{ "cells": [ { "cell_type": "markdown", "id": "requested-robertson", "metadata": {}, "source": [ "
| \n", " | target | \n", "lepton_pT | \n", "lepton_eta | \n", "lepton_phi | \n", "missing_energy_magnitude | \n", "missing_energy_phi | \n", "jet_1pt | \n", "jet_1eta | \n", "jet_1phi | \n", "jet_1b-tag | \n", "... | \n", "jet_4eta | \n", "jet_4phi | \n", "jet_4b-tag | \n", "m_jj | \n", "m_jjj | \n", "m_lv | \n", "m_jlv | \n", "m_bb | \n", "m_wbb | \n", "m_wwbb | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "1.0 | \n", "0.869293 | \n", "-0.635082 | \n", "0.225690 | \n", "0.327470 | \n", "-0.689993 | \n", "0.754202 | \n", "-0.248573 | \n", "-1.092064 | \n", "0.000000 | \n", "... | \n", "-0.010455 | \n", "-0.045767 | \n", "3.101961 | \n", "1.353760 | \n", "0.979563 | \n", "0.978076 | \n", "0.920005 | \n", "0.721657 | \n", "0.988751 | \n", "0.876678 | \n", "
| 1 | \n", "1.0 | \n", "0.798835 | \n", "1.470639 | \n", "-1.635975 | \n", "0.453773 | \n", "0.425629 | \n", "1.104875 | \n", "1.282322 | \n", "1.381664 | \n", "0.000000 | \n", "... | \n", "1.128848 | \n", "0.900461 | \n", "0.000000 | \n", "0.909753 | \n", "1.108330 | \n", "0.985692 | \n", "0.951331 | \n", "0.803252 | \n", "0.865924 | \n", "0.780118 | \n", "
| 2 | \n", "1.0 | \n", "0.945974 | \n", "1.111244 | \n", "1.218337 | \n", "0.907639 | \n", "0.821537 | \n", "1.153243 | \n", "-0.365420 | \n", "-1.566055 | \n", "0.000000 | \n", "... | \n", "-0.451018 | \n", "0.063653 | \n", "3.101961 | \n", "0.829024 | \n", "0.980648 | \n", "0.994360 | \n", "0.908248 | \n", "0.775879 | \n", "0.783311 | \n", "0.725122 | \n", "
| 3 | \n", "1.0 | \n", "1.102447 | \n", "0.426544 | \n", "1.717157 | \n", "0.934302 | \n", "0.775743 | \n", "1.279386 | \n", "-0.249563 | \n", "-0.926306 | \n", "2.173076 | \n", "... | \n", "1.207966 | \n", "-1.150600 | \n", "0.000000 | \n", "0.708635 | \n", "0.521908 | \n", "1.054313 | \n", "1.272654 | \n", "0.834634 | \n", "0.934980 | \n", "0.865305 | \n", "
| 4 | \n", "1.0 | \n", "1.014419 | \n", "0.012607 | \n", "-0.484635 | \n", "0.695256 | \n", "1.701171 | \n", "0.597096 | \n", "0.076222 | \n", "0.142635 | \n", "2.173076 | \n", "... | \n", "1.294579 | \n", "0.263977 | \n", "0.000000 | \n", "1.575766 | \n", "1.067265 | \n", "1.071992 | \n", "0.805769 | \n", "1.130206 | \n", "0.838251 | \n", "0.752052 | \n", "
| ... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
| 2699996 | \n", "0.0 | \n", "0.859594 | \n", "0.750876 | \n", "-0.213308 | \n", "0.713165 | \n", "0.905792 | \n", "1.503366 | \n", "-0.151531 | \n", "-1.068226 | \n", "2.173076 | \n", "... | \n", "-1.056481 | \n", "-1.586760 | \n", "0.000000 | \n", "0.973016 | \n", "1.059963 | \n", "0.989977 | \n", "0.727738 | \n", "1.057913 | \n", "0.875585 | \n", "0.757173 | \n", "
| 2699997 | \n", "0.0 | \n", "1.379889 | \n", "-0.928246 | \n", "1.453043 | \n", "1.249777 | \n", "0.701728 | \n", "1.018581 | \n", "-1.090268 | \n", "-0.545448 | \n", "2.173076 | \n", "... | \n", "-0.398550 | \n", "-0.401466 | \n", "0.000000 | \n", "0.827399 | \n", "0.908412 | \n", "1.139007 | \n", "1.326875 | \n", "1.772200 | \n", "1.337061 | \n", "1.038975 | \n", "
| 2699998 | \n", "1.0 | \n", "0.922366 | \n", "-0.263026 | \n", "-0.533463 | \n", "0.706617 | \n", "1.134827 | \n", "1.180817 | \n", "-0.020820 | \n", "0.747459 | \n", "0.000000 | \n", "... | \n", "-2.092513 | \n", "-0.123455 | \n", "0.000000 | \n", "0.457268 | \n", "0.918168 | \n", "1.115962 | \n", "0.911163 | \n", "0.800597 | \n", "1.015639 | \n", "0.853639 | \n", "
| 2699999 | \n", "1.0 | \n", "1.595473 | \n", "1.246626 | \n", "-1.321368 | \n", "0.865705 | \n", "1.532427 | \n", "0.456021 | \n", "1.729906 | \n", "-0.394657 | \n", "0.000000 | \n", "... | \n", "-2.134987 | \n", "0.522566 | \n", "0.000000 | \n", "0.901468 | \n", "0.786123 | \n", "0.980619 | \n", "1.144889 | \n", "0.692346 | \n", "0.788754 | \n", "0.725130 | \n", "
| 2700000 | \n", "1.0 | \n", "0.700559 | \n", "0.774251 | \n", "1.520182 | \n", "0.847112 | \n", "0.211230 | \n", "1.095531 | \n", "0.052457 | \n", "0.024553 | \n", "2.173076 | \n", "... | \n", "1.585235 | \n", "1.713962 | \n", "0.000000 | \n", "0.337374 | \n", "0.845208 | \n", "0.987610 | \n", "0.883422 | \n", "1.888438 | \n", "1.153766 | \n", "0.931279 | \n", "
2700001 rows × 29 columns
\n", "| \n", " | target | \n", "lepton_pT | \n", "lepton_eta | \n", "lepton_phi | \n", "missing_energy_magnitude | \n", "missing_energy_phi | \n", "jet_1pt | \n", "jet_1eta | \n", "jet_1phi | \n", "jet_1b-tag | \n", "... | \n", "jet_4eta | \n", "jet_4phi | \n", "jet_4b-tag | \n", "m_jj | \n", "m_jjj | \n", "m_lv | \n", "m_jlv | \n", "m_bb | \n", "m_wbb | \n", "m_wwbb | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| count | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "... | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "2.700001e+06 | \n", "
| mean | \n", "5.297354e-01 | \n", "9.912009e-01 | \n", "1.954370e-04 | \n", "-7.047962e-04 | \n", "9.991829e-01 | \n", "1.148560e-03 | \n", "9.909048e-01 | \n", "-4.237584e-05 | \n", "1.133937e-04 | \n", "1.000003e+00 | \n", "... | \n", "5.290199e-04 | \n", "3.115851e-04 | \n", "9.986060e-01 | \n", "1.034535e+00 | \n", "1.024836e+00 | \n", "1.050533e+00 | \n", "1.009803e+00 | \n", "9.730135e-01 | \n", "1.033091e+00 | \n", "9.598680e-01 | \n", "
| std | \n", "4.991151e-01 | \n", "5.652594e-01 | \n", "1.008588e+00 | \n", "1.006442e+00 | \n", "6.009023e-01 | \n", "1.006664e+00 | \n", "4.749358e-01 | \n", "1.009384e+00 | \n", "1.005909e+00 | \n", "1.027669e+00 | \n", "... | \n", "1.007802e+00 | \n", "1.006712e+00 | \n", "1.399785e+00 | \n", "6.767933e-01 | \n", "3.816140e-01 | \n", "1.646220e-01 | \n", "3.978606e-01 | \n", "5.250037e-01 | \n", "3.655881e-01 | \n", "3.135694e-01 | \n", "
| min | \n", "0.000000e+00 | \n", "2.746966e-01 | \n", "-2.434976e+00 | \n", "-1.742508e+00 | \n", "2.370088e-04 | \n", "-1.743944e+00 | \n", "1.375940e-01 | \n", "-2.969725e+00 | \n", "-1.741237e+00 | \n", "0.000000e+00 | \n", "... | \n", "-2.497265e+00 | \n", "-1.742691e+00 | \n", "0.000000e+00 | \n", "7.900884e-02 | \n", "2.477852e-01 | \n", "8.304866e-02 | \n", "1.636103e-01 | \n", "5.163348e-02 | \n", "3.191644e-01 | \n", "3.475562e-01 | \n", "
| 25% | \n", "0.000000e+00 | \n", "5.903873e-01 | \n", "-7.383225e-01 | \n", "-8.724857e-01 | \n", "5.767537e-01 | \n", "-8.708085e-01 | \n", "6.790843e-01 | \n", "-6.882352e-01 | \n", "-8.680962e-01 | \n", "0.000000e+00 | \n", "... | \n", "-7.133574e-01 | \n", "-8.720338e-01 | \n", "0.000000e+00 | \n", "7.907076e-01 | \n", "8.461264e-01 | \n", "9.857475e-01 | \n", "7.674400e-01 | \n", "6.740847e-01 | \n", "8.194916e-01 | \n", "7.703549e-01 | \n", "
| 50% | \n", "1.000000e+00 | \n", "8.531884e-01 | \n", "9.198132e-04 | \n", "-2.410638e-04 | \n", "8.920108e-01 | \n", "1.531822e-03 | \n", "8.950025e-01 | \n", "-2.543566e-05 | \n", "1.269625e-03 | \n", "1.086538e+00 | \n", "... | \n", "1.204956e-03 | \n", "2.906335e-04 | \n", "0.000000e+00 | \n", "8.949236e-01 | \n", "9.506630e-01 | \n", "9.897699e-01 | \n", "9.164546e-01 | \n", "8.735536e-01 | \n", "9.473060e-01 | \n", "8.718703e-01 | \n", "
| 75% | \n", "1.000000e+00 | \n", "1.235677e+00 | \n", "7.382142e-01 | \n", "8.704391e-01 | \n", "1.294226e+00 | \n", "8.734688e-01 | \n", "1.170740e+00 | \n", "6.881843e-01 | \n", "8.677583e-01 | \n", "2.173076e+00 | \n", "... | \n", "7.141017e-01 | \n", "8.727152e-01 | \n", "3.101961e+00 | \n", "1.024506e+00 | \n", "1.083515e+00 | \n", "1.020404e+00 | \n", "1.142138e+00 | \n", "1.139039e+00 | \n", "1.140598e+00 | \n", "1.059480e+00 | \n", "
| max | \n", "1.000000e+00 | \n", "1.142379e+01 | \n", "2.434868e+00 | \n", "1.743236e+00 | \n", "1.284386e+01 | \n", "1.743257e+00 | \n", "8.848616e+00 | \n", "2.969674e+00 | \n", "1.741454e+00 | \n", "2.173076e+00 | \n", "... | \n", "2.498009e+00 | \n", "1.743372e+00 | \n", "3.101961e+00 | \n", "3.355602e+01 | \n", "1.673047e+01 | \n", "7.553898e+00 | \n", "1.289145e+01 | \n", "1.373569e+01 | \n", "1.097622e+01 | \n", "7.458594e+00 | \n", "
8 rows × 29 columns
\n", "| \n", " | target | \n", "counts | \n", "
|---|---|---|
| 0 | \n", "0.0 | \n", "1269715 | \n", "
| 1 | \n", "1.0 | \n", "1430286 | \n", "
\n",
"warnings.filterwarnings('ignore')\n",
"print(' Store Model : ',sys.argv[1])\n",
"store_model = sys.argv[1]\n",
"\n",
"if(path.exists(store_model)):\n",
" model = keras.models.load_model(store_model)\n",
"else:\n",
" model = tf.keras.Sequential()\n",
" model.add(tf.keras.Input(shape=(28,)))\n",
" model.add(layers.Dense(300, activation='tanh',name=\"h0\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.1)))\n",
" model.add(layers.Dense(300, activation='tanh',name=\"h1\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(layers.Dense(300, activation='tanh',name=\"h2\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(layers.Dense(300, activation='tanh',name=\"h3\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.5))\n",
" model.add(layers.Dense(1, activation='sigmoid',name=\"y\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev= 0.001)))\n",
"\n",
"\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"print(' Store history : ',sys.argv[2])\n",
"\n",
"model_fit_history = sys.argv[2]\n",
"\n",
"if (not path.exists(store_model)):\n",
"\n",
" # Replica model\n",
" # initial_learning_rate=.000001,\n",
" # decay_steps=10000,\n",
" # decay_rate=1.0000002\n",
" # momentum=0.9\n",
" # batch_size=100\n",
"\n",
" lr_schedule = keras.optimizers.schedules.ExponentialDecay(\n",
" initial_learning_rate=.000001,\n",
" decay_steps=10000,\n",
" decay_rate=1.0000002)\n",
"\n",
" #opt = tf.keras.optimizers.Adam(learning_rate=lr_schedule)\n",
" opt = tf.keras.optimizers.SGD(learning_rate=0.05, momentum=0.9)\n",
" model.compile( optimizer=opt,\n",
" loss='binary_crossentropy',\n",
" metrics=['accuracy','AUC'])\n",
" history= model.fit(X_train, y_train, epochs=200, validation_data=(X_test,y_test), batch_size=1000)\n",
" model.save(store_model)\n",
" pickle.dump( history.history, open( model_fit_history, \"wb\" ) )\n",
""
]
},
{
"cell_type": "markdown",
"id": "mobile-organization",
"metadata": {},
"source": [
"## RELU top hidden layer with Dropout 0.5 "
]
},
{
"cell_type": "markdown",
"id": "general-lithuania",
"metadata": {},
"source": [
"\n",
"warnings.filterwarnings('ignore')\n",
"store_model = \"data/model.p\"\n",
"\n",
"if(path.exists(store_model)):\n",
" model = keras.models.load_model(store_model)\n",
"else:\n",
" model = tf.keras.Sequential()\n",
" model.add(tf.keras.Input(shape=(28,)))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h0\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.1)))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h1\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h2\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h3\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.5))\n",
" model.add(layers.Dense(1, activation='sigmoid',name=\"y\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev= 0.001)))\n",
" \n",
"warnings.filterwarnings('ignore')\n",
"\n",
"model_fit_history = \"data/model.p_history\"\n",
"\n",
"if (not path.exists(store_model)):\n",
" lr_schedule = keras.optimizers.schedules.ExponentialDecay(\n",
" initial_learning_rate=0.05,\n",
" decay_steps=10000,\n",
" decay_rate=1.0000002)\n",
"\n",
" #opt = tf.keras.optimizers.Adam(learning_rate=lr_schedule)\n",
" opt = tf.keras.optimizers.SGD(learning_rate=0.05, momentum=0.9)\n",
" model.compile( optimizer=opt,\n",
" loss='binary_crossentropy',\n",
" metrics=['accuracy','AUC'])\n",
" history= model.fit(X_train, y_train, epochs=200, validation_data=(X_test,y_test), batch_size=1000)\n",
" pickle.dump( history.history, open( model_fit_history, \"wb\" ) ) \n",
" \n",
" "
]
},
{
"cell_type": "markdown",
"id": "starting-version",
"metadata": {},
"source": [
"## RELU with all hidden layers with Dropout 0.4"
]
},
{
"cell_type": "markdown",
"id": "reliable-bedroom",
"metadata": {},
"source": [
"\n",
"warnings.filterwarnings('ignore')\n",
"print(' Store Model : ',sys.argv[1])\n",
"store_model = sys.argv[1]\n",
"\n",
"if(path.exists(store_model)):\n",
" model = keras.models.load_model(store_model)\n",
"else:\n",
" model = tf.keras.Sequential()\n",
" model.add(tf.keras.Input(shape=(28,)))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h0\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.1)))\n",
" model.add(tf.keras.layers.Dropout(0.4))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h1\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.4))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h2\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.4))\n",
" model.add(layers.Dense(300, activation='relu',name=\"h3\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.4))\n",
" model.add(layers.Dense(1, activation='sigmoid',name=\"y\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev= 0.001)))\n",
"\n",
"\n",
"\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"print(' Store history : ',sys.argv[2])\n",
"\n",
"model_fit_history = sys.argv[2]\n",
"\n",
"if (not path.exists(store_model)):\n",
"\n",
" # New model\n",
" # initial_learning_rate=0.05,\n",
" # decay_steps=10000,\n",
" # decay_rate=0.96\n",
" # momentum=0.9\n",
" # batch_size=100\n",
"\n",
" lr_schedule = keras.optimizers.schedules.ExponentialDecay(\n",
" initial_learning_rate=0.05,\n",
" decay_steps=10000,\n",
" decay_rate=0.96)\n",
"\n",
"\n",
" opt = tf.keras.optimizers.SGD(learning_rate=0.05, momentum=0.9)\n",
" model.compile( optimizer=opt,\n",
" loss='binary_crossentropy',\n",
" metrics=['accuracy','AUC'])\n",
" history= model.fit(X_train, y_train, epochs=200, validation_data=(X_test,y_test), batch_size=1000)\n",
"\n",
" model.save(store_model)\n",
" pickle.dump( history.history, open( model_fit_history, \"wb\" ) )\n",
""
]
},
{
"cell_type": "markdown",
"id": "universal-maryland",
"metadata": {},
"source": [
"## ELU with all hidden layers with Dropout 0.4"
]
},
{
"cell_type": "markdown",
"id": "imposed-population",
"metadata": {},
"source": [
"\n",
"warnings.filterwarnings('ignore')\n",
"print(' Store Model : ',sys.argv[1])\n",
"store_model = sys.argv[1]\n",
"\n",
"if(path.exists(store_model)):\n",
" model = keras.models.load_model(store_model)\n",
"else:\n",
" model = tf.keras.Sequential()\n",
" model.add(tf.keras.Input(shape=(28,)))\n",
" model.add(layers.Dense(300, activation='elu',name=\"h0\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.1)))\n",
" model.add(tf.keras.layers.Dropout(0.5))\n",
" model.add(layers.Dense(300, activation='elu',name=\"h1\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.5))\n",
" model.add(layers.Dense(300, activation='elu',name=\"h2\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.5))\n",
" model.add(layers.Dense(300, activation='elu',name=\"h3\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=.05)))\n",
" model.add(tf.keras.layers.Dropout(0.5))\n",
" model.add(layers.Dense(1, activation='sigmoid',name=\"y\",\n",
" kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev= 0.001)))\n",
"\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"print(' Store history : ',sys.argv[2])\n",
"\n",
"model_fit_history = sys.argv[2]\n",
"\n",
"if (not path.exists(store_model)):\n",
"\n",
" # New model\n",
" # initial_learning_rate=0.05,\n",
" # decay_steps=10000,\n",
" # decay_rate=0.96\n",
" # momentum=0.9\n",
" # batch_size=100\n",
"\n",
" lr_schedule = keras.optimizers.schedules.ExponentialDecay(\n",
" initial_learning_rate=0.05,\n",
" decay_steps=10000,\n",
" decay_rate=0.96)\n",
"\n",
"\n",
" opt = tf.keras.optimizers.SGD(learning_rate=lr_schedule, momentum=0.9)\n",
" model.compile( optimizer=opt,\n",
" loss='binary_crossentropy',\n",
" metrics=['accuracy','AUC'])\n",
" history= model.fit(X_train, y_train, epochs=200, validation_data=(X_test,y_test), batch_size=1000)\n",
"\n",
" model.save(store_model)\n",
" pickle.dump( history.history, open( model_fit_history, \"wb\" ) )\n",
""
]
},
{
"cell_type": "markdown",
"id": "parental-feedback",
"metadata": {},
"source": [
"# Appendix-II - Job logs "
]
},
{
"cell_type": "markdown",
"id": "native-collapse",
"metadata": {},
"source": [
"## Replica Model"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "accompanied-luxembourg",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1: 2160000/2160000 [==============================] - 51s 24us/sample - loss: 0.6580 - acc: 0.6012 - auc: 0.6389 - val_loss: 0.6435 - val_acc: 0.6262 - val_auc: 0.6695\n",
"Epoch 2: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.6441 - acc: 0.6261 - auc: 0.6684 - val_loss: 0.6388 - val_acc: 0.6357 - val_auc: 0.6787\n",
"Epoch 3: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.6405 - acc: 0.6314 - auc: 0.6743 - val_loss: 0.6350 - val_acc: 0.6396 - val_auc: 0.6839\n",
"Epoch 4: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.6293 - acc: 0.6427 - auc: 0.6942 - val_loss: 0.6269 - val_acc: 0.6517 - val_auc: 0.7130\n",
"Epoch 5: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.6130 - acc: 0.6619 - auc: 0.7202 - val_loss: 0.6157 - val_acc: 0.6593 - val_auc: 0.7184\n",
"Epoch 6: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.6043 - acc: 0.6704 - auc: 0.7322 - val_loss: 0.5993 - val_acc: 0.6768 - val_auc: 0.7411\n",
"Epoch 7: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.5991 - acc: 0.6758 - auc: 0.7388 - val_loss: 0.5954 - val_acc: 0.6830 - val_auc: 0.7481\n",
"Epoch 8: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.5938 - acc: 0.6810 - auc: 0.7451 - val_loss: 0.5874 - val_acc: 0.6870 - val_auc: 0.7535\n",
"Epoch 9: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.5902 - acc: 0.6840 - auc: 0.7492 - val_loss: 0.5830 - val_acc: 0.6904 - val_auc: 0.7584\n",
"Epoch 10: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5854 - acc: 0.6872 - auc: 0.7545 - val_loss: 0.5829 - val_acc: 0.6889 - val_auc: 0.7578\n",
"Epoch 11: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5809 - acc: 0.6912 - auc: 0.7592 - val_loss: 0.5864 - val_acc: 0.6855 - val_auc: 0.7540\n",
"Epoch 12: 2160000/2160000 [==============================] - 49s 23us/sample - loss: 0.5768 - acc: 0.6951 - auc: 0.7637 - val_loss: 0.5825 - val_acc: 0.6899 - val_auc: 0.7615\n",
