
University of Bayreuth
Institute for Computer Science

Bachelor Thesis

in Computer Science

Topic: Integration of JPA-conform ORM-Implementations
in Hibernate Search

Author: Martin Braun <martinbraun123@aol.com>
Matrikel-Nr. 1249080

Version date: September 25, 2015

1. Supervisor: Prof. Dr. Stefan Jablonski
2. Supervisor: Prof. Dr. Bernhard Westfechtel

2

3

To my parents.

4

5

6

Abstract
Fulltext search engines are a powerful tool to improve query results in applications
where relational databases don’t suffice. However, they don’t integrate well with the
widely spread concept of object relationship mappers (ORM, in Java predominantly
represented by the standard JPA) in the object oriented programming world.

This is where Hibernate Search comes into use for Java developers: It combines JPA
and fulltext search by being the intermediary between Hibernate ORM and a Lucene
based fulltext index. It has one problem though: Hibernate Search only works with
Hibernate ORM but not with other JPA-conform providers even though it is possible
to support these. In this thesis we will show how such a generic version can be accom-
plished.

After discussing the methods we use, we give an explanation why a generic Hiber-
nate Search is a desirable solution for JPA developers. Creating it is challenging as we
have to build a standalone version of Hibernate Search’s internal engine first and then
integrate it with JPA together with an automatic index updating mechanism. We solve
these challenges and give a usage example of the completed generic version. Finally,
we discuss the current development state of the generic version and give an outlook on
the planned merging process with the original Hibernate Search.

7

Zusammenfassung
Volltextsuchengines sind ein wertvolles Werkzeug um Suchergebnisse in Anwendun-
gen zu verbessern, wenn relationale Datenbanken nicht ausreichen. Diese Engines sind
jedoch nicht gut mit dem in der objekt-orientierten Programmierungs-Welt weit ver-
breiteten Konzept der Objekt-Relationalen Mapper (ORM, in Java vor allem durch
den Standard JPA repräsentiert) integriert.

Für Java Entwickler bietet hier Hibernate Search eine Abhilfe: Es kombiniert JPA
und Volltextsuche und stellt die Schnittstelle zwischen Hibernate ORM und einem
Lucene basierten Volltextindex dar. Es hat aber ein Problem: Hibernate Search funk-
tioniert nur in Kombination mit Hibernate ORM, aber nicht mit anderen JPA konfor-
men Providern, obwohl es möglich wäre diese zu unterstützen. In dieser Thesis wird
daher gezeigt, wie eine solche generische Version realisiert werden kann.

Nachdem die benutzten Methoden erklärt wurden, wird eine Begründung dafür gegeben,
warum Hibernate Search eine wünschenswerte Lösung für JPA Entwickler ist. Diese
zu entwickeln ist eine Herausforderung, da wir zuerst eine Standalone Version von Hi-
bernate Search’s interner Engine bauen müssen, um diese danach in eine JPA Version
zusammen mit einem automatischen Index Updating Mechanismus zu integrieren. Wir
zeigen wie diese Probleme gelöst werden und erklären die Benutzung anhand eines
Beispiels. Zuletzt gehen wir auf den aktuellen Entwicklungsstand der generischen Ver-
sion ein und geben einen Ausblick auf den geplanten Merge-Prozess mit dem originalen
Hibernate Search.

Contents 8

Contents

1 Preface 10

2 Methods 14

3 Overview of technologies 16
3.1 Object Relational Mappers . 16
3.2 JPA . 17
3.3 Fulltext search engines . 18

3.3.1 Lucene . 19
3.3.1.1 Concepts . 19
3.3.1.2 Usage . 21
3.3.1.3 Features . 21

3.3.2 Fulltext search servers: ElasticSearch and Solr 22
3.3.2.1 Usage . 22
3.3.2.2 Features . 22

3.3.3 Hibernate Search . 23
3.3.3.1 Usage . 23
3.3.3.2 Features . 23

3.3.4 Why a generic Hibernate Search? 24

4 Challenges 26
4.1 The example project . 26
4.2 Standalone version . 29
4.3 JPA integration . 29
4.4 Automatic index updating . 30
4.5 Timeline . 30

5 Standalone version of Hibernate Search 32
5.1 Example project with Hibernate Search annotations 33
5.2 Usage of Hibernate Search’s engine . 36

5.2.1 Startup . 36
5.2.2 Index manipulation . 38
5.2.3 Queries . 39

5.3 Design of the standalone version . 42
5.3.1 Startup . 44
5.3.2 Index manipulation . 45
5.3.3 Queries . 46

6 JPA integration of the standalone version 48
6.1 Architecture of Hibernate Search ORM 49

6.1.1 Startup . 50
6.1.2 Index manipulation . 51
6.1.3 Queries . 52
6.1.4 Index rebuilds . 53

6.2 Architecture of the generic version . 54
6.2.1 Startup . 55
6.2.2 Index manipulation . 57

Contents 9

6.2.3 Queries . 60
6.2.4 Index rebuilds . 61

7 Automatic index updating 62
7.1 Description of different implementations 63

7.1.1 Synchronous approach . 64
7.1.1.1 JPA events . 64
7.1.1.2 Native integration with JPA providers 67

7.1.2 Asynchronous approach . 68
7.1.2.1 Trigger architecture 69
7.1.2.2 Table creation . 70
7.1.2.3 Event retrieval . 74

7.2 Comparison of approaches . 76
7.2.1 Additional work . 76
7.2.2 Features . 77
7.2.3 Summary . 78

8 Usage of Hibernate Search GenericJPA 80
8.1 Dependencies . 80
8.2 Entities . 81
8.3 persistence.xml . 84
8.4 Code usage example . 86

9 Outlook 88

Used software 90

Listings 92

Tables 106

References 108

1 Preface 10

1 Preface
In the software world, or more specific, the Java enterprise world, developers tend to
abstract access to data in a way that components are interchangeable. A perfect ex-
ample for such an abstraction is the usage of Object Relational Mappers (ORM). The
database specifics are of lesser importance to the average developer compared to the
actual business logic and the need for native SQL is brought down to a minimum. This
makes the switch to a different relational database system (RDBMS) easier in the later
stages of a product’s life cycle.

The Java Persistence API (JPA) went even further by providing a standardized API for
ORMs. First conceived in 2006 as part of EJB 3.0 1 2, it is now the de-facto standard
for Object Relational Mappers in Java. The developer doesn’t need to know which
specific ORM is used in the application, as all the database queries are written against
the standardized query API and are therefore portable. This means that not only the
database is interchangeable, but even the specific ORM, it is accessed by, is as well.

However, this does not mean that all JPA implementations come with the same fea-
tures. For example, some ship with additional modules to enhance their capabilities. A
perfect example for this is the Hibernate Search API aimed at Hibernate ORM users.3
4

1JSR 220: Enterprise Java Beans 3.0, see [1]
2Javaworld: Understanding JPA, Part 1, see [2]
3Hibernate ORM project homepage, see [3]
4Hibernate Search project homepage, see [4]

1 Preface 11

Nowadays, even small applications like online shops need enhanced search capabilities
to let the user find more results for a given input. This is not something a regular
RDBMS excels at and Hibernate Search comes into use as shown in figure 1: It works
atop the Hibernate ORM, a popular JPA implementation, and enables the developer
to index the domain model for searching. It’s not only a mapper from JPA entities to a
search index, but also keeps the index up-to-date if something in the database changes.

Database

Hibernate
Search

Lucene
Index

Hibernate
ORM

notifies about
changes >
< retrieves
objects from

indexes
objects >

controls
access to >

Figure 1: Hibernate Search with Hibernate ORM

Hibernate Search is based on the powerful Lucene search toolbox 5 6 and is a sep-
arate project in the Hibernate family. It aims to provide a JPA "feeling" in its API
as it also incorporates a lot of JPA interfaces in its codebase. However, this does not
mean that it is compatible with other JPA providers than Hibernate ORM (apart from
Hibernate OGM, the NoSQL JPA mapper of the family) as the following figure 2 shows.

Database

Hibernate
Search

Lucene
Index

Non Hibernate
JPA Provider

indexes
objects >

controls
access to >

Figure 2: Hibernate Search’s incompatibility with other JPA implementations

While using Hibernate Search obviously is beneficial for Hibernate ORM applications,
not all developers can bind themselves to a specific JPA implementation in their appli-
cation. For some, the ability to change implementations might be of strategic impor-
tance, for others it could just be sheer preference to use a different JPA implementation.

5sourcecode on Hibernate Search GitHub repository, see [5]
6Hibernate Search FAQ, see [6]

1 Preface 12

Currently, developers that do not want to bind themselves to Hibernate ORM have to
resort to using different full text search systems like native Lucene7, ElasticSearch8 or
Solr9. While this is always a viable option, Hibernate Search would be a much better
suit for some applications because of its design with a entity structure in mind combined
with the automatic index updating feature, if it just were compatible with generic JPA.

When investigating Hibernate Search’s project structure 10, we can see that "hibernate-
search-orm" is the only module apart from some server-integration modules that de-
pends on any ORM logic. The modules that contain the indexing engine, the replication
logic, alternative backends, etc. are completely independent from it. This means, that
most of the codebase could be reused for a generic version of Hibernate Search.

Creating such a generic Hibernate Search is a better approach for a search API on
top of JPA rather than rewriting a JPA binding from scratch. Hibernate Search could
then act as the de-facto standard for fulltext search in the JPA world instead of having
a competing API that would just do the same thing in a different style.

Figure 3: xkcd.com on competing standards 11

This is why we will show how such a generic version can be built in this thesis. First,
we will look at how Hibernate Search’s engine can be reused. Then, we will write a
standalone version of this engine and finally integrate it with generic JPA together
with an automated index updating mechanism.

7official Lucene website, see [7]
8ElasticSearch Java API, see [8]
9Solr Java API, see [9]

10Hibernate Search GitHub repository, see [5]
11xkcd comic #927, see [10]

1 Preface 13

Short overview of contents:

In chapter 2 we explain the methods we use to build Hibernate Search GenericJPA.
In chapter 3 we give an overview of the relevant technologies used in this thesis and
give short introductions to several fulltext search engines and the reasoning behind
Hibernate Search GenericJPA. In chapter 4 we introduce a small example project and
explain the main challenges while developing Hibernate Search GenericJPA. In chapter
5 we describe the standalone version of Hibernate Search. In chapter 6 we explain how
the JPA integration of the standalone version is designed. In chapter 7 we work out
an automatic index updating mechanism for Hibernate Search GenericJPA. In chapter
8 we give a full explanation of how to use Hibernate Search GenericJPA using the
example from chapter 4. In chapter 9 we give a summary of what we have achieved in
this thesis and describe further steps.

2 Methods 14

2 Methods
For the development of the generic version of Hibernate Search we use a combined
approach of top-down 12 and bottom-up 13 software development: After dividing
the project into submodules (top-down) we develop the "building blocks" first and in-
tegrate them into bigger mechanisms (up until the sub-modules) as the project goes
on (bottom-up). This way we stay flexible in the early stages of development and only
have to write "wiring code" in the later stages.

After having identified the "building blocks" we follow this process to achieve them:

Figure 4: Development Process

• Feature Definition in Interfaces: We start by modelling the interfaces of our
building blocks. While doing so, we try to be as compliant to the Single Re-
sponsibility Principle 14 as possible. It helps by enforcing structures that are
easy to reuse and change. However, we intentionally break it in some cases to
allow more user-friendly interfaces (mostly in API entry-points).

By defining the features in interfaces and writing logic against only them (in-
stead of the direct implementations), we achieve complete independence between
the implementing classes and are compliant to the Open-Closed-Principle 15

internally ("Modules should be both open (for extension) and closed (for modifi-
cation)" 16). In combination with the Single Responsibility Principle this allows
us to write more "pluggable" code.

• Implementation of Interfaces: Once the interfaces are properly defined, we
write implementations for them according to the contracts set. As stated above,
these classes are generally written against other interfaces internally instead of
direct implementations.

12Top-down programming, Robert Strandh, see [11]
13Bottom-up programming, Robert Strandh, see [12]
14objectmentor.com: Article on Single Responsibility Principle, see [13]
15objectmentor.com: Article on Open-Closed-Principle, see [14]
16Object-Oriented Software Construction, Prentice Hall, 1988, Bertrand Meyer, see [15]

2 Methods 15

• Unit Tests: Each feature must have a corresponding unit test. These are neces-
sary to test each implementation for the right behaviour (outputs and side-effects)
and stability for at least one given input. They also help to identify bugs in the
implementations.

• Integration Tests: While Unit-Tests check the behaviour of every single imple-
mentation, Integration Tests are used to cover the correct behaviour when used
together with other parts of the project. With these tests we ensure all features
interoperate properly with each other.

Note that once a step is processed, that doesn’t mean its result is final. As we can see
in the diagram, we can go back and forth between the different steps at will to adapt to
specific implementation problems and other new problems that have not been covered
before.

We choose this kind of on-the-fly structure because it suits the project best: We have
to investigate different approaches before we can work out the real solution. Addition-
ally, because "hibernate-search-engine" is an internal API, we have to be as flexible as
possible with our development since some features of it can be different than what we
might expect in the first place.

It is worth mentioning that all the tests are executed during each build to ensure
no regression bugs occur. This is automatically managed by the Maven 17 build tool.

17Maven project homepage, see [16]

3 Overview of technologies 16

3 Overview of technologies
Before we can go into detail about how to work with Hibernate Search in a generic
environment, we will give a short overview of the relevant technologies first. We will
explain why ORMs in general and the JPA specification in particular are beneficial.
Then, we will explain what fulltext search engines are used for and give a short overview
about the available solutions for Java. We will see that generalizing Hibernate Search
for any JPA implementation is a good approach and that it has benefits over using the
different search solutions available.

3.1 Object Relational Mappers

Nowadays, many popular languages like Java or C# are object oriented. While SQL
solutions for querying relational databases exist for these languages (JDBC for Java18,
OleDb for C#19), the user either has to work with the rowsets manually or convert
them into custom data transfer objects (DTO) to gain at least some "real" objects
to work with. Both approaches don’t suit the object oriented paradigm well as SQL
"flattens" the data into rows when querying while a well designed class model would
work with multiple classes in a hierarchy.

1 SELECT author . id , author . name , book . id , book . name
2 FROM author_book , author , book
3 WHERE author_book . bookid = book . id
4 AND author_book . author id = author . id

Listing 1: SQL "flattening" the author and book table into rows

This is one of the points where Object Relational Mappers (ORM) come into use. They
map tables to entity-classes and enable users to write queries against these classes in-
stead of tables. The returned objects are part of a object hierarchy and are easier to
use from a object oriented point of view as even relations that were not included in a
join can generally be re-queried automatically when needed.

1 List<Author> data = orm . query ("SELECT a FROM Author a") ;
2 for (Author author : data) {
3 // we can s t i l l f e t c h the books wi thou t j o i n i n g in the query
4 System . out . p r i n t l n ("name: " + author . getName () +
5 ", books: " + author . getBooks ()) ;
6 }

Listing 2: ORM query example

18Oracle JDBC overview, see [17]
19OleDb usage page, see [18]

3 Overview of technologies 17

This is especially useful if used in big software products as not all programmers have
to know the exact details of the underlying database. The database system could even
be completely replaced by another (provided the ORM supports the specific RDBMS),
while the business logic would not change a bit.

3.2 JPA

The first version of the JPA standard was released in May 2006. From then on it rose
to being probably the most commonly used persistence API for Java and is considered
the "industry standard approach for Object Relational Mapping"20 21. While mostly
known for standardizing relational database mappers (ORM), it also supports other
concepts like NoSQL22 23 or XML storage24. However, when talking about JPA in this
thesis, we will be focusing on the relational aspects of it. Currently, the newest version
of this standard is 2.1 25.

