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Abstract. Toric varieties serve as a rich interface between algebraic geome-
try, symplectic geometry, and combinatorics. Their structure is deeply tied to

combinatorial objects such as polytopes and fans, which encode their topol-

ogy and geometry. This thesis explores the construction of toric varieties via
moment maps, symplectic reduction, and Geometric Invariant Theory, provid-

ing a comprehensive framework for understanding these spaces. The central

focus is the application of equivariant cohomology, an enrichment of ordinary
cohomology, which captures additional symmetries and enriches the topolog-

ical study of toric varieties. We utilize combinatorial techniques, including

localization formulas, shellings, and the Bia lynicki-Birula decomposition, to
analyze the topology and cohomological invariants of these varieties.
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1. Introduction

Toric varieties are a fundamental class of spaces in algebraic geometry, characterized
by their combinatorial and geometric simplicity. They arise naturally in several
mathematical disciplines, including symplectic geometry, representation theory, and
mathematical physics, see [4] and [16]. They also provide, as Fulton writes in [7],
“a remarkably fertile testing ground for general theories.”

In this work, we begin by describing several polytopal constructions that highlight
the interplay between algebraic and symplectic geometry. We then introduce the
concept of fans, which provide an equivariant atlas of charts for abstract toric
varieties. These combinatorial tools offer a powerful framework for understanding
the topology of toric varieties, enabling precise calculations and interpretations.
Using these combinatorial insights, we investigate the equivariant cohomology of
toric varieties.

As a refinement of ordinary cohomology, equivariant cohomology captures addi-
tional symmetries and provides a richer topological invariant. A unique feature of
equivariant cohomology is the localization package for equivariantly formal spaces,
developed by Atiyah-Bott and Berline-Vergne. We study the localization formula
and the GKM conditions, which are central tools in the analysis of toric varieties.
In particular, we introduce the Bialynicki-Birula decomposition, an algebraic ana-
logue of Morse theory, and demonstrate that smooth projective toric varieties are
equivariantly formal.

2. Constructing toric varieties

We describe multiple equivalent constructions of a smooth toric variety starting
from the data of a polytope P subject to certain conditions. Each of the construc-
tions will yield us a space Xi(P ) which will all be equivariantly diffeomorphic to
each other as smooth manifolds.

2.1. Delzant polytopes. Let V be a real vector space of dimension n and let VZ
be a full dimensional lattice inside V . Given N linear functionals ai ∈ V ∗ and N
integers λi the set

P = {v ∈ V | ai(v) + λi ≥ 0 for all i}

is called a polyhedron. If all of the ai preserve VZ then the edges of P point in
lattice directions and P is a rational polyhedron. It is called a rational polytope if
it is bounded. P will always denote a rational polytope.
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A polytope P has facets

Fi = {v ∈ P | ai(v) + λi = 0}

and faces, which are intersections of facets. The vertices of P are the 0-dimensional
faces of P and the edges of P are the 1-dimensional faces of P . We say P is:

• simple if exactly n edges meet at each vertex

• smooth if the edges meeting at each vertex form a lattice basis for VZ

• Delzant if P is simple and smooth

Example 2.1. The right triangle P = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1} is a
Delzant polytope. The square pyramyd is not a Delzant polytope because the apex
is not simple.

Figure 1. Not a Delzant polytope

Delzant polytopes are the building blocks of toric geometry. They are in bijection
with smooth projective toric varieties equipped with a very ample line bundle, as
we will see in Theorem 2.5.

2.2. Moment maps. A symplectic manifold is a pair (M,ω) where M is a smooth
manifold and ω is a closed nondegenerate 2-form. This means that

dω = 0 and ω|p : TpM × TpM → R is nondegenerate

for all p ∈ M . The nondegeneracy of ω allows us to pair vector fields with 1-
forms. We say that a vector field X is Hamiltonian if the corresponding 1-form
ιXω = ω(X, ·) is exact, in which case it is equal to dH for some smooth function
H. The function H is called a Hamiltonian of X.
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Given a Lie group G acting on M by symplectomorphisms, the Lie algebra g acts on
M by symplectic vector fields. This linearized action of g is given by the expression

Xζ(m) =
d

dt

∣∣∣
t=0

exp(tζ) ·m

where we interpret the given expression via parallel transport along the flow of ζ.

Remark 2.2. In general, whenever we have a Lie group G acting on a manifold M ,
we get a linearized action of g on Γ(E) for any vector bundle E over M . For the
trivial line bundle E = M × R we have Γ(E) = C∞(M) and the linearized action
of g on C∞(M) is given by the Lie derivative of the function along the vector field.

Example 2.3. Consider G = SL(2,C) acting on P1 by linear fractional transforma-
tions. Explicitly we have(

a b
c d

)
· [z0 : z1] = [az0 + bz1 : cz0 + dz1]

The Lie algebra sl(2,C) is generated by the matrices

E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
Writing down the exponential, we find that

exp(tE) = I + tE since E2 = 0 =⇒ exp(tE) · [z0 : z1] = [z0 + tz1 : z1]

On an affine chart, the action of E is given by z 7→ z + t and we compute

d

dt

∣∣∣
t=0

z + t = 1 =⇒ XE(z) =
∂

∂z

Similarly we compute

exp(tH) =

(
et 0
0 e−t

)
=⇒ exp(tH) · [z0 : z1] = [etz0 : e−tz1]

which looks like z 7→ e2tz on an affine chart, which gives us

d

dt

∣∣∣
t=0

e2tz = 2z =⇒ XH(z) = 2z
∂

∂z

Finally we compute

exp(tF ) = 1 + tF =⇒ exp(tF ) · [z0 : z1] = [z0 : z1 + tz0]