"Epoch 13: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5724 - acc: 0.6986 - auc: 0.7682 - val_loss: 0.5801 - val_acc: 0.6907 - val_auc: 0.7631\n",
"Epoch 14: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.5686 - acc: 0.7013 - auc: 0.7721 - val_loss: 0.5736 - val_acc: 0.6963 - val_auc: 0.7690\n",
"Epoch 15: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5669 - acc: 0.7026 - auc: 0.7739 - val_loss: 0.5602 - val_acc: 0.7073 - val_auc: 0.7815\n",
"Epoch 16: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5634 - acc: 0.7052 - auc: 0.7774 - val_loss: 0.5592 - val_acc: 0.7073 - val_auc: 0.7823\n",
"Epoch 17: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5617 - acc: 0.7068 - auc: 0.7792 - val_loss: 0.5552 - val_acc: 0.7114 - val_auc: 0.7863\n",
"Epoch 18: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5596 - acc: 0.7083 - auc: 0.7813 - val_loss: 0.5559 - val_acc: 0.7107 - val_auc: 0.7849\n",
"Epoch 19: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5577 - acc: 0.7101 - auc: 0.7832 - val_loss: 0.5614 - val_acc: 0.7070 - val_auc: 0.7821\n",
"Epoch 20: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.5552 - acc: 0.7122 - auc: 0.7857 - val_loss: 0.5515 - val_acc: 0.7156 - val_auc: 0.7916\n",
"Epoch 21: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5534 - acc: 0.7137 - auc: 0.7874 - val_loss: 0.5503 - val_acc: 0.7153 - val_auc: 0.7910\n",
"Epoch 22: 2160000/2160000 [==============================] - 54s 25us/sample - loss: 0.5521 - acc: 0.7145 - auc: 0.7886 - val_loss: 0.5480 - val_acc: 0.7168 - val_auc: 0.7935\n",
"Epoch 23: 2160000/2160000 [==============================] - 54s 25us/sample - loss: 0.5500 - acc: 0.7162 - auc: 0.7906 - val_loss: 0.5466 - val_acc: 0.7182 - val_auc: 0.7940\n",
"Epoch 24: 2160000/2160000 [==============================] - 53s 25us/sample - loss: 0.5488 - acc: 0.7169 - auc: 0.7917 - val_loss: 0.5538 - val_acc: 0.7114 - val_auc: 0.7877\n",
"Epoch 25: 2160000/2160000 [==============================] - 60s 28us/sample - loss: 0.5477 - acc: 0.7177 - auc: 0.7927 - val_loss: 0.5436 - val_acc: 0.7200 - val_auc: 0.7963\n",
"Epoch 26: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.5461 - acc: 0.7190 - auc: 0.7942 - val_loss: 0.5480 - val_acc: 0.7173 - val_auc: 0.7926\n",
"Epoch 27: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5454 - acc: 0.7196 - auc: 0.7948 - val_loss: 0.5436 - val_acc: 0.7195 - val_auc: 0.7963\n",
"Epoch 28: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.5435 - acc: 0.7210 - auc: 0.7967 - val_loss: 0.5395 - val_acc: 0.7232 - val_auc: 0.8004\n",
"Epoch 29: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.5422 - acc: 0.7221 - auc: 0.7978 - val_loss: 0.5409 - val_acc: 0.7223 - val_auc: 0.7991\n",
"Epoch 30: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.5419 - acc: 0.7224 - auc: 0.7981 - val_loss: 0.5385 - val_acc: 0.7243 - val_auc: 0.8011\n",
"Epoch 31: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5398 - acc: 0.7241 - auc: 0.8001 - val_loss: 0.5367 - val_acc: 0.7254 - val_auc: 0.8038\n",
"Epoch 32: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.5388 - acc: 0.7248 - auc: 0.8011 - val_loss: 0.5379 - val_acc: 0.7253 - val_auc: 0.8032\n",
"Epoch 33: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.5373 - acc: 0.7260 - auc: 0.8024 - val_loss: 0.5369 - val_acc: 0.7256 - val_auc: 0.8038\n",
"Epoch 34: 2160000/2160000 [==============================] - 51s 24us/sample - loss: 0.5355 - acc: 0.7273 - auc: 0.8040 - val_loss: 0.5361 - val_acc: 0.7263 - val_auc: 0.8042\n",
"Epoch 35: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5351 - acc: 0.7275 - auc: 0.8043 - val_loss: 0.5343 - val_acc: 0.7279 - val_auc: 0.8049\n",
"Epoch 36: 2160000/2160000 [==============================] - 54s 25us/sample - loss: 0.5338 - acc: 0.7286 - auc: 0.8056 - val_loss: 0.5369 - val_acc: 0.7264 - val_auc: 0.8030\n",
"Epoch 37: 2160000/2160000 [==============================] - 56s 26us/sample - loss: 0.5330 - acc: 0.7290 - auc: 0.8062 - val_loss: 0.5344 - val_acc: 0.7277 - val_auc: 0.8055\n",
"Epoch 38: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5318 - acc: 0.7300 - auc: 0.8073 - val_loss: 0.5304 - val_acc: 0.7311 - val_auc: 0.8091\n",
"Epoch 39: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.5312 - acc: 0.7306 - auc: 0.8078 - val_loss: 0.5300 - val_acc: 0.7312 - val_auc: 0.8091\n",
"Epoch 40: 2160000/2160000 [==============================] - 49s 23us/sample - loss: 0.5301 - acc: 0.7310 - auc: 0.8087 - val_loss: 0.5282 - val_acc: 0.7311 - val_auc: 0.8100\n",
"Epoch 41: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.5291 - acc: 0.7320 - auc: 0.8096 - val_loss: 0.5321 - val_acc: 0.7291 - val_auc: 0.8084\n",
"Epoch 42: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.5288 - acc: 0.7319 - auc: 0.8099 - val_loss: 0.5338 - val_acc: 0.7275 - val_auc: 0.8059\n",
"Epoch 43: 2160000/2160000 [==============================] - 51s 23us/sample - loss: 0.5285 - acc: 0.7326 - auc: 0.8101 - val_loss: 0.5281 - val_acc: 0.7322 - val_auc: 0.8106\n",
"Epoch 44: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5272 - acc: 0.7333 - auc: 0.8113 - val_loss: 0.5323 - val_acc: 0.7302 - val_auc: 0.8081\n",
"Epoch 45: 2160000/2160000 [==============================] - 59s 27us/sample - loss: 0.5267 - acc: 0.7339 - auc: 0.8117 - val_loss: 0.5256 - val_acc: 0.7346 - val_auc: 0.8127\n",
"Epoch 46: 2160000/2160000 [==============================] - 53s 25us/sample - loss: 0.5257 - acc: 0.7344 - auc: 0.8125 - val_loss: 0.5237 - val_acc: 0.7354 - val_auc: 0.8145\n",
"Epoch 47: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5252 - acc: 0.7349 - auc: 0.8130 - val_loss: 0.5330 - val_acc: 0.7281 - val_auc: 0.8065\n",
"Epoch 48: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5236 - acc: 0.7358 - auc: 0.8143 - val_loss: 0.5253 - val_acc: 0.7335 - val_auc: 0.8129\n",
"Epoch 49: 2160000/2160000 [==============================] - 52s 24us/sample - loss: 0.5229 - acc: 0.7365 - auc: 0.8150 - val_loss: 0.5262 - val_acc: 0.7326 - val_auc: 0.8142\n",
"Epoch 50: 2160000/2160000 [==============================] - 53s 24us/sample - loss: 0.5215 - acc: 0.7372 - auc: 0.8161 - val_loss: 0.5208 - val_acc: 0.7369 - val_auc: 0.8168\n",
"Epoch 51: 2160000/2160000 [==============================] - 49s 23us/sample - loss: 0.5213 - acc: 0.7378 - auc: 0.8163 - val_loss: 0.5227 - val_acc: 0.7355 - val_auc: 0.8150\n",
"Epoch 52: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5199 - acc: 0.7384 - auc: 0.8175 - val_loss: 0.5209 - val_acc: 0.7375 - val_auc: 0.8176\n",
"Epoch 53: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5188 - acc: 0.7395 - auc: 0.8184 - val_loss: 0.5224 - val_acc: 0.7363 - val_auc: 0.8159\n",
"Epoch 54: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.5179 - acc: 0.7401 - auc: 0.8191 - val_loss: 0.5231 - val_acc: 0.7348 - val_auc: 0.8177\n",
"Epoch 55: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.5171 - acc: 0.7404 - auc: 0.8197 - val_loss: 0.5179 - val_acc: 0.7384 - val_auc: 0.8193\n",
"Epoch 56: 2160000/2160000 [==============================] - 51s 24us/sample - loss: 0.5159 - acc: 0.7411 - auc: 0.8207 - val_loss: 0.5168 - val_acc: 0.7392 - val_auc: 0.8196\n",
"Epoch 57: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5153 - acc: 0.7419 - auc: 0.8212 - val_loss: 0.5171 - val_acc: 0.7393 - val_auc: 0.8206\n",
"Epoch 58: 2160000/2160000 [==============================] - 56s 26us/sample - loss: 0.5144 - acc: 0.7422 - auc: 0.8219 - val_loss: 0.5148 - val_acc: 0.7414 - val_auc: 0.8223\n",
"Epoch 59: 2160000/2160000 [==============================] - 54s 25us/sample - loss: 0.5138 - acc: 0.7428 - auc: 0.8224 - val_loss: 0.5166 - val_acc: 0.7399 - val_auc: 0.8223\n",
"Epoch 60: 2160000/2160000 [==============================] - 60s 28us/sample - loss: 0.5128 - acc: 0.7434 - auc: 0.8232 - val_loss: 0.5182 - val_acc: 0.7387 - val_auc: 0.8189\n",
"Epoch 61: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5121 - acc: 0.7440 - auc: 0.8237 - val_loss: 0.5163 - val_acc: 0.7398 - val_auc: 0.8229\n",
"Epoch 62: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5119 - acc: 0.7441 - auc: 0.8239 - val_loss: 0.5150 - val_acc: 0.7410 - val_auc: 0.8235\n",
"Epoch 63: 2160000/2160000 [==============================] - 59s 27us/sample - loss: 0.5110 - acc: 0.7445 - auc: 0.8246 - val_loss: 0.5149 - val_acc: 0.7417 - val_auc: 0.8215\n",
"Epoch 64: 2160000/2160000 [==============================] - 79s 36us/sample - loss: 0.5100 - acc: 0.7452 - auc: 0.8254 - val_loss: 0.5142 - val_acc: 0.7417 - val_auc: 0.8223\n",
"Epoch 65: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5097 - acc: 0.7453 - auc: 0.8256 - val_loss: 0.5155 - val_acc: 0.7406 - val_auc: 0.8210\n",
"Epoch 66: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.5092 - acc: 0.7459 - auc: 0.8260 - val_loss: 0.5110 - val_acc: 0.7438 - val_auc: 0.8247\n",
"Epoch 67: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5091 - acc: 0.7463 - auc: 0.8261 - val_loss: 0.5081 - val_acc: 0.7458 - val_auc: 0.8266\n",
"Epoch 68: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5082 - acc: 0.7465 - auc: 0.8268 - val_loss: 0.5108 - val_acc: 0.7437 - val_auc: 0.8256\n",
"Epoch 69: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5076 - acc: 0.7470 - auc: 0.8273 - val_loss: 0.5083 - val_acc: 0.7453 - val_auc: 0.8271\n",
"Epoch 70: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5071 - acc: 0.7470 - auc: 0.8276 - val_loss: 0.5063 - val_acc: 0.7472 - val_auc: 0.8286\n",
"Epoch 71: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5070 - acc: 0.7473 - auc: 0.8277 - val_loss: 0.5092 - val_acc: 0.7453 - val_auc: 0.8267\n",
"Epoch 72: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5064 - acc: 0.7475 - auc: 0.8282 - val_loss: 0.5111 - val_acc: 0.7442 - val_auc: 0.8255\n",
"Epoch 73: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5061 - acc: 0.7479 - auc: 0.8284 - val_loss: 0.5083 - val_acc: 0.7462 - val_auc: 0.8284\n",
"Epoch 74: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5057 - acc: 0.7482 - auc: 0.8288 - val_loss: 0.5082 - val_acc: 0.7460 - val_auc: 0.8273\n",
"Epoch 75: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5050 - acc: 0.7486 - auc: 0.8294 - val_loss: 0.5070 - val_acc: 0.7465 - val_auc: 0.8285\n",
"Epoch 76: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5051 - acc: 0.7485 - auc: 0.8293 - val_loss: 0.5042 - val_acc: 0.7481 - val_auc: 0.8304\n",
"Epoch 77: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.5043 - acc: 0.7491 - auc: 0.8298 - val_loss: 0.5069 - val_acc: 0.7463 - val_auc: 0.8286\n",
"Epoch 78: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.5041 - acc: 0.7493 - auc: 0.8301 - val_loss: 0.5052 - val_acc: 0.7470 - val_auc: 0.8293\n",
"Epoch 79: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5039 - acc: 0.7492 - auc: 0.8302 - val_loss: 0.5063 - val_acc: 0.7479 - val_auc: 0.8282\n",
"Epoch 80: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5035 - acc: 0.7497 - auc: 0.8305 - val_loss: 0.5056 - val_acc: 0.7473 - val_auc: 0.8303\n",
"Epoch 81: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5031 - acc: 0.7499 - auc: 0.8308 - val_loss: 0.5042 - val_acc: 0.7486 - val_auc: 0.8300\n",
"Epoch 82: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5022 - acc: 0.7503 - auc: 0.8315 - val_loss: 0.5118 - val_acc: 0.7439 - val_auc: 0.8238\n",
"Epoch 83: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5025 - acc: 0.7505 - auc: 0.8313 - val_loss: 0.5090 - val_acc: 0.7456 - val_auc: 0.8259\n",
"Epoch 84: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5017 - acc: 0.7506 - auc: 0.8318 - val_loss: 0.5044 - val_acc: 0.7483 - val_auc: 0.8305\n",
"Epoch 85: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5007 - acc: 0.7515 - auc: 0.8326 - val_loss: 0.5024 - val_acc: 0.7493 - val_auc: 0.8321\n",
"Epoch 86: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5010 - acc: 0.7511 - auc: 0.8324 - val_loss: 0.5062 - val_acc: 0.7468 - val_auc: 0.8283\n",
"Epoch 87: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5004 - acc: 0.7516 - auc: 0.8329 - val_loss: 0.5022 - val_acc: 0.7496 - val_auc: 0.8318\n",
"Epoch 88: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.5003 - acc: 0.7518 - auc: 0.8329 - val_loss: 0.5080 - val_acc: 0.7473 - val_auc: 0.8281\n",
"Epoch 89: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.5001 - acc: 0.7517 - auc: 0.8331 - val_loss: 0.5044 - val_acc: 0.7483 - val_auc: 0.8296\n",
"Epoch 90: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4996 - acc: 0.7523 - auc: 0.8336 - val_loss: 0.5003 - val_acc: 0.7515 - val_auc: 0.8335\n",
"Epoch 91: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4993 - acc: 0.7523 - auc: 0.8337 - val_loss: 0.5005 - val_acc: 0.7511 - val_auc: 0.8327\n",
"Epoch 92: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4983 - acc: 0.7528 - auc: 0.8345 - val_loss: 0.5043 - val_acc: 0.7484 - val_auc: 0.8299\n",
"Epoch 93: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4986 - acc: 0.7527 - auc: 0.8343 - val_loss: 0.5014 - val_acc: 0.7502 - val_auc: 0.8327\n",
"Epoch 94: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4983 - acc: 0.7528 - auc: 0.8344 - val_loss: 0.5013 - val_acc: 0.7507 - val_auc: 0.8325\n",
"Epoch 95: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4980 - acc: 0.7531 - auc: 0.8347 - val_loss: 0.5038 - val_acc: 0.7497 - val_auc: 0.8323\n",
"Epoch 96: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4976 - acc: 0.7534 - auc: 0.8350 - val_loss: 0.4978 - val_acc: 0.7522 - val_auc: 0.8352\n",
"Epoch 97: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4971 - acc: 0.7538 - auc: 0.8354 - val_loss: 0.4975 - val_acc: 0.7531 - val_auc: 0.8353\n",
"Epoch 98: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.4967 - acc: 0.7542 - auc: 0.8357 - val_loss: 0.5036 - val_acc: 0.7498 - val_auc: 0.8311\n",
"Epoch 99: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4960 - acc: 0.7544 - auc: 0.8362 - val_loss: 0.4993 - val_acc: 0.7514 - val_auc: 0.8335\n",
"Epoch 100: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.4965 - acc: 0.7542 - auc: 0.8358 - val_loss: 0.4967 - val_acc: 0.7534 - val_auc: 0.8356\n",
"Epoch 101: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4957 - acc: 0.7545 - auc: 0.8364 - val_loss: 0.4992 - val_acc: 0.7522 - val_auc: 0.8342\n",
"Epoch 102: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4956 - acc: 0.7547 - auc: 0.8365 - val_loss: 0.5021 - val_acc: 0.7495 - val_auc: 0.8332\n",
"Epoch 103: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4954 - acc: 0.7547 - auc: 0.8366 - val_loss: 0.4965 - val_acc: 0.7529 - val_auc: 0.8363\n",
"Epoch 104: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4946 - acc: 0.7554 - auc: 0.8373 - val_loss: 0.4984 - val_acc: 0.7524 - val_auc: 0.8360\n",
"Epoch 105: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4944 - acc: 0.7556 - auc: 0.8374 - val_loss: 0.4995 - val_acc: 0.7516 - val_auc: 0.8338\n",
"Epoch 106: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.4944 - acc: 0.7554 - auc: 0.8374 - val_loss: 0.5028 - val_acc: 0.7491 - val_auc: 0.8315\n",
"Epoch 107: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4941 - acc: 0.7556 - auc: 0.8376 - val_loss: 0.4958 - val_acc: 0.7544 - val_auc: 0.8367\n",
"Epoch 108: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4940 - acc: 0.7556 - auc: 0.8377 - val_loss: 0.4954 - val_acc: 0.7548 - val_auc: 0.8368\n",
"Epoch 109: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4933 - acc: 0.7563 - auc: 0.8382 - val_loss: 0.5003 - val_acc: 0.7509 - val_auc: 0.8328\n",
"Epoch 110: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4933 - acc: 0.7563 - auc: 0.8382 - val_loss: 0.4962 - val_acc: 0.7541 - val_auc: 0.8366\n",
"Epoch 111: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.4929 - acc: 0.7562 - auc: 0.8385 - val_loss: 0.4947 - val_acc: 0.7543 - val_auc: 0.8383\n",
"Epoch 112: 2160000/2160000 [==============================] - 49s 23us/sample - loss: 0.4925 - acc: 0.7567 - auc: 0.8388 - val_loss: 0.4927 - val_acc: 0.7561 - val_auc: 0.8384\n",
"Epoch 113: 2160000/2160000 [==============================] - 44s 21us/sample - loss: 0.4924 - acc: 0.7567 - auc: 0.8389 - val_loss: 0.4963 - val_acc: 0.7536 - val_auc: 0.8363\n",
"Epoch 114: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4921 - acc: 0.7571 - auc: 0.8391 - val_loss: 0.4927 - val_acc: 0.7558 - val_auc: 0.8387\n",
"Epoch 115: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4920 - acc: 0.7569 - auc: 0.8392 - val_loss: 0.4972 - val_acc: 0.7529 - val_auc: 0.8361\n",
"Epoch 116: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4914 - acc: 0.7572 - auc: 0.8396 - val_loss: 0.4974 - val_acc: 0.7530 - val_auc: 0.8351\n",
"Epoch 117: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4917 - acc: 0.7574 - auc: 0.8395 - val_loss: 0.4987 - val_acc: 0.7524 - val_auc: 0.8350\n",
"Epoch 118: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4912 - acc: 0.7574 - auc: 0.8398 - val_loss: 0.4957 - val_acc: 0.7543 - val_auc: 0.8366\n",
"Epoch 119: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4914 - acc: 0.7572 - auc: 0.8397 - val_loss: 0.4936 - val_acc: 0.7551 - val_auc: 0.8391\n",
"Epoch 120: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4911 - acc: 0.7578 - auc: 0.8398 - val_loss: 0.4992 - val_acc: 0.7518 - val_auc: 0.8359\n",
"Epoch 121: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4908 - acc: 0.7577 - auc: 0.8401 - val_loss: 0.4945 - val_acc: 0.7550 - val_auc: 0.8372\n",
"Epoch 122: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4902 - acc: 0.7583 - auc: 0.8406 - val_loss: 0.4920 - val_acc: 0.7564 - val_auc: 0.8391\n",
"Epoch 123: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4897 - acc: 0.7585 - auc: 0.8409 - val_loss: 0.5028 - val_acc: 0.7502 - val_auc: 0.8319\n",
"Epoch 124: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.4898 - acc: 0.7587 - auc: 0.8408 - val_loss: 0.4962 - val_acc: 0.7532 - val_auc: 0.8390\n",
"Epoch 125: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4896 - acc: 0.7587 - auc: 0.8410 - val_loss: 0.4898 - val_acc: 0.7578 - val_auc: 0.8407\n",
"Epoch 126: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4893 - acc: 0.7588 - auc: 0.8412 - val_loss: 0.4954 - val_acc: 0.7540 - val_auc: 0.8369\n",