Some popular relational implementations are:

• Hibernate ORM (Red Hat)26

• EclipseLink (Eclipse foundation)27

• OpenJPA (Apache foundation)28

Using the standardized JPA API over any native ORM API has one really interesting
benefit: The specific JPA implementation can be swapped out as it comes with stan-
dards for many common use cases.

This is particularily important if you are working in a Java EE environment. Java
EE itself is a specification for platforms, mostly Web-servers (JPA is part of the Java
EE spec).29 Many Java EE Web-servers ship with a bundled JPA implementation that
they are optimized for (WildFly with Hibernate ORM, GlassFish with EclipseLink,
...). This means that if the server is switched, it could also be a reasonable idea to
swap out the JPA implementor. If everything in the application is written in a JPA
compliant way, the user will then generally not encounter many problems related to
this switch.
20Wikibooks on Java Persistence, see [19]
21Stackoverflow JPA tag, see [20]
22Hibernate OGM project homepage, see [21]
23EclipseLink project homepage, see [22]
24EclipseLink project homepage, see [22]
25JSR 338: JPA 2.1 specification, see [23]
26Hibernate ORM project homepage, see [3]
27EclipseLink project homepage, see [22]
28OpenJPA project homepage, see [24]
29Java EE specification on oracle.com [25]

3 Overview of technologies 18

3.3 Fulltext search engines

Conventional relational databases are good at retrieving and querying structured data.
But if one wants to build a search engine atop a domain model, most RDBMS will
only support the SQL-LIKE operator 30:

1 SELECT book . id , book . name FROM book WHERE book . name LIKE %name%;

Listing 3: SQL LIKE operator in use

While this might be enough for some applications, this wildcard query doesn’t support
features a good search engine would need, for example:

• fuzzy queries (variations of the original string will get matched, too)

• phrase queries (search for a specified phrase)

• regular expression queries (matches are determined by a regular expression)

• stemming and language specific optimisations

• comprehensive synonym support

There may exist some RDBMS that support similar query-types, but in the context of
using an ORM we would then lose the ability to switch databases because of the usage
of vendor-specific features that not every RDBMS supports.

Fulltext search engines can be used to complement databases in this regard. They
are generally not intended to be replacing the database, but add additional function-
ality by indexing the data that is to be searched in a more sophisticated way. We will
now take a look at some of the most popular available options for Java developers
(including Hibernate Search) focusing on their usage and features. After that, we will
give the reasoning behind why a generic Hibernate Search is preferable to the other
solutions.

30w3schools on SQL LIKE, see [26]

3 Overview of technologies 19

3.3.1 Lucene

Apache LuceneTM is a high-performance, full-featured text search engine
library written entirely in Java. It is a technology suitable for nearly any
application that requires full-text search, especially cross-platform.31

Lucene serves as the basis for many fulltext search engines written in Java. It has many
different utilities and modules aimed at search engine developers. However, it can be
used on its own as well. Its latest stable version as of now is 5.3.0 32.

3.3.1.1 Concepts As Lucene’s focus is not on storing relational data, it comes with
its own set of concepts. Following is a short overview of the most important ones. These
are not only the basis for Lucene, but also for the other search engines we will discuss
next, as they are based on Lucene’s rich set of features.

Index structure Lucene uses an inverted index to store data. This means that
instead of storing texts mapped to the words contained in them, it works the other
way around. All different words (terms) are mapped to the texts they occur in33, so it
can be compared to a Map < String, List < Text >> in Java. Before anything can
be searched using Lucene, it has to be added to the the index (indexed) first.

Documents Documents are the data-structure Lucene stores and retrieves from the
index. An index can contain zero or more Documents.

Fields A Document consists of at least one field. Fields are basically tuples of key
and value. They can be stored (retrievable from the index) and/or indexed (used for
searches and generating hits).

Analyzers Before documents get indexed, their fields are analysed with one of the
many Analyzers first. Analysis is the process of modifying the input in a manner such
that it can be searched upon (stemming, tokenization, ...).

31official Lucene website, see [7]
32official Lucene website, see [7]
33Lucene basic concepts, see [27]

3 Overview of technologies 20

Example index The following figure 5 shows how an inverted index schematically
looks like in Lucene. On the left we can see three different documents containing an id
and the two text fields "field1" and "field2". The inverted index that stores references
to these documents can be seen on the right. It contains all the different terms (field &
value) mapped to the id of the texts they are contained in. The values of these terms
have been analysed before they were stored into the index as they only contain singular
words instead of the original "sentences" from the left.

Documents
id field1 field2

1 fulltext search
lucene search

2 lucene search java
3 fulltext java fulltext lucene

Inverted Index
Term Occurences

Field Value
field1 fulltext 1,3
field1 search 1,2
field1 lucene 1,2
field1 java 3
field2 search 1
field2 java 2
field2 fulltext 3
field2 lucene 3

Figure 5: schematic inverted index

3 Overview of technologies 21

3.3.1.2 Usage Using Lucene as a standalone engine requires the programmer to de-
sign the engine from the bottom up. The developer has to write all the logic, starting
with the actual indexing code through to the code managing access to the index. The
conversion from Java objects to Documents (for indexing) and back (for searching) have
to be implemented as well. This whole process requires a lot of code to be written and
the API only helps by providing the necessary tools. This is particularly problematic
as the Lucene API tends to change a lot between versions and the code has to be kept
up-to-date. It’s not uncommon that whole features that were state-of-the-art in one
version, are deprecated (potentially unstable, marked to be removed in the future) in
the next release, resulting in big code changes being potentially necessary.

3.3.1.3 Features Lucene probably is the most complete toolbox to build a search-
engine from. It has pre-built analyzers for many languages, a queryparser to support
generating queries out of user input, a phonetic module, a faceting module, and many
other features. While mostly known for its fulltext capabilities, it also has modules used
for other purposes, for example the spatial module that enables geo-location query sup-
port.

One benefit of its low-level API is that it can easily be extended with custom ana-
lyzers, query-types, etc, though. This is especially useful for more sophisticated search
engines.

3 Overview of technologies 22

3.3.2 Fulltext search servers: ElasticSearch and Solr

Lucene is the basis for two of the most popular search servers available: ElasticSearch
(by elastic)34 and Solr (sister project of Lucene)35. Their current stable versions are
1.7.1 36 and 5.3.0 37 respectively.

3.3.2.1 Usage As both ElasticSearch and Solr are standalone server applications,
they have to be configured before they can be used similar to the process of setting up
a RDBMS. As they don’t ship with any authentication mechanism by default they also
have to be secured before they are used in production 38 39. Index changes and queries
are done via a REST-like API (among other options).

3.3.2.2 Features As ElasticSearch and Solr are built upon Lucene, they support
the same basic features that Lucene does, but add additional indexing and search-
ing functionality and come with their own stack of tools to ease their usage (index
inspectors, load analyzers, ... 40 41). They are generally used because of their good
clustering capabilities (distribution & replication) and are optimized for high through-
put and scalability 42 43. As they are not running inside the client application (as a
native Lucene implementation would) these kind of servers don’t force the user to use
a specific programming language (in our case a JVM based one like Java).

34ElasticSearch Homepage, see [28]
35Solr Homepage, see [29]
36ElasticSearch Download website, see [30]
37Solr Homepage, see [29]
38Solr security, see [31]
39elastic Shield (security for ElasticSearch), see [32]
40Solr Administration (Core Specific Tools), see [33]
41ElasticHQ, see [34]
42ElasticSearch: Life inside a cluster, see [35]
43Solr: Introduction to Scaling and Distribution, see [36]

3 Overview of technologies 23

3.3.3 Hibernate Search

From the GitHub README of Hibernate Search:

Full text search engines like Apache Lucene are very powerful technolo-
gies to add efficient free text search capabilities to applications. However,
Lucene suffers several mismatches when dealing with object domain models.
Amongst other things indexes have to be kept up to date and mismatches
between index structure and domain model as well as query mismatches
have to be avoided.

Hibernate Search addresses these shortcomings - it indexes your domain
model with the help of a few annotations, takes care of database/index
synchronization and brings back regular [JPA] managed objects from free
text queries. 44

Hibernate Search’s current stable version is 5.4.0.Final which is based on Lucene 4.10.4
45.

3.3.3.1 Usage Hibernate Search is used in the context of JPA compliant applications
using Hibernate ORM. It can easily be used by adding it to the classpath and setting
some configuration properties in the JPA persistence.xml. It integrates seamlessly with
JPA interfaces.

3.3.3.2 Features Similar to ElasticSearch and Solr, Hibernate Search is built upon
Lucene and has similar features regarding indexing, searching and clustering but it is
designed to be used in a JPA environment: it indexes JPA entities and the queries
return them again.

It is tightly coupled with Hibernate ORM: while an integration with JPA is existent,
Hibernate Search doesn’t allow other JPA implementations than Hibernate ORM to
be used as it internally relies on its code.

For future versions the Hibernate Search team is planning on adding ElasticSearch
and Solr as additional backends 46 besides the already existing Lucene based backend
and the optional Infinispan integration.

44Hibernate Search GitHub README, see [5]
45hibernate-search-engine on mvnrepository.org, see [37]
46Hibernate Search roadmap, see [38]

3 Overview of technologies 24

3.3.4 Why a generic Hibernate Search?

For Hibernate ORM developers Hibernate Search is probably currently the easiest way
to have fulltext search capabilities in their application. While the native Lucene back-
end might not be the perfect choice for some applications (because they want to share
the index with applications written in e.g. C#), the planned ElasticSearch and Solr
backends would make up for this in the future.

Developers using other JPA implementations like EclipseLink or OpenJPA currently
don’t have the option to use a similar API to Hibernate Search as the Compass project
has been discontinued (last version: 2.2.0 from Apr 06, 2009 as of mvnrepository.org 47).

In order to create a fulltext engine integrated with generic JPA creating a separate
solution similar to Hibernate Search wouldn’t be beneficial as it would include a lot of
work and would probably not get much recognition.

A generic version of Hibernate Search however would use (most of) the already ex-
isting interfaces and would require a lot less code for the same behaviour and features
as nearly all of the important Lucene logic can be found in modules not having any
notion of Hibernate ORM. In fact, the only module of Hibernate Search requiring Hi-
bernate ORM is "hibernate-search-orm".

Ultimately this generic version of Hibernate Search could also inspire some remod-
elling of the original Hibernate Search to incorporate generic JPA, which could make
Hibernate Search the de-facto standard for fulltext search for the complete JPA world.

Using Hibernate Search and turning it into a general standard is definitely better
than writing everything from scratch and thus "reinventing the wheel".

47see http://mvnrepository.com/artifact/org.compass-project/compass/2.2.0

http://mvnrepository.com/artifact/org.compass-project/compass/2.2.0

3 Overview of technologies 25

4 Challenges 26

4 Challenges
While building the generic version of Hibernate Search, we will encounter some chal-
lenges. First, we will introduce a small example project. We will then use this project
to illustrate the biggest challenges. It will also be used to showcase some problems and
usages later on in this thesis.

4.1 The example project

Consider a software built with JPA that is used to manage the inventory of a bookstore.
It stores information about the available books (ISBN, title, genre, short summary of
the contents) and the corresponding authors (surrogate id, first & last name, country)
in a relational database. Each author is related to zero or more Books and each Book
is written by one or more Authors. The entity relationship model diagram defining the
database looks like this:

Figure 6: the bookstore entity relationship model

Using a mapping table for the M:N relationship of Author and Book, the database
contains three tables: Author, Book and Author_Book. The applications strictly uses
JPA to access the data without any vendor specific features. The JPA annotated classes
for these entities are defined as shown in the following listings.

4 Challenges 27

1 @Entity
2 @Table (name = "Book")
3 public class Book {
4

5 @Id
6 @Column(name = "isbn")
7 private St r ing i sbn ;
8

9 @Column(name = "title")
10 private St r ing t i t l e ;
11

12 @Column(name = "genre")
13 private St r ing genre ;
14

15 @Lob
16 @Column(name = "summary")
17 private St r ing summary ;
18

19 @ManyToMany(mappedBy = "books" , cascade = {
20 CascadeType .MERGE,
21 CascadeType .DETACH,
22 CascadeType .PERSIST ,
23 CascadeType .REFRESH
24 })
25 private Set<Author> authors ;
26

27 // g e t t e r s & s e t t e r s . . .
28 }

Listing 4: Book.java

4 Challenges 28

1 @Entity
2 @Table (name = "Author")
3 public class Author {
4

5 @Id
6 @GeneratedValue (s t r a t e gy = GenerationType .AUTO)
7 @Column(name = "authorId")
8 private Long authorId ;
9

10 @Column(name = "firstName")
11 private St r ing f i rstName ;
12

13 @Column(name = "lastName")
14 private St r ing lastName ;
15

16 @Column(name = "country")
17 private St r ing country ;
18

19 @ManyToMany(cascade = {
20 CascadeType .MERGE,
21 CascadeType .DETACH,
22 CascadeType .PERSIST ,
23 CascadeType .REFRESH
24 })
25 @JoinTable (name = "Author_Book" ,
26 joinColumns =
27 @JoinColumn (name = "authorFk" ,
28 referencedColumnName = "authorId") ,
29 inverseJoinColumns =
30 @JoinColumn (name = "bookFk" ,
31 referencedColumnName = "isbn"))
32 private Set<Book> books ;
33

34 // g e t t e r s & s e t t e r s . . .
35 }

Listing 5: Author.java

For the sake of simplicity and since every JPA provider is able to derive a default DDL
script from the annotations, we don’t supply any information about how to create the
database schema here. However, for real world applications defining a hand-written
DDL script might be a better idea since the generated code might not be optimal and
could differ between the different JPA implementations and RDBMSs used.

4 Challenges 29

4.2 Standalone version

Hibernate Search’s engine wasn’t designed to be used directly by application developers.
Its main purpose is to serve as an integration point for other APIs that need to leverage
its power to index object graphs and query the index for hits by exposing a quite low-
level and in some ways complex API. This is why we have to write our own standalone
version based on the "hibernate-search-engine" serving as an abstraction layer such that
it eases the usage of the engine in our JPA integration.

4.3 JPA integration

After the standalone version is finished, we will build an integration of it with JPA.
By incorporating the same engine that the original does, we will support the same
indexing behaviour and even stay compatible with entities designed for the original
with as little changes as possible. In fact, the main goal for the JPA integration is to
be as compatible as possible with Hibernate Search ORM.

The implementations of these two challenges are represented by the modules "Hiber-
nate Search Standalone" and "Hibernate Search GenericJPA" in the following figure 7.
Together with the module "Hibernate Search Database Utilities", these are the sub-
modules of our complete generic version and the result of the top-bottom analysis as
described in chapter 2. Note that during this thesis we will be referring to the whole
project by the name of the main module "Hibernate Search GenericJPA" as well.

Hibernate
Search
Engine

Hibernate
Search

Standalone

Hibernate
Search

Database
Utilities

Hibernate
Search

GenericJPA
org.hibernate.search.jpa

interfaces

JPA
Provider

Database

User Code

Lucene
Index

Figure 7: Complete Architecture of Hibernate Search GenericJPA

4 Challenges 30

4.4 Automatic index updating

The most important feature to be re-built, is automatic index updating. In Hibernate
Search ORM, every change in the database is automatically reflected in the index. It is
important to have this feature, because otherwise developers would have to manually
make sure the index is always up-to-date. With bigger project sizes it gets increasingly
harder to keep track of all the locations in the code that change index relevant data and
inconsistencies in the indexing logic become nearly unavoidable. While this problem
might be mitigated by hiding all the database access logic behind a service layer, even
such a solution would be hard to keep error-free as for big applications this layer will
probably have multiple critical indexing relevant spots as well.