On an affine chart this transformation looks like z 7→ z/(1 + tz) and we compute

d

dt

∣∣∣
t=0

z

1 + tz
= −z2 =⇒ XF (z) = −z2

∂

∂z

In particular we get a map sl(2,C) → Γ(TP1) given by

E 7→ ∂

∂z

H 7→ 2z
∂

∂z

F 7→ −z2
∂

∂z
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which gives coordinates for the action of sl(2,C) on Γ(TP1). Recall that TP1 ∼= O(2)
and dimΓ(TP1) = 3. In particular, sl(2,C) acts on Γ(TP1) by the standard repre-
sentation. In general, this isomorphism can be thought of as happening in degree
1. This map extends to a graded isomorphism between the enveloping algebra
U(sl(2,C)) and the algebra of differential operators Dhol(P1) on P1. This is a
shadow of the Beilinson-Bernstein localization theorem (see [12]).

Let M be a symplectic manifold. We say that the action of T on M is weakly
Hamiltonian if for every ζ ∈ t the corresponding vector field Xζ is Hamiltonian,
i.e. ιXζ

ω = dHζ for some smooth function Hζ . The Hζ is determined only up to
a constant, so choose the map g → C∞(M) given by ζ 7→ Hζ to be linear. If the
map can be chosen to be equivariant with respect to the adjoint action of T on t,
then the action of T is called Hamiltonian. In this case, there is a map µ : M → t∗

called the moment map defined by

Hζ(m) := ⟨µ(m), ζ⟩

If the action of T is Hamiltonian, then the moment map is T -equivariant and unique
up to the addition of a constant. Since T is abelian, the adjoint action is trivial, and
equivariance requirement reads that the moment map µ : M → t∗ is T -invariant.
We are now prepared to state a foundational result in the classification of toric
symplectic manifolds. For a complete discussion, see section 5.5 of [15].

Theorem 2.4 (Atiyah-Guillemin-Sternberg Convexity Theorem). Let M be a com-
pact connected symplectic manifold with a Hamiltonian T -action. Then the image
of the moment map is a convex polytope in t∗ whose vertices are the image of the
fixed points of the T -action.

We say M is a toric symplectic manifold in the sense of Theorem 2.5 if (M,ω) is a
compact connected symplectic manifold with a effective (meaning no element of T
acts trivially) Hamiltonian T -action.

Theorem 2.5 (Delzant). [5] There is a correspondence between Delzant polytopes
up to GL(n,Z) and translation, and toric symplectic manifolds up to equivariant
symplectomorphism.

Corollary 2.6. There is a correspondence between Delzant polytopes up to GL(n,Z)
particular choice of very ample line bundle, up to equivariant isomorphism.

2.3. Symplectic reduction. We describe how to construct M as the symplectic
reduction of affine space CN for a particular moment map. In particular, M carries
a natural symplectic form ω and a Hamiltonian T -action. This section follows [2].

Let P be a Delzant polytope. There are maps

π : RN → Rn

ei 7→ ai
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and the induced map

π : RN/ZN → Rn/Zn

of tori, which give rise to the following short exact sequences.

1 → K → TN → Tn → 1(2.7)

0 → k → RN → Rn → 0

The dual of the second sequence gives

0 → (Rn)∗ → (RN )∗ → k∗ → 0

and denote the map i∗ : (RN )∗ → k∗. Now consider CN with the standard sym-
plectic form ω =

∑
dzi ∧ dz̄i and the standard Hamiltonian torus action

(eiθ1 , . . . , eiθN ) · (z1, . . . , zN ) = (eiθ1z1, . . . , e
iθN zN )

and corresponding moment map

ϕ : CN → (RN )∗

ϕ(z1, . . . , zN ) = −π(|z1|2, . . . , |zN |2) + (λ1, . . . , λN )

The subtorus K acts on CN via restriction and the restricted action is Hamiltonian.
Moreover, the moment map for the action of K is given by i∗ ◦ ϕ : M → k∗.

Let Z = (i∗◦ϕ)−1(0) be the zero level set of the moment map. The following claims
are all justified in [2].

Lemma 2.8. Z is compact and K freely acts on Z.

The following theorem tells us that the orbit space Z/K is a symplectic manifold.

Theorem 2.9. [Marsden-Weinstein-Meyer] Let G be a compact group and let
(M,ω) be a symplectic manifold with a Hamiltonian G-action. Let i : µ−1(0) → M
be the inclusion of the zero level set of the moment map. Assume G acts freely on
µ−1(0). Then

• the orbit space Mred = µ−1(0)/G is a smooth manifold

• π : µ−1(0) → Mred is a principal G-bundle

• there is a unique symplectic form ωred on Mred such that π∗ωred = i∗ω

Symplectic reduction realizes one direction of Delzant’s correspondence.

Proposition 2.10. The reduced space X1(P ) := Z/K is a toric symplectic mani-
fold with moment map image P .
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2.4. Projective GIT. Let P be a Delzant polytope. Complexifying (2.7), we get

1 → KC → TN
C → Tn

C → 1

Let Fi denote the facets of ∆ and for any z = (z1, . . . , zN ) ∈ Cn let Fz := ∩zi=0Fi.
Consider the set

U = {z ∈ Cn : Fz ̸= ∅}

Then the quotient X2(P ) = U/KC is a manifold with an action of TN
C /KC = Tn

C .
It is a smooth projective toric variety because it is a projective GIT quotient, as
we will explain with the following theorem of Kempf-Ness.

