{ "cells": [ { "cell_type": "markdown", "id": "minute-lender", "metadata": {}, "source": [ "
\n", " | x0 | \n", "x1 | \n", "x2 | \n", "x3 | \n", "x4 | \n", "x5 | \n", "x6 | \n", "x7 | \n", "x8 | \n", "x9 | \n", "... | \n", "x41 | \n", "x42 | \n", "x43 | \n", "x44 | \n", "x45 | \n", "x46 | \n", "x47 | \n", "x48 | \n", "x49 | \n", "y | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "-0.166563 | \n", "-3.961588 | \n", "4.621113 | \n", "2.481908 | \n", "-1.800135 | \n", "0.804684 | \n", "6.718751 | \n", "-14.789997 | \n", "-1.040673 | \n", "-4.204950 | \n", "... | \n", "-1.497117 | \n", "5.414063 | \n", "-2.325655 | \n", "1.674827 | \n", "-0.264332 | \n", "60.781427 | \n", "-7.689696 | \n", "0.151589 | \n", "-8.040166 | \n", "0 | \n", "
1 | \n", "-0.149894 | \n", "-0.585676 | \n", "27.839856 | \n", "4.152333 | \n", "6.426802 | \n", "-2.426943 | \n", "40.477058 | \n", "-6.725709 | \n", "0.896421 | \n", "0.330165 | \n", "... | \n", "36.292790 | \n", "4.490915 | \n", "0.762561 | \n", "6.526662 | \n", "1.007927 | \n", "15.805696 | \n", "-4.896678 | \n", "-0.320283 | \n", "16.719974 | \n", "0 | \n", "
2 | \n", "-0.321707 | \n", "-1.429819 | \n", "12.251561 | \n", "6.586874 | \n", "-5.304647 | \n", "-11.311090 | \n", "17.812850 | \n", "11.060572 | \n", "5.325880 | \n", "-2.632984 | \n", "... | \n", "-0.368491 | \n", "9.088864 | \n", "-0.689886 | \n", "-2.731118 | \n", "0.754200 | \n", "30.856417 | \n", "-7.428573 | \n", "-2.090804 | \n", "-7.869421 | \n", "0 | \n", "
3 | \n", "-0.245594 | \n", "5.076677 | \n", "-24.149632 | \n", "3.637307 | \n", "6.505811 | \n", "2.290224 | \n", "-35.111751 | \n", "-18.913592 | \n", "-0.337041 | \n", "-5.568076 | \n", "... | \n", "15.691546 | \n", "-7.467775 | \n", "2.940789 | \n", "-6.424112 | \n", "0.419776 | \n", "-72.424569 | \n", "5.361375 | \n", "1.806070 | \n", "-7.670847 | \n", "0 | \n", "
4 | \n", "-0.273366 | \n", "0.306326 | \n", "-11.352593 | \n", "1.676758 | \n", "2.928441 | \n", "-0.616824 | \n", "-16.505817 | \n", "27.532281 | \n", "1.199715 | \n", "-4.309105 | \n", "... | \n", "-13.911297 | \n", "-5.229937 | \n", "1.783928 | \n", "3.957801 | \n", "-0.096988 | \n", "-14.085435 | \n", "-0.208351 | \n", "-0.894942 | \n", "15.724742 | \n", "1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
159995 | \n", "-0.487024 | \n", "-4.270269 | \n", "0.417395 | \n", "-1.992423 | \n", "1.757552 | \n", "-1.167819 | \n", "0.606860 | \n", "41.084463 | \n", "-1.923188 | \n", "-2.374213 | \n", "... | \n", "-9.390451 | \n", "8.096802 | \n", "-0.875131 | \n", "-1.413787 | \n", "-0.363968 | \n", "15.339392 | \n", "4.364205 | \n", "-3.831489 | \n", "28.389858 | \n", "1 | \n", "
159996 | \n", "0.825477 | \n", "4.804368 | \n", "22.161535 | \n", "11.371303 | \n", "1.715901 | \n", "6.990759 | \n", "32.221207 | \n", "-12.278038 | \n", "-3.861086 | \n", "6.715126 | \n", "... | \n", "12.803189 | \n", "0.841446 | \n", "-0.682177 | \n", "-5.047677 | \n", "-0.017898 | \n", "0.780130 | \n", "6.387266 | \n", "-1.374742 | \n", "-1.623952 | \n", "0 | \n", "
159997 | \n", "-0.802489 | \n", "5.362696 | \n", "7.243419 | \n", "-7.496074 | \n", "2.295250 | \n", "-2.756067 | \n", "10.531388 | \n", "42.515821 | \n", "1.420984 | \n", "6.788916 | \n", "... | \n", "-0.346570 | \n", "-0.144098 | \n", "0.738298 | \n", "7.241041 | \n", "0.215347 | \n", "-12.155249 | \n", "3.265263 | \n", "1.230963 | \n", "3.335471 | \n", "1 | \n", "
159998 | \n", "0.339237 | \n", "7.609895 | \n", "5.368414 | \n", "-2.825481 | \n", "4.046102 | \n", "15.322603 | \n", "7.805271 | \n", "-10.233054 | \n", "2.609986 | \n", "4.251127 | \n", "... | \n", "-0.307656 | \n", "-0.601145 | \n", "-3.443112 | \n", "0.549931 | \n", "0.206728 | \n", "5.081980 | \n", "1.701462 | \n", "-0.279619 | \n", "-1.986424 | \n", "0 | \n", "
159999 | \n", "-0.296748 | \n", "-0.412773 | \n", "-10.911407 | \n", "-5.633629 | \n", "-4.028154 | \n", "15.939428 | \n", "-15.864365 | \n", "-46.388192 | \n", "18.339472 | \n", "-4.575499 | \n", "... | \n", "27.837473 | \n", "1.392395 | \n", "0.893555 | \n", "-1.848590 | \n", "-0.423982 | \n", "-17.379380 | \n", "5.916490 | \n", "-2.767444 | \n", "15.547557 | \n", "1 | \n", "