The original Hibernate Search ORM is achieving an up-to-date index by listening to
specific Hibernate ORM events for all of the C_UD (CREATE, UPDATE, DELETE)
actions. These events also cover entity relationship collections (for example represented
by mapping tables like Author_Book). As our goal is to create a generic Hibernate
Search engine that works with any JPA implementation, we cannot rely on any vendor
specific event system. Thus, at least an additional generic solution has to be found.

This feature will be part of the "Hibernate Search GenericJPA" module.

4.5 Timeline

The solutions for the challenges depend on each other in the same order they were
described above: the JPA integration can only be worked on as soon as the standalone
integration is done and work on the automatic updating mechanism cannot be started
without knowing the JPA integration interfaces. The timeline of our project therefore
looks like this:

Figure 8: Timeline of the project

4 Challenges 31

5 Standalone version of Hibernate Search 32

5 Standalone version of Hibernate Search

We will start the development part of this thesis by discussing how Hibernate Search’s
engine (in the form of the module "hibernate-search-engine") can be used in general.
After this is done we will work out a standalone version of this engine that is easier to
work with so we can integrate this standalone version with JPA in the next chapter.

As already described earlier in chapter 4.2, hibernate-search-engine is not intended
to be used by application developers, but for other APIs to integrate with. Therefore
there is no real public documentation available on how to use it besides the internal
JavaDocs 48 (describing the classes, but not the interaction between them). Nearly all
the following information had to be retrieved from tests in the hibernate-search-engine
and hibernate-search-orm integration module source code 49.

48Hibernate Search JavaDoc, see [39]
49Hibernate Search GitHub, see [5]

5 Standalone version of Hibernate Search 33

5.1 Example project with Hibernate Search annotations

Before we explain how we do things in particular, we set up the example entities
described in 4.1 as if the original Hibernate Search would have been used. We do so
by adding additional annotations to our entity-classes (only the basic properties are
explained here):

1. @Indexed: marks the entity as an index root-type.

2. @DocumentId: marks the field as the id of this entity. this is only needed if
no JPA @Id can be found, but can be used to override settings. A Field marked
with this is stored and indexed. Storing means that its contents are obtainable
by projection when retrieving results. This is needed for ids so that the original
Entity can be obtained from the database.

3. @Field: describes how the annotated field should be indexed:
@Field#store determines whether the contents of this Java property should be
stored in the index (Store.YES) or not (Store.NO, default) while@Field#index
determines whether it should be searchable in the index (Index.YES, default) or
not (Index.NO).
The index fieldname defaults to the Java property name but can manually be
overridden with Field#name if needed.

4. @IndexedEmbedded: marks properties that point to other classes which should
be included in the index. By default, all fields contained in these entities are
prefixed with the property name this is placed on.
@IndexedEmbedded#includeEmbeddedObjectId decides whether the ids
of the embedded objects have to be stored and indexed as well.

5. @ContainedIn: used in entities that are embedded in other indexes. this is set
on the properties that point back to the index-owning entity.

As these annotations are defined in hibernate-search-engine, we can rely on all of them
while designing the standalone version of Hibernate Search and all other modules de-
pending on it.

5 Standalone version of Hibernate Search 34

The resulting entities look like this:

1 @Entity
2 @Table (name = "Book")
3 @Indexed
4 public class Book {
5

6 @Id
7 @Column(name = "isbn")
8 @DocumentId
9 private St r ing i sbn ;

10

11 @Column(name = "title")
12 @Field(store = Store .YES, index = Index .YES)
13 private St r ing t i t l e ;
14

15 @Column(name = "genre")
16 @Field(store = Store .YES, index = Index .YES)
17 private St r ing genre ;
18

19 @Lob
20 @Column(name = "summary")
21 @Field(store = Store .NO, index = Index .YES)
22 private St r ing summary ;
23

24 @ManyToMany(mappedBy = "books" , cascade = {
25 CascadeType .MERGE,
26 CascadeType .DETACH,
27 CascadeType .PERSIST ,
28 CascadeType .REFRESH
29 })
30 @IndexedEmbedded(includeEmbeddedObjectId = true)
31 private Set<Author> authors ;
32

33 // g e t t e r s & s e t t e r s . . .
34 }

Listing 6: Book.java with Hibernate Search annotations

5 Standalone version of Hibernate Search 35

1 @Entity
2 @Table (name = "Author")
3 public class Author {
4

5 @Id
6 @GeneratedValue (s t r a t e gy = GenerationType .AUTO)
7 @Column(name = "authorId")
8 @DocumentId
9 private Long authorId ;

10

11 @Column(name = "firstName")
12 @Field(store = Store .YES, index = Index .YES)
13 private St r ing f i rstName ;
14

15 @Column(name = "lastName")
16 @Field(store = Store .YES, index = Index .YES)
17 private St r ing lastName ;
18

19 @Column(name = "country")
20 @Field(store = Store .YES, index = Index .YES)
21 private St r ing country ;
22

23 @ManyToMany(cascade = {
24 CascadeType .MERGE,
25 CascadeType .DETACH,
26 CascadeType .PERSIST ,
27 CascadeType .REFRESH
28 })
29 @JoinTable (name = "Author_Book" ,
30 joinColumns =
31 @JoinColumn (name = "authorFk" ,
32 referencedColumnName = "authorId") ,
33 inverseJoinColumns =
34 @JoinColumn (name = "bookFk" ,
35 referencedColumnName = "isbn"))
36 @ContainedIn
37 private Set<Book> books ;
38

39 // g e t t e r s & s e t t e r s . . .
40 }

Listing 7: Author.java with Hibernate Search annotations

5 Standalone version of Hibernate Search 36

5.2 Usage of Hibernate Search’s engine

In this chapter we will take a look at how to use Hibernate Search’s engine natively by
showing how it’s started, how the index is manipulated and how searching works.

5.2.1 Startup

A Hibernate Search engine instance is represented by a SearchIntegrator object.
In order to obtain it, we first have to write a special configuration class that imple-
ments org.hibernate.search.cfg.spi.SearchConfiguration. An object of this class
has then to be created and filled with all the configuration properties Hibernate Search
requires. The minimum that has to be set for this to work are the following:

1. hibernate.search.default.directory_provider: The two most common cases
here are either "ram" or "filesystem". This decides where the index will be stored.
A ram directory is only present in the system memory while the SearchIntegrator
exists. A "filesystem" directory is persisted on the hard disk. For "filesystem"
the additional property "hibernate.search.default.indexBase" has to be set to an
appropriate path.

2. hibernate.search.lucene_version: This decides which Lucene version has to
be used internally. The currently latest supported version supported is "5.2.1"
as we are using an early alpha version of Hibernate Search for development (see
"Used software" in the appendix). It can be set to earlier versions to support
legacy behaviour in some Lucene classes.

A complete list of the available settings can be found in the Hibernate Search docu-
mentation 50 (only the Hibernate ORM specific settings cannot be used). Our Stan-
daloneSearchConfiguration (appendix listing 44) defaults to "ram" and "5.2.1".

50Hibernate Search documentation, see [40]

5 Standalone version of Hibernate Search 37

Having this class in place, a SearchIntegrator can be obtained by a SearchIntegra-
torBuilder like this:

1 List<Class<?>> indexCla s s e s = Arrays . a sL i s t (Book . class , Author . class) ;
2

3 SearchConf igurat ion sea r chCon f i gura t i on =
4 new Standa loneSearchConf igurat ion () ;
5 i ndexCla s s e s . forEach (s ea r chCon f i gura t i on : : addClass) ;
6

7 // boo t s t r app ing c l a s s f o r Hibernate Search
8 Sea r ch In t eg ra to rBu i l d e r bu i l d e r = new Sea r ch In t eg ra to rBu i l d e r () ;
9

10 //we have to b u i l d an i n t e g r a t o r here (the b u i l d e r needs a
11 // " base i n t e g r a t o r " f i r s t b e f o r e we can add index c l a s s e s)
12 bu i l d e r . c on f i gu r a t i on (s ea r chCon f i gura t i on) . bu i l dSea r ch In t eg ra to r () ;
13

14 i ndexCla s s e s . forEach (bu i l d e r : : addClass) ;
15

16 // s t a r t s the engine wi th a l l c o n f i g u r a t i o n p r o p e r t i e s s e t
17 Sea r ch In t eg ra to r s e a r ch In t e g r a t o r = bu i l d e r . bu i l dSea r ch In t eg r a to r () ;
18

19 // use the i n t e g r a t o r . . .
20

21 // c l o s e i t
22 s e a r ch In t e g r a t o r . c l o s e () ;

Listing 8: Starting up the engine

5 Standalone version of Hibernate Search 38

5.2.2 Index manipulation

Now that we know how a SearchIntegrator can be built, we can take a look at how we
can control the index using the engine’s features.

The engine does a lot of optimizations in the backend. This is the reason the specifics are
hidden behind a Worker pattern. Such a worker batches operations by synchronizing
upon the org.hibernate.search.backend.TransactionContext interface. Our im-
plementation of this is simply called Transaction (appendix listing 43). The different
index operations are represented by Work objects that contain the WorkType (IN-
DEX, UPDATE, PURGE, etc.) and all necessary data to execute the individual task.

Indexing objects with WorkType.INDEX:

1 Book book = . . . ;
2 Transact ion tx = new Transact ion () ;
3 Worker worker = s ea r ch In t e g r a t o r . getWorker () ;
4 worker . performWork (new Work(book , WorkType .INDEX) , tx) ;
5 tx . commit () ;

Listing 9: Indexing an object with the engine

Updating objects with WorkType.UPDATE:

1 Book book = . . . ;
2 Transact ion tx = new Transact ion () ;
3 Worker worker = s ea r ch In t e g r a t o r . getWorker () ;
4 worker . performWork (new Work(book , WorkType .UPDATE) , tx) ;
5 tx . commit () ;

Listing 10: Updating an object with the engine

Deleting objects with WorkType.PURGE:

1 St r ing i sbn = . . . ;
2 Transact ion tx = new Transact ion () ;
3 Worker worker = s ea r ch In t e g r a t o r . getWorker () ;
4 worker . performWork (new Work(Book . class , i sbn , WorkType .PURGE) , tx) ;
5 tx . commit () ;

Listing 11: Deleting an object by id with the engine

5 Standalone version of Hibernate Search 39

This API doesn’t have any "convenience" methods that wrap around the Transaction
management if no batching is needed, nor does it have any wrapper utility for the Work
object generation.

5.2.3 Queries

Querying the index is already acceptable to some extent when it comes to building
the actual query. This is mainly due to the fact the query class HSQuery supports
method chaining and that the same query builder DSL (which returns Lucene queries)
used in Hibernate Search ORM is available. Any basic Lucene query could be used as
well, but would require manual analysis of the input. Queries produced by the builder
are automatically analysed with the correct Analyzer.

1 Sea r ch In t eg ra to r s e a r ch In t e g r a t o r = . . . ;
2

3 HSQuery query = s ea r ch In t e g r a t o r . createHSQuery () ;
4

5 // f i n d in format ion about a l l the e n t i t i e s matching a g iven t i t l e
6 List<EntityInfo> e n t i t y I n f o s =
7 query . luceneQuery (
8 // query DSL:
9 s e a r ch In t e g r a t o r . bui ldQueryBui lder ()

10 . f o rEnt i t y (Book . class)
11 . get ()
12 . keyword ()
13 . onFie ld ("title")
14 . matching ("searchString")
15 . createQuery ()
16) . t a r g e t e dEn t i t i e s (
17 Co l l e c t i o n s . s i n g l e t o nL i s t (
18 Book . class
19)
20) . projection (
21 ProjectionConstants .ID
22) . que ryEnt i ty In fo s () ;

Listing 12: Querying the index with the engine

5 Standalone version of Hibernate Search 40

Executing the queries doesn’t return anything resembling the original Java objects,
though. The actual data returned depends on what we project upon in the projec-
tion(...) call and is wrapped in an EntityInfo object. In our example we only retrieve
the ids of the Books matching our query. We do this because when using a search index,
we don’t generally want to work with the actual data found in the index after the hits
have been found. We want objects retrieved from the database.

1 //a JPA EntityManager
2 EntityManager em = . . . ;
3

4 // e x t r a c t i n f o from the e n t i t y I n f o s
5 for (Ent i ty In fo e n t i t y I n f o : e n t i t y I n f o s) {
6 St r ing i sbn = (St r ing) e n t i t y I n f o . g e tP ro j e c t i on () [0] ;
7 // r e t r i e v e an o b j e c t from the database
8 Book book = em. f i nd (Book . class , i sbn) ;
9 // handle t h i s in format ion . . .

10 }

Listing 13: Extracting info from the results

5 Standalone version of Hibernate Search 41

5 Standalone version of Hibernate Search 42

5.3 Design of the standalone version

In 5.2 we described how the engine can be used natively without any notion of JPA.
While using the engine this way is possible, it is not convenient because some of the
code is quite complicated. This is the reason we will now discuss a standalone abstrac-
tion of this code.

As we have seen in the examples earlier, the main interfaces used for index control
and querying are SearchIntegrator and HSQuery. In order to abstract some of the
complicated logic, we now introduce two new interfaces:

• StandaloneSearchFactory: This interface is responsible for all index changes.
Code using this abstraction doesn’t have to cope with the Worker pattern, at all.
This is hidden behind index/delete/update methods.

• HSearchQuery: While still having the same chaining methods as HSQuery, we
retrieve results from the index in a different manner now. Instead of manually
having to extract the ID out of the EntityInfos, this interface retrieves the ac-
tually wanted data with the help of the EntityProvider interface which wraps
the access to the database. The specifics of the EntityProvider are still use-case
specific as the examples later in this chapter will show.

5 Standalone version of Hibernate Search 43

The following diagram shows the rough architecture of our new standalone version.
Note that we are using a specialization of SearchIntegrator - namely Extended-
SearchIntegrator - which allows us to have more sophisticated features.

Figure 9: Rough architecture of the standalone version (important parts)

5 Standalone version of Hibernate Search 44

5.3.1 Startup

The startup process of the standalone version doesn’t differ much from manually using
the engine in terms of configuration as we still have to use the SearchConfiguration
interface. The only difference is how we build the StandaloneSearchFactory. This is
done with a StandaloneSearchFactoryFactory, so the code using it doesn’t have
to handle the creation of the actual implementation object.

1 List<Class<?>> indexCla s s e s = Arrays . a sL i s t (Book . class , Author . class) ;
2

3 //we s t i l l have to b u i l d the SearchConf igura t ion o b j e c t
4 SearchConf igurat ion sea r chCon f i gura t i on =
5 new Standa loneSearchConf igurat ion () ;
6 i ndexCla s s e s . forEach (s ea r chCon f i gura t i on : : addClass) ;
7

8 // the b u i l d e r pa t t e rn from be f o r e i s a b s t r a c t e d in the f o l l o w i n g l i n e s
9 StandaloneSearchFactory searchFactory =

10 StandaloneSearchFactoryFactory .
11 createSearchFactory (
12 s earchConf igurat ion ,
13 i ndexCla s s e s
14) ;
15

16 // use the s e a r c h f a c t o r y . . .
17

18 // c l o s e i t
19 searchFactory . c l o s e () ;

Listing 14: Starting up the standalone version

5 Standalone version of Hibernate Search 45

5.3.2 Index manipulation

With our standalone version, basic index control becomes more streamlined as we don’t
have to work with the SearchIntegrator’s Worker pattern anymore as it was described
in chapter 5.2.2:

1 Book book = . . . ;
2 Transact ion tx = new Transact ion () ;
3 searchFactory . index (book , tx) ;
4 tx . commit () ;

Listing 15: Indexing an object with the standalone version

1 Book book = . . . ;
2 Transact ion tx = new Transact ion () ;
3 searchFactory . update (book , tx) ;
4 tx . commit () ;

Listing 16: Updating an object with the standalone version

1 Transact ion tx = new Transact ion () ;
2 St r ing i sbn = . . . ;
3 searchFactory . d e l e t e (Book . class , i sbn , tx) ;
4 tx . commit () ;

Listing 17: Deleting an object by id with the standalone version

5 Standalone version of Hibernate Search 46

5.3.3 Queries

The biggest change in the standalone version is probably how the index is queried. We
don’t have to work with EntityInfos anymore as we introduced the EntityProvider in-
terface. This interface hosts one method that is to be used for batch fetching (Fetch.BATCH)
and one for single fetching (Fetch.FIND_BY_ID).