"Epoch 127: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4894 - acc: 0.7587 - auc: 0.8411 - val_loss: 0.4909 - val_acc: 0.7570 - val_auc: 0.8403\n",
"Epoch 128: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4888 - acc: 0.7590 - auc: 0.8416 - val_loss: 0.4970 - val_acc: 0.7530 - val_auc: 0.8373\n",
"Epoch 129: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4886 - acc: 0.7592 - auc: 0.8417 - val_loss: 0.4920 - val_acc: 0.7564 - val_auc: 0.8390\n",
"Epoch 130: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4884 - acc: 0.7592 - auc: 0.8418 - val_loss: 0.4945 - val_acc: 0.7546 - val_auc: 0.8374\n",
"Epoch 131: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4880 - acc: 0.7597 - auc: 0.8422 - val_loss: 0.4933 - val_acc: 0.7554 - val_auc: 0.8385\n",
"Epoch 132: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4883 - acc: 0.7592 - auc: 0.8419 - val_loss: 0.4910 - val_acc: 0.7569 - val_auc: 0.8396\n",
"Epoch 133: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4881 - acc: 0.7594 - auc: 0.8421 - val_loss: 0.4969 - val_acc: 0.7529 - val_auc: 0.8360\n",
"Epoch 134: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4877 - acc: 0.7599 - auc: 0.8424 - val_loss: 0.4906 - val_acc: 0.7576 - val_auc: 0.8400\n",
"Epoch 135: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4876 - acc: 0.7597 - auc: 0.8424 - val_loss: 0.4931 - val_acc: 0.7557 - val_auc: 0.8389\n",
"Epoch 136: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4878 - acc: 0.7597 - auc: 0.8423 - val_loss: 0.4913 - val_acc: 0.7571 - val_auc: 0.8396\n",
"Epoch 137: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4878 - acc: 0.7598 - auc: 0.8423 - val_loss: 0.4973 - val_acc: 0.7529 - val_auc: 0.8373\n",
"Epoch 138: 2160000/2160000 [==============================] - 48s 22us/sample - loss: 0.4869 - acc: 0.7601 - auc: 0.8429 - val_loss: 0.4934 - val_acc: 0.7550 - val_auc: 0.8389\n",
"Epoch 139: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4869 - acc: 0.7604 - auc: 0.8430 - val_loss: 0.4952 - val_acc: 0.7542 - val_auc: 0.8367\n",
"Epoch 140: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4864 - acc: 0.7609 - auc: 0.8433 - val_loss: 0.4895 - val_acc: 0.7585 - val_auc: 0.8411\n",
"Epoch 141: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4863 - acc: 0.7608 - auc: 0.8434 - val_loss: 0.4915 - val_acc: 0.7564 - val_auc: 0.8393\n",
"Epoch 142: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4860 - acc: 0.7607 - auc: 0.8436 - val_loss: 0.4898 - val_acc: 0.7581 - val_auc: 0.8411\n",
"Epoch 143: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4861 - acc: 0.7607 - auc: 0.8436 - val_loss: 0.4920 - val_acc: 0.7570 - val_auc: 0.8392\n",
"Epoch 144: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4863 - acc: 0.7608 - auc: 0.8435 - val_loss: 0.4930 - val_acc: 0.7558 - val_auc: 0.8381\n",
"Epoch 145: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4859 - acc: 0.7608 - auc: 0.8436 - val_loss: 0.4884 - val_acc: 0.7585 - val_auc: 0.8416\n",
"Epoch 146: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4854 - acc: 0.7612 - auc: 0.8441 - val_loss: 0.4919 - val_acc: 0.7566 - val_auc: 0.8396\n",
"Epoch 147: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4853 - acc: 0.7613 - auc: 0.8441 - val_loss: 0.4897 - val_acc: 0.7583 - val_auc: 0.8410\n",
"Epoch 148: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4851 - acc: 0.7615 - auc: 0.8442 - val_loss: 0.4899 - val_acc: 0.7580 - val_auc: 0.8407\n",
"Epoch 149: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4846 - acc: 0.7619 - auc: 0.8446 - val_loss: 0.4915 - val_acc: 0.7570 - val_auc: 0.8398\n",
"Epoch 150: 2160000/2160000 [==============================] - 50s 23us/sample - loss: 0.4847 - acc: 0.7618 - auc: 0.8446 - val_loss: 0.4943 - val_acc: 0.7560 - val_auc: 0.8384\n",
"Epoch 151: 2160000/2160000 [==============================] - 49s 23us/sample - loss: 0.4847 - acc: 0.7617 - auc: 0.8445 - val_loss: 0.4979 - val_acc: 0.7532 - val_auc: 0.8351\n",
"Epoch 152: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4845 - acc: 0.7619 - auc: 0.8447 - val_loss: 0.4878 - val_acc: 0.7591 - val_auc: 0.8421\n",
"Epoch 153: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4841 - acc: 0.7622 - auc: 0.8450 - val_loss: 0.4871 - val_acc: 0.7596 - val_auc: 0.8425\n",
"Epoch 154: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4840 - acc: 0.7622 - auc: 0.8451 - val_loss: 0.4961 - val_acc: 0.7540 - val_auc: 0.8360\n",
"Epoch 155: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4838 - acc: 0.7623 - auc: 0.8452 - val_loss: 0.4883 - val_acc: 0.7593 - val_auc: 0.8430\n",
"Epoch 156: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4838 - acc: 0.7621 - auc: 0.8452 - val_loss: 0.4890 - val_acc: 0.7587 - val_auc: 0.8419\n",
"Epoch 157: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4833 - acc: 0.7626 - auc: 0.8456 - val_loss: 0.4883 - val_acc: 0.7586 - val_auc: 0.8417\n",
"Epoch 158: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4830 - acc: 0.7627 - auc: 0.8458 - val_loss: 0.4898 - val_acc: 0.7575 - val_auc: 0.8409\n",
"Epoch 159: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4830 - acc: 0.7628 - auc: 0.8458 - val_loss: 0.4906 - val_acc: 0.7573 - val_auc: 0.8404\n",
"Epoch 160: 2160000/2160000 [==============================] - 42s 19us/sample - loss: 0.4831 - acc: 0.7627 - auc: 0.8457 - val_loss: 0.4963 - val_acc: 0.7551 - val_auc: 0.8364\n",
"Epoch 161: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4830 - acc: 0.7627 - auc: 0.8458 - val_loss: 0.4902 - val_acc: 0.7585 - val_auc: 0.8416\n",
"Epoch 162: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4827 - acc: 0.7629 - auc: 0.8460 - val_loss: 0.4876 - val_acc: 0.7594 - val_auc: 0.8426\n",
"Epoch 163: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4824 - acc: 0.7633 - auc: 0.8462 - val_loss: 0.4888 - val_acc: 0.7593 - val_auc: 0.8419\n",
"Epoch 164: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4825 - acc: 0.7631 - auc: 0.8461 - val_loss: 0.4882 - val_acc: 0.7589 - val_auc: 0.8419\n",
"Epoch 165: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4821 - acc: 0.7633 - auc: 0.8465 - val_loss: 0.4897 - val_acc: 0.7576 - val_auc: 0.8409\n",
"Epoch 166: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4821 - acc: 0.7633 - auc: 0.8464 - val_loss: 0.4908 - val_acc: 0.7568 - val_auc: 0.8421\n",
"Epoch 167: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4818 - acc: 0.7635 - auc: 0.8466 - val_loss: 0.4886 - val_acc: 0.7583 - val_auc: 0.8421\n",
"Epoch 168: 2160000/2160000 [==============================] - 42s 19us/sample - loss: 0.4814 - acc: 0.7639 - auc: 0.8469 - val_loss: 0.4879 - val_acc: 0.7587 - val_auc: 0.8425\n",
"Epoch 169: 2160000/2160000 [==============================] - 42s 19us/sample - loss: 0.4813 - acc: 0.7637 - auc: 0.8470 - val_loss: 0.4896 - val_acc: 0.7581 - val_auc: 0.8411\n",
"Epoch 170: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4814 - acc: 0.7639 - auc: 0.8469 - val_loss: 0.4889 - val_acc: 0.7587 - val_auc: 0.8414\n",
"Epoch 171: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4813 - acc: 0.7640 - auc: 0.8470 - val_loss: 0.4889 - val_acc: 0.7582 - val_auc: 0.8423\n",
"Epoch 172: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4811 - acc: 0.7641 - auc: 0.8472 - val_loss: 0.4884 - val_acc: 0.7585 - val_auc: 0.8417\n",
"Epoch 173: 2160000/2160000 [==============================] - 44s 21us/sample - loss: 0.4809 - acc: 0.7642 - auc: 0.8473 - val_loss: 0.4857 - val_acc: 0.7606 - val_auc: 0.8441\n",
"Epoch 174: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4810 - acc: 0.7639 - auc: 0.8473 - val_loss: 0.4868 - val_acc: 0.7593 - val_auc: 0.8429\n",
"Epoch 175: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4804 - acc: 0.7645 - auc: 0.8476 - val_loss: 0.4871 - val_acc: 0.7601 - val_auc: 0.8427\n",
"Epoch 176: 2160000/2160000 [==============================] - 42s 19us/sample - loss: 0.4803 - acc: 0.7645 - auc: 0.8477 - val_loss: 0.4899 - val_acc: 0.7576 - val_auc: 0.8421\n",
"Epoch 177: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4805 - acc: 0.7645 - auc: 0.8476 - val_loss: 0.4898 - val_acc: 0.7594 - val_auc: 0.8429\n",
"Epoch 178: 2160000/2160000 [==============================] - 45s 21us/sample - loss: 0.4800 - acc: 0.7646 - auc: 0.8479 - val_loss: 0.4858 - val_acc: 0.7605 - val_auc: 0.8437\n",
"Epoch 179: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4802 - acc: 0.7645 - auc: 0.8478 - val_loss: 0.4892 - val_acc: 0.7582 - val_auc: 0.8414\n",
"Epoch 180: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4799 - acc: 0.7648 - auc: 0.8480 - val_loss: 0.4869 - val_acc: 0.7594 - val_auc: 0.8433\n",
"Epoch 181: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4798 - acc: 0.7648 - auc: 0.8481 - val_loss: 0.4863 - val_acc: 0.7602 - val_auc: 0.8433\n",
"Epoch 182: 2160000/2160000 [==============================] - 42s 19us/sample - loss: 0.4797 - acc: 0.7648 - auc: 0.8482 - val_loss: 0.4857 - val_acc: 0.7607 - val_auc: 0.8440\n",
"Epoch 183: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4799 - acc: 0.7650 - auc: 0.8480 - val_loss: 0.4890 - val_acc: 0.7584 - val_auc: 0.8411\n",
"Epoch 184: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4791 - acc: 0.7652 - auc: 0.8486 - val_loss: 0.4862 - val_acc: 0.7608 - val_auc: 0.8441\n",
"Epoch 185: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4792 - acc: 0.7654 - auc: 0.8485 - val_loss: 0.4875 - val_acc: 0.7587 - val_auc: 0.8427\n",
"Epoch 186: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4788 - acc: 0.7655 - auc: 0.8488 - val_loss: 0.4923 - val_acc: 0.7565 - val_auc: 0.8406\n",
"Epoch 187: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4788 - acc: 0.7656 - auc: 0.8488 - val_loss: 0.4859 - val_acc: 0.7596 - val_auc: 0.8434\n",
"Epoch 188: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4785 - acc: 0.7656 - auc: 0.8490 - val_loss: 0.4863 - val_acc: 0.7601 - val_auc: 0.8432\n",
"Epoch 189: 2160000/2160000 [==============================] - 42s 19us/sample - loss: 0.4788 - acc: 0.7655 - auc: 0.8488 - val_loss: 0.4872 - val_acc: 0.7589 - val_auc: 0.8439\n",
"Epoch 190: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4782 - acc: 0.7659 - auc: 0.8492 - val_loss: 0.4914 - val_acc: 0.7566 - val_auc: 0.8409\n",
"Epoch 191: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4784 - acc: 0.7658 - auc: 0.8491 - val_loss: 0.4862 - val_acc: 0.7607 - val_auc: 0.8436\n",
"Epoch 192: 2160000/2160000 [==============================] - 44s 21us/sample - loss: 0.4781 - acc: 0.7660 - auc: 0.8493 - val_loss: 0.4874 - val_acc: 0.7595 - val_auc: 0.8428\n",
"Epoch 193: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4780 - acc: 0.7662 - auc: 0.8494 - val_loss: 0.4854 - val_acc: 0.7608 - val_auc: 0.8440\n",
"Epoch 194: 2160000/2160000 [==============================] - 47s 22us/sample - loss: 0.4778 - acc: 0.7660 - auc: 0.8495 - val_loss: 0.4886 - val_acc: 0.7591 - val_auc: 0.8419\n",
"Epoch 195: 2160000/2160000 [==============================] - 46s 21us/sample - loss: 0.4780 - acc: 0.7660 - auc: 0.8494 - val_loss: 0.4841 - val_acc: 0.7616 - val_auc: 0.8450\n",
"Epoch 196: 2160000/2160000 [==============================] - 44s 20us/sample - loss: 0.4777 - acc: 0.7663 - auc: 0.8495 - val_loss: 0.4876 - val_acc: 0.7596 - val_auc: 0.8425\n",
"Epoch 197: 2160000/2160000 [==============================] - 43s 20us/sample - loss: 0.4776 - acc: 0.7663 - auc: 0.8497 - val_loss: 0.4889 - val_acc: 0.7582 - val_auc: 0.8412\n",
"Epoch 198: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4776 - acc: 0.7664 - auc: 0.8497 - val_loss: 0.4874 - val_acc: 0.7594 - val_auc: 0.8424\n",
"Epoch 199: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4773 - acc: 0.7665 - auc: 0.8499 - val_loss: 0.4902 - val_acc: 0.7575 - val_auc: 0.8416\n",
"Epoch 200: 2160000/2160000 [==============================] - 42s 20us/sample - loss: 0.4771 - acc: 0.7666 - auc: 0.8500 - val_loss: 0.4850 - val_acc: 0.7614 - val_auc: 0.8451\n"
]
}
],
"source": [
"print_logs('replica_model.log')"
]
},
{
"cell_type": "markdown",
"id": "agricultural-particle",
"metadata": {},
"source": [
"## RELU top hidden layer with Dropout 0.5 "
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "related-conditioning",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.6819 - acc: 0.5553 - auc: 0.5714 - val_loss: 0.6479 - val_acc: 0.6248 - val_auc: 0.6675\n",
"Epoch 2: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6496 - acc: 0.6169 - auc: 0.6585 - val_loss: 0.6334 - val_acc: 0.6414 - val_auc: 0.6930\n",
"Epoch 3: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.6439 - acc: 0.6239 - auc: 0.6695 - val_loss: 0.6316 - val_acc: 0.6366 - val_auc: 0.6983\n",
"Epoch 4: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.6398 - acc: 0.6299 - auc: 0.6770 - val_loss: 0.6361 - val_acc: 0.6335 - val_auc: 0.6939\n",
"Epoch 5: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.6385 - acc: 0.6314 - auc: 0.6785 - val_loss: 0.6275 - val_acc: 0.6452 - val_auc: 0.7002\n",
"Epoch 6: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.6343 - acc: 0.6365 - auc: 0.6861 - val_loss: 0.6197 - val_acc: 0.6493 - val_auc: 0.7154\n",
"Epoch 7: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6307 - acc: 0.6413 - auc: 0.6925 - val_loss: 0.6254 - val_acc: 0.6419 - val_auc: 0.7137\n",
"Epoch 8: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6280 - acc: 0.6447 - auc: 0.6971 - val_loss: 0.6163 - val_acc: 0.6571 - val_auc: 0.7177\n",
"Epoch 9: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.6246 - acc: 0.6486 - auc: 0.7024 - val_loss: 0.6134 - val_acc: 0.6600 - val_auc: 0.7226\n",
"Epoch 10: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.6234 - acc: 0.6501 - auc: 0.7040 - val_loss: 0.6130 - val_acc: 0.6617 - val_auc: 0.7259\n",
"Epoch 11: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.6211 - acc: 0.6534 - auc: 0.7076 - val_loss: 0.6092 - val_acc: 0.6743 - val_auc: 0.7356\n",
"Epoch 12: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.6205 - acc: 0.6545 - auc: 0.7080 - val_loss: 0.6105 - val_acc: 0.6686 - val_auc: 0.7286\n",
"Epoch 13: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.6186 - acc: 0.6563 - auc: 0.7111 - val_loss: 0.6062 - val_acc: 0.6702 - val_auc: 0.7364\n",
"Epoch 14: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.6173 - acc: 0.6573 - auc: 0.7130 - val_loss: 0.5966 - val_acc: 0.6798 - val_auc: 0.7442\n",
"Epoch 15: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.6153 - acc: 0.6582 - auc: 0.7155 - val_loss: 0.6061 - val_acc: 0.6729 - val_auc: 0.7412\n",
"Epoch 16: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.6163 - acc: 0.6561 - auc: 0.7136 - val_loss: 0.6043 - val_acc: 0.6689 - val_auc: 0.7413\n",
"Epoch 17: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.6130 - acc: 0.6609 - auc: 0.7188 - val_loss: 0.6010 - val_acc: 0.6772 - val_auc: 0.7455\n",
"Epoch 18: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6128 - acc: 0.6598 - auc: 0.7190 - val_loss: 0.6014 - val_acc: 0.6806 - val_auc: 0.7453\n",
"Epoch 19: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.6093 - acc: 0.6640 - auc: 0.7241 - val_loss: 0.6144 - val_acc: 0.6576 - val_auc: 0.7500\n",
"Epoch 20: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6056 - acc: 0.6681 - auc: 0.7292 - val_loss: 0.5986 - val_acc: 0.6779 - val_auc: 0.7580\n",
"Epoch 21: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6045 - acc: 0.6683 - auc: 0.7304 - val_loss: 0.5913 - val_acc: 0.6853 - val_auc: 0.7563\n",
"Epoch 22: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.6032 - acc: 0.6704 - auc: 0.7323 - val_loss: 0.6089 - val_acc: 0.6636 - val_auc: 0.7526\n",
"Epoch 23: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.6000 - acc: 0.6738 - auc: 0.7366 - val_loss: 0.5973 - val_acc: 0.6762 - val_auc: 0.7614\n",
"Epoch 24: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.5970 - acc: 0.6763 - auc: 0.7402 - val_loss: 0.5919 - val_acc: 0.6862 - val_auc: 0.7637\n",
"Epoch 25: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5964 - acc: 0.6769 - auc: 0.7409 - val_loss: 0.6032 - val_acc: 0.6704 - val_auc: 0.7587\n",
"Epoch 26: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5947 - acc: 0.6789 - auc: 0.7432 - val_loss: 0.5944 - val_acc: 0.6785 - val_auc: 0.7627\n",
"Epoch 27: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5960 - acc: 0.6775 - auc: 0.7413 - val_loss: 0.5893 - val_acc: 0.6887 - val_auc: 0.7626\n",
"Epoch 28: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5943 - acc: 0.6790 - auc: 0.7434 - val_loss: 0.5995 - val_acc: 0.6720 - val_auc: 0.7621\n",
"Epoch 29: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5935 - acc: 0.6799 - auc: 0.7444 - val_loss: 0.5964 - val_acc: 0.6803 - val_auc: 0.7648\n",
"Epoch 30: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5914 - acc: 0.6824 - auc: 0.7472 - val_loss: 0.5917 - val_acc: 0.6806 - val_auc: 0.7656\n",
"Epoch 31: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5920 - acc: 0.6812 - auc: 0.7461 - val_loss: 0.5952 - val_acc: 0.6795 - val_auc: 0.7594\n",
"Epoch 32: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5881 - acc: 0.6850 - auc: 0.7511 - val_loss: 0.5857 - val_acc: 0.6902 - val_auc: 0.7700\n",
"Epoch 33: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5881 - acc: 0.6849 - auc: 0.7509 - val_loss: 0.5965 - val_acc: 0.6762 - val_auc: 0.7705\n",
"Epoch 34: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5870 - acc: 0.6857 - auc: 0.7522 - val_loss: 0.5987 - val_acc: 0.6766 - val_auc: 0.7659\n",
"Epoch 35: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5840 - acc: 0.6886 - auc: 0.7557 - val_loss: 0.5946 - val_acc: 0.6738 - val_auc: 0.7709\n",
"Epoch 36: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5825 - acc: 0.6898 - auc: 0.7574 - val_loss: 0.5850 - val_acc: 0.6878 - val_auc: 0.7769\n",
"Epoch 37: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5821 - acc: 0.6900 - auc: 0.7578 - val_loss: 0.5995 - val_acc: 0.6738 - val_auc: 0.7693\n",
"Epoch 38: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5807 - acc: 0.6916 - auc: 0.7595 - val_loss: 0.6048 - val_acc: 0.6691 - val_auc: 0.7720\n",