Remark 2.11. There is a surjective map from Xss to X//G. Two points in Xss lie
in the same fiber of this map if and only if the closures of their G-orbits intersect.
In this case, the KC orbits are closed. See [17] for more details.

Proposition 2.12. Let M ⊂ CPn be a smooth projective toric variety embedded
by a line bundle. Then M is equivariantly symplectomorphic to a toric symplectic
manifold.

Proof. CPn carries a natural symplectic form ω called the Fubini-Study form. Any
smooth projective toric varietyM embedded in projective space carries a symplectic
form ω induced by pulling back the Fubini-Study form. Moreover, the action of T
on M is Hamiltonian with respect to ω. □

Conversely, given a toric symplectic manifold (M,ω), we can associate a smooth
projective toric variety to the moment polytope µ(M) which will be equivariantly
symplectomorphic to M .

2.5. Kempf-Ness theorem. The Kempf-Ness theorem provides a connection be-
tween algebraic geometry and symplectic geometry. Recall that if K is a real
compact group, then its complexification G := KC is a complex Lie group which
contains K and g = k ⊕ ik is the complexification of k. See [11] for more details
about the following theorems.

Theorem 2.13. Complexification gives a bijection between the isomorphism classes
of compact real Lie groups and complex reductive groups.

The following theorem of Kempf-Ness establishes a relationship between the reduc-
tion of a Hamiltonian system by the real group K and the corresponding projective
GIT quotient by the complex group G.

Theorem 2.14 (Kempf-Ness). [14] Let G be a complex reductive group acting on a
smooth complex projective variety X ⊂ Pn. Let K be a maximal compact subgroup
of G and suppose K is connected and acts on X Hamiltonianly. Let µ : X → k∗ be
the moment map. Then the inclusion µ−1(0) → X induces a homeomorphism

µ−1(0)/K → X//G
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Remark 2.15. This theorem is fundamental in moduli problems, where spaces of
equivalence classes of geometric objects (like vector bundles, sheaves, or varieties)
can be constructed as quotients. It is widely used in understanding spaces like
the moduli of vector bundles, the geometry of flag varieties, and moment polytope
theory.

2.6. Fans and abstract toric varieties. Let T be an n-dimensional torus with
character group M , and let N = HomZ(M,Z) be the dual lattice, with pairing
denoted ⟨, ⟩. Recall that Theorem 2.5 gives a correspondence between Delzant
polytopes and smooth projective toric varieties equipped with a very ample line
bundle. Forgetting the embedding, we pass to the abstract toric variety, whose
combinatorics is encoded in the data of a fan.

Definition 2.16. A fan Σ in a real vector space N is a collection of cones σ such
that

• σ is a strongly convex polyhedral cone

• if σ ∈ Σ and τ is a face of σ, then τ ∈ Σ

• the intersection of any two cones in Σ is a face of each

Given a Delzant polytope P , there is a fan ΣP in NR obtained by taking normal
directions to the facets of P . The fan ΣP is called the normal fan of P and it is
a combinatorial object which encodes an equivariant atlas of charts for the toric
variety X(P ).

Definition 2.17. A fan Σ is complete if the union of the cones in Σ is all of NR.
A fan Σ is nonsingular if for each k-dimensional cone σ ∈ Σ, there exist k lattice
vectors v1, . . . , vk such that {v1, . . . , vk} generate σ and v1, . . . , vk can be extended
to a basis of N . A fan Σ is projective if there is a rational polytope P such that Σ
is the normal fan of P .

As the geometric language suggests, the toric variety X(Σ) corresponding to a fan
Σ is complete if and only if the fan is complete, and X(Σ) is smooth if and only if
the fan is nonsingular. See [3] for more details.

Example 2.18. Consider the unit right triangle with corresponding normal fan

(0, 0) (1, 0)

(0, 1)

Figure 2. Polytope and normal fan for CP2
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Note that the fan has three 2-dimensional cones which are filled in. These cones
represent the three standard coordinate charts of P2 given by xi ̸= 0 for i = 0, 1, 2.
The isosceles right triangle with side lenghth a corresponds to the a-th Veronese
embedding of P2.

The data of a fan and in particular the primitive edge vectors (defined as the gen-
erators of the rays of the fan), will prove important in our discussion on equivariant
cohomology. See [3] for a complete discussion.

2.7. Cone-orbit correspondence. Let T be an n-dimensional torus with char-
acter group M . Let N = Hom(M,Z) be the dual lattice, their pairing is denoted
by ⟨·, ·⟩. Let X = X(Σ) be a smooth complete toric variety, which are in bijection
with complete nonsingular fans Σ in NR.

For any convex cone σ ⊂ NR, the dual cone in MR is

σ∨ = {u ∈ MR | ⟨u, v⟩ ≥ 0 for all v ∈ σ}.

By intersecting with the lattice, we obtain a semigroup σ∨∩M with corresponding
semigroup algebra C[σ∨ ∩M ]. The toric variety X is covered by T -invariant open
affine sets

Uσ = SpecC[σ∨ ∩M ]

The affine charts corresponding to the top-dimensional cones of Σ are enough to
cover X, and the intersection of cones corresponds to the intersection of affine
charts.

Each cone τ of the fan also defines a torus-invariant subvariety V (τ) of X of codi-
mension dim τ . On open affines, the subvariety looks like

V (τ) ∩ Uσ = SpecC[τ⊥ ∩ σ∨ ∩M ] ↪→ SpecC[σ∨ ∩M ]

and so elements of the dual lattice N can be thought of as rational functions on X.