A good default implementation delegating the database access to a JPA EntityManager
is our BasicEntityProvider (listing 45 in the appendix). Besides taking an Entity-
Manager in its constructor, it also needs a Map<Class<?>, String> containing the
id properties of the entities. While we leave the construction of this map out in the
following listing 18 for the sake of simplicity, the code for this can be found in listing
46 in the appendix. After its creation, this map can then be stored in a central place
and reused.

1 StandaloneSearchFactory searchFactory = . . . ;
2

3 EntityManager em = . . . ;
4 Map<Class <?>, Str ing> idProp e r t i e s = . . . ;
5

6 Ent i tyProv ider en t i t yProv ide r = new Bas icEnt i tyProv ider (em, i dP rope r t i e s) ;
7

8 List<Book> books = searchFactory
9 . createQuery (searchFactory . bui ldQueryBui lder ()

10 . f o rEnt i t y (Book . class)
11 . get ()
12 . keyword ()
13 . onFie ld ("title")
14 . matching ("searchString")
15 . createQuery () , Book . class
16) . query (
17 ent i tyProv ide r ,
18 Fetch .BATCH
19) ;

Listing 18: Querying the index with the standalone version

5 Standalone version of Hibernate Search 47

6 JPA integration of the standalone version 48

6 JPA integration of the standalone version

After simplifying the access to Hibernate Search’s engine we will work out an integra-
tion with JPA interfaces next. Since we started with the premise of not wanting to
"reinvent the wheel" by writing everything from scratch (as described in 3.3.4), we will
try to build an integration as similar to the JPA interfaces of Hibernate Search ORM
as possible.

Before we can go into detail about how we build our integration, we have to discuss the
general architecture first. We will go over how the Hibernate Search ORM integration
with JPA interfaces behaves from a user’s point of view and then take a look at what
has to be changed in order to be compatible with any JPA implementor.

6 JPA integration of the standalone version 49

6.1 Architecture of Hibernate Search ORM

Hibernate Search ORM integrates with the JPA API by extending the interfaces
javax.persistence.EntityManager and javax.persistence.Query and adds new function-
ality to the fulltext search versions of these interfaces: FullTextEntityManager and
FullTextQuery. The following figure shows a rough overview of this. Note that this
contains only the methods relevant for the following sections.

Figure 10: The main JPA interfaces of Hibernate Search ORM

6 JPA integration of the standalone version 50

6.1.1 Startup

As Hibernate Search ORM is tightly coupled with Hibernate ORM it is automatically
started if found on the classpath and the persistence.xml contains the following:

1 . . .
2 <property name="hibernate.search.default.directory_provider" value="

filesystem"/>
3 <property name="hibernate.search.default.indexBase" value="/path/to/

indexes"/>
4 . . .

Listing 19: Additions to persistence.xml with Hibernate Search ORM

This means that there exists no real code entry point as Hibernate Search is fully inte-
grated into the Hibernate ORM/OGM lifecycle. FullTextEntityManagers can therefore
be obtained with:

1 EntityManager em = . . . ;
2 FullTextEntityManager fem = Search . getFul lTextEntityManager (em) ;

Listing 20: Obtaining a FullTextEntityManager with Hibernate Search ORM

All of FullTextEntityManager’s operations are controlled by the same transactions the
original Hibernate EntityManager is using. This is the reason we will not have any
search transaction related code in the following paragraphs.

6 JPA integration of the standalone version 51

6.1.2 Index manipulation

The index operations are all straightforward and similar to what we designed our stan-
dalone version in chapter 5.3 to work like apart from minor naming differences.

Hibernate Search ORM doesn’t differentiate between indexing and updating.

1 FullTextEntityManager fem = . . . ;
2 Book book = . . . ;
3 fem . index (book) ;

Listing 21: Indexing/Updating an object with Hibernate Search ORM

Deleting objects from the index is called purging. This is probably due to not wanting
to confuse it with JPA’s delete(...).

1 FullTextEntityManager fem = . . . ;
2 St r ing i sbn = . . . ;
3 fem . purge (Book . class , i sbn) ;

Listing 22: Deleting an object by id with Hibernate Search ORM

6 JPA integration of the standalone version 52

6.1.3 Queries

Hibernate Search ORM integrates even better with JPA for queries than our stan-
dalone version as the FullTextQuery interface extends the JPA Query interface and
uses getResultList() to return its results:

1 EntityManager em = . . . ;
2 FullTextEntityManager fem = Search . getFul lTextEntityManager (em) ;
3

4 FullTextQuery fu l lTextQuery = fem . createFul lTextQuery (
5 fem . getSearchFactory () . bui ldQueryBui lder ()
6 . f o rEnt i t y (Book . class)
7 . get ()
8 . keyword ()
9 . onFie ld ("title")

10 . matching ("searchString")
11 . createQuery () ,
12 Book . class) ;
13

14 List<Book> books = (List<Book>) ful lTextQuery . g e tRe su l tL i s t () ;

Listing 23: Querying with Hibernate Search ORM

6 JPA integration of the standalone version 53

6.1.4 Index rebuilds

A noteworthy feature of Hibernate Search is its MassIndexer. It can be used whenever
the way the entities are indexed is changed (e.g. in the @Field annotations). It uses
multiple threads working in parallel to scroll results from the database and then in-
dexes these efficiently. This is by far faster than the naive approach working in only one
thread. It also incorporates a lot of internal improvements a normal developer wouldn’t
have access to as the specifics are hidden in the implementation packages of Hibernate
Search which are not intended to be used outside of its own code.

A full index rebuild for our Book entity would look like this:

1 EntityManager em = . . . ;
2 FullTextEntityManager fem = Search . getFul lTextEntityManager (em) ;
3

4 fem . c r ea t e Indexe r (Book . class)
5 . batchSizeToLoadObjects (25)
6 . threadsToLoadObjects (12)
7 . i dFetchS i ze (150)
8 . t ransact ionTimeout (1800)
9 . startAndWait () ;

Listing 24: MassIndexer usage with Hibernate Search ORM

"This will rebuild the index of all [Book] instances (and subtypes), and will create
12 parallel threads to load the User instances using batches of 25 objects per query;
these same 12 threads will also need to process indexed embedded relations and custom
FieldBridges or ClassBridges, to finally output a Lucene document."51

51Hibernate Search documentation (MassIndexer, v5.4), see [41]

6 JPA integration of the standalone version 54

6.2 Architecture of the generic version

As good as Hibernate Search ORM’s API integration with JPA’s EntityManager and
Query interface is, its additional interfaces still contain some Hibernate ORM related
features and logic that a generic version (we call it Hibernate Search GenericJPA) can
not support and therefore have to be changed, emulated or removed altogether.

Figure 11: Required fixes for a generic version

In the figure 11 above, we have marked all the methods requiring to be fixed in the
FullTextEntityManager and FullTextQuery interfaces:

• green: new methods

• red: methods that can’t be supported

• olive: methods that can be supported if changed

Besides these, some other aspects need changes as well. We will describe the reasoning
behind all of the needed changes & additions in the following paragraphs.

6 JPA integration of the standalone version 55

6.2.1 Startup

In our generic version we can’t tightly integrate with the EntityManagerFactory of the
JPA provider. This is the reason we introduce a separate interface called JPASearch-
FactoryController:

Figure 12: JPASearchFactoryController

Having this separate interface means that the lifecycle of the generic version has to be
controlled separately contrary to the standard Hibernate Search which is integrated
with Hibernate ORM’s lifecycle as described in chapter 6.1.1.

Unlike the static way a FullTextEntityManager is obtained in Hibernate Search ORM
via the Search class, in our generic version, we obtain it with the getFullTextEntity-
Manager(EntityManager entityManager) method (the Search class in Hibernate
Search ORM only works because of the tight coupling of ORM and Search). This
means that an instance of the JPASearchFactoryController has to be available at all
times when access to the index is required.

Using a non-static approach here has one benefit, though: we can pass null to this
method and get a search only FullTextEntityManager that can be used to work on
the index when no database access is needed. This is particularly useful if POJOs
have to be indexed which are not associated with JPA (see table 2, property "hiber-
nate.search.additionalIndexedTypes").

6 JPA integration of the standalone version 56

We start the fulltext search engine with our bootstrapping class Setup like this:

1 // In Hibernate Search ORM, the f u l l t e x t engine would be s t a r t e d
2 // t o g e t h e r wi th the EntityManagerFactory .
3 // In GenericJPA we can ’ t do t h a t .
4 EntityManagerFactory emf = . . . ;
5

6 EntityManager em = . . . ;
7

8 Prope r t i e s p r op e r t i e s = new Prope r t i e s () ;
9

10 p r op e r t i e s . s e tProper ty (
11 "hibernate.search.searchfactory.type" ,
12 "manual -updates"
13) ;
14

15 // In GenericJPA t h i s s t a r t s the f u l l t e x t engine to
16 // which a r e f e r ence i s re turned by t h i s method c a l l
17 JPASearchFactoryControl ler s ea r chFac to ryCont ro l l e r =
18 Setup . c r ea t eSea r chFac to ryCont ro l l e r (emf , p r op e r t i e s) ;
19

20 // Ful lTextEnt i tyManagers are not ob ta ined wi th the Search c l a s s
21 FullTextEntityManager fem =
22 s ea r chFac to ryCont ro l l e r . getFullTextEntityManager (em) ;
23

24 // use i t . . .
25

26 s ea r chFac to ryCont ro l l e r . c l o s e () ;

Listing 25: MassIndexer usage with Hibernate Search ORM

For this example we are using "manual-updates", as we haven’t discussed how the index
is kept up-to-date. After we worked that out, "manual-updates" will just be a fallback
setting for developers not wanting to have the index automatically updated. Also note
that there are many more properties that can be set and that vanilla Hibernate Search
settings are passed this way as well. A complete list of the available GenericJPA con-
figuration properties can be found in table 2 in the appendix.

6 JPA integration of the standalone version 57

6.2.2 Index manipulation

In Hibernate Search ORM, all manual index manipulations are synchronized with the
EntityManager transaction lifecycle (index changes underly the JPA transaction sys-
tem). In our generic approach we cannot do this as JPA doesn’t have an extension point
for this kind of usage. This is the reason we introduce the [begin/commit/roll-
back]SearchTransaction() methods in FullTextEntityManager. These have to be
used to control the transaction lifecycle of all the index manipulation methods:

1 EntityManager em = . . . ;
2 JPASearchFactoryControl ler s ea r chFac to ryCont ro l l e r = . . . ;
3

4 FullTextEntityManager fem =
5 s ea r chFac to ryCont ro l l e r . getFullTextEntityManager (em) ;
6

7 fem . beg inSearchTransact ion () ;
8 try {
9 // index or purge here

10 fem . commitSearchTransaction () ;
11 } catch (Exception e) {
12 fem . ro l lbackSearchTransac t i on () ;
13 throw e ;
14 }

Listing 26: Index control with Hibernate Search GenericJPA

Because manual index changes are not needed frequently in normal applications, we
don’t restrict the usage of GenericJPA in application servers by a lot compared to the
original Hibernate Search ORM by introducing our own search transaction management
methods. In general, Hibernate Search transactions can not be compared with real
RDBMS transactions anyways as it is allowed to write changes to the index without
commiting with flushToIndexes(). Changes applied in this manner can not be reverted
by a rollback.

6 JPA integration of the standalone version 58

One additional problem with supporting indexing generic JPA entities is that some JPA
providers don’t return objects of the original entity class. For example, EclipseLink re-
turns an object of an anonymous subclass of the original in which it hides away some
utility logic needed for lazy loading.

This is problematic because the engine needs to know which class to get the index
description metamodel from. Therefore we have to implement logic to feed the right
entity class into the engine via user input for Hibernate Search GenericJPA. Entity
classes have to be marked with @InIndex on the type level so we can start from any
object’s class and then go up in the class hierarchy until we find one that is annotated
with this annotation. If no @InIndex is found, we use the actual class of the entity
object we are about to index as a best effort (this is the behaviour Hibernate Search
ORM has). This algorithm is described in Java code in the next listing 27:

1 // ge t the f i r s t c l a s s in the h i e rarchy
2 Class<T> c l a z z = (Class<T>) en t i t y . ge tC la s s () ;
3

4 // check i f the o r i g i n a l c l a s s has @InIndex presen t
5 // i f yes , we don ’ t have to go h i gher up in the c l a s s h i e rarchy
6 i f (! c l a z z . i sAnnotat ionPresent (InIndex . class)) {
7

8 //go up in the c l a s s h i e rarchy u n t i l e i t h e r a @InIndex i s found
9 // or the r e i s no s u p e r c l a s s anymore .

10 while ((c l a z z = (Class<T>) c l a z z . g e tSupe r c l a s s ()) != null) {
11 i f (c l a z z . i sAnnotat ionPresent (InIndex . class)) {
12 break ;
13 }
14 }
15

16 }
17

18 // i f we have found a c l a s s annotated wi th @InIndex
19 //we re turn i t here
20 i f (c l a z z != null) {
21 return c l a z z ;
22 }
23

24 //no @InIndex found , t r y the e n t i t i e s d i r e c t c l a s s
25 // as a b e s t e f f o r t
26 return en t i t y . ge tC la s s () ;

Listing 27: Algorithm to determine the actual indexed type

6 JPA integration of the standalone version 59

Note that every entity that is part of the index has to be annotated with @InIndex,
even the ones that are just embedded. With this in mind our entities Book and Author
now look like this:

1 @Entity
2 @InIndex
3 @Table (name = "Book")
4 @Indexed
5 public class Book {
6

7 // r e s t i s unchanged
8

9 }

Listing 28: Book.java with @InIndex

1 @Entity
2 @InIndex
3 @Table (name = "Author")
4 public class Author {
5

6 // r e s t i s unchanged
7

8 }

Listing 29: Author.java with @InIndex

A similar behaviour supporting the subclassing of entities can be achieved with JPA’s
@Entity replacing the @InIndex annotation as these annotations can be found on the
first real entity class in the hierarchy as well. We didn’t choose this approach because
by using @InIndex we support indexing of non-JPA entities as well. A hybrid approach
checking for both annotations might be possible, but using only @InIndex is sufficient
for now.

6 JPA integration of the standalone version 60

6.2.3 Queries

While we didn’t mention this in chapter 6.1.3, Hibernate Search ORM supports mod-
ifying the resulting objects of a query with these two methods on FullTextQuery:

• setCriteriaQuery(Criteria criteria): This method lets the user define a cus-
tom Hibernate Criteria query (no JPA criteria query) that has to be used to
retrieve the results from the database. This can be used to make sure all neces-
sary data is loaded after it is returned by getResultList(). These custom queries
are used in cases where no session is available anymore when the data is finally
used: If the data is requested, an error would occur.

• setResultTransformer(ResultTransformer resultTransformer): A Result-
Transformer can be used to transform the results (useful for projections) into
POJOs (Plain Old Java Object).

There is a problem with these two methods, though. They are using the Hibernate
ORM API to accomplish their behaviour, and therefore we cannot support the meth-
ods on our generic version of the interface.