"Epoch 39: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5814 - acc: 0.6909 - auc: 0.7585 - val_loss: 0.5941 - val_acc: 0.6780 - val_auc: 0.7723\n",
"Epoch 40: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5792 - acc: 0.6929 - auc: 0.7611 - val_loss: 0.5867 - val_acc: 0.6886 - val_auc: 0.7744\n",
"Epoch 41: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5788 - acc: 0.6930 - auc: 0.7615 - val_loss: 0.5947 - val_acc: 0.6797 - val_auc: 0.7759\n",
"Epoch 42: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5778 - acc: 0.6940 - auc: 0.7627 - val_loss: 0.5959 - val_acc: 0.6801 - val_auc: 0.7741\n",
"Epoch 43: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5767 - acc: 0.6949 - auc: 0.7638 - val_loss: 0.5815 - val_acc: 0.6906 - val_auc: 0.7795\n",
"Epoch 44: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5761 - acc: 0.6957 - auc: 0.7645 - val_loss: 0.6173 - val_acc: 0.6599 - val_auc: 0.7739\n",
"Epoch 45: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5759 - acc: 0.6958 - auc: 0.7647 - val_loss: 0.5775 - val_acc: 0.6955 - val_auc: 0.7796\n",
"Epoch 46: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5754 - acc: 0.6963 - auc: 0.7652 - val_loss: 0.5873 - val_acc: 0.6857 - val_auc: 0.7796\n",
"Epoch 47: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.5744 - acc: 0.6974 - auc: 0.7663 - val_loss: 0.5943 - val_acc: 0.6796 - val_auc: 0.7759\n",
"Epoch 48: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5741 - acc: 0.6973 - auc: 0.7666 - val_loss: 0.5875 - val_acc: 0.6882 - val_auc: 0.7779\n",
"Epoch 49: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5730 - acc: 0.6984 - auc: 0.7678 - val_loss: 0.6156 - val_acc: 0.6527 - val_auc: 0.7779\n",
"Epoch 50: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5726 - acc: 0.6985 - auc: 0.7682 - val_loss: 0.5898 - val_acc: 0.6815 - val_auc: 0.7802\n",
"Epoch 51: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5722 - acc: 0.6993 - auc: 0.7688 - val_loss: 0.5762 - val_acc: 0.6963 - val_auc: 0.7830\n",
"Epoch 52: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5713 - acc: 0.6999 - auc: 0.7696 - val_loss: 0.5676 - val_acc: 0.7032 - val_auc: 0.7830\n",
"Epoch 53: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5710 - acc: 0.7002 - auc: 0.7700 - val_loss: 0.5835 - val_acc: 0.6878 - val_auc: 0.7794\n",
"Epoch 54: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5698 - acc: 0.7013 - auc: 0.7713 - val_loss: 0.5792 - val_acc: 0.6938 - val_auc: 0.7844\n",
"Epoch 55: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5696 - acc: 0.7014 - auc: 0.7715 - val_loss: 0.5835 - val_acc: 0.6884 - val_auc: 0.7826\n",
"Epoch 56: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5694 - acc: 0.7014 - auc: 0.7716 - val_loss: 0.5750 - val_acc: 0.6941 - val_auc: 0.7854\n",
"Epoch 57: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5697 - acc: 0.7011 - auc: 0.7713 - val_loss: 0.5778 - val_acc: 0.6917 - val_auc: 0.7867\n",
"Epoch 58: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5692 - acc: 0.7017 - auc: 0.7719 - val_loss: 0.5753 - val_acc: 0.6953 - val_auc: 0.7848\n",
"Epoch 59: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5691 - acc: 0.7016 - auc: 0.7720 - val_loss: 0.5896 - val_acc: 0.6790 - val_auc: 0.7847\n",
"Epoch 60: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5678 - acc: 0.7029 - auc: 0.7733 - val_loss: 0.5818 - val_acc: 0.6923 - val_auc: 0.7831\n",
"Epoch 61: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5682 - acc: 0.7022 - auc: 0.7729 - val_loss: 0.5809 - val_acc: 0.6918 - val_auc: 0.7830\n",
"Epoch 62: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5669 - acc: 0.7036 - auc: 0.7742 - val_loss: 0.5700 - val_acc: 0.7002 - val_auc: 0.7866\n",
"Epoch 63: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5671 - acc: 0.7033 - auc: 0.7740 - val_loss: 0.5705 - val_acc: 0.7013 - val_auc: 0.7875\n",
"Epoch 64: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5681 - acc: 0.7028 - auc: 0.7731 - val_loss: 0.5754 - val_acc: 0.6962 - val_auc: 0.7858\n",
"Epoch 65: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5677 - acc: 0.7028 - auc: 0.7734 - val_loss: 0.5787 - val_acc: 0.6946 - val_auc: 0.7839\n",
"Epoch 66: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.5659 - acc: 0.7042 - auc: 0.7752 - val_loss: 0.5848 - val_acc: 0.6878 - val_auc: 0.7853\n",
"Epoch 67: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5654 - acc: 0.7049 - auc: 0.7757 - val_loss: 0.5820 - val_acc: 0.6923 - val_auc: 0.7876\n",
"Epoch 68: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5643 - acc: 0.7054 - auc: 0.7769 - val_loss: 0.5717 - val_acc: 0.6985 - val_auc: 0.7888\n",
"Epoch 69: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5643 - acc: 0.7059 - auc: 0.7770 - val_loss: 0.5673 - val_acc: 0.7032 - val_auc: 0.7897\n",
"Epoch 70: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5641 - acc: 0.7061 - auc: 0.7772 - val_loss: 0.5914 - val_acc: 0.6796 - val_auc: 0.7848\n",
"Epoch 71: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5637 - acc: 0.7060 - auc: 0.7775 - val_loss: 0.5751 - val_acc: 0.6934 - val_auc: 0.7872\n",
"Epoch 72: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5640 - acc: 0.7060 - auc: 0.7772 - val_loss: 0.5724 - val_acc: 0.7003 - val_auc: 0.7870\n",
"Epoch 73: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5642 - acc: 0.7057 - auc: 0.7770 - val_loss: 0.5748 - val_acc: 0.6964 - val_auc: 0.7875\n",
"Epoch 74: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5638 - acc: 0.7062 - auc: 0.7775 - val_loss: 0.5778 - val_acc: 0.6908 - val_auc: 0.7893\n",
"Epoch 75: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5632 - acc: 0.7062 - auc: 0.7779 - val_loss: 0.5680 - val_acc: 0.7025 - val_auc: 0.7898\n",
"Epoch 76: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5631 - acc: 0.7070 - auc: 0.7783 - val_loss: 0.5767 - val_acc: 0.6947 - val_auc: 0.7905\n",
"Epoch 77: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5630 - acc: 0.7065 - auc: 0.7782 - val_loss: 0.5786 - val_acc: 0.6973 - val_auc: 0.7825\n",
"Epoch 78: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5627 - acc: 0.7069 - auc: 0.7786 - val_loss: 0.5805 - val_acc: 0.6886 - val_auc: 0.7888\n",
"Epoch 79: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5622 - acc: 0.7072 - auc: 0.7790 - val_loss: 0.5650 - val_acc: 0.7044 - val_auc: 0.7892\n",
"Epoch 80: 2160000/2160000 [==============================] - 88s 41us/sample - loss: 0.5618 - acc: 0.7075 - auc: 0.7794 - val_loss: 0.5838 - val_acc: 0.6898 - val_auc: 0.7880\n",
"Epoch 81: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5616 - acc: 0.7078 - auc: 0.7796 - val_loss: 0.5832 - val_acc: 0.6898 - val_auc: 0.7894\n",
"Epoch 82: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5615 - acc: 0.7080 - auc: 0.7798 - val_loss: 0.5807 - val_acc: 0.6905 - val_auc: 0.7902\n",
"Epoch 83: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5604 - acc: 0.7089 - auc: 0.7809 - val_loss: 0.5672 - val_acc: 0.7022 - val_auc: 0.7922\n",
"Epoch 84: 2160000/2160000 [==============================] - 72s 34us/sample - loss: 0.5599 - acc: 0.7090 - auc: 0.7813 - val_loss: 0.5658 - val_acc: 0.7043 - val_auc: 0.7934\n",
"Epoch 85: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5600 - acc: 0.7092 - auc: 0.7813 - val_loss: 0.5729 - val_acc: 0.6957 - val_auc: 0.7932\n",
"Epoch 86: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5597 - acc: 0.7095 - auc: 0.7815 - val_loss: 0.5692 - val_acc: 0.7001 - val_auc: 0.7926\n",
"Epoch 87: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5599 - acc: 0.7090 - auc: 0.7813 - val_loss: 0.5741 - val_acc: 0.6965 - val_auc: 0.7845\n",
"Epoch 88: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5603 - acc: 0.7087 - auc: 0.7809 - val_loss: 0.5634 - val_acc: 0.7056 - val_auc: 0.7885\n",
"Epoch 89: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5596 - acc: 0.7093 - auc: 0.7816 - val_loss: 0.5709 - val_acc: 0.7017 - val_auc: 0.7930\n",
"Epoch 90: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5589 - acc: 0.7099 - auc: 0.7822 - val_loss: 0.5696 - val_acc: 0.7019 - val_auc: 0.7899\n",
"Epoch 91: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5596 - acc: 0.7095 - auc: 0.7816 - val_loss: 0.5673 - val_acc: 0.7010 - val_auc: 0.7926\n",
"Epoch 92: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5589 - acc: 0.7098 - auc: 0.7822 - val_loss: 0.5757 - val_acc: 0.6945 - val_auc: 0.7912\n",
"Epoch 93: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5589 - acc: 0.7099 - auc: 0.7822 - val_loss: 0.5703 - val_acc: 0.6980 - val_auc: 0.7924\n",
"Epoch 94: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5584 - acc: 0.7102 - auc: 0.7828 - val_loss: 0.5681 - val_acc: 0.7004 - val_auc: 0.7961\n",
"Epoch 95: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5583 - acc: 0.7105 - auc: 0.7828 - val_loss: 0.5716 - val_acc: 0.7015 - val_auc: 0.7936\n",
"Epoch 96: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5580 - acc: 0.7103 - auc: 0.7831 - val_loss: 0.5760 - val_acc: 0.6963 - val_auc: 0.7931\n",
"Epoch 97: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5577 - acc: 0.7110 - auc: 0.7835 - val_loss: 0.5800 - val_acc: 0.6904 - val_auc: 0.7898\n",
"Epoch 98: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5572 - acc: 0.7116 - auc: 0.7840 - val_loss: 0.5727 - val_acc: 0.6969 - val_auc: 0.7952\n",
"Epoch 99: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5572 - acc: 0.7113 - auc: 0.7840 - val_loss: 0.5671 - val_acc: 0.7021 - val_auc: 0.7930\n",
"Epoch 100: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5568 - acc: 0.7115 - auc: 0.7844 - val_loss: 0.5655 - val_acc: 0.7034 - val_auc: 0.7948\n",
"Epoch 101: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5566 - acc: 0.7119 - auc: 0.7846 - val_loss: 0.5691 - val_acc: 0.6996 - val_auc: 0.7944\n",
"Epoch 102: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5571 - acc: 0.7113 - auc: 0.7841 - val_loss: 0.5620 - val_acc: 0.7072 - val_auc: 0.7958\n",
"Epoch 103: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5563 - acc: 0.7120 - auc: 0.7849 - val_loss: 0.5553 - val_acc: 0.7136 - val_auc: 0.7956\n",
"Epoch 104: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5559 - acc: 0.7118 - auc: 0.7852 - val_loss: 0.5717 - val_acc: 0.6966 - val_auc: 0.7949\n",
"Epoch 105: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5555 - acc: 0.7127 - auc: 0.7856 - val_loss: 0.5737 - val_acc: 0.6960 - val_auc: 0.7915\n",
"Epoch 106: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5553 - acc: 0.7120 - auc: 0.7857 - val_loss: 0.5659 - val_acc: 0.7012 - val_auc: 0.7958\n",
"Epoch 107: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5548 - acc: 0.7130 - auc: 0.7863 - val_loss: 0.5630 - val_acc: 0.7072 - val_auc: 0.7934\n",
"Epoch 108: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5546 - acc: 0.7132 - auc: 0.7865 - val_loss: 0.5730 - val_acc: 0.6966 - val_auc: 0.7944\n",
"Epoch 109: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5549 - acc: 0.7129 - auc: 0.7861 - val_loss: 0.5617 - val_acc: 0.7063 - val_auc: 0.7977\n",
"Epoch 110: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5542 - acc: 0.7133 - auc: 0.7868 - val_loss: 0.5703 - val_acc: 0.6982 - val_auc: 0.7959\n",
"Epoch 111: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5539 - acc: 0.7137 - auc: 0.7871 - val_loss: 0.5690 - val_acc: 0.7013 - val_auc: 0.7964\n",
"Epoch 112: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5544 - acc: 0.7135 - auc: 0.7867 - val_loss: 0.5674 - val_acc: 0.7034 - val_auc: 0.7954\n",
"Epoch 113: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5545 - acc: 0.7133 - auc: 0.7866 - val_loss: 0.5635 - val_acc: 0.7061 - val_auc: 0.7936\n",
"Epoch 114: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5541 - acc: 0.7138 - auc: 0.7870 - val_loss: 0.5642 - val_acc: 0.7045 - val_auc: 0.7965\n",
"Epoch 115: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5538 - acc: 0.7139 - auc: 0.7872 - val_loss: 0.5622 - val_acc: 0.7078 - val_auc: 0.7954\n",
"Epoch 116: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5534 - acc: 0.7141 - auc: 0.7876 - val_loss: 0.5656 - val_acc: 0.7033 - val_auc: 0.7965\n",
"Epoch 117: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5536 - acc: 0.7141 - auc: 0.7875 - val_loss: 0.5617 - val_acc: 0.7077 - val_auc: 0.7962\n",
"Epoch 118: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5532 - acc: 0.7144 - auc: 0.7878 - val_loss: 0.5602 - val_acc: 0.7071 - val_auc: 0.7996\n",
"Epoch 119: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5532 - acc: 0.7145 - auc: 0.7878 - val_loss: 0.5640 - val_acc: 0.7065 - val_auc: 0.7971\n",
"Epoch 120: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5531 - acc: 0.7147 - auc: 0.7880 - val_loss: 0.5568 - val_acc: 0.7116 - val_auc: 0.7992\n",
"Epoch 121: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5528 - acc: 0.7146 - auc: 0.7882 - val_loss: 0.5656 - val_acc: 0.7027 - val_auc: 0.7972\n",
"Epoch 122: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5527 - acc: 0.7147 - auc: 0.7883 - val_loss: 0.5635 - val_acc: 0.7058 - val_auc: 0.7983\n",
"Epoch 123: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5523 - acc: 0.7150 - auc: 0.7887 - val_loss: 0.5729 - val_acc: 0.6972 - val_auc: 0.7960\n",
"Epoch 124: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5522 - acc: 0.7151 - auc: 0.7887 - val_loss: 0.5655 - val_acc: 0.7041 - val_auc: 0.7949\n",
"Epoch 125: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5524 - acc: 0.7148 - auc: 0.7886 - val_loss: 0.5630 - val_acc: 0.7051 - val_auc: 0.7966\n",
"Epoch 126: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5517 - acc: 0.7152 - auc: 0.7892 - val_loss: 0.5617 - val_acc: 0.7070 - val_auc: 0.7990\n",
"Epoch 127: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5517 - acc: 0.7152 - auc: 0.7893 - val_loss: 0.5574 - val_acc: 0.7125 - val_auc: 0.7953\n",
"Epoch 128: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5515 - acc: 0.7157 - auc: 0.7895 - val_loss: 0.5693 - val_acc: 0.6999 - val_auc: 0.7975\n",
"Epoch 129: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5514 - acc: 0.7158 - auc: 0.7896 - val_loss: 0.5665 - val_acc: 0.7057 - val_auc: 0.7975\n",
"Epoch 130: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5514 - acc: 0.7159 - auc: 0.7896 - val_loss: 0.5575 - val_acc: 0.7123 - val_auc: 0.7955\n",
"Epoch 131: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5513 - acc: 0.7157 - auc: 0.7897 - val_loss: 0.5753 - val_acc: 0.6954 - val_auc: 0.7954\n",
"Epoch 132: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5510 - acc: 0.7162 - auc: 0.7900 - val_loss: 0.5599 - val_acc: 0.7071 - val_auc: 0.7996\n",
"Epoch 133: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5509 - acc: 0.7160 - auc: 0.7900 - val_loss: 0.5713 - val_acc: 0.6983 - val_auc: 0.7968\n",
"Epoch 134: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5505 - acc: 0.7164 - auc: 0.7904 - val_loss: 0.5649 - val_acc: 0.7048 - val_auc: 0.7958\n",
"Epoch 135: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5504 - acc: 0.7164 - auc: 0.7904 - val_loss: 0.5581 - val_acc: 0.7102 - val_auc: 0.7989\n",
"Epoch 136: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5502 - acc: 0.7166 - auc: 0.7907 - val_loss: 0.5599 - val_acc: 0.7090 - val_auc: 0.7974\n",
"Epoch 137: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5504 - acc: 0.7164 - auc: 0.7905 - val_loss: 0.5608 - val_acc: 0.7065 - val_auc: 0.7992\n",
"Epoch 138: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5503 - acc: 0.7166 - auc: 0.7907 - val_loss: 0.5681 - val_acc: 0.7046 - val_auc: 0.7988\n",
"Epoch 139: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5501 - acc: 0.7166 - auc: 0.7908 - val_loss: 0.5714 - val_acc: 0.6956 - val_auc: 0.7997\n",
"Epoch 140: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5500 - acc: 0.7166 - auc: 0.7907 - val_loss: 0.5706 - val_acc: 0.6998 - val_auc: 0.7997\n",
"Epoch 141: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5497 - acc: 0.7167 - auc: 0.7911 - val_loss: 0.5672 - val_acc: 0.7012 - val_auc: 0.7989\n",
"Epoch 142: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5496 - acc: 0.7170 - auc: 0.7912 - val_loss: 0.5592 - val_acc: 0.7086 - val_auc: 0.7995\n",
"Epoch 143: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5493 - acc: 0.7171 - auc: 0.7915 - val_loss: 0.5639 - val_acc: 0.7055 - val_auc: 0.7991\n",
"Epoch 144: 2160000/2160000 [==============================] - 79s 36us/sample - loss: 0.5494 - acc: 0.7169 - auc: 0.7914 - val_loss: 0.5550 - val_acc: 0.7132 - val_auc: 0.8021\n",
"Epoch 145: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5492 - acc: 0.7172 - auc: 0.7916 - val_loss: 0.5624 - val_acc: 0.7054 - val_auc: 0.8002\n",
"Epoch 146: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5488 - acc: 0.7174 - auc: 0.7919 - val_loss: 0.5612 - val_acc: 0.7066 - val_auc: 0.8017\n",
"Epoch 147: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5491 - acc: 0.7173 - auc: 0.7917 - val_loss: 0.5546 - val_acc: 0.7131 - val_auc: 0.8007\n",
"Epoch 148: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5484 - acc: 0.7177 - auc: 0.7923 - val_loss: 0.5566 - val_acc: 0.7134 - val_auc: 0.7995\n",
"Epoch 149: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5486 - acc: 0.7179 - auc: 0.7921 - val_loss: 0.5648 - val_acc: 0.7043 - val_auc: 0.7993\n",
"Epoch 150: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5486 - acc: 0.7177 - auc: 0.7922 - val_loss: 0.5612 - val_acc: 0.7043 - val_auc: 0.8029\n",
"Epoch 151: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5484 - acc: 0.7177 - auc: 0.7924 - val_loss: 0.5693 - val_acc: 0.7023 - val_auc: 0.7976\n",
"Epoch 152: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5481 - acc: 0.7178 - auc: 0.7926 - val_loss: 0.5689 - val_acc: 0.7003 - val_auc: 0.7986\n",
"Epoch 153: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5482 - acc: 0.7180 - auc: 0.7926 - val_loss: 0.5627 - val_acc: 0.7085 - val_auc: 0.7998\n",
"Epoch 154: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5479 - acc: 0.7184 - auc: 0.7929 - val_loss: 0.5695 - val_acc: 0.7027 - val_auc: 0.7988\n",
"Epoch 155: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5477 - acc: 0.7184 - auc: 0.7930 - val_loss: 0.5621 - val_acc: 0.7058 - val_auc: 0.8010\n",
"Epoch 156: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5475 - acc: 0.7185 - auc: 0.7932 - val_loss: 0.5646 - val_acc: 0.7037 - val_auc: 0.7993\n",
"Epoch 157: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5475 - acc: 0.7184 - auc: 0.7932 - val_loss: 0.5653 - val_acc: 0.7071 - val_auc: 0.7977\n",
"Epoch 158: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5474 - acc: 0.7183 - auc: 0.7933 - val_loss: 0.5615 - val_acc: 0.7065 - val_auc: 0.8030\n",
"Epoch 159: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5475 - acc: 0.7184 - auc: 0.7932 - val_loss: 0.5615 - val_acc: 0.7076 - val_auc: 0.8008\n",
"Epoch 160: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5478 - acc: 0.7179 - auc: 0.7928 - val_loss: 0.5592 - val_acc: 0.7107 - val_auc: 0.7995\n",
"Epoch 161: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5476 - acc: 0.7186 - auc: 0.7931 - val_loss: 0.5651 - val_acc: 0.7063 - val_auc: 0.7989\n",
"Epoch 162: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5473 - acc: 0.7187 - auc: 0.7934 - val_loss: 0.5633 - val_acc: 0.7074 - val_auc: 0.7989\n",
"Epoch 163: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5467 - acc: 0.7191 - auc: 0.7940 - val_loss: 0.5583 - val_acc: 0.7108 - val_auc: 0.8016\n",
"Epoch 164: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5464 - acc: 0.7193 - auc: 0.7941 - val_loss: 0.5604 - val_acc: 0.7089 - val_auc: 0.8004\n",
"Epoch 165: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5466 - acc: 0.7193 - auc: 0.7941 - val_loss: 0.5585 - val_acc: 0.7101 - val_auc: 0.7985\n",
"Epoch 166: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5464 - acc: 0.7195 - auc: 0.7942 - val_loss: 0.5564 - val_acc: 0.7111 - val_auc: 0.8018\n",
"Epoch 167: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5465 - acc: 0.7191 - auc: 0.7941 - val_loss: 0.5582 - val_acc: 0.7121 - val_auc: 0.8021\n",
"Epoch 168: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5463 - acc: 0.7195 - auc: 0.7944 - val_loss: 0.5572 - val_acc: 0.7130 - val_auc: 0.8011\n",
"Epoch 169: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5462 - acc: 0.7197 - auc: 0.7944 - val_loss: 0.5678 - val_acc: 0.7042 - val_auc: 0.7989\n",
"Epoch 170: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5461 - acc: 0.7192 - auc: 0.7945 - val_loss: 0.5628 - val_acc: 0.7077 - val_auc: 0.8016\n",
"Epoch 171: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5459 - acc: 0.7195 - auc: 0.7947 - val_loss: 0.5597 - val_acc: 0.7108 - val_auc: 0.7987\n",
"Epoch 172: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5459 - acc: 0.7195 - auc: 0.7947 - val_loss: 0.5558 - val_acc: 0.7130 - val_auc: 0.8015\n",
"Epoch 173: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5455 - acc: 0.7199 - auc: 0.7950 - val_loss: 0.5666 - val_acc: 0.7035 - val_auc: 0.8022\n",
"Epoch 174: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5452 - acc: 0.7201 - auc: 0.7954 - val_loss: 0.5583 - val_acc: 0.7107 - val_auc: 0.8021\n",
"Epoch 175: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5452 - acc: 0.7201 - auc: 0.7953 - val_loss: 0.5549 - val_acc: 0.7117 - val_auc: 0.8031\n",
"Epoch 176: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5450 - acc: 0.7202 - auc: 0.7954 - val_loss: 0.5606 - val_acc: 0.7071 - val_auc: 0.8027\n",
"Epoch 177: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5450 - acc: 0.7201 - auc: 0.7954 - val_loss: 0.5596 - val_acc: 0.7086 - val_auc: 0.8009\n",
"Epoch 178: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5451 - acc: 0.7202 - auc: 0.7954 - val_loss: 0.5658 - val_acc: 0.7041 - val_auc: 0.8031\n",
"Epoch 179: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5448 - acc: 0.7205 - auc: 0.7956 - val_loss: 0.5593 - val_acc: 0.7098 - val_auc: 0.8020\n",
"Epoch 180: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5447 - acc: 0.7202 - auc: 0.7957 - val_loss: 0.5516 - val_acc: 0.7149 - val_auc: 0.8044\n",
"Epoch 181: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5445 - acc: 0.7203 - auc: 0.7959 - val_loss: 0.5593 - val_acc: 0.7111 - val_auc: 0.7996\n",
"Epoch 182: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.5445 - acc: 0.7206 - auc: 0.7959 - val_loss: 0.5535 - val_acc: 0.7135 - val_auc: 0.8036\n",
"Epoch 183: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5445 - acc: 0.7206 - auc: 0.7960 - val_loss: 0.5575 - val_acc: 0.7097 - val_auc: 0.8024\n",
"Epoch 184: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5442 - acc: 0.7208 - auc: 0.7962 - val_loss: 0.5574 - val_acc: 0.7122 - val_auc: 0.8026\n",
"Epoch 185: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5442 - acc: 0.7209 - auc: 0.7962 - val_loss: 0.5553 - val_acc: 0.7132 - val_auc: 0.8033\n",
"Epoch 186: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5441 - acc: 0.7207 - auc: 0.7963 - val_loss: 0.5543 - val_acc: 0.7140 - val_auc: 0.8020\n",
"Epoch 187: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5438 - acc: 0.7210 - auc: 0.7966 - val_loss: 0.5701 - val_acc: 0.7010 - val_auc: 0.8024\n",
"Epoch 188: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5441 - acc: 0.7208 - auc: 0.7963 - val_loss: 0.5577 - val_acc: 0.7103 - val_auc: 0.8026\n",
"Epoch 189: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5439 - acc: 0.7210 - auc: 0.7965 - val_loss: 0.5621 - val_acc: 0.7070 - val_auc: 0.8017\n",
"Epoch 190: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5437 - acc: 0.7209 - auc: 0.7966 - val_loss: 0.5586 - val_acc: 0.7109 - val_auc: 0.8038\n",
"Epoch 191: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5437 - acc: 0.7210 - auc: 0.7966 - val_loss: 0.5564 - val_acc: 0.7125 - val_auc: 0.8040\n",
"Epoch 192: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5435 - acc: 0.7216 - auc: 0.7970 - val_loss: 0.5601 - val_acc: 0.7093 - val_auc: 0.8034\n",
"Epoch 193: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5436 - acc: 0.7210 - auc: 0.7968 - val_loss: 0.5594 - val_acc: 0.7096 - val_auc: 0.8043\n",
"Epoch 194: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5434 - acc: 0.7216 - auc: 0.7970 - val_loss: 0.5592 - val_acc: 0.7092 - val_auc: 0.8033\n",
"Epoch 195: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5433 - acc: 0.7215 - auc: 0.7970 - val_loss: 0.5542 - val_acc: 0.7125 - val_auc: 0.8059\n",
"Epoch 196: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5433 - acc: 0.7213 - auc: 0.7971 - val_loss: 0.5583 - val_acc: 0.7093 - val_auc: 0.8035\n",
"Epoch 197: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5432 - acc: 0.7217 - auc: 0.7972 - val_loss: 0.5535 - val_acc: 0.7140 - val_auc: 0.8040\n",
"Epoch 198: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5433 - acc: 0.7215 - auc: 0.7971 - val_loss: 0.5515 - val_acc: 0.7146 - val_auc: 0.8038\n",
"Epoch 199: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5430 - acc: 0.7217 - auc: 0.7973 - val_loss: 0.5614 - val_acc: 0.7072 - val_auc: 0.8028\n",
"Epoch 200: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5430 - acc: 0.7217 - auc: 0.7974 - val_loss: 0.5584 - val_acc: 0.7077 - val_auc: 0.8030\n"
]
}
],
"source": [
"print_logs('keras_model.log')"
]
},
{
"cell_type": "markdown",
"id": "executive-pontiac",
"metadata": {},
"source": [
"## RELU with all hidden layers with Dropout 0.4"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "brazilian-reminder",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.6833 - acc: 0.5522 - auc: 0.5657 - val_loss: 0.6479 - val_acc: 0.6227 - val_auc: 0.6637\n",
"Epoch 2: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.6496 - acc: 0.6173 - auc: 0.6584 - val_loss: 0.6307 - val_acc: 0.6418 - val_auc: 0.6931\n",
"Epoch 3: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.6428 - acc: 0.6251 - auc: 0.6710 - val_loss: 0.6256 - val_acc: 0.6462 - val_auc: 0.7055\n",
"Epoch 4: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6413 - acc: 0.6275 - auc: 0.6739 - val_loss: 0.6295 - val_acc: 0.6455 - val_auc: 0.7017\n",
"Epoch 5: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.6403 - acc: 0.6297 - auc: 0.6767 - val_loss: 0.6312 - val_acc: 0.6412 - val_auc: 0.7024\n",
"Epoch 6: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.6359 - acc: 0.6357 - auc: 0.6836 - val_loss: 0.6216 - val_acc: 0.6532 - val_auc: 0.7083\n",
"Epoch 7: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.6341 - acc: 0.6378 - auc: 0.6866 - val_loss: 0.6168 - val_acc: 0.6546 - val_auc: 0.7217\n",
"Epoch 8: 2160000/2160000 [==============================] - 77s 35us/sample - loss: 0.6308 - acc: 0.6422 - auc: 0.6927 - val_loss: 0.6144 - val_acc: 0.6576 - val_auc: 0.7249\n",
"Epoch 9: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.6319 - acc: 0.6410 - auc: 0.6906 - val_loss: 0.6139 - val_acc: 0.6640 - val_auc: 0.7237\n",
"Epoch 10: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.6284 - acc: 0.6454 - auc: 0.6966 - val_loss: 0.6247 - val_acc: 0.6513 - val_auc: 0.7129\n",
"Epoch 11: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.6283 - acc: 0.6450 - auc: 0.6965 - val_loss: 0.6123 - val_acc: 0.6643 - val_auc: 0.7333\n",
"Epoch 12: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.6276 - acc: 0.6444 - auc: 0.6970 - val_loss: 0.6327 - val_acc: 0.6385 - val_auc: 0.7214\n",
"Epoch 13: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.6236 - acc: 0.6496 - auc: 0.7035 - val_loss: 0.6083 - val_acc: 0.6703 - val_auc: 0.7336\n",
"Epoch 14: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.6226 - acc: 0.6497 - auc: 0.7044 - val_loss: 0.6186 - val_acc: 0.6585 - val_auc: 0.7181\n",
"Epoch 15: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.6229 - acc: 0.6489 - auc: 0.7035 - val_loss: 0.6090 - val_acc: 0.6686 - val_auc: 0.7360\n",
"Epoch 16: 2160000/2160000 [==============================] - 83s 38us/sample - loss: 0.6191 - acc: 0.6540 - auc: 0.7099 - val_loss: 0.6095 - val_acc: 0.6644 - val_auc: 0.7335\n",
"Epoch 17: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.6174 - acc: 0.6562 - auc: 0.7123 - val_loss: 0.6094 - val_acc: 0.6708 - val_auc: 0.7375\n",
"Epoch 18: 2160000/2160000 [==============================] - 60s 28us/sample - loss: 0.6134 - acc: 0.6604 - auc: 0.7184 - val_loss: 0.5988 - val_acc: 0.6820 - val_auc: 0.7462\n",
"Epoch 19: 2160000/2160000 [==============================] - 60s 28us/sample - loss: 0.6127 - acc: 0.6607 - auc: 0.7194 - val_loss: 0.6076 - val_acc: 0.6689 - val_auc: 0.7457\n",
"Epoch 20: 2160000/2160000 [==============================] - 60s 28us/sample - loss: 0.6106 - acc: 0.6627 - auc: 0.7222 - val_loss: 0.6012 - val_acc: 0.6796 - val_auc: 0.7474\n",
"Epoch 21: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.6069 - acc: 0.6669 - auc: 0.7274 - val_loss: 0.5977 - val_acc: 0.6838 - val_auc: 0.7542\n",
"Epoch 22: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.6053 - acc: 0.6681 - auc: 0.7294 - val_loss: 0.5963 - val_acc: 0.6852 - val_auc: 0.7519\n",
"Epoch 23: 2160000/2160000 [==============================] - 60s 28us/sample - loss: 0.6042 - acc: 0.6694 - auc: 0.7309 - val_loss: 0.5977 - val_acc: 0.6785 - val_auc: 0.7551\n",
"Epoch 24: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.6031 - acc: 0.6704 - auc: 0.7324 - val_loss: 0.6035 - val_acc: 0.6720 - val_auc: 0.7553\n",
"Epoch 25: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5999 - acc: 0.6743 - auc: 0.7368 - val_loss: 0.6139 - val_acc: 0.6546 - val_auc: 0.7598\n",
"Epoch 26: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5968 - acc: 0.6770 - auc: 0.7407 - val_loss: 0.5885 - val_acc: 0.6892 - val_auc: 0.7624\n",
"Epoch 27: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5950 - acc: 0.6786 - auc: 0.7429 - val_loss: 0.5988 - val_acc: 0.6739 - val_auc: 0.7602\n",
"Epoch 28: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5944 - acc: 0.6797 - auc: 0.7438 - val_loss: 0.6002 - val_acc: 0.6701 - val_auc: 0.7662\n",
"Epoch 29: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5940 - acc: 0.6801 - auc: 0.7441 - val_loss: 0.6058 - val_acc: 0.6618 - val_auc: 0.7653\n",
"Epoch 30: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5923 - acc: 0.6815 - auc: 0.7462 - val_loss: 0.5964 - val_acc: 0.6794 - val_auc: 0.7548\n",
"Epoch 31: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5911 - acc: 0.6821 - auc: 0.7476 - val_loss: 0.5904 - val_acc: 0.6840 - val_auc: 0.7687\n",
"Epoch 32: 2160000/2160000 [==============================] - 61s 28us/sample - loss: 0.5910 - acc: 0.6826 - auc: 0.7476 - val_loss: 0.6013 - val_acc: 0.6702 - val_auc: 0.7677\n",
"Epoch 33: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5912 - acc: 0.6822 - auc: 0.7473 - val_loss: 0.5927 - val_acc: 0.6821 - val_auc: 0.7641\n",
"Epoch 34: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5897 - acc: 0.6837 - auc: 0.7491 - val_loss: 0.5936 - val_acc: 0.6805 - val_auc: 0.7648\n",
"Epoch 35: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5877 - acc: 0.6853 - auc: 0.7514 - val_loss: 0.5888 - val_acc: 0.6879 - val_auc: 0.7700\n",
"Epoch 36: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5881 - acc: 0.6852 - auc: 0.7510 - val_loss: 0.5862 - val_acc: 0.6854 - val_auc: 0.7712\n",
"Epoch 37: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5890 - acc: 0.6845 - auc: 0.7500 - val_loss: 0.5945 - val_acc: 0.6811 - val_auc: 0.7706\n",
"Epoch 38: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5852 - acc: 0.6875 - auc: 0.7544 - val_loss: 0.5839 - val_acc: 0.6902 - val_auc: 0.7721\n",
"Epoch 39: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5847 - acc: 0.6882 - auc: 0.7549 - val_loss: 0.5969 - val_acc: 0.6741 - val_auc: 0.7623\n",
"Epoch 40: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5842 - acc: 0.6883 - auc: 0.7554 - val_loss: 0.5856 - val_acc: 0.6890 - val_auc: 0.7707\n",
"Epoch 41: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5812 - acc: 0.6918 - auc: 0.7591 - val_loss: 0.5778 - val_acc: 0.6964 - val_auc: 0.7713\n",
"Epoch 42: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5816 - acc: 0.6913 - auc: 0.7586 - val_loss: 0.5891 - val_acc: 0.6824 - val_auc: 0.7741\n",
"Epoch 43: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5804 - acc: 0.6918 - auc: 0.7598 - val_loss: 0.5895 - val_acc: 0.6848 - val_auc: 0.7733\n",
"Epoch 44: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5793 - acc: 0.6932 - auc: 0.7611 - val_loss: 0.5788 - val_acc: 0.6942 - val_auc: 0.7745\n",
"Epoch 45: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5791 - acc: 0.6933 - auc: 0.7612 - val_loss: 0.5805 - val_acc: 0.6920 - val_auc: 0.7726\n",
"Epoch 46: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5781 - acc: 0.6942 - auc: 0.7624 - val_loss: 0.5779 - val_acc: 0.6933 - val_auc: 0.7771\n",
"Epoch 47: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5772 - acc: 0.6949 - auc: 0.7634 - val_loss: 0.5853 - val_acc: 0.6863 - val_auc: 0.7729\n",
"Epoch 48: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5764 - acc: 0.6955 - auc: 0.7642 - val_loss: 0.5893 - val_acc: 0.6839 - val_auc: 0.7695\n",
"Epoch 49: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5761 - acc: 0.6957 - auc: 0.7645 - val_loss: 0.5753 - val_acc: 0.6976 - val_auc: 0.7772\n",
"Epoch 50: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5750 - acc: 0.6969 - auc: 0.7657 - val_loss: 0.5764 - val_acc: 0.6954 - val_auc: 0.7759\n",
"Epoch 51: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5741 - acc: 0.6977 - auc: 0.7667 - val_loss: 0.5839 - val_acc: 0.6852 - val_auc: 0.7791\n",
"Epoch 52: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5746 - acc: 0.6971 - auc: 0.7661 - val_loss: 0.5734 - val_acc: 0.6978 - val_auc: 0.7828\n",
"Epoch 53: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5729 - acc: 0.6987 - auc: 0.7681 - val_loss: 0.5733 - val_acc: 0.6976 - val_auc: 0.7788\n",
"Epoch 54: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5729 - acc: 0.6987 - auc: 0.7681 - val_loss: 0.5748 - val_acc: 0.6953 - val_auc: 0.7810\n",
"Epoch 55: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5723 - acc: 0.6990 - auc: 0.7687 - val_loss: 0.5761 - val_acc: 0.6923 - val_auc: 0.7841\n",
"Epoch 56: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5722 - acc: 0.6995 - auc: 0.7688 - val_loss: 0.5823 - val_acc: 0.6896 - val_auc: 0.7761\n",
"Epoch 57: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5715 - acc: 0.6999 - auc: 0.7695 - val_loss: 0.5814 - val_acc: 0.6902 - val_auc: 0.7790\n",
"Epoch 58: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5711 - acc: 0.7002 - auc: 0.7700 - val_loss: 0.5788 - val_acc: 0.6903 - val_auc: 0.7833\n",
"Epoch 59: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5704 - acc: 0.7008 - auc: 0.7707 - val_loss: 0.5858 - val_acc: 0.6859 - val_auc: 0.7781\n",
"Epoch 60: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5701 - acc: 0.7011 - auc: 0.7709 - val_loss: 0.5848 - val_acc: 0.6892 - val_auc: 0.7809\n",
"Epoch 61: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5695 - acc: 0.7016 - auc: 0.7716 - val_loss: 0.5708 - val_acc: 0.7003 - val_auc: 0.7882\n",
"Epoch 62: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5691 - acc: 0.7016 - auc: 0.7720 - val_loss: 0.5791 - val_acc: 0.6914 - val_auc: 0.7820\n",
"Epoch 63: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5687 - acc: 0.7022 - auc: 0.7724 - val_loss: 0.5701 - val_acc: 0.7027 - val_auc: 0.7816\n",
"Epoch 64: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5681 - acc: 0.7029 - auc: 0.7730 - val_loss: 0.5826 - val_acc: 0.6885 - val_auc: 0.7825\n",
"Epoch 65: 2160000/2160000 [==============================] - 88s 41us/sample - loss: 0.5675 - acc: 0.7031 - auc: 0.7737 - val_loss: 0.5809 - val_acc: 0.6917 - val_auc: 0.7846\n",
"Epoch 66: 2160000/2160000 [==============================] - 94s 43us/sample - loss: 0.5675 - acc: 0.7032 - auc: 0.7737 - val_loss: 0.5994 - val_acc: 0.6777 - val_auc: 0.7785\n",
"Epoch 67: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5675 - acc: 0.7031 - auc: 0.7737 - val_loss: 0.5758 - val_acc: 0.6929 - val_auc: 0.7881\n",
"Epoch 68: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5668 - acc: 0.7039 - auc: 0.7744 - val_loss: 0.5704 - val_acc: 0.7001 - val_auc: 0.7867\n",
"Epoch 69: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5662 - acc: 0.7043 - auc: 0.7750 - val_loss: 0.5687 - val_acc: 0.7005 - val_auc: 0.7886\n",
"Epoch 70: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5653 - acc: 0.7050 - auc: 0.7759 - val_loss: 0.5799 - val_acc: 0.6908 - val_auc: 0.7849\n",
"Epoch 71: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5661 - acc: 0.7044 - auc: 0.7750 - val_loss: 0.5770 - val_acc: 0.6937 - val_auc: 0.7814\n",
"Epoch 72: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5657 - acc: 0.7047 - auc: 0.7755 - val_loss: 0.5763 - val_acc: 0.6945 - val_auc: 0.7827\n",
"Epoch 73: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5646 - acc: 0.7055 - auc: 0.7765 - val_loss: 0.5730 - val_acc: 0.6953 - val_auc: 0.7865\n",
"Epoch 74: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5648 - acc: 0.7052 - auc: 0.7764 - val_loss: 0.5666 - val_acc: 0.7050 - val_auc: 0.7867\n",
"Epoch 75: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5646 - acc: 0.7055 - auc: 0.7766 - val_loss: 0.5807 - val_acc: 0.6879 - val_auc: 0.7875\n",
"Epoch 76: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5632 - acc: 0.7064 - auc: 0.7780 - val_loss: 0.5689 - val_acc: 0.6987 - val_auc: 0.7905\n",
"Epoch 77: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5637 - acc: 0.7061 - auc: 0.7775 - val_loss: 0.5666 - val_acc: 0.7020 - val_auc: 0.7899\n",
"Epoch 78: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5632 - acc: 0.7066 - auc: 0.7779 - val_loss: 0.5775 - val_acc: 0.6926 - val_auc: 0.7857\n",
"Epoch 79: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.5630 - acc: 0.7067 - auc: 0.7781 - val_loss: 0.5667 - val_acc: 0.7034 - val_auc: 0.7900\n",
"Epoch 80: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5627 - acc: 0.7066 - auc: 0.7785 - val_loss: 0.5697 - val_acc: 0.7009 - val_auc: 0.7868\n",
"Epoch 81: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5626 - acc: 0.7070 - auc: 0.7785 - val_loss: 0.5681 - val_acc: 0.7005 - val_auc: 0.7890\n",
"Epoch 82: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5625 - acc: 0.7068 - auc: 0.7786 - val_loss: 0.5764 - val_acc: 0.6956 - val_auc: 0.7869\n",
"Epoch 83: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5618 - acc: 0.7079 - auc: 0.7794 - val_loss: 0.5669 - val_acc: 0.7033 - val_auc: 0.7906\n",
"Epoch 84: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5613 - acc: 0.7080 - auc: 0.7799 - val_loss: 0.5736 - val_acc: 0.6955 - val_auc: 0.7896\n",
"Epoch 85: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5610 - acc: 0.7083 - auc: 0.7802 - val_loss: 0.5658 - val_acc: 0.7033 - val_auc: 0.7905\n",
"Epoch 86: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5605 - acc: 0.7084 - auc: 0.7807 - val_loss: 0.5710 - val_acc: 0.6993 - val_auc: 0.7858\n",
"Epoch 87: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5602 - acc: 0.7087 - auc: 0.7810 - val_loss: 0.5772 - val_acc: 0.6932 - val_auc: 0.7910\n",
"Epoch 88: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5595 - acc: 0.7095 - auc: 0.7817 - val_loss: 0.5777 - val_acc: 0.6944 - val_auc: 0.7864\n",
"Epoch 89: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5596 - acc: 0.7093 - auc: 0.7816 - val_loss: 0.5702 - val_acc: 0.6991 - val_auc: 0.7908\n",
"Epoch 90: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5594 - acc: 0.7093 - auc: 0.7818 - val_loss: 0.5713 - val_acc: 0.6966 - val_auc: 0.7942\n",
"Epoch 91: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5589 - acc: 0.7099 - auc: 0.7822 - val_loss: 0.5750 - val_acc: 0.6934 - val_auc: 0.7897\n",
"Epoch 92: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5590 - acc: 0.7097 - auc: 0.7822 - val_loss: 0.5622 - val_acc: 0.7046 - val_auc: 0.7942\n",
"Epoch 93: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5584 - acc: 0.7100 - auc: 0.7827 - val_loss: 0.5743 - val_acc: 0.6938 - val_auc: 0.7874\n",
"Epoch 94: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5595 - acc: 0.7091 - auc: 0.7816 - val_loss: 0.5741 - val_acc: 0.6944 - val_auc: 0.7912\n",
"Epoch 95: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5588 - acc: 0.7098 - auc: 0.7823 - val_loss: 0.5786 - val_acc: 0.6920 - val_auc: 0.7906\n",
"Epoch 96: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5582 - acc: 0.7103 - auc: 0.7830 - val_loss: 0.5653 - val_acc: 0.7036 - val_auc: 0.7921\n",
"Epoch 97: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5580 - acc: 0.7104 - auc: 0.7831 - val_loss: 0.5709 - val_acc: 0.6968 - val_auc: 0.7934\n",
"Epoch 98: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5572 - acc: 0.7109 - auc: 0.7839 - val_loss: 0.5668 - val_acc: 0.7014 - val_auc: 0.7931\n",
"Epoch 99: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5573 - acc: 0.7109 - auc: 0.7838 - val_loss: 0.5680 - val_acc: 0.7006 - val_auc: 0.7946\n",
"Epoch 100: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5577 - acc: 0.7106 - auc: 0.7835 - val_loss: 0.5624 - val_acc: 0.7039 - val_auc: 0.7939\n",
"Epoch 101: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5567 - acc: 0.7115 - auc: 0.7844 - val_loss: 0.5613 - val_acc: 0.7062 - val_auc: 0.7966\n",
"Epoch 102: 2160000/2160000 [==============================] - 64s 29us/sample - loss: 0.5567 - acc: 0.7115 - auc: 0.7844 - val_loss: 0.5671 - val_acc: 0.7002 - val_auc: 0.7935\n",
"Epoch 103: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5564 - acc: 0.7118 - auc: 0.7847 - val_loss: 0.5663 - val_acc: 0.6999 - val_auc: 0.7926\n",
"Epoch 104: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5570 - acc: 0.7114 - auc: 0.7842 - val_loss: 0.5586 - val_acc: 0.7107 - val_auc: 0.7970\n",
"Epoch 105: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5561 - acc: 0.7117 - auc: 0.7849 - val_loss: 0.5675 - val_acc: 0.7015 - val_auc: 0.7925\n",
"Epoch 106: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5567 - acc: 0.7114 - auc: 0.7845 - val_loss: 0.5618 - val_acc: 0.7076 - val_auc: 0.7944\n",
"Epoch 107: 2160000/2160000 [==============================] - 62s 29us/sample - loss: 0.5555 - acc: 0.7124 - auc: 0.7856 - val_loss: 0.5616 - val_acc: 0.7058 - val_auc: 0.7944\n",
"Epoch 108: 2160000/2160000 [==============================] - 63s 29us/sample - loss: 0.5557 - acc: 0.7120 - auc: 0.7854 - val_loss: 0.5635 - val_acc: 0.7035 - val_auc: 0.7962\n",
"Epoch 109: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5556 - acc: 0.7123 - auc: 0.7855 - val_loss: 0.5683 - val_acc: 0.7000 - val_auc: 0.7963\n",
"Epoch 110: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5557 - acc: 0.7122 - auc: 0.7854 - val_loss: 0.5700 - val_acc: 0.6956 - val_auc: 0.7964\n",
"Epoch 111: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5551 - acc: 0.7126 - auc: 0.7858 - val_loss: 0.5648 - val_acc: 0.7043 - val_auc: 0.7925\n",
"Epoch 112: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5548 - acc: 0.7128 - auc: 0.7862 - val_loss: 0.5652 - val_acc: 0.7026 - val_auc: 0.7973\n",
"Epoch 113: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5550 - acc: 0.7130 - auc: 0.7861 - val_loss: 0.5687 - val_acc: 0.6989 - val_auc: 0.7942\n",
"Epoch 114: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5554 - acc: 0.7124 - auc: 0.7856 - val_loss: 0.5674 - val_acc: 0.6999 - val_auc: 0.7950\n",
"Epoch 115: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5545 - acc: 0.7133 - auc: 0.7866 - val_loss: 0.5630 - val_acc: 0.7038 - val_auc: 0.7954\n",
"Epoch 116: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5538 - acc: 0.7139 - auc: 0.7873 - val_loss: 0.5627 - val_acc: 0.7074 - val_auc: 0.7946\n",
"Epoch 117: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5537 - acc: 0.7137 - auc: 0.7874 - val_loss: 0.5617 - val_acc: 0.7070 - val_auc: 0.7951\n",
"Epoch 118: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5549 - acc: 0.7127 - auc: 0.7861 - val_loss: 0.5668 - val_acc: 0.7030 - val_auc: 0.7921\n",
"Epoch 119: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5541 - acc: 0.7135 - auc: 0.7869 - val_loss: 0.5668 - val_acc: 0.7014 - val_auc: 0.7972\n",
"Epoch 120: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5538 - acc: 0.7135 - auc: 0.7871 - val_loss: 0.5761 - val_acc: 0.6890 - val_auc: 0.7955\n",
"Epoch 121: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5534 - acc: 0.7139 - auc: 0.7875 - val_loss: 0.5682 - val_acc: 0.7000 - val_auc: 0.7971\n",
"Epoch 122: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5533 - acc: 0.7144 - auc: 0.7878 - val_loss: 0.5679 - val_acc: 0.6989 - val_auc: 0.7981\n",
"Epoch 123: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5530 - acc: 0.7144 - auc: 0.7881 - val_loss: 0.5732 - val_acc: 0.6970 - val_auc: 0.7919\n",
"Epoch 124: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.5528 - acc: 0.7142 - auc: 0.7882 - val_loss: 0.5804 - val_acc: 0.6910 - val_auc: 0.7930\n",
"Epoch 125: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5529 - acc: 0.7146 - auc: 0.7881 - val_loss: 0.5640 - val_acc: 0.7020 - val_auc: 0.7969\n",
"Epoch 126: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5532 - acc: 0.7143 - auc: 0.7878 - val_loss: 0.5677 - val_acc: 0.7000 - val_auc: 0.7953\n",
"Epoch 127: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5524 - acc: 0.7149 - auc: 0.7885 - val_loss: 0.5634 - val_acc: 0.7024 - val_auc: 0.7979\n",
"Epoch 128: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5523 - acc: 0.7146 - auc: 0.7886 - val_loss: 0.5779 - val_acc: 0.6918 - val_auc: 0.7957\n",
"Epoch 129: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5523 - acc: 0.7150 - auc: 0.7887 - val_loss: 0.5691 - val_acc: 0.6977 - val_auc: 0.7971\n",
"Epoch 130: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5518 - acc: 0.7153 - auc: 0.7892 - val_loss: 0.5633 - val_acc: 0.7034 - val_auc: 0.7971\n",
"Epoch 131: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5523 - acc: 0.7150 - auc: 0.7886 - val_loss: 0.5683 - val_acc: 0.6967 - val_auc: 0.7966\n",
"Epoch 132: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5516 - acc: 0.7155 - auc: 0.7893 - val_loss: 0.5626 - val_acc: 0.7060 - val_auc: 0.7984\n",
"Epoch 133: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5514 - acc: 0.7155 - auc: 0.7894 - val_loss: 0.5631 - val_acc: 0.7043 - val_auc: 0.8009\n",
"Epoch 134: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5515 - acc: 0.7156 - auc: 0.7893 - val_loss: 0.5627 - val_acc: 0.7048 - val_auc: 0.7985\n",
"Epoch 135: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5515 - acc: 0.7153 - auc: 0.7894 - val_loss: 0.5643 - val_acc: 0.7046 - val_auc: 0.7964\n",
"Epoch 136: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5518 - acc: 0.7153 - auc: 0.7892 - val_loss: 0.5646 - val_acc: 0.7032 - val_auc: 0.7967\n",
"Epoch 137: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5517 - acc: 0.7152 - auc: 0.7892 - val_loss: 0.5581 - val_acc: 0.7092 - val_auc: 0.8001\n",
"Epoch 138: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5507 - acc: 0.7158 - auc: 0.7902 - val_loss: 0.5632 - val_acc: 0.7051 - val_auc: 0.7963\n",
"Epoch 139: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5516 - acc: 0.7153 - auc: 0.7893 - val_loss: 0.5644 - val_acc: 0.7055 - val_auc: 0.7948\n",
"Epoch 140: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5509 - acc: 0.7161 - auc: 0.7900 - val_loss: 0.5619 - val_acc: 0.7066 - val_auc: 0.7990\n",
"Epoch 141: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5506 - acc: 0.7162 - auc: 0.7903 - val_loss: 0.5720 - val_acc: 0.6926 - val_auc: 0.7989\n",
"Epoch 142: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5500 - acc: 0.7167 - auc: 0.7909 - val_loss: 0.5670 - val_acc: 0.7019 - val_auc: 0.7987\n",
"Epoch 143: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5502 - acc: 0.7167 - auc: 0.7906 - val_loss: 0.5530 - val_acc: 0.7125 - val_auc: 0.8017\n",
"Epoch 144: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5498 - acc: 0.7166 - auc: 0.7910 - val_loss: 0.5754 - val_acc: 0.6940 - val_auc: 0.7963\n",
"Epoch 145: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5503 - acc: 0.7163 - auc: 0.7905 - val_loss: 0.5638 - val_acc: 0.7026 - val_auc: 0.8008\n",
"Epoch 146: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5499 - acc: 0.7168 - auc: 0.7909 - val_loss: 0.5698 - val_acc: 0.6993 - val_auc: 0.7931\n",
"Epoch 147: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5496 - acc: 0.7167 - auc: 0.7912 - val_loss: 0.5644 - val_acc: 0.7019 - val_auc: 0.7978\n",
"Epoch 148: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5496 - acc: 0.7169 - auc: 0.7912 - val_loss: 0.5647 - val_acc: 0.7008 - val_auc: 0.8038\n",
"Epoch 149: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5496 - acc: 0.7170 - auc: 0.7912 - val_loss: 0.5636 - val_acc: 0.7062 - val_auc: 0.7961\n",
"Epoch 150: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5494 - acc: 0.7169 - auc: 0.7914 - val_loss: 0.5548 - val_acc: 0.7117 - val_auc: 0.7991\n",
"Epoch 151: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5493 - acc: 0.7169 - auc: 0.7915 - val_loss: 0.5627 - val_acc: 0.7028 - val_auc: 0.8009\n",
"Epoch 152: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5486 - acc: 0.7173 - auc: 0.7920 - val_loss: 0.5666 - val_acc: 0.7028 - val_auc: 0.8022\n",
"Epoch 153: 2160000/2160000 [==============================] - 83s 39us/sample - loss: 0.5487 - acc: 0.7177 - auc: 0.7921 - val_loss: 0.5583 - val_acc: 0.7089 - val_auc: 0.8017\n",
"Epoch 154: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5488 - acc: 0.7174 - auc: 0.7921 - val_loss: 0.5589 - val_acc: 0.7082 - val_auc: 0.8003\n",
"Epoch 155: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5478 - acc: 0.7184 - auc: 0.7929 - val_loss: 0.5587 - val_acc: 0.7072 - val_auc: 0.8022\n",
"Epoch 156: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5479 - acc: 0.7184 - auc: 0.7928 - val_loss: 0.5680 - val_acc: 0.7020 - val_auc: 0.8001\n",
"Epoch 157: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5488 - acc: 0.7176 - auc: 0.7920 - val_loss: 0.5609 - val_acc: 0.7056 - val_auc: 0.8010\n",
"Epoch 158: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5484 - acc: 0.7179 - auc: 0.7923 - val_loss: 0.5727 - val_acc: 0.6974 - val_auc: 0.7966\n",
"Epoch 159: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5482 - acc: 0.7181 - auc: 0.7926 - val_loss: 0.5739 - val_acc: 0.6967 - val_auc: 0.7947\n",
"Epoch 160: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5495 - acc: 0.7168 - auc: 0.7913 - val_loss: 0.5664 - val_acc: 0.7038 - val_auc: 0.7957\n",
"Epoch 161: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5484 - acc: 0.7177 - auc: 0.7923 - val_loss: 0.5640 - val_acc: 0.7041 - val_auc: 0.7957\n",
"Epoch 162: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5486 - acc: 0.7173 - auc: 0.7921 - val_loss: 0.5661 - val_acc: 0.6998 - val_auc: 0.8022\n",
"Epoch 163: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5476 - acc: 0.7182 - auc: 0.7930 - val_loss: 0.5641 - val_acc: 0.7019 - val_auc: 0.7990\n",
"Epoch 164: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.5476 - acc: 0.7187 - auc: 0.7931 - val_loss: 0.5731 - val_acc: 0.6949 - val_auc: 0.8001\n",
"Epoch 165: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5474 - acc: 0.7185 - auc: 0.7933 - val_loss: 0.5689 - val_acc: 0.6980 - val_auc: 0.8018\n",
"Epoch 166: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5474 - acc: 0.7186 - auc: 0.7933 - val_loss: 0.5568 - val_acc: 0.7097 - val_auc: 0.8013\n",
"Epoch 167: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5476 - acc: 0.7186 - auc: 0.7931 - val_loss: 0.5541 - val_acc: 0.7129 - val_auc: 0.8026\n",
"Epoch 168: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5471 - acc: 0.7189 - auc: 0.7936 - val_loss: 0.5566 - val_acc: 0.7098 - val_auc: 0.8000\n",
"Epoch 169: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5474 - acc: 0.7184 - auc: 0.7933 - val_loss: 0.5614 - val_acc: 0.7055 - val_auc: 0.8002\n",
"Epoch 170: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5466 - acc: 0.7194 - auc: 0.7940 - val_loss: 0.5573 - val_acc: 0.7116 - val_auc: 0.7998\n",
"Epoch 171: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5470 - acc: 0.7187 - auc: 0.7936 - val_loss: 0.5584 - val_acc: 0.7080 - val_auc: 0.8007\n",
"Epoch 172: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5460 - acc: 0.7195 - auc: 0.7945 - val_loss: 0.5747 - val_acc: 0.6916 - val_auc: 0.8005\n",
"Epoch 173: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5464 - acc: 0.7193 - auc: 0.7942 - val_loss: 0.5640 - val_acc: 0.7045 - val_auc: 0.8004\n",
"Epoch 174: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5465 - acc: 0.7190 - auc: 0.7940 - val_loss: 0.5533 - val_acc: 0.7137 - val_auc: 0.7999\n",
"Epoch 175: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5466 - acc: 0.7191 - auc: 0.7940 - val_loss: 0.5628 - val_acc: 0.7072 - val_auc: 0.7984\n",
"Epoch 176: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5462 - acc: 0.7197 - auc: 0.7945 - val_loss: 0.5654 - val_acc: 0.7037 - val_auc: 0.7990\n",
"Epoch 177: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5467 - acc: 0.7188 - auc: 0.7939 - val_loss: 0.5566 - val_acc: 0.7106 - val_auc: 0.8007\n",
"Epoch 178: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5465 - acc: 0.7189 - auc: 0.7941 - val_loss: 0.5738 - val_acc: 0.6931 - val_auc: 0.8014\n",
"Epoch 179: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5463 - acc: 0.7191 - auc: 0.7942 - val_loss: 0.5642 - val_acc: 0.7061 - val_auc: 0.8020\n",
"Epoch 180: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5460 - acc: 0.7193 - auc: 0.7946 - val_loss: 0.5600 - val_acc: 0.7066 - val_auc: 0.8057\n",
"Epoch 181: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5458 - acc: 0.7197 - auc: 0.7947 - val_loss: 0.5569 - val_acc: 0.7104 - val_auc: 0.8009\n",
"Epoch 182: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5455 - acc: 0.7199 - auc: 0.7950 - val_loss: 0.5654 - val_acc: 0.7023 - val_auc: 0.8018\n",
"Epoch 183: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5461 - acc: 0.7191 - auc: 0.7944 - val_loss: 0.5610 - val_acc: 0.7076 - val_auc: 0.7999\n",
"Epoch 184: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5460 - acc: 0.7196 - auc: 0.7946 - val_loss: 0.5610 - val_acc: 0.7042 - val_auc: 0.8014\n",