3. Equivariant cohomology

We introduce T -equivariant cohomology and some classical results about the T -
equivariant cohomology of smooth projective toric varieties.

3.1. Basic properties. Let T be a complex torus. The equivariant cohomology
ring H∗

T (X) of a T -space X is defined as the singular cohomology of the Borel
construction X ×T ET , where ET is a contractible space on which T acts freely.
Such a space always exists and is unique up to homotopy equivalence, see chapter
1 of [8].

Example 3.1. We can identify U(n) as those complex matrices preserving the stan-
dard Hermitian form on Cn. The group U(n) acts on S2n−1 transitively and the
stabilizer of the point (1, 0, . . . , 0) is U(n− 1).

Therefore there is a canonical action of U(1) = U(n)/U(n− 1) acting as scalar ma-
trices on S2n−1 inherited from the action on U(n). None of these odd dimensional
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spheres are contractible, but S∞ is contractible. In particular EU(1) = S∞ and

BU(1) = S∞/U(1) = CP∞

Therefore

H∗
U(1)(pt) = H∗(CP∞) = Z[t]

where t is the first Chern class of the tautological line bundle and deg t = 2. The
classifying space BC∗ of an algebraic torus is homotopy equivalent to that of its
maximal compact subgroup, so

H∗
C∗(pt) = H∗(CP∞) = Z[t]

as well.

Example 3.2. In general, H∗
T (pt) identifies with the representation ring of T .

BT ∼=
∏

rankT

CP∞

H∗
T (pt) = H∗(BT ) = Z[t1, . . . , trankT ]

Given a representation V of T , we can form a vector bundle on the classifying space
whose total Chern class is equal to the class of V in the representation ring, see
[13].

All subsets, maps, and vector bundles will be taken to be equivariant. Then equi-
variant cohomology has the following key properties:

(1) functoriality;

(2) a ring structure;

(3) excision;

(4) the Mayer-Vietoris sequence;

(5) the Künneth formula;

(6) the Leray spectral sequence;

(7) for smooth orientable X, Poincaré duality; and

(8) existence of Chern classes,

Let Λ = H∗
T (pt). The ring H∗

T (X) is a module over Λ via the map X → pt.

3.2. Invariant curves. This section explores some key topological ideas underpin-
ning equivariant localization. Theorem 3.3 provides the local structure near orbits
and simplifies the analysis of tangent spaces at fixed points. See chapters 5 and 7
in [8] for a detailed discussion of the results in this section.

Theorem 3.3 (Slice theorem). Let X be a nonsingular complex algebraic variety.
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(1) Suppose K is a compact Lie group acting on X, with an orbit O = K·x ⊆ X.
Then there is a K-invariant open neighborhood U ⊆ X of O which is equiv-
ariantly isomorphic to an open neighborhood of the zero section in the nor-
mal bundle NO/X .

(2) Suppose X is affine, and G is a reductive group acting on X, with a closed
orbit O = G · x. Then there is a G-equivariant étale neighborhood U → X
of O which is equivariantly isomorphic to an étale neighborhood of the zero
section of the normal bundle NO/X .

Lemma 3.4. Let G be a connected reductive linear algebraic group (or compact
connected Lie group) acting on a nonsingular algebraic variety X, with a fixed
point p ∈ XG. The point p is isolated if and only if the trivial representation does
not occur in TpX.

When G is a torus and dimX = n, the lemma reads that p ∈ XT is isolated if and
only of cTn (TpX) ̸= 0.

Proof. By the slice theorem, we can reduce to the case where X = V is a repre-
sentation of G, and p = 0 is the origin. In this case, for any representation V of a
connected group, the origin 0 ∈ V is an isolated fixed point if and only if V contains
no copy of the trivial representation. □

The T -invariant curves in a variety X are important invariants. In particular, they
determine the image of the restriction homomorphism

ι∗ : H∗
TX → H∗

TX
T .

First, we introduce notation and basic facts about such curves. Suppose T acts on
P1 by distinct characters χ1 and χ2, so the fixed points are 0 = [1, 0] and ∞ = [0, 1].
Writing χ = χ2 − χ1, we have

T0P1 = Cχ and T∞P1 = C−χ.

More generally, if T acts on a nonsingular curve C with CT = {p, q}, then there is
an equivariant isomorphism C ∼= P1 sending p to 0 and q to ∞. The action of T on
the open set C∗ ⊂ P1 determines up to sign ±χ the character of T acting on C.

Proposition 3.5. Let T act on an n-dimensional nonsingular algebraic variety X,
and let p ∈ XT be an isolated fixed point, so the tangent weights χ1, . . . , χn on TpX
are all nonzero.

(1) If no two characters at p are parallel, then there are finitely many T -curves
in X through p. In fact, there are n such curves, all nonsingular at p, with
characters χ1, . . . , χn.

(2) If two characters have the same direction, then there are infinitely many
T -curves through p.



12 SONGYU YE

(3) If two characters have opposite directions, then there are infinitely many
T -curves through any T -invariant neighborhood of p.

Understanding the tangent weights at fixed points is crucial for the study of equi-
variant cohomology. The following theorem is a key result in this direction.

Theorem 3.6 (Localization Theorem). Consider a d-dimensional nonsingular va-
riety X with finitely many fixed points. Let

c =
∏

p∈XT

cTd (TpX) ∈ Λ,

and let S ⊆ Λ be a multiplicative set containing c (which is nonzero, since all fixed
points are isolated). Assume there are m ≤ #XT classes in H∗

TX restricting to a
basis of H∗X.