By adding a new method entityProvider(EntityProvider entityProvider) with
the same EntityProvider interface as in chapter 5.3.3 to the method, we can at least
support custom queries.

As the main use case scenario for the ResultTransformer is probably just the trans-
formation from a projection of the queried documents to a POJO, we just completely
remove this feature. In the future, we can add such a feature back to the generic ver-
sion, if needed. But as this method cannot be kept as-is anyways, Hibernate Search
ORM developers wanting to use Hibernate Search GenericJPA that use this feature
have to change some of their code either way.

Besides these changes, the interface behaves the exact same as described in 6.1.3.

6 JPA integration of the standalone version 61

6.2.4 Index rebuilds

The MassIndexer utility is a really important feature of Hibernate Search ORM. As
it uses Hibernate ORM logic under the hood (and in its interface), we have to write
our own version of it. We don’t build an API compatible version for Hibernate Search
GenericJPA as a MassIndexer is generally not used in many places in the code any-
ways. Additionally this way we can give different configuration properties for better
performance as our implementation differs in some details.

The basic ideas are the same though: Each entity type has its ids scrolled from the
database by one thread (there can be multiple threads doing this, but for other en-
tities). Then, a configurable amount of indexing threads handles these ids batch by
batch in a Hibernate Search index-writing backend optimized for this task (this is part
of Hibernate Search’s engine is therefore reused).

In Hibernate Search GenericJPA our Book entities are massindexed like this:

1 EntityManager em = . . . ;
2 FullTextEntityManager fem = Search . getFul lTextEntityManager (em) ;
3

4 fem . c r ea t e Indexe r (Book . class)
5 . batchSizeToLoadObjects (25)
6 . threadsToLoadObjects (12)
7 . batchSizeToLoadIds (150)
8 . idProducerTransactionTimeout (1800)
9 . startAndWait () ;

Listing 30: MassIndexer usage with Hibernate Search ORM

7 Automatic index updating 62

7 Automatic index updating

As already stated in chapter 4.4, the automatic index updating feature is required for
a reasonable Hibernate Search GenericJPA. As this is arguably the most complicated
feature for GenericJPA, we will go into detail about how we are achieving it next.
We will start by giving a description of the different implementations available and
then decide which ones to use. We are however not showing the complete internal code
architecture - like in chapters 5 and 6 - in favour of explaining in detail how the general
ideas work. After that, we will also give a short overview of the pros and cons of the
chosen approaches.

7 Automatic index updating 63

7.1 Description of different implementations

There are several approaches to building an automatic index updating feature. While
they are all different in the specifics, they can generally be separated into two cat-
egories: synchronous and asynchronous. Synchronous in this context means that
the index is updated as soon as the newly changed data is persisted in the database
without any real delay while in an asynchronous updating mechanism an arbitrary
amount of time passes before the index is updated. While synchronous approaches are
needed in some rare cases, fulltext search generally doesn’t require a 100% up-to-date
index at every point in time as a search index generally is not the source of truth in
an application (only the database contains the "truth").

We will now work out a solution for both the synchronous and asynchronous case,
while the asynchronous version will serve as a backup whenever the synchronous mech-
anism is not applicable.

7 Automatic index updating 64

7.1.1 Synchronous approach

For the synchronous approach we have two candidates: A system based on JPA callback
events and another one that uses the native APIs of JPA providers. We start with the
JPA callbacks and then go onto the native APIs.

7.1.1.1 JPA events As we are trying to work with as little vendor specific APIs,
JPA’s callback events look like a suitable candidate for listening to changes in entities.

To listen for the JPA events we have two options: annotate the entities with callback
methods or create a separate listener class. We will only take a look at the listener class
since we don’t want to have unnecessary methods in a possible user’s entities. This lis-
tener class doesn’t have to implement an interface, but must have methods annotated
with special annotations. The relevant ones are @PostPersist, @PostUpdate, @Post-
Delete (there are "pre-versions" available as well, but we focus on the post methods as
they are more useful). What each specific annotation stands for is quite self-explanatory.

A listener class generally looks like this:

1 public class Ent i tyL i s t ene r {
2

3 @PostPers i st
4 public void p e r s i s t (Object en t i t y) {
5 // handle the event
6 }
7

8 @PostUpdate
9 public void update (Object en t i t y) {

10 // handle the event
11 }
12

13 @PostDelete
14 public void de l e t e (Object en t i t y) {
15 // handle the event
16 }
17

18 }

Listing 31: Example JPA entity listener

7 Automatic index updating 65

These EntityListeners are generally applied with an annotation on the entity:

1 @EntityListeners({ EntityListener . class })
2 public class Book {
3

4 // . . .
5

6 }

Listing 32: Using a JPA entity listener

As the JPA provider creates the EntityListeners automatically, we have no access to
them without injecting a reference to them in a static way. While this might cause
some Classloader problems, it should be fine in most cases.

1 public class Ent i tyL i s t ene r {
2

3 public Ent i tyL i s t ene r () {
4 // i n j e c t i t somewhere
5 // so we can acces s i t in a s t a t i c way
6 Ent i t yL i s t ene rReg i s t r y . i n j e c t (this) ;
7 }
8

9 // . . .
10

11 }

Listing 33: Injecting the EntityListener

7 Automatic index updating 66

Even though these listeners seem to be the perfect fit as they would enable us to fully
integrate only with JPA interfaces, they have two big issues as we find out after inves-
tigating further.

Firstly, not all JPA providers seem to handle these events similarly: For example Hi-
bernate ORM doesn’t propagate events from collection tables to the owning entity,
while EclipseLink does (EclipseLink’s behaviour would be needed from all providers).

Secondly, we find out that the events are triggered on flush instead of commit as
can be seen in listing 34. This is an issue if the changed data is not actually commited:

1 EntityManager em = . . . ;
2

3 em. getTransact ion () . begin () ;
4

5 Book book = em. f i nd (Book . class , "someIsbn") ;
6 book . s e tT i t l e ("someNewTitle") ;
7

8 // f l u s h e s , so we r e t r i e v e the Book wi th the changes from above
9 // => event i s t r i g g e r e d

10 List<Book> al lBooks =
11 em. createQuery ("SELECT b FROM Book b") . g e tRe su l tL i s t () ;
12

13 // we have no way to ge t t h i s event to r e v e r t the wrong index change
14 em. getTransact ion () . r o l l b a ck () ;

Listing 34: Event triggering on flush

While it might be possible to somehow fix the flush issue, the general bad support
from JPA providers like Hibernate ORM renders this approach unusable until the
JPA providers work the same way regarding the event propagation to some reasonable
extent.

7 Automatic index updating 67

7.1.1.2 Native integration with JPA providers Almost every JPA provider has its
own internal event system that is useful for cache invalidation and other tasks. These
combined with hooks into the transaction management allow us to build a proper index
updating system that works with transactions in mind (big improvement compared to
the flush() issues of plain JPA).

JPA providers generally have callbacks similar to those of the JPA events (no knowledge
about database specifics is needed, Java types are used), but also provide additional
information about the database session that caused the changes.

By definition, these kind of integrations are not portable between JPA providers and
require us to write different systems for all the JPA providers. But as the landscape
for popular JPA providers probably only consists of Hibernate ORM, EclipseLink and
OpenJPA, we can implement listeners for these and the others will have to rely on
the asynchronous backup approach (as of the time of writing this, we have only imple-
mented integrations for Hibernate ORM and EclipseLink).

As this seems to be the only reasonable solution for a synchronous update system,
we are using it for Hibernate Search GenericJPA even though it is no real native solu-
tion because of the JPA implementation dependent code.

Note: we don’t describe how these event systems are built in particular as they dif-
fer a lot in their APIs, but generally these are straightforward to use and describing
the implementations would be unspectacular.

7 Automatic index updating 68

7.1.2 Asynchronous approach

In contrary to the synchronous approach where we described two different versions, for
the asynchronous version we only have one feasible solution available: a trigger based
system.

Paul DuBois writes in MySQL - Developer’s Library:

A Trigger is a stored program that is associated with a particular table
and is defined to activate for INSERT, DELETE or UPDATE statements
for that table. A trigger can be set to activate either before or after each
row processed by the statement. The trigger definition includes a statement
that executes when the trigger activates.

[...]

A trigger can examine the current contents of a row before it is deleted
or updated. This capability can be exploited to perform logging of changes
[...]. 52

While the quote above is meant to be for MySQL databases, many other RDBMSs
support at least triggers on the three crucial events for event-listening: INSERT (CRE-
ATE), UPDATE, DELETE, just like MySQL 53 54 55.

In order to have triggers being useful for updating our Hibernate Search index, we
have to get info about the events from the database back into our Java application.
Since we cannot necessarily call Java code from our database (with the exception of
some enterprise and in-memory databases), we have to write data about changes into
auxiliary tables and then poll these regularly.

One benefit of this approach is that by using polling from the tables and the fact
that triggers are executed in the same transaction as the original changing query, we
don’t have to manually hook into transactions or deal with data that has not been
committed, yet, in general. If we do things right, we can even improve indexing perfor-
mance by this: We can query for the latest event for each entity only, so we don’t use
up an unnecessary amount of CPU-time, but still keep the index up-to-date.

52MySQL - Developer’s Library, see [42]
53CREATE TRIGGER in PostgreSQL, see [43]
54Triggers in HSQLDB, see [44]
55Triggers in Firebird, see [45]

7 Automatic index updating 69

7.1.2.1 Trigger architecture Triggers are generally created on tables. Since we want
to use them for event-listening, we have to cover every table of the domain model that
contains data indexed/stored in the index. This also includes all of the mapping tables
between entities and all other secondary tables.

The following figure 13 shows the trigger architecture needed for our Author and Book
example. Note that we are using triggers that execute before changes are persisted.

Figure 13: Triggers for the example project

All three tables Author, Book and Author_Book have three triggers registered on them
(one for each event type). These triggers then fill up the update tables AuthorUpdates,
BookUpdates and Author_BookUpdates (these names are just for demonstrative pur-
poses) with info about occurring events. We can see that these update tables host at
least three things:

1. updateid primary key: Update events have to be sortable by the order they
occured. All update tables share the same sequence of primary keys so that no
key appears twice in all of these tables.

2. eventcase column: This column contains a identifier for the cases INSERT,
DELETE or UPDATE.

3. pseudo foreign key(s): The relevant primary keys of the entities involved in
the tables have to be stored in the Update tables as well. Note that they are not
marked as real foreign keys as a DELETE event wouldn’t work as we can’t have
a reference to a non existent entity.

7 Automatic index updating 70

7.1.2.2 Table creation Since the creation of these tables requires a lot of work to be
done, we have to automate it as well as possible. We do this by requiring additional
@UpdateInfo annotations on the entities to map the required information for the
update tables and then generating them out of it.

These annotations contain at least the original table’s name (UpdateInfo#tableName)
and the names & types (IdColumn#column & IdColumn#columnType) of the entity
key columns. The name of the update table and the columns in it are then generally
derived automatically from that.

A similar behaviour might be possible by using the JPA mapping annotations to read
the original schema and then deduce the needed update schema from that. We don’t
use this approach nonetheless, because the task of parsing these annotations correctly
would be prone to errors due to the amount of different annotations (@Basic, @Col-
umn, @IdClass, @EmbeddedCollection, @OneToOne, @ManyToOne, @OneToMany,
@ManyToMany, ...). In some cases these annotations aren’t even required for JPA to
work, which makes it even more complicated. This makes the approach less streamlined
than using the extra @UpdateInfo annotations.

7 Automatic index updating 71

The following listings show the @UpdateInfo annotation in use:

1 @Entity
2 @InIndex
3 @Table (name = "Book")
4 @Indexed
5 @UpdateInfo(
6 tableName = "Book" ,
7 idInfos = @IdInfo(
8 columns = @IdColumn(
9 column = "isbn " ,

10 columnType = ColumnType.STRING
11)
12)
13)
14 public class Book {
15

16 // . . . unchanged .
17

18 // mapping t a b l e even t s handled on Author s i d e
19

20 // g e t t e r s & s e t t e r s . . .
21 }

Listing 35: Book.java with Hibernate Search annotations

7 Automatic index updating 72

1 @Entity
2 @InIndex
3 @Table (name = "Author")
4 @UpdateInfo(
5 tableName = "Author" ,
6 idInfos = @IdInfo(
7 columns = @IdColumn(
8 column = "authorId " ,
9 columnType = ColumnType.LONG

10)
11)
12)
13 public class Author {
14

15 // . . . unchanged .
16

17 @UpdateInfo(tableName = "Author_Book" ,
18 idInfos = {
19 @IdInfo(entity = Author . class ,
20 columns = @IdColumn(
21 column = "authorFk" ,
22 columnType = ColumnType.LONG
23)
24) ,
25 @IdInfo(entity = Book. class ,
26 columns = @IdColumn(
27 column = "bookFk" ,
28 columnType = ColumnType.STRING
29)
30)
31 })
32 private Set<Book> books ;
33

34 // g e t t e r s & s e t t e r s . . .
35 }

Listing 36: Author.java with Hibernate Search annotations

Note: The update tables are NOT JPA entities, so we have to work with native SQL in
the backend.

If the developer needs different names for the update tables and their columns (e.g. if
there already exists a table with the same name), it is possible to manually set these.
They can be found on the same level in the annotations as the corresponding info for
the original table is set.

7 Automatic index updating 73

Options for multivalued keys and custom column types are also available as by default
only singular valued keys of the column types corresponding to Java’s Integer, Long
and String are supported. While we don’t go into detail how these expert features are
used, information about how to use them can be found in the JavaDoc of the annota-
tions.

Since database triggers and tables are not created the same on every RDBMS, we
build an abstraction to get the necessary SQL code. This is done with the Trig-
gerSQLStringSource interface. Its implementations return the specific SQL strings
working on the corresponding RDBMS. As of this writing we have implementations for
MySQL, PostgreSQL and HSQDLB. See the property "hibernate.search.trigger.source"
in table 2 in the appendix for information about how to set the correct one for each
database.

This table also contains a property called "hibernate.search.trigger.createstrategy" that
controls whether and how the triggers and tables are generated at all. If automatic trig-
ger creation is disabled, the user still has to provide the information about the update
tables that should be used for updating with the annotations as described above.

7 Automatic index updating 74

7.1.2.3 Event retrieval Now that we know how the events are stored in the update
tables, we will describe an efficient way to query the database for these entries.

We only need the latest event for each entity (or combination of entities for map-
ping tables). The following SQL query shown in listing 37 is doing this for the table
author_bookupdates with standard SQL that should be working on every RDBMS:

1 SELECT t1 . update idhsearch , t1 . authorFkfk , t1 . bookFkfk
2 FROM author_bookupdates t1
3 INNER JOIN
4 (
5 /∗ s e l e c t the most recen t update ∗/
6 SELECT max(t2 . update idhsearch) updateid ,
7 t2 . authorFkfk , t2 . bookFkfk
8 FROM author_bookupdates t2
9 GROUP BY t2 . authorFkfk , t2 . bookFkfk

10) t3 on t1 . update idhsearch = t3 . updateid
11 /∗ handle even t s t h a t occured e a r l i e r f i r s t ∗/
12 ORDER BY t1 . update idhsearch ASC;

Listing 37: Querying for updates (Author_Book)

We run queries of this type for every update table with fixed delays (configurable, see
property "hibernate.search.trigger.updateDelay" in table 2). Then, we scroll from the
results of these queries simultaneously while ordering by the updateids between the
queries to make sure the events are definitely handled in the right order (see listing 47
in the appendix).

This information is all we need to keep our index up-to-date. For the INSERT and
UPDATE case we can just query the database for a new version and pass that to the
engine. For the DELETE case we have to work directly on the index and also have to
enforce @IndexedEmbedded#includeEmbeddedObjectId = true on the enti-
ties. This is required so that we can determine the root entity in the index as its entry
has to be updated additionally if the original entity is changed (An entity contained in
one index can have its own index as well).

7 Automatic index updating 75

After the index is updated accordingly, we run a delete query that deletes all update
events having an updateid lower than the last processed one for each table.

We don’t use a TRUNCATE statement for the query shown in the following listing
38 as it was only introduced with the SQL:2008 standard 56, which some RDBMSs
don’t fully support 57. Using TRUNCATE could therefore be a deal-breaker for some
people wanting to use Hibernate Search GenericJPA. With the DELETE FROM query
we make sure the clean-up statement is supported by as many RDBMSs as possible
(older versions included).

1 DELETE FROM author_bookupdates WHERE update idhsearch < #last_handled_id#

Listing 38: Deleting handled updates (Author_Book)

With the two queries described in this section we are able to keep the index up-to-date
efficiently and also make sure that no event is handled twice.

56Truncate statement PostgreSQL docs, see [46]
57Firebird conformance, see [47]

7 Automatic index updating 76

7.2 Comparison of approaches

We already discussed the differences of synchronous and asynchronous approaches in
general earlier this chapter. Additionally to that, the two chosen implementations differ
in terms of extra work that has to be done to get them to work (user-friendliness for
the developer) and features.

Figure 14: Hibernate Search GenericJPA update mechanisms

7.2.1 Additional work

Since the native event system gets the proper information about changes from the
vendor side, it doesn’t require a lot of information about the general structure of the
domain model and tables in the database. The Trigger based system however does need
extra information as it has to poll info about changes from the database. This is the
reason the user has to add this information as we have seen in chapter 7.1.2.2.

7 Automatic index updating 77

7.2.2 Features

The native event system has the exact same updating behaviour as Hibernate Search
ORM’s update mechanism because it works on the same principles of using the existing
event APIs. It just works for more ORM providers.

With this similarity come two important drawbacks:

1. It (the mechanism) only works with specifically supported JPA APIs

2. Database changes coming from anything else than JPA APIs are not recognized
and includes native SQL queries from EntityManagers. This also means that the
database can only be used by the JPA application and no other programs should
have write access to the database.

These two drawbacks are non-existent with the trigger event system as it doesn’t require
any specific JPA implementation (1) and works on the database level (2).

7 Automatic index updating 78

7.2.3 Summary

The following table 1 summarizes all pros and cons - including the ones for being
synchronous or asynchronous - once again:

Approach Pros Cons

Native
Event
System

+ no additional work
needed by the developer

+ 100 % up-to-date index
all the time

- relies on different
implementation-
specific APIs

(only works with
specifically supported ones)

- changes from outside
of the JPA provider
are not recognized

(e.g. native SQL access)

Trigger
Event
System

+ works with any JPA
implementation

(even rarely used ones)

+ changes from outside
of the JPA provider

are recognized
(e.g. native SQL access)

- additional work by
the developer needed

(annotations)

- unsuitable in
cases that need a

100% up-to-date index
all the time

Table 1: Pros and Cons of the two update systems

7 Automatic index updating 79

8 Usage of Hibernate Search GenericJPA 80

8 Usage of Hibernate Search GenericJPA
Having described how Hibernate Search GenericJPA works and how it is designed we
will now take a look at how it can be used in our example project from chapter 4.1.
While having already explained this part by part in each chapter, the following is
everything put together. For updating, we use the asynchronous updating mechanism
as described in chapter 7.1.2.

8.1 Dependencies

The following example needs to have at least these dependencies on the classpath:

1. EclipseLink 2.5.0

2. HSQLDB 2.3.3 (in memory database)

3. Hibernate Search GenericJPA

8 Usage of Hibernate Search GenericJPA 81

8.2 Entities

First, we have to update the Entity mappings in the Java classes. We add the @In-
dexed, @DocumentId, @Field, @IndexedEmbedded, @ContainedIn as al-
ready known from the original Hibernate Search ORM (chapter 5.1). Using Hibernate
Search GenericJPA then requires us to add the @InIndex on every entity contained
in the index as described in chapter 6.2.2. Because we are using the asynchronous up-
dating mechanism here, we have to add information about how to create the update
tables as well (chapter 7.1.2.2).

The resulting entities with the changes highlighted look like this:

1 @Entity
2 @Table (name = "Book")
3 @InIndex
4 @Indexed
5 @UpdateInfo(tableName = "Book" ,
6 idInfos = @IdInfo(
7 columns = @IdColumn(
8 column = "isbn " ,
9 columnType = ColumnType.STRING)))

10 public class Book {
11

12 @Id
13 @DocumentId
14 @Column(name = "isbn")
15 private St r ing i sbn ;
16

17 @Column(name = "title")
18 @Field
19 private St r ing t i t l e ;
20

21 @Column(name = "genre")
22 @Field
23 private St r ing genre ;
24

25 @Lob
26 @Column(name = "summary")
27 @Field
28 private St r ing summary ;
29

30 @ManyToMany(mappedBy = "books" , cascade = {
31 CascadeType .MERGE,
32 CascadeType .DETACH,
33 CascadeType .PERSIST ,
34 CascadeType .REFRESH

8 Usage of Hibernate Search GenericJPA 82

35 })
36 @IndexedEmbedded(includeEmbeddedObjectId = true)
37 private Set<Author> authors ;
38

39 // g e t t e r s & s e t t e r s . . .
40

41 }

Listing 39: Complete Book.java

1 @Entity
2 @Table (name = "Author")
3 @InIndex
4 @UpdateInfo(tableName = "Author" ,
5 idInfos = @IdInfo(
6 columns = @IdColumn(
7 column = "authorId " ,
8 columnType = ColumnType.LONG
9)

10))
11 public class Author {
12

13 @Id
14 @GeneratedValue (s t r a t e gy = GenerationType .AUTO)
15 @Column(name = "authorId")
16 @DocumentId
17 private Long authorId ;
18

19 @Column(name = "firstName")
20 @Field
21 private St r ing f i rstName ;
22

23 @Column(name = "lastName")
24 @Field
25 private St r ing lastName ;
26

27 @Column(name = "country")
28 @Field
29 private St r ing country ;
30

31 @ManyToMany(cascade = {
32 CascadeType .MERGE,
33 CascadeType .DETACH,
34 CascadeType .PERSIST ,
35 CascadeType .REFRESH
36 })
37 @JoinTable (name = "Author_Book" ,
38 joinColumns = @JoinColumn (name = "authorFk" ,
39 referencedColumnName = "authorId") ,

8 Usage of Hibernate Search GenericJPA 83

40 inverseJoinColumns = @JoinColumn(name = "bookFk" ,
41 referencedColumnName = "isbn"))
42 @UpdateInfo(tableName = "Author_Book" ,
43 idInfos = {
44 @IdInfo(entity = Author . class ,
45 columns = @IdColumn(
46 column = "authorFk" ,
47 columnType = ColumnType.LONG)) ,
48 @IdInfo(entity = Book. class ,
49 columns = @IdColumn(
50 column = "bookFk" ,
51 columnType = ColumnType.STRING))
52 })
53 @ContainedIn
54 private Set<Book> books ;
55

56 // g e t t e r s & s e t t e r s . . .
57

58 }

Listing 40: Complete Author.java

8 Usage of Hibernate Search GenericJPA 84

8.3 persistence.xml

The persistence.xml file for our JPA based project is straightforward. As we are using
an in-memory database with HSQLDB, settings for the schema creation and the user
management are not important as the database is recreated at every restart.

1 <pe r s i s t e n c e xmlns="http://java.sun.com/xml/ns/persistence"
2 xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"
3 xs i : s chemaLocat ion="http://java.sun.com/xml/ns/persistence
4 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
5 version="2.0">
6

7 <pe r s i s t en c e −uni t name="EclipseLink_HSQLDB"
8 t ransac t i on−type="RESOURCE_LOCAL">
9 <prov ide r>

10 org . e c l i p s e . p e r s i s t e n c e . jpa . Pe r s i s t enc eProv id e r
11 </prov ide r>
12 <c l a s s>∗ . ∗ . Author</ c l a s s>
13 <c l a s s>∗ . ∗ . Book</ c l a s s>
14 <prop e r t i e s>
15 <property name="javax.persistence.jdbc.driver"
16 value="org.hsqldb.jdbcDriver"/>
17 <property name="javax.persistence.jdbc.url"
18 value="jdbc:hsqldb:mem:test"/>
19 <property name="javax.persistence.jdbc.user"
20 value="user"/>
21 <property name="javax.persistence.jdbc.password"
22 value="password"/>
23 <property name="eclipselink.ddl-generation"
24 value="drop-and-create -tables"/>
25 <property name="eclipselink.logging.level"
26 value="INFO"/>
27 <property name="eclipselink.ddl-
28 generation.output -mode"
29 value="both"/>
30 </ p r op e r t i e s>
31 </ pe r s i s t en c e −uni t>
32

33 </ pe r s i s t e n c e>

Listing 41: Complete persistence.xml

8 Usage of Hibernate Search GenericJPA 85

8 Usage of Hibernate Search GenericJPA 86

8.4 Code usage example

In the following listing we show the whole lifecycle of a Hibernate Search GenericJPA
based application. The relevant code passages are commented in the code.

1 Prope r t i e s p r op e r t i e s = new Prope r t i e s () ;
2

3 // use the async backend
4 p r op e r t i e s . s e tProper ty (
5 "hibernate.search.searchfactory.type" ,
6 "sql"
7) ;
8

9 // we are us ing HSQLDB, so use the r i g h t TriggerSource
10 p r op e r t i e s . s e tProper ty (
11 "hibernate.search.trigger.source" ,
12 "org.hibernate.search.genericjpa.db." +
13 "events.triggers.HSQLDBTriggerSQLStringSource"
14) ;
15

16 // s t a r t up the EntityManagerFactory (entry−po in t to JPA)
17 // and crea t e one EntityManager
18 EntityManagerFactory emf = Pe r s i s t en c e
19 . createEntityManagerFactory ("EclipseLink_HSQLDB") ;
20 EntityManager em = emf . createEntityManager () ;
21

22 // s t a r t up Hibernate Search GenericJPA
23 JPASearchFactoryControl ler s e a r chCon t r o l l e r =
24 Setup . c r ea t eSea r chFac to ryCont ro l l e r (emf , p r op e r t i e s) ;
25

26 // p e r s i s t e n t i t i e s in the database
27 em. getTransact ion () . begin () ;
28 Author author = . . . ;
29 Book book = . . . ;
30 book . setAuthor (author) ;
31 em. p e r s i s t (em) ;
32 em. getTransact ion () . commit () ;
33

34 // we are us ing an async backend , so wai t a b i t
35 // f o r the updat ing mechanism to handle the
36 // p e r s i s t (Except ion not handled here)
37 Thread . s l e e p (10_000) ;
38

39 // crea t e a Ful lTextEnti tyManager
40 FullTextEntityManager fem = sea r chCon t r o l l e r
41 . getFul lTextEntityManager (em) ;
42

8 Usage of Hibernate Search GenericJPA 87

43 // query f o r a l l Books having the t i t l e " s ea r chS t r ing "
44 FullTextQuery fu l lTextQuery = fem . createFul lTextQuery (
45 fem . getSearchFactory () . bui ldQueryBui lder ()
46 . f o rEnt i t y (Book . class)
47 . get ()
48 . keyword ()
49 . onFie ld ("title")
50 . matching ("searchString")
51 . createQuery () ,
52 Book . class) ;
53

54 List<Book> books = (List<Book>) ful lTextQuery . g e tRe su l tL i s t () ;
55

56 // handle the books
57 System . out . p r i n t l n (books) ;
58

59 // c l o s e e v e r y t h in g
60 // (Ful lTextEnti tyManager i s not c l o s e d because
61 // the EntityManager i s c l o s e d)
62 em. c l o s e () ;
63 s e a r chCon t r o l l e r . c l o s e () ;
64 emf . c l o s e () ;

Listing 42: Complete usage

Note that we didn’t put the code into a main method. This is due to the fact that in
a real application all this code would obviously not be put into one single method.

The startup process of Hibernate Search GenericJPA is generally put into an extra
lifecycle helper that stores a reference to the JPASearchFactoryController in a global
variable upon application startup similar to what is generally done with JPA’s En-
tityManagerFactory (at least in Java SE applications). All Search related code then
acquires the reference to the JPASearchFactoryController from the global variable and
uses it similarly to the above code. The lifecycle helper is also responsible for closing
the JPASearchFactoryController when the application is shutting down.

9 Outlook 88

9 Outlook
In this thesis we described how we can integrate Hibernate Search with JPA conform
ORM implementations. We started by building a standalone integration of hibernate-
search-engine, then integrated it with JPA and finally created an automatic index
updating mechanism. All challenges described in chapter 4 have been resolved.

The only feature needing some extra work is probably the generic updating mecha-
nism with database triggers. At the moment the developer has to specify additional
annotations containing information about the update tables by hand. As mentioned in
chapter 7.1.2.2, at least some of the information is known to be able to be retrieved
directly from JPA annotations. These mechanisms are not included in this thesis but
can be added in a future version.

During the process of designing and writing the code for Hibernate Search GenericJPA
we tried to be as compatible with the orginal Hibernate Search API as possible. While
one reason for this is to make the switch easier for developers that want to try it out,
the biggest one is that the ultimate goal for this project is to be merged into the origi-
nal Hibernate Search codebase even though we haven’t mentioned this in the beginning.

This is also why this project has to be looked as a proof of concept regardless of
the fact that the code as it can be found on GitHub 58 can already be used in real
applications. To make sure of this, every relevant part of Hibernate Search GenericJPA
has been extensively tested in single feature-tests and integration-tests as described in
chapter 2. Hibernate Search GenericJPA can therefore be considered stable.

The first steps of the merging process have already been discussed with the Hiber-
nate Search development team and work on it is to be started in November 2015. This
comes exactly at the right moment as the Hibernate Search team is planning API
changes in the near future 59 and some interfaces have to be altered (as seen in chapter
6) in order to support generic JPA.

As soon as the generic version is part of Hibernate Search and is fully compatible
with its API, Hibernate Search could be looked at as a de-facto standard for fulltext
search in JPA. Having such a standard would be quite beneficial for the JPA world as
smaller JPA providers could have a better chance at getting a bigger user base, which
is good for research and innovation.

58Hibernate Search GenericJPA GitHub repository, see [48]
59Hibernate Search roadmap, see [38]

9 Outlook 89

Used Software 90

Used software
For the development of Hibernate Search GenericJPA as described in this thesis we
have used the following software and libraries (only the most relevant listed here, for
more information check the pom.xml files in the GitHub repository 60):

Hibernate Search related libraries:

• Hibernate Search 5.5.0.Alpha1 (especially hibernate-search-engine)

• Lucene 5.2.1 (included in Hibernate Search)

• Infinispan Directory Provider 8.0.0.Beta3

Databases:

• HSQLDB 2.3.3

• MySQL Community Edition 5.5

• MariaDB 10.0.17

• PostgreSQL 9.4.4

JPA providers:

• EclipseLink 2.5.0

• Hibernate ORM 4.3.9

• OpenJPA 2.4.0

Application servers:

• GlassFish Embedded 4.1

• Wildfly 8.2.0.Final

• TomEE 1.7.2

Building tools:

• JUnit 4.11

• Arquillian 1.1.8.Final

• Maven 3.3.1

60Hibernate Search GenericJPA GitHub repository, see [48]

Used Software 91

Listings 92

Listings
Following are some interesting classes referenced in the thesis that were too long to fit
into the text.

Transaction:
This class is the simple Transaction representation used to control index changes. It
is not intended to be similar to a RDBMS transaction, but is merely a batch context
with simple commit and rollback features.