160000 rows × 51 columns
\n", "\n", " | x0 | \n", "x1 | \n", "x2 | \n", "x3 | \n", "x4 | \n", "x5 | \n", "x6 | \n", "x7 | \n", "x8 | \n", "x9 | \n", "... | \n", "x41 | \n", "x42 | \n", "x43 | \n", "x44 | \n", "x45 | \n", "x46 | \n", "x47 | \n", "x48 | \n", "x49 | \n", "y | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | \n", "159974.000000 | \n", "159975.000000 | \n", "159962.000000 | \n", "159963.000000 | \n", "159974.000000 | \n", "159963.000000 | \n", "159974.000000 | \n", "159973.000000 | \n", "159979.000000 | \n", "159970.000000 | \n", "... | \n", "159960.000000 | \n", "159974.000000 | \n", "159963.000000 | \n", "159960.000000 | \n", "159971.000000 | \n", "159969.000000 | \n", "159963.000000 | \n", "159968.000000 | \n", "159968.000000 | \n", "160000.000000 | \n", "
mean | \n", "-0.001028 | \n", "0.001358 | \n", "-1.150145 | \n", "-0.024637 | \n", "-0.000549 | \n", "0.013582 | \n", "-1.670670 | \n", "-7.692795 | \n", "-0.030540 | \n", "0.005462 | \n", "... | \n", "6.701076 | \n", "-1.833820 | \n", "-0.002091 | \n", "-0.006250 | \n", "0.000885 | \n", "-12.755395 | \n", "0.028622 | \n", "-0.000224 | \n", "-0.674224 | \n", "0.401231 | \n", "
std | \n", "0.371137 | \n", "6.340632 | \n", "13.273480 | \n", "8.065032 | \n", "6.382293 | \n", "7.670076 | \n", "19.298665 | \n", "30.542264 | \n", "8.901185 | \n", "6.355040 | \n", "... | \n", "18.680196 | \n", "5.110705 | \n", "1.534952 | \n", "4.164595 | \n", "0.396621 | \n", "36.608641 | \n", "4.788157 | \n", "1.935501 | \n", "15.036738 | \n", "0.490149 | \n", "
min | \n", "-1.592635 | \n", "-26.278302 | \n", "-59.394048 | \n", "-35.476594 | \n", "-28.467536 | \n", "-33.822988 | \n", "-86.354483 | \n", "-181.506976 | \n", "-37.691045 | \n", "-27.980659 | \n", "... | \n", "-82.167224 | \n", "-27.933750 | \n", "-6.876234 | \n", "-17.983487 | \n", "-1.753221 | \n", "-201.826828 | \n", "-21.086333 | \n", "-8.490155 | \n", "-65.791191 | \n", "0.000000 | \n", "
25% | \n", "-0.251641 | \n", "-4.260973 | \n", "-10.166536 | \n", "-5.454438 | \n", "-4.313118 | \n", "-5.148130 | \n", "-14.780146 | \n", "-27.324771 | \n", "-6.031058 | \n", "-4.260619 | \n", "... | \n", "-5.804080 | \n", "-5.162869 | \n", "-1.039677 | \n", "-2.812055 | \n", "-0.266518 | \n", "-36.428329 | \n", "-3.216016 | \n", "-1.320800 | \n", "-10.931753 | \n", "0.000000 | \n", "
50% | \n", "-0.002047 | \n", "0.004813 | \n", "-1.340932 | \n", "-0.031408 | \n", "0.000857 | \n", "0.014118 | \n", "-1.948594 | \n", "-6.956789 | \n", "-0.016840 | \n", "0.006045 | \n", "... | \n", "6.840110 | \n", "-1.923754 | \n", "-0.004385 | \n", "-0.010484 | \n", "0.001645 | \n", "-12.982497 | \n", "0.035865 | \n", "-0.011993 | \n", "-0.574410 | \n", "0.000000 | \n", "
75% | \n", "0.248532 | \n", "4.284220 | \n", "7.871676 | \n", "5.445179 | \n", "4.306660 | \n", "5.190749 | \n", "11.446931 | \n", "12.217071 | \n", "5.972349 | \n", "4.305734 | \n", "... | \n", "19.266367 | \n", "1.453507 | \n", "1.033275 | \n", "2.783274 | \n", "0.269049 | \n", "11.445443 | \n", "3.268028 | \n", "1.317703 | \n", "9.651072 | \n", "1.000000 | \n", "
max | \n", "1.600849 | \n", "27.988178 | \n", "63.545653 | \n", "38.906025 | \n", "26.247812 | \n", "35.550110 | \n", "92.390605 | \n", "149.150634 | \n", "39.049831 | \n", "27.377842 | \n", "... | \n", "100.050432 | \n", "22.668041 | \n", "6.680922 | \n", "19.069759 | \n", "1.669205 | \n", "150.859415 | \n", "20.836854 | \n", "8.226552 | \n", "66.877604 | \n", "1.000000 | \n", "
8 rows × 46 columns
\n", "\n", " | x24 | \n", "x29 | \n", "x30 | \n", "x32 | \n", "x37 | \n", "
---|---|---|---|---|---|
0 | \n", "euorpe | \n", "July | \n", "tuesday | \n", "0.0% | \n", "$1313.96 | \n", "
1 | \n", "asia | \n", "Aug | \n", "wednesday | \n", "-0.02% | \n", "$1962.78 | \n", "
2 | \n", "asia | \n", "July | \n", "wednesday | \n", "-0.01% | \n", "$430.47 | \n", "
3 | \n", "asia | \n", "July | \n", "wednesday | \n", "0.01% | \n", "$-2366.29 | \n", "
4 | \n", "asia | \n", "July | \n", "tuesday | \n", "0.01% | \n", "$-620.66 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
159995 | \n", "asia | \n", "Aug | \n", "wednesday | \n", "0.0% | \n", "$-891.96 | \n", "
159996 | \n", "asia | \n", "May | \n", "wednesday | \n", "-0.01% | \n", "$1588.65 | \n", "
159997 | \n", "asia | \n", "Jun | \n", "wednesday | \n", "-0.0% | \n", "$687.46 | \n", "
159998 | \n", "asia | \n", "May | \n", "wednesday | \n", "-0.02% | \n", "$439.21 | \n", "
159999 | \n", "asia | \n", "Aug | \n", "tuesday | \n", "0.02% | \n", "$-1229.34 | \n", "
160000 rows × 5 columns
\n", "\n", " | x24 | \n", "x29 | \n", "x30 | \n", "x32 | \n", "x37 | \n", "
---|---|---|---|---|---|
0 | \n", "euorpe | \n", "July | \n", "tuesday | \n", "0.00 | \n", "1313.96 | \n", "
1 | \n", "asia | \n", "Aug | \n", "wednesday | \n", "-0.02 | \n", "1962.78 | \n", "
2 | \n", "asia | \n", "July | \n", "wednesday | \n", "-0.01 | \n", "430.47 | \n", "
3 | \n", "asia | \n", "July | \n", "wednesday | \n", "0.01 | \n", "-2366.29 | \n", "
4 | \n", "asia | \n", "July | \n", "tuesday | \n", "0.01 | \n", "-620.66 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
159995 | \n", "asia | \n", "Aug | \n", "wednesday | \n", "0.00 | \n", "-891.96 | \n", "
159996 | \n", "asia | \n", "May | \n", "wednesday | \n", "-0.01 | \n", "1588.65 | \n", "
159997 | \n", "asia | \n", "Jun | \n", "wednesday | \n", "-0.00 | \n", "687.46 | \n", "
159998 | \n", "asia | \n", "May | \n", "wednesday | \n", "-0.02 | \n", "439.21 | \n", "
159999 | \n", "asia | \n", "Aug | \n", "tuesday | \n", "0.02 | \n", "-1229.34 | \n", "
160000 rows × 5 columns
\n", "\n", " | %Missing | \n", "
---|---|
x0 | \n", "0.016250 | \n", "
x1 | \n", "0.015625 | \n", "
x2 | \n", "0.023750 | \n", "
x3 | \n", "0.023125 | \n", "
x4 | \n", "0.016250 | \n", "
x5 | \n", "0.023125 | \n", "
x6 | \n", "0.016250 | \n", "
x7 | \n", "0.016875 | \n", "
x8 | \n", "0.013125 | \n", "
x9 | \n", "0.018750 | \n", "
x10 | \n", "0.026875 | \n", "
x11 | \n", "0.018750 | \n", "
x12 | \n", "0.022500 | \n", "
x13 | \n", "0.019375 | \n", "
x14 | \n", "0.021250 | \n", "
x15 | \n", "0.021875 | \n", "
x16 | \n", "0.016250 | \n", "
x17 | \n", "0.016875 | \n", "
x18 | \n", "0.025000 | \n", "
x19 | \n", "0.021875 | \n", "
x20 | \n", "0.023750 | \n", "
x21 | \n", "0.018125 | \n", "
x22 | \n", "0.016875 | \n", "
x23 | \n", "0.029375 | \n", "
x24 | \n", "0.017500 | \n", "
x25 | \n", "0.013750 | \n", "
x26 | \n", "0.022500 | \n", "
x27 | \n", "0.018750 | \n", "
x28 | \n", "0.021875 | \n", "
x29 | \n", "0.018750 | \n", "
x30 | \n", "0.018750 | \n", "
x31 | \n", "0.024375 | \n", "
x32 | \n", "0.019375 | \n", "
x33 | \n", "0.025625 | \n", "
x34 | \n", "0.025625 | \n", "
x35 | \n", "0.018750 | \n", "
x36 | \n", "0.016875 | \n", "
x37 | \n", "0.014375 | \n", "
x38 | \n", "0.019375 | \n", "
x39 | \n", "0.014375 | \n", "
x40 | \n", "0.022500 | \n", "
x41 | \n", "0.025000 | \n", "
x42 | \n", "0.016250 | \n", "
x43 | \n", "0.023125 | \n", "
x44 | \n", "0.025000 | \n", "
x45 | \n", "0.018125 | \n", "
x46 | \n", "0.019375 | \n", "
x47 | \n", "0.023125 | \n", "
x48 | \n", "0.020000 | \n", "
x49 | \n", "0.020000 | \n", "
Class | \n", "Distribution | \n", "
---|---|
1 | \n", "59% | \n", "
0 | \n", "41% | \n", "
\n", " | mean_fit_time | \n", "std_fit_time | \n", "mean_score_time | \n", "std_score_time | \n", "param_C | \n", "param_max_iter | \n", "param_penalty | \n", "param_random_state | \n", "param_solver | \n", "params | \n", "... | \n", "split23_test_precision | \n", "split24_test_precision | \n", "split25_test_precision | \n", "split26_test_precision | \n", "split27_test_precision | \n", "split28_test_precision | \n", "split29_test_precision | \n", "mean_test_precision | \n", "std_test_precision | \n", "rank_test_precision | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "13.432851 | \n", "1.474184 | \n", "0.040597 | \n", "0.005634 | \n", "0.1 | \n", "500 | \n", "l2 | \n", "1999 | \n", "sag | \n", "{'C': 0.1, 'max_iter': 500, 'penalty': 'l2', '... | \n", "... | \n", "0.668673 | \n", "0.670941 | \n", "0.657928 | \n", "0.670738 | \n", "0.659365 | \n", "0.656282 | \n", "0.665728 | \n", "0.665584 | \n", "0.004726 | \n", "8 | \n", "
1 | \n", "0.744260 | \n", "0.051803 | \n", "0.042062 | \n", "0.006093 | \n", "0.1 | \n", "500 | \n", "l2 | \n", "1999 | \n", "lbfgs | \n", "{'C': 0.1, 'max_iter': 500, 'penalty': 'l2', '... | \n", "... | \n", "0.668673 | \n", "0.670857 | \n", "0.658100 | \n", "0.670738 | \n", "0.659365 | \n", "0.656282 | \n", "0.665899 | \n", "0.665599 | \n", "0.004716 | \n", "7 | \n", "
2 | \n", "10.501819 | \n", "1.227208 | \n", "0.043512 | \n", "0.009269 | \n", "0.01 | \n", "500 | \n", "l2 | \n", "1999 | \n", "sag | \n", "{'C': 0.01, 'max_iter': 500, 'penalty': 'l2', ... | \n", "... | \n", "0.669011 | \n", "0.671036 | \n", "0.657742 | \n", "0.670484 | \n", "0.660010 | \n", "0.656353 | \n", "0.665642 | \n", "0.665791 | \n", "0.004806 | \n", "5 | \n", "
3 | \n", "0.789555 | \n", "0.114426 | \n", "0.044956 | \n", "0.009950 | \n", "0.01 | \n", "500 | \n", "l2 | \n", "1999 | \n", "lbfgs | \n", "{'C': 0.01, 'max_iter': 500, 'penalty': 'l2', ... | \n", "... | \n", "0.669011 | \n", "0.670951 | \n", "0.657742 | \n", "0.670398 | \n", "0.659926 | \n", "0.656353 | \n", "0.665812 | \n", "0.665777 | \n", "0.004801 | \n", "6 | \n", "
4 | \n", "4.774041 | \n", "1.120333 | \n", "0.041310 | \n", "0.010212 | \n", "0.001 | \n", "500 | \n", "l2 | \n", "1999 | \n", "sag | \n", "{'C': 0.001, 'max_iter': 500, 'penalty': 'l2',... | \n", "... | \n", "0.671425 | \n", "0.672234 | \n", "0.659706 | \n", "0.673286 | \n", "0.663155 | \n", "0.659015 | \n", "0.668317 | \n", "0.667550 | \n", "0.005075 | \n", "4 | \n", "
5 rows × 175 columns
\n", "\n", " | mean_fit_time | \n", "std_fit_time | \n", "mean_score_time | \n", "std_score_time | \n", "param_n_neighbors | \n", "params | \n", "split0_test_roc_auc | \n", "split1_test_roc_auc | \n", "split2_test_roc_auc | \n", "split3_test_roc_auc | \n", "... | \n", "split23_test_precision | \n", "split24_test_precision | \n", "split25_test_precision | \n", "split26_test_precision | \n", "split27_test_precision | \n", "split28_test_precision | \n", "split29_test_precision | \n", "mean_test_precision | \n", "std_test_precision | \n", "rank_test_precision | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0.305139 | \n", "0.084233 | \n", "296.612833 | \n", "13.084617 | \n", "10 | \n", "{'n_neighbors': 10} | \n", "0.872573 | \n", "0.873158 | \n", "0.870447 | \n", "0.865345 | \n", "... | \n", "0.834268 | \n", "0.828769 | \n", "0.821903 | \n", "0.852197 | \n", "0.834430 | \n", "0.834135 | \n", "0.844618 | \n", "0.835537 | \n", "0.005922 | \n", "2 | \n", "
1 | \n", "0.310254 | \n", "0.188162 | \n", "286.185080 | \n", "55.575974 | \n", "12 | \n", "{'n_neighbors': 12} | \n", "0.879290 | \n", "0.879120 | \n", "0.878307 | \n", "0.870748 | \n", "... | \n", "0.849788 | \n", "0.837100 | \n", "0.823304 | \n", "0.854698 | \n", "0.837368 | \n", "0.842690 | \n", "0.851820 | \n", "0.841920 | \n", "0.006669 | \n", "1 | \n", "
2 rows × 171 columns
\n", "\n", " | mean_fit_time | \n", "std_fit_time | \n", "mean_score_time | \n", "std_score_time | \n", "param_max_features | \n", "param_n_estimators | \n", "param_n_jobs | \n", "param_random_state | \n", "params | \n", "split0_test_roc_auc | \n", "... | \n", "split23_test_precision | \n", "split24_test_precision | \n", "split25_test_precision | \n", "split26_test_precision | \n", "split27_test_precision | \n", "split28_test_precision | \n", "split29_test_precision | \n", "mean_test_precision | \n", "std_test_precision | \n", "rank_test_precision | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "4.678497 | \n", "0.269283 | \n", "0.247049 | \n", "0.010967 | \n", "1 | \n", "10 | \n", "-1 | \n", "1999 | \n", "{'max_features': 1, 'n_estimators': 10, 'n_job... | \n", "0.809679 | \n", "... | \n", "0.758632 | \n", "0.759348 | \n", "0.749256 | \n", "0.769534 | \n", "0.760996 | \n", "0.754995 | \n", "0.776630 | \n", "0.764207 | \n", "0.012129 | \n", "20 | \n", "
1 | \n", "9.528533 | \n", "0.469264 | \n", "0.259123 | \n", "0.021618 | \n", "1 | \n", "20 | \n", "-1 | \n", "1999 | \n", "{'max_features': 1, 'n_estimators': 20, 'n_job... | \n", "0.850978 | \n", "... | \n", "0.818266 | \n", "0.807516 | \n", "0.801144 | \n", "0.830425 | \n", "0.809205 | \n", "0.808978 | \n", "0.833385 | \n", "0.817380 | \n", "0.009593 | \n", "19 | \n", "
2 | \n", "14.978017 | \n", "0.658647 | \n", "0.282651 | \n", "0.034041 | \n", "1 | \n", "30 | \n", "-1 | \n", "1999 | \n", "{'max_features': 1, 'n_estimators': 30, 'n_job... | \n", "0.876086 | \n", "... | \n", "0.838897 | \n", "0.834249 | \n", "0.840244 | \n", "0.852968 | \n", "0.843693 | \n", "0.843120 | \n", "0.854378 | \n", "0.847270 | \n", "0.008565 | \n", "17 | \n", "
3 | \n", "19.508908 | \n", "0.737629 | \n", "0.367102 | \n", "0.081046 | \n", "1 | \n", "40 | \n", "-1 | \n", "1999 | \n", "{'max_features': 1, 'n_estimators': 40, 'n_job... | \n", "0.886774 | \n", "... | \n", "0.857915 | \n", "0.857403 | \n", "0.857315 | \n", "0.866707 | \n", "0.853622 | \n", "0.848503 | \n", "0.875188 | \n", "0.862306 | \n", "0.007948 | \n", "16 | \n", "
4 | \n", "7.073599 | \n", "0.840057 | \n", "0.252776 | \n", "0.011082 | \n", "2 | \n", "10 | \n", "-1 | \n", "1999 | \n", "{'max_features': 2, 'n_estimators': 10, 'n_job... | \n", "0.866640 | \n", "... | \n", "0.825772 | \n", "0.827779 | \n", "0.834115 | \n", "0.842350 | \n", "0.829114 | \n", "0.843328 | \n", "0.841470 | \n", "0.835455 | \n", "0.006917 | \n", "18 | \n", "
5 rows × 174 columns
\n", "\n", " Table 7.4.1 - Performance Vs Dollar Cost \n", "
Model | \n", "Accuracy | \n", "Precision | \n", "Recall | \n", "F1 Score | \n", "Dollar Cost | \n", "
---|---|---|---|---|---|
Logistic Regression | \n", "0.70 | \n", "0.67 | \n", "0.51 | \n", "0.58 | \n", "3,062,500 | \n", "
KNN | \n", "0.79 | \n", "0.85 | \n", "0.60 | \n", "0.70 | \n", "2,531,000 | \n", "
Random Forest | \n", "0.90 | \n", "0.92 | \n", "0.83 | \n", "0.87 | \n", "1,049,500 | \n", "
\n", " Table 7.4.2 - Threshold selection \n", "
Model | \n", "Classification threshold | \n", "FNR | \n", "Accuracy | \n", "Dollar Cost | \n", "
---|---|---|---|---|
Logistic Regression | \n", "0.006807 | \n", "0.0 | \n", "0.4012 | \n", "189,690 | \n", "
KNN | \n", "0.083333 | \n", "0.0020 | \n", "0.4641 | \n", "182,010 | \n", "
Random Forest | \n", "0.175 | \n", "0.0076 | \n", "0.6862 | \n", "146,450 | \n", "
\n", "\n" ] }, { "cell_type": "markdown", "id": "conservative-aberdeen", "metadata": {}, "source": [ "**Observations**\n", "\n", "For each of the models, the \\\\$ cost is significantly reduced by using a much lower classification threshold. Compare with default results in Table 7.4.1.\n", "\n", "Using a very low threshold is converting TN and FN to FP (false positives). Since the cost of FP is smaller by 50x than of FN, it is helping lower the actual \\\\$ cost to company.\n", "Above also implies, one need not build any sophisticated model, and classify all new records as TRUE, yet not be too worse off the minimum \\\\$ cost. This is happening as the $ cost of FN = 50x \\\\$ cost of FP, i.e. there is a very high skew.\n", "\n", "Experiments with setting \\\\$ cost of FN = 500, and $ cost of FP = 100, (i.e. much less skew),gave a much higher Accuracy, and higher threshold. In such a scenario, spending time and effort to build a model will likely provide higher return on investment of building a model\n", "\n", "
" ] }, { "cell_type": "markdown", "id": "choice-kinase", "metadata": {}, "source": [ "# Model Interpretability & Explainability" ] }, { "cell_type": "markdown", "id": "acquired-wrestling", "metadata": {}, "source": [ "## Logistic Regression" ] }, { "cell_type": "code", "execution_count": 66, "id": "agricultural-looking", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAI/CAYAAAAMZtOAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde5gldX3n8fcHYRAFxJCBSGAcIrokEBylQXFFDV6jeGWUYVEZYkIUWbKbFSVhd6MoWUGzEDRCxguCkkjkIiAKouiCijIDDjLewBuRQGTMxguwoMJ3/6g6cGhO93T3TJ/TXf1+PU8/fbrqd6q+NX/wfPlV1eeXqkKSJEkL02ajLkCSJEmjYzMoSZK0gNkMSpIkLWA2g5IkSQuYzaAkSdICZjMoSZK0gG0+6gLmq9/8zd+spUuXjroMSZKkDbr22mt/UlWLB+1bcM1gkm2BbwKfqKqj2m2LgPcCzwLuA46rqvMmO87SpUtZs2bNLFcrSRu2/rSPjroESRth8RtePevnSHLzRPsWXDMIvB24cty244Dbq+oJSTYDfmP4ZUmSJA1fJ58ZTLJPkq8neXiSRyb5RpI9k+wN7Ah8ZtxX/gj4XwBVdV9V/WTYNUuSJI1CJ2cGq2p1kouAdwBbAR+luTV8BfBq4Dm9sUm2az++PcmzgO8BR1XVj4datCRJ0gh0cmawdTzwXGAMOAk4EvhUVd0ybtzmwM7Al6vqycDVwLsHHTDJEUnWJFmzfv362atckiRpSDo5M9jaHtga2AJ4OLAfsH+SI9vti5LcAfwFcBdwfvu9jwOvG3TAqloFrAIYGxurWa1ekiRpCLrcDP498D+AXYETq+rQ3o4kK4Gxqjq2/ftimjeJrwCeTXNLWZIkqfM62QwmeS3wq6r6hyQPA76c5ICqumKCr7wF+EiSU4D1wOHDqlWSNtYwYikkdVeqvNs5E2NjY2XOoCRJmg+SXFtVY4P2dXJmcJAkjwUuoHlpZgvgPVV1ervvEOAvgQJuBV5tvIyk+WL96R8YdQmaJYtf/8ejLkELQJffJh7vNmC/qloGPAU4NslOSTYH/hb4g6raC/g6cNQI65QkSRqaTjaDg0KngSdU1T3tkC154NrT/jwySYBtaWYHJUmSOq+Tt4kHhU5X1bokuwCXALsBx1TVrQBJ3gDcANwJ3AS8cTSVS5IkDVcnZwZb40OnqaoftbeCdwMOS7Jjki2ANwBPAnaiuU38F4MOaOi0JEnqmi43g73Q6W1oQqfv184IrgP2B5a1275XzavV/wQ8bdABq2pVVY1V1djixYtns3ZJkqSh6HIz2AudPhs4McnOSbYCSPJo4OnAd4B/AX4vSa+7ey7wrRHUK0mSNHSdfGZwUOg0sAfwriRF88LIu6vqhnb824Ark/wKuBlYOZrKJWn6jB+RtDEMnZ4hQ6clSdJ8Yeg0Gwyd/gLwGOD/tcOfV1W3j6JOSZqu208/ddQlaJbs8PqjR12CFoAF0wzyQOj0PUm2BtYluagXLwMcWlVO9UmSpAWlky+QTDN0WpIkacHq5MzgdEOnW2ckuRc4D3hH+TClJElaALo8Ozal0Ol27KFV9fs0uYP7A68ZdEBDpyVJUtd0uRmcaug0VfUv7e9fAP8A7DvogIZOS5KkrulyMzil0Okkmyf5zXb7FsCBNI2iJElS53XymcHphE4neSRwWdsIPgz4LPD+UdUuSdNl/IikjdHJZrCqzgLOaj/fCzyl3XXZgLF3AnsPrzpJkqS5o5PN4CAThU4n2Qa4qm/ozjRvH/+XEZQpSdP2r6e9Y9QlaBp+6w3/fdQlSA+yYJpBJg+dXtYblORa4PxRFSlJkjRMnXyBZKah00meAOzAg2cKJUmSOquTM4MzDJ0GWAGcY+C0JElaKDo5M9iaTuh0zwrgHyc6oKHTkiSpa7rcDE45dBogyROBzavq2okOaOi0JEnqmi43g1MKne4bfwiTzApKkiR1USefGZxO6HTf114FvHD41UqSJI1OfFdiZsbGxmrNmjWjLkOSJGmDklxbVWOD9nVyZnCQJMuA04BtgXuBE6rqnHbfh4FnAj9rh6+sqrWjqFOSpuvWv/vzUZcwqZ3e+L9HXYKkSSyYZhC4C3htVd2UZCfg2iSXVdVP2/3HVNW5I6xPkiRp6Dr5AskEodOLquomuP9t4tsBXwmWJEkLWiebwapaDfRCp0+iDZ3u7U+yL7AI+F7f105oG8iTk2w51IIlSZJGpJPNYOshodMASR4DfAQ4vKruazf/BbA7sA/wG8BbBh3Q0GlJktQ1XW4GHxI6nWRbmuXojquqr/QGVtVt1bgHOAPYd9ABDZ2WJEld0+VmcHzo9CLgAuCs8S+KtLOFJAnwMprVSSRJkjqvk28TTxA6vQJ4BrB9kpXt0F6EzNlJFtOEUa8FXj+CsiVJkobO0OkZMnRakiTNF4ZO92mfG/wm8ImqOqrddinwGJp/j6uAN1bVvaOrUpKm7p9PXT4rx11ytNGr0kLQ5WcGJ/J24Mpx215VVU8E9qTJHnzl0KuSJEkagU42g4NCp5PsmWRvYEfgM/3jq+rn7cfNafIHvXcuSZIWhE7eJq6q1Ul6odNbAR+luTV8BfBq4Dnjv5PkMppImU8D3huRJEkLQidnBlvjQ6ePBD5VVbcMGlxVz6d5bnBL4IBBYwydliRJXdPlZnB86PR+wFFJfgi8G3htknf2f6Gq7gYuBF466ICGTkuSpK7p5G3iVi90elfgxKo6tLejzRkcq6pjk2wNbFNVtyXZHHgRzRvFkiRJndfJZnBQ6HSSA6rqigHDHwlclGRLmpnSzwOnD7FcSZKkkTF0eoYMnZYkSfOFodMbkGQJ8AFgF5pYmRdW1Q9HWpQkTdG3/27gY84PsvsbLxxCJZLmI5vBxlnACVV1efsM4X2jLkiSJGkYuvw28UNMEEa9F7B5VV0OUFV3VNVdIy5VkiRpKBbUzOAEYdS/A/w0yfk0bx5/FjjWtYklSdJCsKBmBlvjw6g3B/YH3gTsQ9Mcrhz0RUOnJUlS1yzEZnB8GPUtwNqq+n5V/Rr4BPDkQV80dFqSJHXNQmwGe2HUZwMnAquB7ZL0ursDaNYxliRJ6rwF9czgoDBq4Jk0t4g/lyTAtcD7R1imJEnS0Bg6PUOGTkuSpPlistDpBXObOMljk1yXZG0bKfP6vn0nJPlRkjtGWaMkSdKwLaTbxLcB+1XVPW2w9LokF1XVrcDFwHuBm0ZaoSTNwNdOf/EGxzzp9RcPoRJJ81EnZwYHhUsDT6iqe9ohW9J37VX1laq6bSTFSpIkjVAnZwYHhUtX1bokuwCXALsBx7SzgpIkSQtWJ2cGW+PDpamqH1XVXjTN4GFJdpzOAQ2dliRJXdPlZnB8uPT92hnBdTQrj0yZodOSJKlrutwMPihcOsnOSbYCSPJo4OnAd0ZYnyRJ0sh1shnsD5cG3kmz5vAewFeTXA/8H+DdVXVDO/6kJLcAj0hyS5K3jqh0SZKkoTJ0eoYMnZYkSfOFodOtJJcm+WmST06w/1SDpyVJ0kLSyWiZSbwLeATwp+N3JBkDHj30iiRpI1296sBJ9+93xMD//5UkoKMzg4NCp5PsWVWfA34xYPzDaBrFNw+9WEmSpBHq5MzgRKHTk3zlKOCiqrotyVBqlCRJmgs62Qy2jgdWA3cDR080KMlOwCuBZ23ogEmOAI4AWLJkySYpUpIkaZQ6eZu4NWHo9DhPolmR5LtJfkgTL/PdQQMNnZYkSV3T5ZnBXuj0rsCJNLeCH6KqLgF+q/d3kjuqarehVChJkjRinWwG+0On25dDvpzkAOBtwO7A1m3I9Ouq6rJR1ipJkjRKhk7PkKHTkiRpvjB0ujVR6HQaJyS5Mcm3kkz4wokkSVKXdPI28SQmCp1eCewC7F5V9yXZYdiFSdJMfeH9L5pw37P+5JIhViJpPurkzOB0Q6eBNwDHV9V9AFV1+1ALliRJGpFOzgzOIHT6ccDBSV4OrAeOrqqbhlCqJEnSSHWyGWxNKXS6tSVwd1WNJXkF8CFg//GDDJ2WJEld08nbxK2phk4D3AKc336+ANhr0CBDpyVJUtd0uRnshU6fTRM6PZlPAH/Qfn4mcOMs1iVJkjRndPI28QxCp98JnJ3kvwJ3AH88qtolSZKGydDpGTJ0WpIkzReGTvdJsm2SW5K8t2/bwW0UzTeSbOiWsiRJUmd08jbxBrwduLL3R5LtacKo966q9UnOTPLsNpNQkua8yz74woHbn/+6Tw25EknzUSdnBicKnU6yN7Aj8Jm+4b8D3FRV69u/PwscNOyaJUmSRqGTM4ODQqeBbwJXAK8GntM3/LvAf0iylCZi5mXAomHWK0mSNCqdbAZb40OnjwQ+VVW3JLl/UFX9e5I3AOcA9wFfplmR5CEMnZYkSV3T5WawFzq9BU3o9H7A/kmObLcvSnJHVR1bVRcDF8P9Dd+9gw5YVauAVdC8TTz7lyBJkjS7utwM9kKndwVOrKpDezuSrATGqurY9u8dqur2JI+mmUF81QjqlSRJGrpONoMThU5X1RUTfOVvkzyx/Xx8VbkCiSRJWhAMnZ4hQ6clSdJ8Yeh0K8mlSX6a5JPjth+Q5Lok69qcwU7OmEqSJI230JqedwGPAP60tyHJZsCZwLOr6sYkxwOHAR8cTYmSND0Xf+gPB25/8R99esiVSJqPOjkzOFHodLuqyC/GDd8e+GXfc4KXY+i0JElaIDo5MzgodLqq1k0w/CfA5knGqmoNsBzYZUilSpIkjVQnm8HW+NDpgaqqkqwATk6yJc1SdQNzBg2dliRJXdPJ28StXuj0NjSh0xOqqqurav+q2he4EhgYLVNVq6pqrKrGFi9evMkLliRJGrYuN4O90OmzgRMnG5hkh/b3lsBbgNNnvTpJkqQ5oJO3iScKnQbeBuwObJ3kFuB1VXUZcEySA2ma49MmCaeWJEnqFEOnZ8jQaUmSNF8YOt2aJHT6qiRr259bk3xiVDVKkiQNUydvE0/iIaHTAFW1f+9zkvOAC4dclyTN2LlnvGDg9uWHXzrkSiTNR52cGZxm6HT/97YFDgCcGZQkSQtCJ2cGpxk63e9lwOeq6uezWqAkSdIc0clmsDWl0OlxDgE+MNFOQ6clSVLXdPI2cWvKodMASX4T2Be4ZKIxhk5LkqSu6XIzOOXQ6dZy4JNVdfesViVJkjSHdPI28QxCpwFWAO8cTcWSJEmjYej0DBk6LUmS5gtDpyVJkjRQJ28TT1eSS4GnAl+sqgNHXY8kTcc/fPj5D/r7P628bIKRkvRQzgw23gW8ZtRFSJIkDduCagZnujKJJElSVy2o28QbsTKJJElSJy2oZrA1k5VJAFcgkSRJ3bOgbhO3prUyST9XIJEkSV2zEJvB6a5MIkmS1FkL6jbxDFcmkaQ5zSgZSRtjQTWDVXUWcFb7+V7gKe2uK0ZWlCRJ0ghtVDOYZBlwGrAtcC9wQlWd0+47AHg3sAi4lma27dcTHGclMFZVR21MPZK0EJ1x5vMe9Pfhh31mRJVImo829pnBu4DXVtUewAuAU5Jsl2Qz4ExgRVXtCdwMHLaR55oVSRbU7KgkSVK/KTeDgwKbgUVVdRNAVd0K3A4spnlj95dVdWP79cuBg6Z4nhcn+WqSryX5bJId2+1vTfKhJF9I8v0kR7fblyZZ1/f9NyV5a/v5T5KsTnJ9kvOSPKLd/uEkpyf5KnBSkpuSLG73bZbku72/JUmSumzKzWBVrQZ6gc0nMS6wOcm+NLeEvwf8BNg8yVi7ezmwyxRP9UXgqVX1JOBjwJv79u0OPB/YF/irJFts4FjnV9U+VfVE4FvA6/r27Qw8rar+HPgocGi7/TnA9VW1for1SpIkzVvTvUU6MLA5yWOAjwCHVdV97bYVwMlJtgQ+Q/NM4VTsDJzTHnMR8IO+fZdU1T3APUluB3bcwLH2TPIOYDuabMH+V+4+3r5EAvAh4ELgFOCPgDMGHczQaUmS1DXTfWbwIYHNSbYFLgGOq6qv9AZW1dVVtX9V7QtcCdw44HiDvAd4b1X9PvCnPDgY+p6+z/fSNLO/Hncd/eM/DBzVHutt4/bd2Vfrj4Afty+97At8elBhhk5LkqSumW4z+KDA5iSLgAuAs6rq3P6BSXZof28JvAU4fYrneBTwL+3nqbx08mNghyTbt+c6sG/fNsBt7e3kQwd++wEfoLld3D9jKEmS1GlTvk08KLAZWAE8A9i+jYcBWFlVa4FjkhxI03CeVlWTZfltzgOzfm8FPp7k32ny/3adrK6q+lWS44FraJrIb/ft/h/AV4H17e9tJjnURTS3hwfeIpakucooGUkbI1U16hpIcjJwU1W9b4Q1jAEnV9X+Uxk/NjZWa9asmeWqJEmSNl6Sa6tqbNC+kWfsJfk0zYsibx3S+bYFvgl8ohdyneQfaaJv/jnJpcCrq+onw6hHkjbW33/k+fd//tPXuDSdpOnZ2NDpaUlyeJK1/T/A96vq2VX1syGV8XaaF1p6NW0OPBvYqap2A74OuBKKJElaEIY6M1hVQ3kmL8k+wAdp3gx+GM3zhAcDW9LE0VwK9KZK0/48Msm/0Syt993ZrlGSJGkuGPlt4tlQVauT9AKyt6J5S/ibNC+kvJomWLo39ldJ3gDcQBM3cxPwxqEXLUmSNAJDvU08ZMcDz6WZATwJOBL4VFXd0j+ojZ15A/AkYCea28R/MeiASY5IsibJmvXrXaBEkiTNf52cGWz1ArK3oAmb3g/YP8mR7fZFSe4AzgOoqu8BJPkn4NhBB6yqVcAqaN4mnu0LkCRJmm1dbgZ7Adm7AidW1f2h020m4lhVHZtkJ+D3kixu1yN+Ls06xpIkSZ3XyWZwUEB2kgMGBV9X1a1J3gZcmeRXwM3AyuFWLEkzZ5yMpI0xJ0Kn5yNDpyVJ0nwxp0OnRy3JY2nWV96M5vnC91TVVNdRlqSRO/XsB0Knjz7UWUJJ07Pgm0HgNmC/qronydbAuiQXVdWtoy5MkiRptnU5WuYhkuyT5OtJHp7kkUm+ATyhqu5ph2zJAvs3kSRJC9uCmhkcFEZdVeuS7AJcAuwGHOOsoCRJWigW4izY+DBqqupHVbUXTTN4WJIdB33R0GlJktQ1C7EZ7IVRb0MTRn2/dkZwHbD/oC9W1aqqGquqscWLF896oZIkSbNtITaDvTDqs4ETk+ycZCuAJI8Gng58Z4T1SZIkDc2CemZwUBg1sAfwriQFBHh3Vd0wyjolaTqMk5G0MRZUM1hVZwFntZ/vBZ7S7vK/pJIkaUFaMM1gkmXAacC2wL3ACVV1TrvvbJoXSn4FXAP8aVX9alS1StJ0nPSPD4ROv/kQ/99W0vQspGcG7wJeW1V7AC8ATkmyXbvvbGB34PdpImf+eDQlSpIkDVcnm8EJwqUXVdVNcP9bw7cDi9u/P1UtmpnBnUdWvCRJ0hB18jbxROHSvf1J9gUWAd/r/16SLYDXAH82xHIlSZJGppPNYOt4YDVwN3B0b2OSxwAfAQ6rqvvGfed9wJVVddWgAyY5AjgCYMmSJbNRsyRJ0lB18jZx6yHh0km2pVl27riq+kr/4CR/RXPb+M8nOqCh05IkqWu63AyOD5deBFwAnFVV5/YPTPLHwPOBQwbMFkqSJHVWJ28TTxAuvQJ4BrB9kpXt0JVVtRY4HbgZuDoJwPlVdfzwK5ek6TNORtLG6GQzOEm49FkTjO/kv4MkSdKG2ARJ0jz31n96IHT6ra9yllDS9MyJZwaTLEtydZJvtPmAB/ftOyDJdUnWJTkzyYQNbJKVSe5LslfftnVJls7uFUiSJM1Pc6IZZILVQZJsBpwJrKiqPWme6ztsA8e6BThuVquVJEnqiKE3g9NcHWR74JdVdWP79cuBgzZwik8CeyT5DwPOfUiSG9rZwhPbba9P8q6+MSuTvHejL1SSJGkeGHozWFWrgd7qICcx+eogPwE2TzLW7l4O7LKBU9zXHvcv+zcm2Qk4ETgAWAbsk+RlwHnAy/uGHgx8bNCBkxyRZE2SNevXr5/C1UqSJM1to7pNfDzwXGCMpnEDHrQ6yOFVdV+7VvAK4OQk1wC/AO6dwvH/AXhqkl37tu0DfKGq1lfVr2nyB59RVeuB7yd5apLtgd2BLw06qKHTkiSpa0b1NnFvdZAtaFYHuXOi1UGq6mpgf4AkzwOesKGDV9Wvk/wN8JYp1vMx4FXAt4EL2iZUkiSp80bVDPZWB9mVZnWQP2fi1UF2qKrbk2xJ09ydMMVzfBh4M81ydADXAKcm+U3g34FDgPe0+y6geenkSUy9gZSkOcE4GUkbYxQvkNy/OgjwTprbt73VQVYmWdv+LGu/ckySbwFfBy6uqiumcp6q+iVwKrBD+/dtwLHA54HrgWur6sJ2378D3wIeW1XXbKJLlSRJmvPiHdGZGRsbqzVr1oy6DEniTee+4P7P715+6QgrkTRXJbm2qsYG7ZsrOYPAJg+fXt83yzhwGbp27NIk6ybaL0mS1GVzbTm6Xvj0TW0UzLVJLgN+ThM+/eyqujHJhTRvAP/fvu9+qare2Pf3OVV11PBKlyRJmn9GNjO4keHT7wbWVdWyvp83DjzRg895TJLV7Xnf1rdr8yRnJ/lWknOTPGLTXq0kSdLcNLJmcAjh0wf33SY+vI2leTywL03o9N5JntGO/Q/A+6rqd2lmIY8cdEBDpyVJUteM+pnB2QyfPqdv1vAM4Hntz9eA62jCpR/fjv1RVfWCpj8KPH3QAQ2dliRJXTPqZwZnNXx6nAD/q6r+/kEbk6XA+FeqfcVakiQtCKNuBocRPt1zGfD2JGdX1R1Jfhv4VbtvSZL92obzPwFf3IhrkqShMk5G0sYYWTPYHz6d5GHAl3kgfHr7JCvboSurai1N+PSBNLe2T5tq+HRPVX0mye8CVycBuAN4Nc3t5u8Ab0zyIeCbwGkbfYGSJEnzgKHTM2TotKS54vALHgidPuPlzhJKeqhNGjo9WTB035hTk9wxk2I3