{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": "true" }, "source": [ "# Table of Contents\n", " <p><div class=\"lev1 toc-item\"><a href=\"#Buckingham-pi:--Dimensional-Analysis\" data-toc-modified-id=\"Buckingham-pi:--Dimensional-Analysis-1\"><span class=\"toc-item-num\">1 </span>Buckingham $\\pi$: Dimensional Analysis</a></div><div class=\"lev1 toc-item\"><a href=\"#Example-1:-Pressure-Drop-in-Pipe\" data-toc-modified-id=\"Example-1:-Pressure-Drop-in-Pipe-2\"><span class=\"toc-item-num\">2 </span>Example 1: Pressure Drop in Pipe</a></div><div class=\"lev1 toc-item\"><a href=\"#Example-2:-Speed-of-Virus-Infection\" data-toc-modified-id=\"Example-2:-Speed-of-Virus-Infection-3\"><span class=\"toc-item-num\">3 </span>Example 2: Speed of Virus Infection</a></div><div class=\"lev1 toc-item\"><a href=\"#Example-3:-Economic-Growth\" data-toc-modified-id=\"Example-3:-Economic-Growth-4\"><span class=\"toc-item-num\">4 </span>Example 3: Economic Growth</a></div><div class=\"lev1 toc-item\"><a href=\"#Example-4:-Pressure-Inside-a-Bubble\" data-toc-modified-id=\"Example-4:-Pressure-Inside-a-Bubble-5\"><span class=\"toc-item-num\">5 </span>Example 4: Pressure Inside a Bubble</a></div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Buckingham $\\pi$: Dimensional Analysis\n", "**Mokbel Karam, and Prof. Tony Saad (<a href='www.tsaad.net'>www.tsaad.net</a>) <br/>Department of Chemical Engineering <br/>University of Utah**\n", "<hr/>" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Image\n", "from IPython.core.display import HTML " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this Jupyter notebook we will execute the code presented in the paper." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example 1: Pressure Drop in Pipe\n", "---" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/latex": [ "$$\\text{Set }1: \\quad\\pi_1 = \\frac{R}{d}\\quad\\pi_2 = \\frac{Q \\mu}{d^{3} {\\Delta}p}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }2: \\quad\\pi_1 = \\frac{R \\sqrt[3]{{\\Delta}p}}{\\sqrt[3]{Q} \\sqrt[3]{\\mu}}\\quad\\pi_2 = \\frac{d \\sqrt[3]{{\\Delta}p}}{\\sqrt[3]{Q} \\sqrt[3]{\\mu}}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }3: \\quad\\pi_1 = \\frac{d}{R}\\quad\\pi_2 = \\frac{Q \\mu}{R^{3} {\\Delta}p}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from buckinghampy import BuckinghamPi\n", "\n", "Pressure_Drop = BuckinghamPi()\n", "Pressure_Drop.add_variable(name='{\\\\Delta}p',dimensions='M*L^(-1)*T^(-2)') # pressure drop\n", "Pressure_Drop.add_variable(name='R',dimensions='L') # length of the pipe\n", "Pressure_Drop.add_variable(name='d',dimensions='L') # diameter of the pipe\n", "Pressure_Drop.add_variable(name='\\\\mu',dimensions='M*L^(-1)*T^(-1)') # viscosity\n", "Pressure_Drop.add_variable(name='Q',dimensions='L^(3)*T^(-1)') # volumetic flow rate\n", "\n", "Pressure_Drop.generate_pi_terms()\n", "Pressure_Drop.print_all()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example 2: Speed of Virus Infection\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using mass, length, time and temperature as fundamental dimensions:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\text{Set }1: \\quad\\pi_1 = \\frac{P_{r}^{2} V_{p}}{C_{a}}\\quad\\pi_2 = \\frac{C_{a} C_{e}}{P_{r}^{3}}\\quad\\pi_3 = E_{fs} P_{r}^{2}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }2: \\quad\\pi_1 = \\frac{C_{e} V_{p}}{P_{r}}\\quad\\pi_2 = \\frac{C_{a} C_{e}}{P_{r}^{3}}\\quad\\pi_3 = E_{fs} P_{r}^{2}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }3: \\quad\\pi_1 = \\frac{C_{e}^{\\frac{2}{3}} V_{p}}{\\sqrt[3]{C_{a}}}\\quad\\pi_2 = \\frac{P_{r}}{\\sqrt[3]{C_{a}} \\sqrt[3]{C_{e}}}\\quad\\pi_3 = C_{a}^{\\frac{2}{3}} C_{e}^{\\frac{2}{3}} E_{fs}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }4: \\quad\\pi_1 = \\frac{V_{p}}{C_{a} E_{fs}}\\quad\\pi_2 = \\sqrt{E_{fs}} P_{r}\\quad\\pi_3 = C_{a} C_{e} E_{fs}^{\\frac{3}{2}}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }5: \\quad\\pi_1 = C_{e} \\sqrt{E_{fs}} V_{p}\\quad\\pi_2 = \\sqrt{E_{fs}} P_{r}\\quad\\pi_3 = C_{a} C_{e} E_{fs}^{\\frac{3}{2}}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from buckinghampy import BuckinghamPi\n", "\n", "Virus_Infection = BuckinghamPi()\n", "Virus_Infection.add_variable(name='V_{p}',dimensions='L*T^(-1)', non_repeating=True) # virus spread