1 public class Transact ion implements Transact ionContext {
2

3 private boolean prog r e s s = true ;
4 private List<Synchronizat ion> syncs = new ArrayList <>() ;
5

6 @Override
7 public boolean i sTran sac t i on InProg r e s s () {
8 return this . p r og r e s s ;
9 }

10

11 @Override
12 public Object g e tT r an s a c t i o n I d en t i f i e r () {
13 return this ;
14 }
15

16 @Override
17 public void r e g i s t e r Syn ch r on i z a t i on (
18 Synchron izat ion synchron i za t i on) {
19 this . syncs . add (synchron i za t i on) ;
20 }
21

22 /∗∗
23 ∗ @throws I l l e g a l S t a t e E x c e p t i o n i f a l r eady commited/ r o l l e d b a c k
24 ∗/
25 public void commit () {
26 i f (! this . p r og r e s s) {
27 throw new I l l e g a l S t a t eEx c ep t i o n (
28 "can’t commit - " +
29 "No Search Transaction is in Progress!") ;
30 }
31 this . p r og r e s s = fa l se ;
32 this . syncs . forEach (Synchron izat ion : : beforeComplet ion) ;
33

34 for (Synchron izat ion sync : this . syncs) {
35 sync . a f terComplet ion (Status .STATUS_COMMITTED) ;
36 }

Listings 93

37 }
38

39 /∗∗
40 ∗ @throws I l l e g a l S t a t e E x c e p t i o n i f a l r eady commited/ r o l l e d b a c k
41 ∗/
42 public void r o l l b a ck () {
43 i f (! this . p r og r e s s) {
44 throw new I l l e g a l S t a t eEx c ep t i o n (
45 "can’t rollback - " +
46 "No Search Transaction is in Progress!") ;
47 }
48 this . p r og r e s s = fa l se ;
49 this . syncs . forEach (Synchron izat ion : : beforeComplet ion) ;
50

51 for (Synchron izat ion sync : this . syncs) {
52 sync . a f terComplet ion (Status .STATUS_ROLLEDBACK) ;
53 }
54 }
55

56 }

Listing 43: the simple Transaction contract

Listings 94

StandaloneSearchConfiguration:
hibernate-search-engine requires an object implementing the SearchConfiguration in-
terface. StandaloneSearchConfiguration is the basic implementation of this used in our
standalone version of Hibernate Search.

1 /∗∗
2 ∗ Manually d e f i n e s the c o n f i g u r a t i o n .
3 ∗ Classe s and p r o p e r t i e s are the on ly implemented op t i ons at the moment .
4 ∗
5 ∗ @author Martin Braun (adapt ion) , Emmanuel Bernard
6 ∗/
7 public class Standa loneSearchConf igurat ion
8 extends SearchConf igurat ionBase
9 implements SearchConf igurat ion {

10

11 private f ina l Logger LOGGER =
12 Logger . getLogger (
13 Standa loneSearchConf igurat ion . class . getName ()
14) ;
15

16 private f ina l Map<Str ing , Class<?>> c l a s s e s ;
17 private f ina l Prope r t i e s p r op e r t i e s ;
18 private f ina l HashMap<Class <? extends Serv ice >, Object>
19 prov idedSe rv i c e s ;
20 private f ina l I n s t a n c e I n i t i a l i z e r i n i t i a l i z e r ;
21 private SearchMapping programmaticMapping ;
22 private boolean t ransact ionsExpected = true ;
23 private boolean indexMetadataComplete = true ;
24 private boolean i dProv id ed Imp l i c i t = fa l se ;
25 private Clas sLoaderServ i ce c l a s sLoade rS e rv i c e ;
26 private Ref lect ionManager r e f l e c t i onManager ;
27

28 public Standa loneSearchConf igurat ion () {
29 this (new Prope r t i e s ()) ;
30 }
31

32 public Standa loneSearchConf igurat ion (Prope r t i e s p r op e r t i e s) {
33 this (
34 SubC l a s sSuppo r t I n s t an c e I n i t i a l i z e r . INSTANCE,
35 p r op e r t i e s
36) ;
37 }
38

39 public Standa loneSearchConf igurat ion (I n s t a n c e I n i t i a l i z e r i n i t) {
40 this (new Prope r t i e s ()) ;
41 }
42

Listings 95

43 public Standa loneSearchConf igurat ion (I n s t a n c e I n i t i a l i z e r i n i t ,
44 Prope r t i e s p r op e r t i e s) {
45 this . i n i t i a l i z e r = i n i t ;
46 this . c l a s s e s = new HashMap<>() ;
47 this . p r op e r t i e s = p r op e r t i e s ;
48 // d e f a u l t v a l u e s i f noth ing was e x p l i c i t l y s e t
49 this . p r op e r t i e s . computeIfAbsent (
50 "hibernate.search.default.directory_provider" ,
51 (key) −> {
52 LOGGER. i n f o (
53 "defaulting to RAM directory -provider"
54) ;
55 return "ram" ;
56 }) ;
57 this . p r op e r t i e s . computeIfAbsent (
58 "hibernate.search.lucene_version" ,
59 (key) −> {
60 LOGGER. i n f o (
61 "defaulting to Lucene Version: "
62 + Vers ion .LUCENE_5_2_1. t oS t r i ng ()
63) ;
64 return Vers ion .LUCENE_5_2_1. t oS t r i ng () ;
65 }) ;
66 this . r e f l e c t i onManager = new JavaRef lect ionManager () ;
67 this . p r ov idedSe rv i c e s = new HashMap<>() ;
68 this . c l a s sLoade rS e rv i c e = new Defau l tC la s sLoaderSe rv i c e ()

;
69 }
70

71 public Standa loneSearchConf igurat ion addProperty (St r ing key ,
72 St r ing value) {
73 p r op e r t i e s . s e tProper ty (key , va lue) ;
74 return this ;
75 }
76

77 public Standa loneSearchConf igurat ion addClass (Class<?> indexed) {
78 c l a s s e s . put (indexed . getName () , indexed) ;
79 return this ;
80 }
81

82 @Override
83 public I t e r a t o r <Class<?>> getClassMappings () {
84 return c l a s s e s . va lue s () . i t e r a t o r () ;
85 }
86

87 @Override
88 public Class<?> getClassMapping (St r ing name) {
89 return c l a s s e s . get (name) ;

Listings 96

90 }
91

92 @Override
93 public St r ing getProperty (S t r ing propertyName) {
94 return p r op e r t i e s . getProperty (propertyName) ;
95 }
96

97 @Override
98 public Prope r t i e s g e tP rope r t i e s () {
99 return p r op e r t i e s ;

100 }
101

102 @Override
103 public Ref lect ionManager getRef lect ionManager () {
104 return this . r e f l e c t i onManager ;
105 }
106

107 @Override
108 public SearchMapping getProgrammaticMapping () {
109 return programmaticMapping ;
110 }
111

112 public Standa loneSearchConf igurat ion setProgrammaticMapping (
113 SearchMapping programmaticMapping
114) {
115 this . programmaticMapping = programmaticMapping ;
116 return this ;
117 }
118

119 @Override
120 public Map<Class <? extends Serv ice >, Object>
121 ge tProv idedSe rv i c e s () {
122 return prov idedSe rv i c e s ;
123 }
124

125 public void addProvidedService (
126 Class <? extends Serv ice> se rv i c eRo l e ,
127 Object s e r v i c e
128) {
129 prov idedSe rv i c e s . put (s e rv i c eRo l e , s e r v i c e) ;
130 }
131

132 @Override
133 public boolean i sTransactionManagerExpected () {
134 return this . t ransact ionsExpected ;
135 }
136

137 public void setTransact ionsExpected (

Listings 97

138 boolean t ransact ionsExpected) {
139 this . t ransact ionsExpected = transact ionsExpected ;
140 }
141

142 @Override
143 public I n s t a n c e I n i t i a l i z e r g e t I n s t a n c e I n i t i a l i z e r () {
144 return i n i t i a l i z e r ;
145 }
146

147 @Override
148 public boolean isIndexMetadataComplete () {
149 return indexMetadataComplete ;
150 }
151

152 public void setIndexMetadataComplete (
153 boolean indexMetadataComplete) {
154 this . indexMetadataComplete = indexMetadataComplete ;
155 }
156

157 @Override
158 public boolean i s I dP rov i d ed Imp l i c i t () {
159 return i dProv id ed Imp l i c i t ;
160 }
161

162 public Standa loneSearchConf igurat ion
163 s e t I dProv id ed Imp l i c i t (boolean i dProv id ed Imp l i c i t) {
164 this . i dProv ided Imp l i c i t = idProv id ed Imp l i c i t ;
165 return this ;
166 }
167

168 @Override
169 public Clas sLoaderServ i ce ge tC la s sLoaderSe rv i c e () {
170 return c l a s sLoade rSe rv i c e ;
171 }
172

173 public void s e tC la s sLoade rSe rv i c e (
174 Clas sLoaderServ i ce) {
175 this . c l a s sLoade rS e rv i c e = c l a s sLoade rS e rv i c e ;
176 }
177

178 }

Listing 44: StandaloneSearchConfiguration.java

Listings 98

BasicEntityProvider:
This is the basic implementation of the EntityProvider interface which is used to ab-
stract the database access in the standalone version. It uses a JPA EntityManager to
accomplish this.

1 public class Bas icEnt i tyProv ider implements Ent i tyProv ider {
2

3 private stat ic f ina l St r ing QUERY_FORMAT =
4 "SELECT obj FROM %s obj " +
5 "WHERE obj.%s IN :ids" ;
6 private f ina l EntityManager em;
7 private f ina l Map<Class <?>, Str ing> idProp e r t i e s ;
8

9 public Bas icEnt i tyProv ider (EntityManager em,
10 Map<Class <?>, Str ing> idProp e r t i e s) {
11 this . em = em;
12 this . i dP r op e r t i e s = idProp e r t i e s ;
13 }
14

15 @Override
16 public void c l o s e () throws IOException {
17 this . em . c l o s e () ;
18 }
19

20 @Override
21 public Object get (Class<?> ent i tyC la s s , Object id ,
22 Map<Str ing , Str ing> h in t s) {
23 return this . em . f i nd (ent i tyC la s s , id) ;
24 }
25

26 @SuppressWarnings ({"rawtypes" , "unchecked"})
27 @Override
28 public L i s t getBatch (Class<?> ent i tyC la s s , L i s t<Object> ids ,
29 Map<Str ing , Str ing> h in t s) {
30 List<Object> r e t = new ArrayList <>(id s . s i z e ()) ;
31 i f (i d s . s i z e () > 0) {
32 St r ing idProperty =
33 this . i dP r op e r t i e s . get (en t i t yC l a s s) ;
34 St r ing queryStr ing =
35 St r ing . format (
36 QUERY_FORMAT,
37 this . em . getMetamodel ()
38 . e n t i t y (en t i t yC l a s s)
39 . getName () ,
40 idProperty
41) ;
42 Query query = this . em . createQuery (queryStr ing) ;

Listings 99

43 query . setParameter ("ids" , i d s) ;
44 r e t . addAll (query . g e tRe su l tL i s t ()) ;
45 }
46 return r e t ;
47 }
48

49 public void clearEm () {
50 this . em . c l e a r () ;
51 }
52

53 public EntityManager getEm () {
54 return this . em ;
55 }
56

57 }

Listing 45: BasicEntityProvider.java

Listings 100

Obtaining the idProperties:
This code snippet shows how the idProperties map needed for the instantiation of a
BasicEntityProvider can be obtained. This mechanism is used on some other places of
Hibernate Search GenericJPA as well.

1 SearchConf igurat ion con f i g = . . . ;
2

3 MetadataProvider metadataProvider =
4 MetadataUti l . getDummyMetadataProvider (c on f i g) ;
5 MetadataRehasher rehasher = new MetadataRehasher () ;
6

7 List<RehashedTypeMetadata> rehashedTypeMetadatas = new ArrayList <>() ;
8 for (Class<?> indexRootType : this . getIndexRootTypes ()) {
9 RehashedTypeMetadata rehashed =

10 rehasher . rehash (
11 metadataProvider
12 . getTypeMetadataFor (indexRootType)
13) ;
14 rehashedTypeMetadatas . add (rehashed) ;
15 }
16

17 Map<Class <?>, Str ing> idProp e r t i e s =
18 MetadataUti l . c a l c u l a t e I dP r op e r t i e s (rehashedTypeMetadatas) ;

Listing 46: Obtaining idProperties

Listings 101

MultiQueryAccess:
This is the utility class used to scroll results from multiple queries at once while re-
trieving the events from the database in the asynchronous approach.

1 /∗∗
2 ∗ U t i l i t y c l a s s t h a t a l l o w s you to acces s m u l t i p l e JPA q u e r i e s at once .
3 ∗ Data i s r e t r i e v e d from the database in ba t che s
4 ∗ and ordered by a g iven comparator .
5 ∗ No need f o r messy Unions on the database l e v e l !

6 ∗

7 ∗ This i s p a r t i c u l a r l y u s e f u l i f you s c r o l l a l l t he data
8 ∗ from the database inc r emen ta l l y and i f you can
9 ∗ compare in Code .

10 ∗
11 ∗ @author Martin
12 ∗/
13 public class MultiQueryAccess {
14

15 private f ina l Map<Str ing , Long> currentCountMap ;
16 private f ina l Map<Str ing , Query> queryMap ;
17 private f ina l Comparator<Object Ident i f i e rWrapper> comparator ;
18 private f ina l int batchS ize ;
19

20 private f ina l Map<Str ing , Long> cur r en tPo s i t i on ;
21 private f ina l Map<Str ing , LinkedList<Object>> va lue s ;
22

23 private Object scheduled ;
24 private St r ing i d e n t i f i e r ;
25

26

27 public MultiQueryAccess (
28 Map<Str ing , Long> countMap ,
29 Map<Str ing , Query> queryMap ,
30 Comparator<Object Ident i f i e rWrapper> comparator ,
31 int batchS ize) {
32 i f (countMap . s i z e () != queryMap . s i z e ()) {
33 throw new I l l ega lArgumentExcept ion (
34 "countMap.size() must be equal " +
35 "to queryMap.size()") ;
36 }
37 this . currentCountMap = countMap ;
38 this . queryMap = queryMap ;
39 this . comparator = comparator ;
40 this . batchS ize = batchS ize ;
41 this . c u r r en tPo s i t i on = new HashMap<>() ;
42 this . va lue s = new HashMap<>() ;
43 for (S t r ing ident : queryMap . keySet ()) {

Listings 102

44 this . va lue s . put (ident , new LinkedList <>()) ;
45 this . c u r r en tPo s i t i on . put (ident , 0L) ;
46 }
47 }
48

49 private stat ic int t o In t (Long l) {
50 return (int) (long) l ;
51 }
52

53 /∗∗
54 ∗ increments the va lue to be re turned by { @link #ge t () }
55 ∗
56 ∗ @return t rue i f t h e r e i s a va lue l e f t to be v i s i t e d
57 ∗ in the database
58 ∗/
59 public boolean next () {
60

61 /∗
62 ∗
63 ∗
64 ∗ i nden ta t i on broken to make t h i s r eadab l e
65 ∗
66 ∗
67 ∗/
68

69 this . s cheduled = null ;
70 this . i d e n t i f i e r = null ;
71 List<Object Ident i f i e rWrapper> tmp =
72 new ArrayList <>(this . queryMap . s i z e ()) ;
73