Then m = #XT , the homomorphisms

S−1H∗
TX

S−1l∗−−−−→ S−1H∗
TX

T and S−1H∗
TX

T S−1l∗−−−−→ S−1H∗
TX

are isomorphisms, and l∗ : H∗
TX → H∗

TX
T is injective.

3.3. Localization formula. At its core, the equivariant localization formula, in-
troduced by Atiyah-Bott and Berline-Vergne, arises from the principle that, under
certain conditions, integrals over a compact space with a torus action can be “local-
ized” to the fixed points of the action. This idea can be traced back to the stationary
phase approximation in physics, where integrals are approximated by contributions
from critical points. In the equivariant cohomology setting, the fixed points of the
torus action play a similar role. We refer to [8] for a detailed discussion.

Theorem 3.7 (Atiyah-Bott, Berline-Vergne). Let X be a d-dimensional nonsin-
gular compact algebraic variety with finitely many fixed points. Then

ρ∗(u) =
∑

p∈XT

u|p
cTd (TpX)

for any class u ∈ H∗
TX.

Example 3.8. Consider T = C∗ acting on P2 by the characters 0, t, 2t. The fixed
points are the usual coordinate points p1, p2, p3. For u ∈ H∗

TP2, let ui = u|pi
. Near

p1 say, we have coordinates y/x, z/x and therefore the weights of the T -action on
Tp1P2 are t, 2t. As a whole, the integration formula says

ρ∗(u) =
u1

2t2
+

u2

−t2
+

u3

2t2
=

u1 − 2u2 + u3

2t2
.

This must be a class in Λ = Z[t], so the integration formula implies a divisibility
condition relating the restrictions to the three fixed points: 2t2 must divide the
polynomial u1 − 2u2 + u3.
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When computing via localization, it is often convenient to represent the fixed points
of X as the vertices of a graph, with edges connecting vertices when the corre-
sponding fixed points are connected by a T -invariant curve. This graph is called
the moment graph of X, and coincides precisely with the image of the invariant
curves in X under the moment map.

The image of a class under the restriction

H∗
TX ↪→ H∗

TX
T

is given by labeling the vertices of the moment graph with characters. See [10] for
detailed discussion of these moment graphs, also known as GKM graphs due to
work by Goresky, Kottwitz, and MacPherson [9].

Theorem 3.9 (GKM). Let X be a nonsingular variety with XT finite, and assume
H∗

TX is free over Λ. Suppose that for each p ∈ XT , the weights on TpX are
relatively prime. Then a tuple

(up)p∈XT ∈ H∗
TX

T

lies in the image of ι∗ : H∗
TX → H∗

TX
T if and only if for each T -curve Cpq

∼= P1

connecting distinct points p, q ∈ XT , the difference up − uq is divisible by the char-
acter ±χpq of Cpq.

3.4. Bialynicki-Birula decomposition. The Bialynicki-Birula decomposition is
a generalization of the Morse theory for torus actions. For C∗-varieties with finitely
many fixed points, it implies a particularly nice algebraic notion of equivariant
formality, and in particular the equivariant cohomology of X is a free module over
the equivariant cohomology of a point. Equivariant formality also implies the GKM
condition.

Definition 3.10. A T -space X is called equivariantly formal if the Leray spec-
tral sequence associated to the fibration X → X ×T ET → BT collapses at the
E2-page.

By definition, we have that if X is equivariantly formal, then

H∗
T (X) ∼= Λ⊗H∗(X).

When X is equivariantly formal, the ordinary cohomology can be recovered from
equivariant cohomology as the quotient

H∗(X) =
H∗

T (X)

Λ ·H∗
T (X)

which in effect simply sets each ti = 0. In particular, H∗
T (X) is a free module over

Λ. Many varieties of interest are equivariantly formal, including:

(1) a smooth complex projective variety (with respect to any linear algebraic
T -action);

(2) a variety whose ordinary cohomology vanishes in odd degree (with respect
to any T -action);
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(3) a compact symplectic manifold with a Hamiltonian T -action, where T is a
compact torus.

See chapter 7 in [8] for a good discussion of these facts.

We now introduce the Bialynicki-Birula decomposition. Suppose that C∗ acts on a
smooth projective variety X with finitely many fixed points p1, . . . , pk. Then each
TpiX is a representation of C∗, and so we can decompose into weight spaces

Tpi
X =

⊕
λ∈C

Vλ

where Vλ = {v ∈ Tpi
X | t · v = tλv}. Note that λ ̸= 0 because the fixed point set

is isolated.

Define the attracting set

Ci = {x ∈ X | lim
t→0

t · x = pi}

Theorem 3.11 (Bialynicki-Birula). [1] There exists a filtration of X by closed
subschemes

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 = ∅
such that each Xi\Xi−1 is a disjoint union of affine spaces called cells, the attracting
sets. In particular, there are #XT of them, and the closure of each cell is a union
of cells.

The attracting sets give rise to a stratification of X into locally closed subvarieties,
so that the closure of each cell is a union of cells. General results about stratified
spaces (see chapter 1 of [6]) imply that:

Corollary 3.12. Let X be a smooth projective C∗-variety with finitely many fixed
points. Then

(1) H2i+1(X) = 0 for all i;

(2) H2i(X) is a Z-module freely generateed by the classes of the closures of the
i-dimensional cells.

This implies such varieties are always equivariantly formal.