rate\n", "Virus_Infection.add_variable(name='P_{r}',dimensions='L') # precipitation\n", "Virus_Infection.add_variable(name='{\\\\theta}',dimensions='C') # temperature\n", "Virus_Infection.add_variable(name='C_{a}',dimensions='L^(3)/T') # airflow\n", "Virus_Infection.add_variable(name='C_{e}',dimensions='T') # seasonal changes\n", "Virus_Infection.add_variable(name='E_{fs}',dimensions='L^(-2)') # social structures\n", "Virus_Infection.add_variable(name='H',dimensions='M*L^(-3)') # humidity\n", "\n", "Virus_Infection.generate_pi_terms()\n", "Virus_Infection.print_all()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example 3: Economic Growth\n", "---" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\text{Set }1: \\quad\\pi_1 = \\frac{P r}{L {\\omega_{L}}}\\quad\\pi_2 = \\frac{Y}{L {\\omega_{L}}}\\quad\\pi_3 = \\frac{{\\delta}}{r}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }2: \\quad\\pi_1 = \\frac{P {\\delta}}{L {\\omega_{L}}}\\quad\\pi_2 = \\frac{Y}{L {\\omega_{L}}}\\quad\\pi_3 = \\frac{r}{{\\delta}}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }3: \\quad\\pi_1 = \\frac{P r}{Y}\\quad\\pi_2 = \\frac{L {\\omega_{L}}}{Y}\\quad\\pi_3 = \\frac{{\\delta}}{r}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\text{Set }4: \\quad\\pi_1 = \\frac{P {\\delta}}{Y}\\quad\\pi_2 = \\frac{L {\\omega_{L}}}{Y}\\quad\\pi_3 = \\frac{r}{{\\delta}}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from buckinghampy import BuckinghamPi\n", "\n", "Economic_Growth = BuckinghamPi()\n", "Economic_Growth.add_variable(name='P',dimensions='K', non_repeating=True) # capital\n", "Economic_Growth.add_variable(name='L',dimensions='Q/T') # labor per period of time\n", "Economic_Growth.add_variable(name='{\\\\omega_{L}}',dimensions='K/Q') # wages per labor\n", "Economic_Growth.add_variable(name='Y',dimensions='K/T') # profit per period of time\n", "Economic_Growth.add_variable(name='r',dimensions='1/T') # rental rate period of time\n", "Economic_Growth.add_variable(name='{\\\\delta}',dimensions='1/T') # depreciation rate\n", "\n", "Economic_Growth.generate_pi_terms()\n", "Economic_Growth.print_all()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example 4: Pressure Inside a Bubble\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using mass, length and time as fundamental physical dimensions:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The number of variables has to be greater than the number of physical dimensions.\n" ] } ], "source": [ "from buckinghampy import BuckinghamPi\n", "\n", "Pressure_In_Bubble = BuckinghamPi()\n", "Pressure_In_Bubble.add_variable(name='{\\\\Delta}p',dimensions='M*L^(-1)*T^(-2)') # pressure \n", "Pressure_In_Bubble.add_variable(name='R',dimensions='L') # diameter\n", "Pressure_In_Bubble.add_variable(name='\\\\sigma',dimensions='M*T^(-2)') # surface tension\n", "try:\n", " Pressure_In_Bubble.generate_pi_terms()\n", " Pressure_In_Bubble.print_all()\n", "except Exception as e:\n", " print(e)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using force and length as fundamental physical dimensions:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\text{Set }1: \\quad\\pi_1 = \\frac{\\sigma}{R {\\Delta}p}\\quad$$" ], "text/plain": [ "<IPython.core.display.Math object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "---" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from buckinghampy import BuckinghamPi\n", "\n", "Pressure_In_Bubble = BuckinghamPi()\n", "Pressure_In_Bubble.add_variable(name='{\\\\Delta}p',dimensions='F*L^(-2)') # pressure \n", "Pressure_In_Bubble.add_variable(name='R',dimensions='L') # diameter\n", "Pressure_In_Bubble.add_variable(name='\\\\sigma',dimensions='F*L^(-1)') # surface tension\n", "\n", "Pressure_In_Bubble.generate_pi_terms()\n", "Pressure_In_Bubble.print_all()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "toc": { "colors": { "hover_highlight": "#DAA520", "navigate_num": "#000000", "navigate_text": "#333333", "running_highlight": "#FF0000", "selected_highlight": "#FFD700", "sidebar_border": "#EEEEEE", "wrapper_background": "#FFFFFF" }, "moveMenuLeft": true, "nav_menu": { "height": "49px", "width": "252px" }, "navigate_menu": true, "number_sections": false, "sideBar": true, "threshold": 4, "toc_cell": true, "toc_position": { "height": "39px", "left": "0px", "right": "1608px", "top": "136px", "width": "312px" }, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }