", Sample80="mgm4455817.3", Sample81="mgm4455818.3", Sample82="mgm4455819.3", Sample83="mgm4455820.3", Sample84="mgm4455821.3", Sample85="mgm4455822.3", Sample86="mgm4455823.3", Sample87="mgm4455824.3", Sample88="mgm4455825.3" ) cc<-collection(soil.data, Order=c(entry="counts",annot="organism",level="order",source="M5RNA"), Family=c(entry="counts",annot="organism",level="family",source="M5RNA"), Genus=c(entry="counts",annot="organism",level="genus",source="M5RNA")) mm<-metadata(cc) as.matrix(mm) data.soil.table<-t(cc$Order) write.csv(as.matrix(mm["feature",bygroup=TRUE]), "lauber_soil_data_sample_info1.csv") write.csv(data.soil.table, "lauber_soil_data_order.csv") ###apple data apple.data<-c(Sample1="mgm4507292.3", Sample2="mgm4507293.3", Sample3="mgm4507294.3", Sample4="mgm4507295.3", Sample5="mgm4507296.3", Sample6="mgm4507297.3", Sample7="mgm4507298.3", Sample8="mgm4507299.3", Sample9="mgm4507300.3", Sample10="mgm4507301.3", Sample11="mgm4507302.3", Sample12="mgm4507303.3", Sample13="mgm4507304.3", Sample14="mgm4507305.3", Sample15="mgm4507443.3", Sample16="mgm4507444.3", Sample17="mgm4507445.3", Sample18="mgm4507446.3", Sample19="mgm4507447.3", Sample20="mgm4507448.3", Sample21="mgm4507306.3", Sample22="mgm4507307.3", Sample23="mgm4507449.3", Sample24="mgm4507450.3", Sample25="mgm4507308.3", Sample26="mgm4507309.3", Sample27="mgm4507310.3", Sample28="mgm4507311.3", Sample29="mgm4507312.3", Sample30="mgm4507451.3" ) cc<-collection(apple.data, Order=c(entry="counts",annot="organism",level="order",source="M5RNA")) data.apple.table<-t(cc$Order) mm<-metadata(cc) as.matrix(mm) write.csv(as.matrix(mm["air_temp_regm",bygroup=TRUE]), "apple_data_sample_info1.csv") write.csv(data.apple.table, "apple_data_order.csv") total.data<-c(body.data,soil.data,apple.data) cc<-collection(total.data, Order=c(entry="counts",annot="organism",level="order",source="M5RNA")) data.total.table<-t(cc$Order) write.csv(data.total.table, "total_data_order.csv")