Corollary 3.13. Let a torus T act on a nonsingular complete variety X, with
finitely many fixed points. Then X is equivariantly formal with integral coefficients.
In particular:

(1) H∗
TX → H∗X is surjective, with kernel generated by the kernel of ΛT → Z;

and

(2) H∗
TX → H∗

TX
T is injective, and becomes an isomorphism after inverting

finitely many characters in ΛT .
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Proof. The classes of the attracting sets form a basis of H∗
TX and H∗X over Λ

and Z respectively, so X is equivariantly formal. Injectivity of the restriction ho-
momorphism comes from the diagram:

H∗
TX H∗

TX
T

S−1H∗
TX S−1H∗

TX
T

ι∗

∼

for a suitable multiplicative set S ⊆ Λ, where the vertical arrows are injective since
H∗

TX and H∗
TX

T are free over Λ, and the bottom arrow is an isomorphism by the
localization theorem. □

3.5. Shellings. In this section, we apply the setup of the Bialynicki-Birula decom-
position to the context of toric varieties.

Let X = X(Σ) be projective, with P a polytope whose normal fan is Σ. Choosing
a general vector v ∈ NR we obtain an ordering of the vertices u1, . . . , us of P by the
order of the inner products ⟨v, ui⟩. Geometrically, we are choosing a 1-parameter
subgroup of T which acts on X. The corresponding sub-moment map turns out to
be a perfect Morse-Bott function on X.

By the polytope-fan correspondence, we get an ordering of the maximal cones
σ1, . . . , σs of Σ. For 1 ≤ i ≤ s let

τi =
⋂

j>i,dim(σj∩σi)=n−1

σj ∩ σi

so that τ1 = {0}, τs = σs and τp ⊂ τq implies p ≤ q. Such an ordering of cones is
called a shelling of Σ.

Proposition 3.14. A shelling gives a cellular decomposition of X, with the closures
of the cells being V (τi). In particular, the classes

αi = [V (τi)] ∈ H2(n−dim τi)(X)

form an additive Z-basis of H∗(X). Moreover, the corresponding equivariant coho-
mology classes

αT
i = [V (τi)]

T ∈ H
2(n−dim τi)
T (X)

form an additive Z-basis of H∗
T (X).

This proposition follows from the Bialynicki-Birula decomposition, as the V (τi) are
precisely the closures of the attracting sets of the chosen C∗-action on X. We will
demonstrate this in a particularly pleasant example.

Example 3.15 (Morse theory on CP2). Classically, recall that the Chow ring (or
cohomology ring) of CP2 is

H∗(CP2) = Z[0]⊕ Z[P1]⊕ Z[P2]



16 SONGYU YE

Consider the standard action of T 2 on CP2 and consider the 1-parameter subgroup
acting by t · [x : y : z] = [tx : t2y : z]. Consider the following moment image, whose
edges are labeled by the weights of the action on the tangent space at the fixed
points:

1

-1-2

-1

2
1
A

B

C

Figure 3. Flow lines from choice of subgroup.

Based on our choice of 1-parameter subgroup, we have the following decomposition:

CP2 = C
∐

(P1\C)
∐

P2\P1

One sees this decomposition by considering the attracting sets of the action for each
fixed point. For C the attracting set is C itself, for A the attracting set is the line
P1, all the points of P1 except C are attracted to A, and for B the attracting set
is P2\P1, where the P1 is the T -invariant curve which joins the fixed points A and
C. These cells are all affine spaces, and their closures are precisely V (τi) = Pi.

If X is not projective, then one can subdivide cones and produce a refinement Σ′

of Σ so that the corresponding map

π : X(Σ′) → X(Σ)

is a surjective birational T -equivariant morphism and X(Σ′) is smooth and projec-
tive. The composition

π∗ ◦ π∗ : H∗(X(Σ)) → H∗(X(Σ))

is the identity on H∗(X(Σ)) and on H∗
T (X(Σ)) and therefore π∗ is injective and π∗

is surjective.

Assembling the results of the previous sections, we obtain the following proposition.

Proposition 3.16. For any complete smooth toric variety X, the cohomology ring
H∗(X) is generated by the classes [V (τi)] of the closures of the attracting sets as
Z-module, and the equivariant cohomology ring H∗

T (X) is generated by the classes
[V (τi)]

T as a module over Λ.
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3.6. Danilov’s theorem. Let D1, . . . , Dd be the T -invariant divisors, Di = V (ρi)
for rays ρ1, . . . , ρd of Σ. Let vi ∈ N be the minimal generator of the ray ρi.
For u ∈ M , the element eu ∈ C[M ] determines a rational function on X. The
corresponding divisor is

div(eu) =
∑
i

⟨u, vi⟩Di.

Equivariantly, eu is a rational section of the line bundle Lu with character u, so we
have a relation

u = cT1 (Lu) = [div(eu)]
T
=

∑
i

⟨u, vi⟩[Di]
T

in H2
TX.

Moreover given distinct rays ρi1 , . . . , ρir , we have

[Di1 ]
T · · · [Dir ]

T = [V (τ)]T

if the rays span a cone τ of Σ, zero otherwise. Let X1, . . . , Xd be variables, one for
each ray of the fan Σ. Consider the following ideals in Z[X] = Z[X1, . . . , Xd]

• I is generated by all monomials Xi1 · · ·Xir , such that the corresponding
rays ρi1 , . . . , ρir do not span a cone.

• J is generated by all elements
∑

⟨u, vi⟩Xi, ranging over all u ∈ M .

The ring Z[X]/I is called the Stanley-Reisner ring of Σ.

We have a homomorphism

Z[X]/(I + J) → H∗
TX,

given by Xi 7→ [Di]. Indeed, we have seen that I and J map to zero, so the
homomorphism is well-defined. It is surjective, because

[V (τ)] = [Di1 ] · · · [Dir ]

where ρi1 , . . . , ρir are the rays spanning τ . In fact, it is an isomorphism, and one
deduces this from the corresponding equivariant statement.