"Epoch 185: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5466 - acc: 0.7188 - auc: 0.7939 - val_loss: 0.5661 - val_acc: 0.7036 - val_auc: 0.7989\n",
"Epoch 186: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5467 - acc: 0.7190 - auc: 0.7939 - val_loss: 0.5585 - val_acc: 0.7090 - val_auc: 0.8012\n",
"Epoch 187: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5457 - acc: 0.7197 - auc: 0.7948 - val_loss: 0.5594 - val_acc: 0.7086 - val_auc: 0.7999\n",
"Epoch 188: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5454 - acc: 0.7202 - auc: 0.7952 - val_loss: 0.5540 - val_acc: 0.7148 - val_auc: 0.8042\n",
"Epoch 189: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5451 - acc: 0.7200 - auc: 0.7954 - val_loss: 0.5689 - val_acc: 0.6991 - val_auc: 0.8004\n",
"Epoch 190: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5452 - acc: 0.7202 - auc: 0.7953 - val_loss: 0.5685 - val_acc: 0.7016 - val_auc: 0.8004\n",
"Epoch 191: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5448 - acc: 0.7205 - auc: 0.7957 - val_loss: 0.5622 - val_acc: 0.7047 - val_auc: 0.8040\n",
"Epoch 192: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5441 - acc: 0.7212 - auc: 0.7964 - val_loss: 0.5568 - val_acc: 0.7105 - val_auc: 0.8040\n",
"Epoch 193: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5451 - acc: 0.7200 - auc: 0.7954 - val_loss: 0.5576 - val_acc: 0.7095 - val_auc: 0.8026\n",
"Epoch 194: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5446 - acc: 0.7205 - auc: 0.7958 - val_loss: 0.5536 - val_acc: 0.7133 - val_auc: 0.8064\n",
"Epoch 195: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5438 - acc: 0.7210 - auc: 0.7966 - val_loss: 0.5514 - val_acc: 0.7150 - val_auc: 0.8015\n",
"Epoch 196: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5448 - acc: 0.7199 - auc: 0.7956 - val_loss: 0.5652 - val_acc: 0.7044 - val_auc: 0.8007\n",
"Epoch 197: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.5457 - acc: 0.7197 - auc: 0.7949 - val_loss: 0.5620 - val_acc: 0.7045 - val_auc: 0.8019\n",
"Epoch 198: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5458 - acc: 0.7195 - auc: 0.7948 - val_loss: 0.5614 - val_acc: 0.7066 - val_auc: 0.8012\n",
"Epoch 199: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5445 - acc: 0.7205 - auc: 0.7960 - val_loss: 0.5696 - val_acc: 0.7012 - val_auc: 0.8019\n",
"Epoch 200: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5450 - acc: 0.7200 - auc: 0.7954 - val_loss: 0.5561 - val_acc: 0.7108 - val_auc: 0.8000\n"
]
}
],
"source": [
"print_logs('keras_model-kera_lr005.log')"
]
},
{
"cell_type": "markdown",
"id": "broke-basket",
"metadata": {},
"source": [
"## ELU with all hidden layers with Dropout 0.4"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "novel-assets",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1: 2160000/2160000 [==============================] - 97s 45us/sample - loss: 0.6784 - acc: 0.5618 - auc: 0.5835 - val_loss: 0.6537 - val_acc: 0.6108 - val_auc: 0.6584\n",
"Epoch 2: 2160000/2160000 [==============================] - 97s 45us/sample - loss: 0.6528 - acc: 0.6127 - auc: 0.6513 - val_loss: 0.6424 - val_acc: 0.6287 - val_auc: 0.6705\n",
"Epoch 3: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.6474 - acc: 0.6219 - auc: 0.6616 - val_loss: 0.6426 - val_acc: 0.6292 - val_auc: 0.6726\n",
"Epoch 4: 2160000/2160000 [==============================] - 95s 44us/sample - loss: 0.6449 - acc: 0.6270 - auc: 0.6663 - val_loss: 0.6400 - val_acc: 0.6332 - val_auc: 0.6773\n",
"Epoch 5: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.6436 - acc: 0.6290 - auc: 0.6688 - val_loss: 0.6379 - val_acc: 0.6364 - val_auc: 0.6791\n",
"Epoch 6: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.6421 - acc: 0.6308 - auc: 0.6717 - val_loss: 0.6370 - val_acc: 0.6375 - val_auc: 0.6804\n",
"Epoch 7: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.6396 - acc: 0.6333 - auc: 0.6771 - val_loss: 0.6335 - val_acc: 0.6414 - val_auc: 0.6949\n",
"Epoch 8: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.6346 - acc: 0.6382 - auc: 0.6881 - val_loss: 0.6234 - val_acc: 0.6498 - val_auc: 0.7088\n",
"Epoch 9: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.6302 - acc: 0.6449 - auc: 0.6971 - val_loss: 0.6195 - val_acc: 0.6559 - val_auc: 0.7123\n",
"Epoch 10: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.6261 - acc: 0.6499 - auc: 0.7038 - val_loss: 0.6140 - val_acc: 0.6622 - val_auc: 0.7211\n",
"Epoch 11: 2160000/2160000 [==============================] - 93s 43us/sample - loss: 0.6232 - acc: 0.6535 - auc: 0.7084 - val_loss: 0.6196 - val_acc: 0.6506 - val_auc: 0.7258\n",
"Epoch 12: 2160000/2160000 [==============================] - 87s 40us/sample - loss: 0.6218 - acc: 0.6555 - auc: 0.7106 - val_loss: 0.6129 - val_acc: 0.6583 - val_auc: 0.7276\n",
"Epoch 13: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.6200 - acc: 0.6572 - auc: 0.7131 - val_loss: 0.6070 - val_acc: 0.6686 - val_auc: 0.7292\n",
"Epoch 14: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.6185 - acc: 0.6585 - auc: 0.7150 - val_loss: 0.6156 - val_acc: 0.6644 - val_auc: 0.7304\n",
"Epoch 15: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.6167 - acc: 0.6606 - auc: 0.7174 - val_loss: 0.6067 - val_acc: 0.6708 - val_auc: 0.7312\n",
"Epoch 16: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.6150 - acc: 0.6619 - auc: 0.7195 - val_loss: 0.6072 - val_acc: 0.6724 - val_auc: 0.7333\n",
"Epoch 17: 2160000/2160000 [==============================] - 91s 42us/sample - loss: 0.6133 - acc: 0.6638 - auc: 0.7217 - val_loss: 0.6059 - val_acc: 0.6700 - val_auc: 0.7318\n",
"Epoch 18: 2160000/2160000 [==============================] - 90s 42us/sample - loss: 0.6119 - acc: 0.6649 - auc: 0.7235 - val_loss: 0.6028 - val_acc: 0.6677 - val_auc: 0.7398\n",
"Epoch 19: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.6110 - acc: 0.6658 - auc: 0.7247 - val_loss: 0.6027 - val_acc: 0.6752 - val_auc: 0.7387\n",
"Epoch 20: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.6099 - acc: 0.6670 - auc: 0.7262 - val_loss: 0.6027 - val_acc: 0.6683 - val_auc: 0.7367\n",
"Epoch 21: 2160000/2160000 [==============================] - 92s 43us/sample - loss: 0.6086 - acc: 0.6687 - auc: 0.7279 - val_loss: 0.5961 - val_acc: 0.6765 - val_auc: 0.7427\n",
"Epoch 22: 2160000/2160000 [==============================] - 97s 45us/sample - loss: 0.6074 - acc: 0.6694 - auc: 0.7295 - val_loss: 0.5955 - val_acc: 0.6804 - val_auc: 0.7438\n",
"Epoch 23: 2160000/2160000 [==============================] - 92s 42us/sample - loss: 0.6069 - acc: 0.6699 - auc: 0.7302 - val_loss: 0.5914 - val_acc: 0.6837 - val_auc: 0.7488\n",
"Epoch 24: 2160000/2160000 [==============================] - 111s 51us/sample - loss: 0.6050 - acc: 0.6717 - auc: 0.7326 - val_loss: 0.5905 - val_acc: 0.6838 - val_auc: 0.7509\n",
"Epoch 25: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.6040 - acc: 0.6725 - auc: 0.7338 - val_loss: 0.5928 - val_acc: 0.6821 - val_auc: 0.7498\n",
"Epoch 26: 2160000/2160000 [==============================] - 88s 41us/sample - loss: 0.6029 - acc: 0.6732 - auc: 0.7351 - val_loss: 0.5883 - val_acc: 0.6855 - val_auc: 0.7521\n",
"Epoch 27: 2160000/2160000 [==============================] - 95s 44us/sample - loss: 0.6016 - acc: 0.6745 - auc: 0.7367 - val_loss: 0.5913 - val_acc: 0.6773 - val_auc: 0.7517\n",
"Epoch 28: 2160000/2160000 [==============================] - 87s 40us/sample - loss: 0.6004 - acc: 0.6755 - auc: 0.7381 - val_loss: 0.5918 - val_acc: 0.6783 - val_auc: 0.7473\n",
"Epoch 29: 2160000/2160000 [==============================] - 87s 40us/sample - loss: 0.5988 - acc: 0.6768 - auc: 0.7400 - val_loss: 0.5822 - val_acc: 0.6887 - val_auc: 0.7580\n",
"Epoch 30: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.5975 - acc: 0.6781 - auc: 0.7415 - val_loss: 0.5864 - val_acc: 0.6859 - val_auc: 0.7596\n",
"Epoch 31: 2160000/2160000 [==============================] - 92s 42us/sample - loss: 0.5967 - acc: 0.6786 - auc: 0.7424 - val_loss: 0.5836 - val_acc: 0.6890 - val_auc: 0.7591\n",
"Epoch 32: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5956 - acc: 0.6793 - auc: 0.7435 - val_loss: 0.5779 - val_acc: 0.6926 - val_auc: 0.7624\n",
"Epoch 33: 2160000/2160000 [==============================] - 94s 44us/sample - loss: 0.5945 - acc: 0.6804 - auc: 0.7448 - val_loss: 0.5784 - val_acc: 0.6925 - val_auc: 0.7630\n",
"Epoch 34: 2160000/2160000 [==============================] - 108s 50us/sample - loss: 0.5936 - acc: 0.6814 - auc: 0.7458 - val_loss: 0.5821 - val_acc: 0.6869 - val_auc: 0.7581\n",
"Epoch 35: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5926 - acc: 0.6817 - auc: 0.7468 - val_loss: 0.5782 - val_acc: 0.6935 - val_auc: 0.7629\n",
"Epoch 36: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5918 - acc: 0.6825 - auc: 0.7477 - val_loss: 0.5829 - val_acc: 0.6880 - val_auc: 0.7624\n",
"Epoch 37: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5907 - acc: 0.6836 - auc: 0.7489 - val_loss: 0.5792 - val_acc: 0.6905 - val_auc: 0.7642\n",
"Epoch 38: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5906 - acc: 0.6835 - auc: 0.7490 - val_loss: 0.5787 - val_acc: 0.6925 - val_auc: 0.7647\n",
"Epoch 39: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5898 - acc: 0.6846 - auc: 0.7499 - val_loss: 0.5745 - val_acc: 0.6957 - val_auc: 0.7668\n",
"Epoch 40: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5892 - acc: 0.6846 - auc: 0.7505 - val_loss: 0.5753 - val_acc: 0.6951 - val_auc: 0.7670\n",
"Epoch 41: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5884 - acc: 0.6854 - auc: 0.7514 - val_loss: 0.5735 - val_acc: 0.6955 - val_auc: 0.7679\n",
"Epoch 42: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5878 - acc: 0.6856 - auc: 0.7520 - val_loss: 0.5712 - val_acc: 0.6977 - val_auc: 0.7692\n",
"Epoch 43: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5876 - acc: 0.6858 - auc: 0.7524 - val_loss: 0.5725 - val_acc: 0.6970 - val_auc: 0.7685\n",
"Epoch 44: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5872 - acc: 0.6863 - auc: 0.7527 - val_loss: 0.5735 - val_acc: 0.6953 - val_auc: 0.7664\n",
"Epoch 45: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5864 - acc: 0.6867 - auc: 0.7535 - val_loss: 0.5750 - val_acc: 0.6947 - val_auc: 0.7657\n",
"Epoch 46: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5863 - acc: 0.6867 - auc: 0.7535 - val_loss: 0.5705 - val_acc: 0.6986 - val_auc: 0.7711\n",
"Epoch 47: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5855 - acc: 0.6878 - auc: 0.7546 - val_loss: 0.5709 - val_acc: 0.6986 - val_auc: 0.7717\n",
"Epoch 48: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5851 - acc: 0.6879 - auc: 0.7550 - val_loss: 0.5708 - val_acc: 0.6988 - val_auc: 0.7701\n",
"Epoch 49: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5849 - acc: 0.6881 - auc: 0.7552 - val_loss: 0.5697 - val_acc: 0.6997 - val_auc: 0.7718\n",
"Epoch 50: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5844 - acc: 0.6885 - auc: 0.7557 - val_loss: 0.5754 - val_acc: 0.6944 - val_auc: 0.7706\n",
"Epoch 51: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5839 - acc: 0.6892 - auc: 0.7564 - val_loss: 0.5734 - val_acc: 0.6978 - val_auc: 0.7680\n",
"Epoch 52: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5833 - acc: 0.6899 - auc: 0.7570 - val_loss: 0.5671 - val_acc: 0.7004 - val_auc: 0.7730\n",
"Epoch 53: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5834 - acc: 0.6894 - auc: 0.7568 - val_loss: 0.5681 - val_acc: 0.7012 - val_auc: 0.7728\n",
"Epoch 54: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5830 - acc: 0.6898 - auc: 0.7573 - val_loss: 0.5682 - val_acc: 0.6993 - val_auc: 0.7723\n",
"Epoch 55: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5825 - acc: 0.6900 - auc: 0.7578 - val_loss: 0.5744 - val_acc: 0.6949 - val_auc: 0.7688\n",
"Epoch 56: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5819 - acc: 0.6910 - auc: 0.7585 - val_loss: 0.5692 - val_acc: 0.6995 - val_auc: 0.7737\n",
"Epoch 57: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5818 - acc: 0.6908 - auc: 0.7586 - val_loss: 0.5704 - val_acc: 0.7007 - val_auc: 0.7727\n",
"Epoch 58: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5814 - acc: 0.6912 - auc: 0.7591 - val_loss: 0.5680 - val_acc: 0.7003 - val_auc: 0.7742\n",
"Epoch 59: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5812 - acc: 0.6913 - auc: 0.7593 - val_loss: 0.5736 - val_acc: 0.6950 - val_auc: 0.7747\n",
"Epoch 60: 2160000/2160000 [==============================] - 65s 30us/sample - loss: 0.5808 - acc: 0.6916 - auc: 0.7598 - val_loss: 0.5660 - val_acc: 0.7020 - val_auc: 0.7747\n",
"Epoch 61: 2160000/2160000 [==============================] - 64s 30us/sample - loss: 0.5802 - acc: 0.6922 - auc: 0.7604 - val_loss: 0.5676 - val_acc: 0.7009 - val_auc: 0.7749\n",
"Epoch 62: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5798 - acc: 0.6926 - auc: 0.7608 - val_loss: 0.5679 - val_acc: 0.6993 - val_auc: 0.7740\n",
"Epoch 63: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5798 - acc: 0.6924 - auc: 0.7608 - val_loss: 0.5642 - val_acc: 0.7043 - val_auc: 0.7767\n",
"Epoch 64: 2160000/2160000 [==============================] - 66s 30us/sample - loss: 0.5796 - acc: 0.6926 - auc: 0.7610 - val_loss: 0.5709 - val_acc: 0.6987 - val_auc: 0.7744\n",
"Epoch 65: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5793 - acc: 0.6928 - auc: 0.7613 - val_loss: 0.5656 - val_acc: 0.7034 - val_auc: 0.7768\n",
"Epoch 66: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5792 - acc: 0.6926 - auc: 0.7613 - val_loss: 0.5650 - val_acc: 0.7036 - val_auc: 0.7761\n",
"Epoch 67: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5789 - acc: 0.6935 - auc: 0.7618 - val_loss: 0.5672 - val_acc: 0.7026 - val_auc: 0.7747\n",
"Epoch 68: 2160000/2160000 [==============================] - 87s 40us/sample - loss: 0.5788 - acc: 0.6933 - auc: 0.7619 - val_loss: 0.5668 - val_acc: 0.7026 - val_auc: 0.7760\n",
"Epoch 69: 2160000/2160000 [==============================] - 88s 41us/sample - loss: 0.5783 - acc: 0.6938 - auc: 0.7624 - val_loss: 0.5675 - val_acc: 0.7021 - val_auc: 0.7736\n",
"Epoch 70: 2160000/2160000 [==============================] - 99s 46us/sample - loss: 0.5778 - acc: 0.6941 - auc: 0.7629 - val_loss: 0.5679 - val_acc: 0.7018 - val_auc: 0.7747\n",
"Epoch 71: 2160000/2160000 [==============================] - 88s 41us/sample - loss: 0.5777 - acc: 0.6942 - auc: 0.7631 - val_loss: 0.5700 - val_acc: 0.7015 - val_auc: 0.7780\n",
"Epoch 72: 2160000/2160000 [==============================] - 93s 43us/sample - loss: 0.5774 - acc: 0.6944 - auc: 0.7633 - val_loss: 0.5646 - val_acc: 0.7029 - val_auc: 0.7766\n",
"Epoch 73: 2160000/2160000 [==============================] - 99s 46us/sample - loss: 0.5770 - acc: 0.6948 - auc: 0.7638 - val_loss: 0.5627 - val_acc: 0.7052 - val_auc: 0.7782\n",
"Epoch 74: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5769 - acc: 0.6947 - auc: 0.7638 - val_loss: 0.5642 - val_acc: 0.7042 - val_auc: 0.7773\n",
"Epoch 75: 2160000/2160000 [==============================] - 79s 36us/sample - loss: 0.5768 - acc: 0.6946 - auc: 0.7640 - val_loss: 0.5633 - val_acc: 0.7056 - val_auc: 0.7779\n",
"Epoch 76: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5765 - acc: 0.6954 - auc: 0.7644 - val_loss: 0.5620 - val_acc: 0.7065 - val_auc: 0.7786\n",
"Epoch 77: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5761 - acc: 0.6955 - auc: 0.7647 - val_loss: 0.5611 - val_acc: 0.7064 - val_auc: 0.7794\n",
"Epoch 78: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5758 - acc: 0.6959 - auc: 0.7650 - val_loss: 0.5620 - val_acc: 0.7064 - val_auc: 0.7793\n",
"Epoch 79: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5761 - acc: 0.6953 - auc: 0.7647 - val_loss: 0.5636 - val_acc: 0.7045 - val_auc: 0.7772\n",
"Epoch 80: 2160000/2160000 [==============================] - 81s 38us/sample - loss: 0.5757 - acc: 0.6959 - auc: 0.7651 - val_loss: 0.5652 - val_acc: 0.7023 - val_auc: 0.7778\n",
"Epoch 81: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5755 - acc: 0.6960 - auc: 0.7653 - val_loss: 0.5632 - val_acc: 0.7043 - val_auc: 0.7781\n",
"Epoch 82: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5755 - acc: 0.6959 - auc: 0.7653 - val_loss: 0.5617 - val_acc: 0.7067 - val_auc: 0.7793\n",
"Epoch 83: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5751 - acc: 0.6961 - auc: 0.7658 - val_loss: 0.5610 - val_acc: 0.7073 - val_auc: 0.7798\n",
"Epoch 84: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5748 - acc: 0.6967 - auc: 0.7660 - val_loss: 0.5611 - val_acc: 0.7060 - val_auc: 0.7799\n",
"Epoch 85: 2160000/2160000 [==============================] - 81s 38us/sample - loss: 0.5747 - acc: 0.6969 - auc: 0.7662 - val_loss: 0.5672 - val_acc: 0.7011 - val_auc: 0.7792\n",
"Epoch 86: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5746 - acc: 0.6965 - auc: 0.7662 - val_loss: 0.5612 - val_acc: 0.7054 - val_auc: 0.7798\n",
"Epoch 87: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5741 - acc: 0.6973 - auc: 0.7668 - val_loss: 0.5618 - val_acc: 0.7058 - val_auc: 0.7805\n",
"Epoch 88: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.5740 - acc: 0.6974 - auc: 0.7669 - val_loss: 0.5623 - val_acc: 0.7051 - val_auc: 0.7786\n",
"Epoch 89: 2160000/2160000 [==============================] - 98s 45us/sample - loss: 0.5739 - acc: 0.6976 - auc: 0.7671 - val_loss: 0.5601 - val_acc: 0.7077 - val_auc: 0.7809\n",
"Epoch 90: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.5741 - acc: 0.6971 - auc: 0.7667 - val_loss: 0.5617 - val_acc: 0.7061 - val_auc: 0.7792\n",
"Epoch 91: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.5738 - acc: 0.6974 - auc: 0.7671 - val_loss: 0.5630 - val_acc: 0.7050 - val_auc: 0.7781\n",
"Epoch 92: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.5735 - acc: 0.6978 - auc: 0.7674 - val_loss: 0.5611 - val_acc: 0.7071 - val_auc: 0.7809\n",
"Epoch 93: 2160000/2160000 [==============================] - 81s 37us/sample - loss: 0.5734 - acc: 0.6979 - auc: 0.7676 - val_loss: 0.5594 - val_acc: 0.7082 - val_auc: 0.7817\n",
"Epoch 94: 2160000/2160000 [==============================] - 118s 54us/sample - loss: 0.5730 - acc: 0.6978 - auc: 0.7679 - val_loss: 0.5590 - val_acc: 0.7087 - val_auc: 0.7819\n",