74 for (Map. Entry<Str ing , Query> entry : this . queryMap . entrySet ()) {
75 St r ing i d e n t i f i e r = entry . getKey () ;
76 Query query = entry . getValue () ;
77 i f (! this . currentCountMap . get (i d e n t i f i e r) . equa l s (0L)) {
78 i f (this . va lue s . get (i d e n t i f i e r) . s i z e () == 0) {
79 // the l a s t ba tch i s empty . g e t a new one
80 Long proces sed =
81 this . c u r r en tPo s i t i on . get (i d e n t i f i e r) ;
82 // yay JPA . . .
83 query . s e tF i r s tR e s u l t (t o In t (proce s sed)) ;
84 query . setMaxResults (this . batchS ize) ;
85 @SuppressWarnings ("unchecked")
86 List<Object> l i s t = query . g e tRe su l tL i s t () ;
87 this . va lue s . get (i d e n t i f i e r) . addAll (l i s t) ;
88 }
89 Object va l = this . va lue s . get (i d e n t i f i e r) . g e tF i r s t () ;
90 tmp . add (new Object Ident i f i e rWrapper (val , i d e n t i f i e r))

;

Listings 103

91 }
92 }
93 tmp . s o r t (this . comparator) ;
94 i f (tmp . s i z e () > 0) {
95 Object Ident i f i e rWrapper ar r = tmp . get (0) ;
96 this . s cheduled = arr . ob j e c t ;
97 this . i d e n t i f i e r = ar r . i d e n t i f i e r ;
98 this . va lue s . get (this . i d e n t i f i e r) . pop () ;
99 Long cu r r en tPo s i t i on = this . c u r r en tPo s i t i on . get (a r r . i d e n t i f i e r)

;
100 Long newCurrentPosit ion =
101 this . c u r r en tPo s i t i on
102 . computeI fPresent (a r r . i d e n t i f i e r ,
103 (c lazz , o ld) −> old + 1) ;
104 i f (Math . abs (newCurrentPosit ion − cu r r en tPo s i t i on) != 1L) {
105 throw new Ass e r t i onFa i l u r e (
106 "the new currentPosition count " +
107 "should be exactly 1 " +
108 "greater than the old one") ;
109 }
110 Long count = this . currentCountMap . get (a r r . i d e n t i f i e r) ;
111 Long newCount = this . currentCountMap . computeI fPresent (
112 ar r . i d e n t i f i e r , (c l azz , o ld) −> old − 1
113) ;
114 i f (Math . abs (count − newCount) != 1L) {
115 throw new Ass e r t i onFa i l u r e (
116 "the new old remaining count " +
117 should be exac t l y 1 " +
118 " g r e a t e r than the new one");
119 }
120 }
121 return this.scheduled != null;
122 }
123

124 /**
125 * @return the current value
126 */
127 public Object get() {
128 if (this.scheduled == null) {
129 throw new IllegalStateException(
130 " e i t h e r empty or next () has " +
131 "not been c a l l e d ");
132 }
133 return this.scheduled;
134 }
135

136 /**
137 * @return the identifier of the current value

Listings 104

138 */
139 public String identifier() {
140 if (this.identifier == null) {
141 throw new IllegalStateException(
142 " e i t h e r empty or next () has " +
143 "not been c a l l e d ");
144 }
145 return this.identifier;
146 }
147

148 public static class ObjectIdentifierWrapper {
149

150 public final Object object;
151 public final String identifier;
152

153 public ObjectIdentifierWrapper(Object object ,
154 String identifier) {
155 this.object = object;
156 this.identifier = identifier;
157 }
158

159 }
160

161 }

Listing 47: MultiQueryAccess.java

Listings 105

Tables 106

Tables
This section contains all tables referenced in this thesis.

JPASearchFactoryController configuration:
When instantiating the JPASearchFactoryController with the Setup class the devel-
oper has to pass a property-Map (or a Java Properties) object. Besides containing the
hibernate-search-engine configuration properties, some Hibernate Search GenericJPA
configuration properties can be set in this map as well:

hibernate.search.useJTATransactions false
true

hibernate.search.searchfactory.type

sql
manual-updates

eclipselink
hibernate
openjpa

hibernate.search.trigger.batchSizeForUpdates 5
hibernate.search.trigger.batchSizeForUpdateQueries 20

hibernate.search.trigger.updateDelay 200
hibernate.search.trigger.source <class>

hibernate.search.additionalIndexedTypes <class>,<class>,...

hibernate.search.transactionManagerProvider

org.hibernate.
search.generic

jpa.trans
action.impl
JNDILookup
Transaction

ManagerProvider
hibernate.search.transactionManagerProvider.jndi <jndi-string>

hibernate.search.trigger.createstrategy
create

create-drop
dont-create

Table 2: Basic JPASearchFactoryController configuration properties (default)

Tables 107

References 108

References
[1] JSR 220: Enterprise Java Beans 3.0 https://jcp.org/en/jsr/detail?id=220,

09/09/2015

[2] Javaworld: Understanding JPA, Part 1 http://www.javaworld.com/article/
2077817/java-se/understanding-jpa-part-1-the-object-oriented-
paradigm-of-data-persistence.html, 09/09/2015

[3] Hibernate ORM project homepage http://hibernate.org/orm/, 09/09/2015

[4] Hibernate Search project homepage http://hibernate.org/search/,
09/09/2015

[5] Hibernate Search GitHub repository https://github.com/hibernate/
hibernate-search, 09/09/2015

[6] Hibernate Search FAQ http://hibernate.org/search/faq/, 09/09/2015

[7] Lucene Website https://lucene.apache.org/core/, 09/09/2015

[8] ElasticSearch Java API https://www.elastic.co/guide/en/elasticsearch/
client/java-api/current/index.html, 09/09/2015

[9] Solr Java API https://wiki.apache.org/solr/Solrj, 09/09/2015

[10] xkcd #927 on competing standards https://xkcd.com/927/, 09/09/2015

[11] Top-down programming, Robert Strandh http://dept-info.labri.
fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/top-down-
programming.html, 09/09/2015

[12] Bottom-up programming, Robert Strandh http://dept-info.labri.
fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/bottom-up-
programming.html, 09/09/2015

[13] objectmentor.com: Article on Single Responsibility Principle http://www.
objectmentor.com/resources/articles/srp.pdf, 09/09/2015

[14] objectmentor.com: Article on Open-Closed-Principle http://www.
objectmentor.com/resources/articles/ocp.pdf, 09/09/2015

[15] Object-Oriented Software Construction, Prentice Hall, 1988, Bertrand Meyer

[16] Maven project homepage https://maven.apache.org/, 09/09/2015

[17] Oracle JDBC overview http://www.oracle.com/technetwork/java/javase/
jdbc/index.html, 09/09/2015

https://jcp.org/en/jsr/detail?id=220
http://www.javaworld.com/article/2077817/java-se/understanding-jpa-part-1-the-object-oriented-paradigm-of-data-persistence.html
http://www.javaworld.com/article/2077817/java-se/understanding-jpa-part-1-the-object-oriented-paradigm-of-data-persistence.html
http://www.javaworld.com/article/2077817/java-se/understanding-jpa-part-1-the-object-oriented-paradigm-of-data-persistence.html
http://hibernate.org/orm/
http://hibernate.org/search/
https://github.com/hibernate/hibernate-search
https://github.com/hibernate/hibernate-search
http://hibernate.org/search/faq/
https://lucene.apache.org/core/
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html
https://wiki.apache.org/solr/Solrj
https://xkcd.com/927/
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/top-down-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/top-down-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/top-down-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/bottom-up-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/bottom-up-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/bottom-up-programming.html
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
https://maven.apache.org/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

References 109

[18] Documentation on how to use OleDb with .NET https://msdn.microsoft.
com/en-us/library/5ybdbtte(v=vs.71).aspx, 09/09/2015

[19] Wikibooks on Java Persistence https://en.wikibooks.org/wiki/Java_
Persistence/What_is_JPA%3F, 09/09/2015

[20] Stackoverflow JPA tag http://stackoverflow.com/tags/jpa/info,
09/09/2015

[21] Hibernate OGM project homepage http://hibernate.org/ogm/, 09/09/2015

[22] EclipseLink project homepage http://www.eclipse.org/eclipselink/,
09/09/2015

[23] JSR 338: JPA 2.1 specification https://jcp.org/en/jsr/detail?id=338,
09/09/2015

[24] OpenJPA project homepage http://openjpa.apache.org/, 09/09/2015

[25] Java EE specification on oracle.com http://www.oracle.com/technetwork/
java/javaee/tech/index.html, 09/09/2015

[26] w3schools on SQL LIKE http://www.w3schools.com/sql/sql_like.asp,
09/09/2015

[27] Lucene Tutorial http://www.lucenetutorial.com/basic-concepts.html,
09/09/2015

[28] ElasticSearch Homepage https://www.elastic.co/products/elasticsearch,
09/09/2015

[29] Solr Homepage http://lucene.apache.org/solr/, 09/09/2015

[30] ElasticSearch Download website https://www.elastic.co/downloads/
elasticsearch, 09/09/2015

[31] Solr security https://wiki.apache.org/solr/SolrSecurity, 09/09/2015

[32] elastic Shield (security for ElasticSearch) https://www.elastic.co/products/
shield, 09/09/2015

[33] Solr Administration (Core Specific Tools) https://cwiki.apache.org/
confluence/display/solr/Core-Specific+Tools, 09/09/2015

[34] ElasticHQ http://www.elastichq.org/, 09/09/2015

[35] ElasticSearch: Life inside a cluster https://www.elastic.co/guide/en/
elasticsearch/guide/current/distributed-cluster.html, 09/09/2015

https://msdn.microsoft.com/en-us/library/5ybdbtte(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/5ybdbtte(v=vs.71).aspx
https://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
https://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
http://stackoverflow.com/tags/jpa/info
http://hibernate.org/ogm/
http://www.eclipse.org/eclipselink/
https://jcp.org/en/jsr/detail?id=338
http://openjpa.apache.org/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.w3schools.com/sql/sql_like.asp
http://www.lucenetutorial.com/basic-concepts.html
https://www.elastic.co/products/elasticsearch
http://lucene.apache.org/solr/
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://wiki.apache.org/solr/SolrSecurity
https://www.elastic.co/products/shield
https://www.elastic.co/products/shield
https://cwiki.apache.org/confluence/display/solr/Core-Specific+Tools
https://cwiki.apache.org/confluence/display/solr/Core-Specific+Tools
http://www.elastichq.org/
https://www.elastic.co/guide/en/elasticsearch/guide/current/distributed-cluster.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/distributed-cluster.html

References 110

[36] Solr: Introduction to Scaling and Distribution https://cwiki.apache.org/
confluence/display/solr/Introduction+to+Scaling+and+Distribution,
09/09/2015

[37] hibernate-search-engine on mvnrepository.org http://mvnrepository.
com/artifact/org.hibernate/hibernate-search-engine/5.4.0.Final,
09/09/2015

[38] Hibernate Search roadmap http://hibernate.org/search/roadmap/,
09/09/2015

[39] Hibernate Search JavaDoc https://docs.jboss.org/hibernate/search/5.5/
api/, 09/09/2015

[40] Hibernate Search documentation http://hibernate.org/search/
documentation/, 09/09/2015

[41] Hibernate Search documentation (MassIndexer, v5.4) https://docs.jboss.
org/hibernate/search/5.4/reference/en-US/html_single/#search-
batchindex-massindexer, 09/09/2015

[42] MySQL - Developer’s Library, Fourth Edition, 2009, Paul DuBois

[43] CREATE TRIGGER in PostgreSQL http://www.postgresql.org/docs/9.1/
static/sql-createtrigger.html, 09/09/2015

[44] Triggers in HSQLDB http://hsqldb.org/doc/guide/triggers-chapt.html,
09/09/2015

[45] Triggers in Firebird http://www.firebirdsql.org/refdocs/langrefupd21-
ddl-trigger.html, 09/09/2015

[46] Truncate statement PostgreSQL docs http://www.postgresql.org/docs/9.1/
static/sql-truncate.html, 09/09/2015

[47] Firebird conformance http://www.firebirdsql.org/en/sql-conformance/,
09/09/2015

[48] Hibernate Search GenericJPA GitHub repository https://github.com/
Hotware/Hibernate-Search-GenericJPA, 09/09/2015

https://cwiki.apache.org/confluence/display/solr/Introduction+to+Scaling+and+Distribution
https://cwiki.apache.org/confluence/display/solr/Introduction+to+Scaling+and+Distribution
http://mvnrepository.com/artifact/org.hibernate/hibernate-search-engine/5.4.0.Final
http://mvnrepository.com/artifact/org.hibernate/hibernate-search-engine/5.4.0.Final
http://hibernate.org/search/roadmap/
https://docs.jboss.org/hibernate/search/5.5/api/
https://docs.jboss.org/hibernate/search/5.5/api/
http://hibernate.org/search/documentation/
http://hibernate.org/search/documentation/
https://docs.jboss.org/hibernate/search/5.4/reference/en-US/html_single/#search-batchindex-massindexer
https://docs.jboss.org/hibernate/search/5.4/reference/en-US/html_single/#search-batchindex-massindexer
https://docs.jboss.org/hibernate/search/5.4/reference/en-US/html_single/#search-batchindex-massindexer
http://www.postgresql.org/docs/9.1/static/sql-createtrigger.html
http://www.postgresql.org/docs/9.1/static/sql-createtrigger.html
http://hsqldb.org/doc/guide/triggers-chapt.html
http://www.firebirdsql.org/refdocs/langrefupd21-ddl-trigger.html
http://www.firebirdsql.org/refdocs/langrefupd21-ddl-trigger.html
http://www.postgresql.org/docs/9.1/static/sql-truncate.html
http://www.postgresql.org/docs/9.1/static/sql-truncate.html
http://www.firebirdsql.org/en/sql-conformance/
https://github.com/Hotware/Hibernate-Search-GenericJPA
https://github.com/Hotware/Hibernate-Search-GenericJPA

	1 Preface
	2 Methods
	3 Overview of technologies
	3.1 Object Relational Mappers
	3.2 JPA
	3.3 Fulltext search engines
	3.3.1 Lucene
	3.3.1.1 Concepts
	3.3.1.2 Usage
	3.3.1.3 Features

	3.3.2 Fulltext search servers: ElasticSearch and Solr
	3.3.2.1 Usage
	3.3.2.2 Features

	3.3.3 Hibernate Search
	3.3.3.1 Usage
	3.3.3.2 Features

	3.3.4 Why a generic Hibernate Search?

	4 Challenges
	4.1 The example project
	4.2 Standalone version
	4.3 JPA integration
	4.4 Automatic index updating
	4.5 Timeline

	5 Standalone version of Hibernate Search
	5.1 Example project with Hibernate Search annotations
	5.2 Usage of Hibernate Search's engine
	5.2.1 Startup
	5.2.2 Index manipulation
	5.2.3 Queries

	5.3 Design of the standalone version
	5.3.1 Startup
	5.3.2 Index manipulation
	5.3.3 Queries

	6 JPA integration of the standalone version
	6.1 Architecture of Hibernate Search ORM
	6.1.1 Startup
	6.1.2 Index manipulation
	6.1.3 Queries
	6.1.4 Index rebuilds

	6.2 Architecture of the generic version
	6.2.1 Startup
	6.2.2 Index manipulation
	6.2.3 Queries
	6.2.4 Index rebuilds

	7 Automatic index updating
	7.1 Description of different implementations
	7.1.1 Synchronous approach
	7.1.1.1 JPA events
	7.1.1.2 Native integration with JPA providers

	7.1.2 Asynchronous approach
	7.1.2.1 Trigger architecture
	7.1.2.2 Table creation
	7.1.2.3 Event retrieval

	7.2 Comparison of approaches
	7.2.1 Additional work
	7.2.2 Features
	7.2.3 Summary

	8 Usage of Hibernate Search GenericJPA
	8.1 Dependencies
	8.2 Entities
	8.3 persistence.xml
	8.4 Code usage example

	9 Outlook
	Used software
	Listings
	Tables
	References