In equivariant cohomology, we have two ideals in Λ[X] = Λ[X1, . . . , Xd]:

• I ′ has the same generators as I, all monomials Xi1 · · ·Xir , such that the
corresponding rays ρi1 , . . . , ρir do not span a cone.

• J ′ is generated by elements u −
∑

⟨u, vi⟩Xi, ranging over all u ∈ M (or a
basis for M).

We have a homomorphism

Λ[X]/(I ′ + J ′) → H∗
TX,

by Xi 7→ [Di]
T . Again, we have seen that I ′ and J ′ map to zero, so the homomor-

phism is well-defined; it is surjective for similar reasons. We will see that it is an
isomorphism.
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Theorem 3.17 (Danilov). For any complete smooth toric variety X = X(Σ), we
have isomorphisms of cohomology rings

H∗X ∼= Z[X]/(I + J) and H∗
TX

∼= Λ[X]/(I ′ + J ′).

This also identifies the equivariant cohomology of X = X(Σ) with the Stanley-
Reisner ring of Σ because the canonical homomorphism

Z[X]/I → Λ[X]/(I ′ + J ′)

is an isomorphism.

Proof. We sketch a proof of Danilov’s theorem using the GKM relations, see [8].
For any cone τ ⊆ NR, one has the sublattice Nτ ⊆ N spanned by τ , with corre-
sponding quotient lattice M → Mτ . For γ ⊆ τ , there is a corresponding projection
Mτ → Mγ . We will write f 7→ f |γ for the corresponding map Sym∗Mτ → Sym∗Mγ .
For any rational polyhedral fan Σ in N , the ring of piecewise polynomial functions
with respect to Σ is

PP ∗(Σ) = {(fτ )τ∈Σ | fτ ∈ Sym∗Mτ , and fτ |γ = fγ for all γ ⊆ τ} .

When Σ is a complete fan, PP ∗(Σ) is the ring of continuous functions on NR which
are given by polynomials in Λ = Sym∗M on each maximal cone σ. Then there are
canonical isomorphisms

Z[X]/I ∼= PP ∗(Σ) ∼= {(fσ)dimσ=n | fσ|τ = fσ′ |τ if τ is a facet of σ and σ′}

The first map is an isomorphism because of the following observation. The cor-
respondence takes Xi, which indexes the T -invariant divisor Di, to a piecewise
polynomial function fσ which takes the value c1(NDiX|p) where p is the fixed
point corresponding to σ, i.e. to each cone σ we associate the character of the
normal bundle of the T -invariant divisor restricted to the fixed point corresponding
to σ. Because X is smooth, this correspondence is surjective cone by cone, and so
the map is surjective. The kernel certainly contains I because the intersection of
the T -invariant divisors is empty if the corresponding rays do not span a cone. The
kernel is precisely I. Indeed, observe that the kernel cannot contain a polynomial
with multiple terms, because if the corresponding piecewise polynomial function is
zero, then the function is zero cone by cone. For a fixed cone σ, only n divisors
Di1 , . . . , Din contribute to the value of fσ and all others are zero. Therefore we see
that for each cone, we get an equation of the form∑

a1,...,an≥0

ha1,...,anc1(NDi1
X|p)a1 · · · c1(NDin

X|p)an = 0

where the h are integers. Since X is smooth, the c1(NDi
X|p) together form a

basis of the tangent space TpX and this is enough to see that all the hs are zero.
Therefore the kernel contains only monomials. This implies that we took a product
of Xi where for every σ, the value c1(NDi

X|p) is zero for some Xi in the product,
i.e. the corresponding rays do not span a cone.

The second map is an isomorphism because of the following observation. Suppose
u = 0 defines the common facet τ = σ ∩ σ′. Then V (τ) has character u, and the
relation fσ|τ = fσ′ |τ is the same as requiring that u divide the difference fσ − fσ′ .



MOMENT MAPS AND EQUIVARIANT COHOMOLOGY IN TORIC GEOMETRY 19

By computing the characters on the T -invariant curves V (τ), we can identify this
ring with the subring of

H∗
TX

T =
⊕

dimσ=n

Λ

defined by the GKM conditions. It follows that

Z[X]/I ∼= PP ∗(Σ) ∼= H∗
TX

The ordinary cohomology ring is obtained by setting all ti = 0, so

H∗X ∼= Z[X]/(I + J)

as desired. □

4. Appendix A: Vector bundles and connections

We provide a brief introduction to connections on vector bundles.

4.1. Parallel transport. One way to think about a connection is to consider
parallel transport. You want to be able to differentiate sections of a vector bundle
along paths. When we are dealing with functions, we can form the directional
derivative

ds(x)X = lim
t→0

s(γ(t))− s(γ(0))

t

for any smooth path γ representing the tangent vectorX ∈ TxM and this expression
gives us a linear map ds(x) : TxM → Ex.

However if E is a nontrivial bundle, then this expression does not make sense
because the summands live in different fibers. There is unfortunately no natural
way to compare vectors in different fibers. Therefore we need to introduce additional
structure to be able to compare these fibers.

For a general vector bundle E → M , we want to associate, to a path γ in M , a
smooth family of parallel transport isomorphisms P t

γ : Eγ(0) → Eγ(t) such that

• P 0
γ = id

• P t
γ1·γ2

= P t
γ2

◦ P t
γ1

for any paths γ1, γ2 and t ∈ R.