"Epoch 95: 2160000/2160000 [==============================] - 83s 39us/sample - loss: 0.5730 - acc: 0.6980 - auc: 0.7679 - val_loss: 0.5615 - val_acc: 0.7055 - val_auc: 0.7800\n",
"Epoch 96: 2160000/2160000 [==============================] - 81s 37us/sample - loss: 0.5729 - acc: 0.6980 - auc: 0.7681 - val_loss: 0.5610 - val_acc: 0.7072 - val_auc: 0.7800\n",
"Epoch 97: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5728 - acc: 0.6982 - auc: 0.7681 - val_loss: 0.5600 - val_acc: 0.7061 - val_auc: 0.7819\n",
"Epoch 98: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5722 - acc: 0.6985 - auc: 0.7688 - val_loss: 0.5585 - val_acc: 0.7088 - val_auc: 0.7819\n",
"Epoch 99: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5724 - acc: 0.6985 - auc: 0.7686 - val_loss: 0.5620 - val_acc: 0.7042 - val_auc: 0.7804\n",
"Epoch 100: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5722 - acc: 0.6990 - auc: 0.7688 - val_loss: 0.5600 - val_acc: 0.7075 - val_auc: 0.7809\n",
"Epoch 101: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5721 - acc: 0.6988 - auc: 0.7689 - val_loss: 0.5581 - val_acc: 0.7094 - val_auc: 0.7827\n",
"Epoch 102: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5720 - acc: 0.6987 - auc: 0.7690 - val_loss: 0.5583 - val_acc: 0.7086 - val_auc: 0.7824\n",
"Epoch 103: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5718 - acc: 0.6992 - auc: 0.7692 - val_loss: 0.5596 - val_acc: 0.7074 - val_auc: 0.7810\n",
"Epoch 104: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5717 - acc: 0.6993 - auc: 0.7693 - val_loss: 0.5608 - val_acc: 0.7075 - val_auc: 0.7801\n",
"Epoch 105: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5716 - acc: 0.6991 - auc: 0.7693 - val_loss: 0.5601 - val_acc: 0.7090 - val_auc: 0.7818\n",
"Epoch 106: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.5712 - acc: 0.6996 - auc: 0.7697 - val_loss: 0.5590 - val_acc: 0.7085 - val_auc: 0.7827\n",
"Epoch 107: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5712 - acc: 0.6993 - auc: 0.7698 - val_loss: 0.5579 - val_acc: 0.7090 - val_auc: 0.7827\n",
"Epoch 108: 2160000/2160000 [==============================] - 77s 35us/sample - loss: 0.5712 - acc: 0.6997 - auc: 0.7698 - val_loss: 0.5587 - val_acc: 0.7088 - val_auc: 0.7833\n",
"Epoch 109: 2160000/2160000 [==============================] - 81s 38us/sample - loss: 0.5710 - acc: 0.7000 - auc: 0.7701 - val_loss: 0.5574 - val_acc: 0.7102 - val_auc: 0.7835\n",
"Epoch 110: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.5709 - acc: 0.6998 - auc: 0.7701 - val_loss: 0.5588 - val_acc: 0.7089 - val_auc: 0.7827\n",
"Epoch 111: 2160000/2160000 [==============================] - 90s 42us/sample - loss: 0.5708 - acc: 0.6999 - auc: 0.7702 - val_loss: 0.5592 - val_acc: 0.7088 - val_auc: 0.7823\n",
"Epoch 112: 2160000/2160000 [==============================] - 83s 39us/sample - loss: 0.5706 - acc: 0.7001 - auc: 0.7704 - val_loss: 0.5579 - val_acc: 0.7097 - val_auc: 0.7832\n",
"Epoch 113: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5702 - acc: 0.7003 - auc: 0.7707 - val_loss: 0.5591 - val_acc: 0.7090 - val_auc: 0.7833\n",
"Epoch 114: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5704 - acc: 0.7003 - auc: 0.7706 - val_loss: 0.5575 - val_acc: 0.7090 - val_auc: 0.7834\n",
"Epoch 115: 2160000/2160000 [==============================] - 107s 50us/sample - loss: 0.5699 - acc: 0.7006 - auc: 0.7711 - val_loss: 0.5592 - val_acc: 0.7082 - val_auc: 0.7834\n",
"Epoch 116: 2160000/2160000 [==============================] - 112s 52us/sample - loss: 0.5701 - acc: 0.7002 - auc: 0.7709 - val_loss: 0.5569 - val_acc: 0.7095 - val_auc: 0.7839\n",
"Epoch 117: 2160000/2160000 [==============================] - 111s 51us/sample - loss: 0.5698 - acc: 0.7008 - auc: 0.7712 - val_loss: 0.5565 - val_acc: 0.7105 - val_auc: 0.7840\n",
"Epoch 118: 2160000/2160000 [==============================] - 97s 45us/sample - loss: 0.5700 - acc: 0.7008 - auc: 0.7711 - val_loss: 0.5575 - val_acc: 0.7097 - val_auc: 0.7837\n",
"Epoch 119: 2160000/2160000 [==============================] - 98s 46us/sample - loss: 0.5694 - acc: 0.7013 - auc: 0.7716 - val_loss: 0.5574 - val_acc: 0.7097 - val_auc: 0.7832\n",
"Epoch 120: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5696 - acc: 0.7008 - auc: 0.7715 - val_loss: 0.5562 - val_acc: 0.7107 - val_auc: 0.7845\n",
"Epoch 121: 2160000/2160000 [==============================] - 83s 39us/sample - loss: 0.5695 - acc: 0.7011 - auc: 0.7716 - val_loss: 0.5558 - val_acc: 0.7115 - val_auc: 0.7849\n",
"Epoch 122: 2160000/2160000 [==============================] - 90s 42us/sample - loss: 0.5691 - acc: 0.7009 - auc: 0.7719 - val_loss: 0.5596 - val_acc: 0.7080 - val_auc: 0.7830\n",
"Epoch 123: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.5691 - acc: 0.7013 - auc: 0.7720 - val_loss: 0.5569 - val_acc: 0.7103 - val_auc: 0.7843\n",
"Epoch 124: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5688 - acc: 0.7015 - auc: 0.7723 - val_loss: 0.5599 - val_acc: 0.7083 - val_auc: 0.7807\n",
"Epoch 125: 2160000/2160000 [==============================] - 91s 42us/sample - loss: 0.5690 - acc: 0.7013 - auc: 0.7720 - val_loss: 0.5556 - val_acc: 0.7115 - val_auc: 0.7850\n",
"Epoch 126: 2160000/2160000 [==============================] - 95s 44us/sample - loss: 0.5687 - acc: 0.7015 - auc: 0.7723 - val_loss: 0.5584 - val_acc: 0.7094 - val_auc: 0.7831\n",
"Epoch 127: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5686 - acc: 0.7015 - auc: 0.7725 - val_loss: 0.5558 - val_acc: 0.7107 - val_auc: 0.7853\n",
"Epoch 128: 2160000/2160000 [==============================] - 66s 31us/sample - loss: 0.5687 - acc: 0.7016 - auc: 0.7723 - val_loss: 0.5558 - val_acc: 0.7109 - val_auc: 0.7847\n",
"Epoch 129: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5682 - acc: 0.7020 - auc: 0.7728 - val_loss: 0.5575 - val_acc: 0.7086 - val_auc: 0.7841\n",
"Epoch 130: 2160000/2160000 [==============================] - 68s 31us/sample - loss: 0.5683 - acc: 0.7019 - auc: 0.7727 - val_loss: 0.5557 - val_acc: 0.7113 - val_auc: 0.7850\n",
"Epoch 131: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5681 - acc: 0.7020 - auc: 0.7730 - val_loss: 0.5563 - val_acc: 0.7099 - val_auc: 0.7847\n",
"Epoch 132: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5681 - acc: 0.7021 - auc: 0.7731 - val_loss: 0.5563 - val_acc: 0.7104 - val_auc: 0.7849\n",
"Epoch 133: 2160000/2160000 [==============================] - 83s 38us/sample - loss: 0.5679 - acc: 0.7022 - auc: 0.7732 - val_loss: 0.5572 - val_acc: 0.7088 - val_auc: 0.7850\n",
"Epoch 134: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5677 - acc: 0.7023 - auc: 0.7733 - val_loss: 0.5566 - val_acc: 0.7092 - val_auc: 0.7845\n",
"Epoch 135: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5677 - acc: 0.7025 - auc: 0.7734 - val_loss: 0.5559 - val_acc: 0.7110 - val_auc: 0.7846\n",
"Epoch 136: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5677 - acc: 0.7024 - auc: 0.7734 - val_loss: 0.5557 - val_acc: 0.7111 - val_auc: 0.7848\n",
"Epoch 137: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5675 - acc: 0.7024 - auc: 0.7735 - val_loss: 0.5544 - val_acc: 0.7118 - val_auc: 0.7863\n",
"Epoch 138: 2160000/2160000 [==============================] - 81s 38us/sample - loss: 0.5671 - acc: 0.7027 - auc: 0.7740 - val_loss: 0.5562 - val_acc: 0.7094 - val_auc: 0.7845\n",
"Epoch 139: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5672 - acc: 0.7031 - auc: 0.7738 - val_loss: 0.5549 - val_acc: 0.7115 - val_auc: 0.7858\n",
"Epoch 140: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5671 - acc: 0.7029 - auc: 0.7740 - val_loss: 0.5546 - val_acc: 0.7121 - val_auc: 0.7860\n",
"Epoch 141: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5669 - acc: 0.7030 - auc: 0.7742 - val_loss: 0.5560 - val_acc: 0.7100 - val_auc: 0.7851\n",
"Epoch 142: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5669 - acc: 0.7031 - auc: 0.7742 - val_loss: 0.5553 - val_acc: 0.7121 - val_auc: 0.7860\n",
"Epoch 143: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5667 - acc: 0.7033 - auc: 0.7744 - val_loss: 0.5551 - val_acc: 0.7122 - val_auc: 0.7867\n",
"Epoch 144: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5666 - acc: 0.7034 - auc: 0.7745 - val_loss: 0.5547 - val_acc: 0.7107 - val_auc: 0.7863\n",
"Epoch 145: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5665 - acc: 0.7033 - auc: 0.7746 - val_loss: 0.5546 - val_acc: 0.7123 - val_auc: 0.7865\n",
"Epoch 146: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5662 - acc: 0.7036 - auc: 0.7749 - val_loss: 0.5533 - val_acc: 0.7130 - val_auc: 0.7871\n",
"Epoch 147: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5664 - acc: 0.7037 - auc: 0.7748 - val_loss: 0.5550 - val_acc: 0.7116 - val_auc: 0.7861\n",
"Epoch 148: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5661 - acc: 0.7036 - auc: 0.7750 - val_loss: 0.5552 - val_acc: 0.7105 - val_auc: 0.7858\n",
"Epoch 149: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5663 - acc: 0.7038 - auc: 0.7749 - val_loss: 0.5553 - val_acc: 0.7102 - val_auc: 0.7864\n",
"Epoch 150: 2160000/2160000 [==============================] - 67s 31us/sample - loss: 0.5661 - acc: 0.7038 - auc: 0.7750 - val_loss: 0.5562 - val_acc: 0.7110 - val_auc: 0.7851\n",
"Epoch 151: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5658 - acc: 0.7041 - auc: 0.7753 - val_loss: 0.5617 - val_acc: 0.7045 - val_auc: 0.7836\n",
"Epoch 152: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5658 - acc: 0.7040 - auc: 0.7754 - val_loss: 0.5539 - val_acc: 0.7120 - val_auc: 0.7870\n",
"Epoch 153: 2160000/2160000 [==============================] - 69s 32us/sample - loss: 0.5657 - acc: 0.7041 - auc: 0.7754 - val_loss: 0.5543 - val_acc: 0.7109 - val_auc: 0.7869\n",
"Epoch 154: 2160000/2160000 [==============================] - 68s 32us/sample - loss: 0.5657 - acc: 0.7044 - auc: 0.7755 - val_loss: 0.5522 - val_acc: 0.7138 - val_auc: 0.7881\n",
"Epoch 155: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5655 - acc: 0.7043 - auc: 0.7756 - val_loss: 0.5534 - val_acc: 0.7122 - val_auc: 0.7880\n",
"Epoch 156: 2160000/2160000 [==============================] - 88s 41us/sample - loss: 0.5653 - acc: 0.7042 - auc: 0.7757 - val_loss: 0.5525 - val_acc: 0.7137 - val_auc: 0.7881\n",
"Epoch 157: 2160000/2160000 [==============================] - 81s 38us/sample - loss: 0.5654 - acc: 0.7046 - auc: 0.7758 - val_loss: 0.5526 - val_acc: 0.7136 - val_auc: 0.7881\n",
"Epoch 158: 2160000/2160000 [==============================] - 96s 45us/sample - loss: 0.5651 - acc: 0.7047 - auc: 0.7760 - val_loss: 0.5532 - val_acc: 0.7129 - val_auc: 0.7873\n",
"Epoch 159: 2160000/2160000 [==============================] - 105s 49us/sample - loss: 0.5651 - acc: 0.7048 - auc: 0.7760 - val_loss: 0.5541 - val_acc: 0.7113 - val_auc: 0.7881\n",
"Epoch 160: 2160000/2160000 [==============================] - 83s 38us/sample - loss: 0.5650 - acc: 0.7044 - auc: 0.7760 - val_loss: 0.5527 - val_acc: 0.7140 - val_auc: 0.7883\n",
"Epoch 161: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5649 - acc: 0.7047 - auc: 0.7762 - val_loss: 0.5531 - val_acc: 0.7135 - val_auc: 0.7877\n",
"Epoch 162: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5647 - acc: 0.7051 - auc: 0.7764 - val_loss: 0.5522 - val_acc: 0.7135 - val_auc: 0.7883\n",
"Epoch 163: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5647 - acc: 0.7048 - auc: 0.7764 - val_loss: 0.5546 - val_acc: 0.7128 - val_auc: 0.7880\n",
"Epoch 164: 2160000/2160000 [==============================] - 79s 36us/sample - loss: 0.5646 - acc: 0.7049 - auc: 0.7766 - val_loss: 0.5538 - val_acc: 0.7119 - val_auc: 0.7878\n",
"Epoch 165: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5645 - acc: 0.7052 - auc: 0.7765 - val_loss: 0.5529 - val_acc: 0.7135 - val_auc: 0.7884\n",
"Epoch 166: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5644 - acc: 0.7051 - auc: 0.7767 - val_loss: 0.5533 - val_acc: 0.7133 - val_auc: 0.7874\n",
"Epoch 167: 2160000/2160000 [==============================] - 70s 33us/sample - loss: 0.5642 - acc: 0.7054 - auc: 0.7769 - val_loss: 0.5524 - val_acc: 0.7133 - val_auc: 0.7879\n",
"Epoch 168: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5640 - acc: 0.7055 - auc: 0.7771 - val_loss: 0.5515 - val_acc: 0.7139 - val_auc: 0.7892\n",
"Epoch 169: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5640 - acc: 0.7056 - auc: 0.7771 - val_loss: 0.5522 - val_acc: 0.7140 - val_auc: 0.7882\n",
"Epoch 170: 2160000/2160000 [==============================] - 76s 35us/sample - loss: 0.5640 - acc: 0.7056 - auc: 0.7772 - val_loss: 0.5523 - val_acc: 0.7137 - val_auc: 0.7889\n",
"Epoch 171: 2160000/2160000 [==============================] - 73s 34us/sample - loss: 0.5641 - acc: 0.7055 - auc: 0.7770 - val_loss: 0.5512 - val_acc: 0.7142 - val_auc: 0.7891\n",
"Epoch 172: 2160000/2160000 [==============================] - 89s 41us/sample - loss: 0.5638 - acc: 0.7055 - auc: 0.7773 - val_loss: 0.5520 - val_acc: 0.7129 - val_auc: 0.7890\n",
"Epoch 173: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5636 - acc: 0.7056 - auc: 0.7775 - val_loss: 0.5513 - val_acc: 0.7145 - val_auc: 0.7893\n",
"Epoch 174: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.5636 - acc: 0.7057 - auc: 0.7775 - val_loss: 0.5520 - val_acc: 0.7134 - val_auc: 0.7890\n",
"Epoch 175: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.5635 - acc: 0.7059 - auc: 0.7776 - val_loss: 0.5509 - val_acc: 0.7145 - val_auc: 0.7896\n",
"Epoch 176: 2160000/2160000 [==============================] - 83s 39us/sample - loss: 0.5635 - acc: 0.7058 - auc: 0.7776 - val_loss: 0.5506 - val_acc: 0.7149 - val_auc: 0.7900\n",
"Epoch 177: 2160000/2160000 [==============================] - 90s 42us/sample - loss: 0.5633 - acc: 0.7059 - auc: 0.7778 - val_loss: 0.5518 - val_acc: 0.7148 - val_auc: 0.7894\n",
"Epoch 178: 2160000/2160000 [==============================] - 79s 37us/sample - loss: 0.5631 - acc: 0.7061 - auc: 0.7779 - val_loss: 0.5518 - val_acc: 0.7140 - val_auc: 0.7893\n",
"Epoch 179: 2160000/2160000 [==============================] - 85s 39us/sample - loss: 0.5633 - acc: 0.7061 - auc: 0.7779 - val_loss: 0.5516 - val_acc: 0.7142 - val_auc: 0.7891\n",
"Epoch 180: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5632 - acc: 0.7062 - auc: 0.7779 - val_loss: 0.5504 - val_acc: 0.7155 - val_auc: 0.7902\n",
"Epoch 181: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5630 - acc: 0.7062 - auc: 0.7781 - val_loss: 0.5510 - val_acc: 0.7143 - val_auc: 0.7895\n",
"Epoch 182: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5629 - acc: 0.7064 - auc: 0.7781 - val_loss: 0.5512 - val_acc: 0.7135 - val_auc: 0.7899\n",
"Epoch 183: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5629 - acc: 0.7064 - auc: 0.7782 - val_loss: 0.5516 - val_acc: 0.7138 - val_auc: 0.7899\n",
"Epoch 184: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5629 - acc: 0.7061 - auc: 0.7781 - val_loss: 0.5507 - val_acc: 0.7148 - val_auc: 0.7901\n",
"Epoch 185: 2160000/2160000 [==============================] - 78s 36us/sample - loss: 0.5627 - acc: 0.7065 - auc: 0.7784 - val_loss: 0.5509 - val_acc: 0.7147 - val_auc: 0.7901\n",
"Epoch 186: 2160000/2160000 [==============================] - 71s 33us/sample - loss: 0.5624 - acc: 0.7067 - auc: 0.7787 - val_loss: 0.5508 - val_acc: 0.7148 - val_auc: 0.7896\n",
"Epoch 187: 2160000/2160000 [==============================] - 70s 32us/sample - loss: 0.5626 - acc: 0.7065 - auc: 0.7785 - val_loss: 0.5514 - val_acc: 0.7133 - val_auc: 0.7893\n",
"Epoch 188: 2160000/2160000 [==============================] - 77s 35us/sample - loss: 0.5625 - acc: 0.7065 - auc: 0.7786 - val_loss: 0.5504 - val_acc: 0.7149 - val_auc: 0.7899\n",
"Epoch 189: 2160000/2160000 [==============================] - 74s 34us/sample - loss: 0.5623 - acc: 0.7066 - auc: 0.7788 - val_loss: 0.5506 - val_acc: 0.7144 - val_auc: 0.7898\n",
"Epoch 190: 2160000/2160000 [==============================] - 80s 37us/sample - loss: 0.5625 - acc: 0.7066 - auc: 0.7785 - val_loss: 0.5500 - val_acc: 0.7153 - val_auc: 0.7909\n",
"Epoch 191: 2160000/2160000 [==============================] - 79s 36us/sample - loss: 0.5620 - acc: 0.7070 - auc: 0.7790 - val_loss: 0.5500 - val_acc: 0.7153 - val_auc: 0.7903\n",
"Epoch 192: 2160000/2160000 [==============================] - 84s 39us/sample - loss: 0.5622 - acc: 0.7071 - auc: 0.7790 - val_loss: 0.5506 - val_acc: 0.7151 - val_auc: 0.7901\n",
"Epoch 193: 2160000/2160000 [==============================] - 79s 36us/sample - loss: 0.5621 - acc: 0.7067 - auc: 0.7790 - val_loss: 0.5510 - val_acc: 0.7139 - val_auc: 0.7906\n",
"Epoch 194: 2160000/2160000 [==============================] - 86s 40us/sample - loss: 0.5620 - acc: 0.7068 - auc: 0.7790 - val_loss: 0.5497 - val_acc: 0.7156 - val_auc: 0.7907\n",
"Epoch 195: 2160000/2160000 [==============================] - 82s 38us/sample - loss: 0.5618 - acc: 0.7068 - auc: 0.7792 - val_loss: 0.5506 - val_acc: 0.7147 - val_auc: 0.7907\n",
"Epoch 196: 2160000/2160000 [==============================] - 72s 33us/sample - loss: 0.5619 - acc: 0.7071 - auc: 0.7792 - val_loss: 0.5512 - val_acc: 0.7134 - val_auc: 0.7900\n",
"Epoch 197: 2160000/2160000 [==============================] - 77s 36us/sample - loss: 0.5618 - acc: 0.7070 - auc: 0.7792 - val_loss: 0.5503 - val_acc: 0.7144 - val_auc: 0.7900\n",
"Epoch 198: 2160000/2160000 [==============================] - 75s 35us/sample - loss: 0.5617 - acc: 0.7070 - auc: 0.7794 - val_loss: 0.5518 - val_acc: 0.7148 - val_auc: 0.7892\n",
"Epoch 199: 2160000/2160000 [==============================] - 92s 43us/sample - loss: 0.5616 - acc: 0.7072 - auc: 0.7795 - val_loss: 0.5512 - val_acc: 0.7149 - val_auc: 0.7906\n",
"Epoch 200: 2160000/2160000 [==============================] - 87s 40us/sample - loss: 0.5615 - acc: 0.7076 - auc: 0.7797 - val_loss: 0.5493 - val_acc: 0.7156 - val_auc: 0.7912\n"
]
}
],
"source": [
"print_logs('keras_model-keras_elu.log')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.12"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": true,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "288px"
},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}