Such a choice would allow us to define the directional (”covariant”) derivative of a
section s along a path γ as before. We shuold require that

• The directional derivative depends only on s and X ∈ TxM , not the par-
ticular choice of γ.

• The map ∇s(x) : TxM → Ex is C-linear.

This will give us the richest notion of a connection on a vector bundle.
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4.2. Connections. In this section, we consider M a real manifold and π : E → M
complex vector bundle. Let Ai(E) = Ωi(M)⊗E denote the sheaf of smooth i-forms
with values in E.

Definition 4.1. A connection on E is a C-linear map of sheaves∇ : A0(E) → A1(E)
satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇s

We can interpret this definition in the sense of parallel transport. Given a section
s ∈ A0(E), we can differentiate it along a path γ to get another section of E, i.e.
∇ : Γ(E) → Γ(Hom(TM,E)).

Theorem 4.2. The space of all connections A(E) is an affine space modelled on
A1(EndE). In particular

• A(E) is nonempty

• For any two connections ∇1,∇2 the difference ∇1 −∇2 is a global section
of A1(EndE).

• (∇ + a)s := ∇s + as is a connection whenever ∇ is a connection and
a ∈ A1(EndE).

The idea of a connection generalizes the exterior differential to sections of general
vector bundles. However, a connection need not satisfy ∇2 = 0 in general. The
obstruction for a connection define a differential is measured by its curvature. We
explain this now.

4.3. Curvature. A connection ∇ : A0(E) → A1(E) induces ”differentials”

∇ : Ai(E) → Ai+1(E)

given by the formula

∇(α⊗ s) = dα⊗ s+ (−1)iα ∧∇s

Definition 4.3. The curvature F∇ of a connection ∇ is the composition

F∇ := ∇2 : A0(E) → A2(E)

In particular F∇ is a global section of A2(EndE). This is because the curvature
homomorphism is A0-linear.

Example 4.4. Consider the connections on the trivial bundle M × Cr. If ∇ = d is
the trivial connection then F∇ = 0.
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Any other connection is of the form ∇ = d+A where A is a matrix of 1-forms. For
a section s we compute

F∇(s) = (d+A)(d+A)(s)

= d2s+ dAs+Ads+AAs

= d(A)s+A ∧As

and therefore

F∇ = dA+A ∧A

For line bundles we get that F∇ = dA is an ordinary 2-form.

5. Appendix B: Prequantization

Manifolds equipped with integral symplectic forms admit prequantization line bun-
dles in the following sense [2].

Theorem 5.1. Let (M,ω) be a symplectic manifold. Suppose that [ω] is integral.
Then there exists a ”prequantization” line bundle L → M with c1(L) = [ω] and a
Hermitian connection α whose corresponding curvature form is ω. Moreover L is
unique up to isomorphism.

Let P be a Delzant polytope. Complexifying (2.7) and passing to the dual of the
Lie algebras, we get

1 → KC → TN
C → Tn

C → 1

0 → (Rn)∗ → (RN )∗ → k∗ → 0

where k∗ is the dual of the Lie algebra of KC. Let Fi denote the facets of ∆ and
for any z = (z1, . . . , zN ) ∈ Cn let Fz := ∩zi=0Fi. Consider the set

U = {z ∈ Cn : Fz ̸= ∅}

Recall that we defined the toric symplectic manifold X2(P ) = U/KC.

Proposition 5.2. The line bundle L = U ×KC
C where KC acts on C with weight

ν = i∗(−λ) is a prequantization line bundle for M = U/KC.

Symplectic reduction realizes a Kahler form on the reduced space, in particular M
and L actually carry complex structures. The following theorem is about the space
of holomorphic sections of L.

Theorem 5.3. Let M be a toric symplectic manifold with moment polytope P . Let
L be the prequantization line bundle for M . Then we have

dimH0(M,L) = #(integer points in P )

Proof. A holomorphic section of L over M corresponds to a KC-equivariant holo-
morphic function f : U → C. Such f extends to all of CN because of Hartog’s
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theorem (A holomorphic function on CN for N > 1 canont have an isolated sin-
gularity and therefore cannot have a singularity on a submanifold of codimension
≥ 2).

Write such a function as its Taylor series so that

f =
∑
α∈Nn

cαz
α

Consider the equivariance one term at a time. Thinking about the monomial
f(z) = zI we see that

f(k · z) = f(i(k) · z) = (i(k) · z)I = i(k)IzI = ki
∗(I)zI

k · f(z) = kνzI

and therefore a basis for the space of equivariant functions f : U → C is given by

{zI | i∗(I) = ν, I ∈ Nn}
and the set of such I is

Zn
+ ∩ (i∗)−1(ν)

monomials corresponding to lattice points in P . □

6. Acknowledgements

I cannot express how grateful I am to Professor Allen Knutson and Professor Tara
Holm. Thank you for your faith, guidance, and support throughout my time at
Cornell.

Doing math is akin to unfolding a melody; its first sounds are usu-
ally a gift from someone else.

Alexander Beilinson

References

[1] A. Bia lynicki-Birula, Some theorems on actions of algebraic groups, Annals of Mathematics
98 (1973), no. 3, 480–497.

[2] Ana Cannas da Silva, Lectures on symplectic geometry, Springer, 2001.

[3] David Cox, John Little, and Hal Schenck, Toric varieties, American Mathematical Society,
2011.

[4] A. Cannas da Silva, Symplectic toric manifolds, Symplectic geometry of integrable hamilton-

ian systems (barcelona, 2001), 2003, pp. 85–173.
[5] Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bul-
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