tSSvb2chJUmSNM5MbhMPDIauqp8CtPEvj96URU4kyeHAn43bfH/4dJLNq+r0YdQiSZI0H006MzjNYGjaZ//eBbx5QydO8uIkX03ytSSfTbJju/2t7XJzVyW5OckrkpyU5IYklybZoh23N7CS5pm/HwN/WFXLgD2SnJJkDfBn7fHe1H5nt/Zc17dL2z0uydZJPtf+fUOSl87kH1KSJGk+mrQZnGYwNMBRwEVVddsUzv1F4KlV9STgYzy4gXwccADwEprcv89X1e8D/w94UdsQvgdYXlV7Ax/iwW8XL2rzAP9m3DnPBv6uqp4IPA24DbgbeHlVPRn4A+Bv0r5hMp6h05IkqWumcpv4eGA1TdN0dG9jXzD0YVV1X3vL+JXAs6Z47p2Bc9rjLAJ+0Lfv01X1qyQ3AA8Dek9E3wAspVkxZE/g8rZvexhNY9dzzviTJdkG+O2qugCgqu5ut28B/HW7Gsl9wG8DOwL/Ov4YVbUKWAXNCyRTvE5JkqQ5ayrN4FSDoZ8E7AZ8t23QHpHku1W12wTHfQ/wv6vqoiTPAt7at+8egLbJ/FU98MrzfW3NAb5RVftNcOw7p3BdPYfS3Obeu21Af9hepyRJUudN5W3iXjD02TTB0IsYEAxdVZdU1W9V1dKqWgrcNUkjCPAo4F/az4dNs+7vAIuT7AfN7F6SPSb7QlX9Arglycva72yZ5BFtHbe3jeAfAI+dZi2SJEnz1qQzgzMIhp6OtwIfT/LvwBU0q5BMSVX9Msly4NQkj2qv4xTgGxv46muAv09yPM3qI6+kaXIvbm9JrwG+Pc3rkKSRMltQ0sZYMKHTSZbRrCyyLc0byCdU1Tntvl1pXmLZHrgWeE1V/XKy4xk6LWmu+MMLDwLg0y89b8SVSJqrNmno9DzWy0fcA3gBcEqS7dp9JwInt7e1/x143YhqlCRJGqpZbwaTHJdk7bif42b5nFPOR2xjZA4Aes8/ngm8bDbrkyRJmitmsgLJtFTVCTw4A3DWVdXqJL18xK2YPB9xe+CnVfXrdvctNPEykiRJnTfrzeAITTUfccoHTHIEcATAkiVLNmmxkiRJo9DlZwZ7+Yjb0OYGTpCP+G/Adkl6jfHOPBB58yBVtapd2WRs8eLFs1q8JEnSMHS5GZxqPmIBnweWt5sOAy4ccq2SJEkj0cnbxDPIR3wL8LEk7wC+BnxwBGVLkiQN3YLJGdzUzBmUJEnzhTmDfZJsm+SWJO/t27Z3khuSfDfJqZnOWyWSNGJ/eOEb+cML3zjqMiTNUwuuGQTeDlw5bttpwJ8Aj29/XjDsoiRJkkahk83goNDpJHsm2RvYEfhM39jHANtW1Vfal0nOwtBpSZK0QHTyBZJBodPAN4ErgFcDz+kb/ts0QdM9hk5LkqQFo5PNYGt86PSRwKeq6paZPhJo6LQkSeqaLjeDvdDpLWhCp/cD9k9yZLt9UZI7gL+lCZrumTR0GlgFzdvEs1e6JEnScHS5GeyFTu8KnFhVh/Z2tDmDY1V1bPv3z5M8Ffgq8FrgPcMvV5Ikafg62QwOCp1OckBVXTHBV44EPkzzfOGn2x9JkqTOM3R6hgydliRJ84Wh05LUYS/8xF/ywk/85ajLkDRPzYlmMMmyJFe3eYBfT3Jw374DklyXZF2SM5Ns8NZ2kk8k+crsVi1JkjT/zYlmELgLeG1V7UGz+scpSbZLshlwJrCiqvYEbgYOm+xASbYD9gYeleR3ZrluSZKkeW3ozeCg1UGARVV1E0BV3QrcDiymiYf5ZVXd2H79cuCgDZziFcDFwMeAFX3n/XCS5X1/39H+3izJ+5J8O8nlST7VP06SJKnLht4MVtVqoLc6yEnAR6tqXW9/kn2BRcD3gJ8AmyfpPfC4HNhlA6c4BPjH9ueQKZT0CmAp8HvAa2jyCAdKckSSNUnWrF+/fgqHliRJmttGdZv4eOC5wBhNQwjcv07wR4DDq+q+dq3gFcDJSa4BfgHcO9FBk+wIPB74Yjub+Kske26glqcDH2/P96/A5ycaWFWrqmqsqsYWL148pQuVJEmay0bVDPZWB9mGZnUQkmwLXAIcV1X3v/xRVVdX1f5VtS9wJXDjgOP1vAp4NPCDJD+kmfHrzQ7+mvZ622cRF23C65EkSZqXRt1rEUIAACAASURBVNUM9lYHORs4Mcki4ALgrKo6t39gkh3a31sCbwFOn+S4hwAvqKqlVbWU5kWS3nODP2z/BngJzTJ1AF8CDmqfHdwReNZGXZkkSdI8MvQVSAatDkLTsD0D2L5dKg5gZVWtBY5JciBN43raRKuIJFkKPBbon1X8QZKfJXkK8H7gwiTXA5cCd7bDzgOeDXwT+BFwHfCzTXfFkjS7PvWyvx51CZLmMVcgAZJsXVV3JNkeuAb4j+3zgxNyBRJJkjRfDGUFksmCo/vGnNqLdJljPplkLXAV8PYNNYKSNJe88IJ3jLoESfPYprxN3AuOvinJTsC1SS6rqp8CtPEwj94UJ0pyOPBn4zZ/qareOMH40MyC3jdof1U9a1PUJUmSNN/MaGZwmsHRtM8Gvgt48xSOvTjJeUlWtz//sd3+1iRvao9/Bk0j+7KqWgacBTyzXbLuv7Tjlyb5TpKzgHXALknuSHJyO3v5uSS9+h6X5NIk1ya5KsnuM/l3kSRJmm9m1AxOMzga4Cjgoqq6bQqH/1vg5Krah2a1kQ9MNjjJ3sDhwFOApwJ/kuRJ7e7HA++rqj2q6mbgkcCadtm7/wP8VTtuFfCfq2pv4E3A+yY4l6HTkiSpUzbmNvHxwGrgbuDo3sa+4OjDquq+9pbxK5l6ZMtzgN9r7uwCsG2SrScZ/3Tggqq6sz3/+cD+NM3qzf2ZhcB9wDnt548C57fHfhrw8b5zbjnoRFW1iqZxZGxszDdvJEnSvLcxzWAvOHoLmuDoOycIjn4SsBvw3bbZekSS71bVbhMcdzPgqVV1d//GJPeHRrcePoUa79zA/mqP+dP2drMkSdKCsjFvE08pOLqqLqmq3+oLgr5rkkYQ4DPAf+79kaTXpP0QeHK77cnAru32q4CXJXlEkkcCL2+3DbIZzfrGAP+JZtm6n9OsWPLK9thJ8sSp/ANIkiTNdzN9geT+4GjgncA+PBAcvTLJ2vZnJrNtRwNj7Qsq3wRe324/D/iN9mWVo2iXpauq64AP0+QDfhX4QFV9bYJj3wnsm2QdcADNrW6AQ4HXtYHU3wBeOoO6JWkkPvXy/z7qEiTNYwsqdLrNONyJZrWRT1TVUe32E4DXAo+uqsmeT7yfodOSJGm+GEro9DzyduDKcdsuBvYdQS2StNFedMG7Rl2CpHlsZM1gkuP6bif3fo7bRMd+SA5ikj2BZwI70jyXeL+q+soUY28kSZI6ZVOuQDItVXUCcMIsHXt1kl4O4lY0MTLfBK4AXk0TXyNJkrTgjawZHILxOYhHAp+qqlv68gSnJckRwBEAS5Ys2URlSpIkjU6Xm8HxOYj7AfsnObLdvijJHVV17FQPaOi0JEnqmi43g70cxF2BE6vq0N6OJCuBsek0gpIkSV3UybeJB+UgJjlgkvEnJbmFZnWUW5K8dUilSpIkjdSCyhnclMwZlCRJ84U5g5IkSRpoTjaDSZYlubrNB/x6koP79h2Q5Lok65KcmWTC5x6TrEzy3uFULUmj8aLzTx11CZLmsTnZDAJ3Aa+tqj2AFwCnJNkuyWbAmcCKqtoTuBk4bIR1SpIkzWsjbwYHrRYCLKqqmwCq6lbgdmAxTVzML6vqxvbrlwMHTfE8H06yvO/vO9rfz0ryhSTnJvl2krMz0yBCSZKkeWbk0TKDVgupqnW9/Un2BRYB3wMK2DzJWFWtAZYDu2yCMp4E7AHcCnwJ+I/AF8cPMnRakiR1zchnBlvHA88FxoCTehuTPAb4CHB4Vd1XzavPK4CTk1wD/AK4dxOc/5qquqWq7gPWAksHDaqqVVU1VlVjixcv3gSnlSRJGq2Rzwy2xq8WcmeSbYFLgOOq6iu9gVV1NbA/QJLnAU+Y4jl+Tdv8ts8eLurbd0/f53uZO/8ukiRJs2quzAz2Vgs5GzgxySLgAuCsqjq3f2CSHdrfWwJvAU6f4jl+COzdfn4JTeMpSZK0oI18Bqx/tZAkDwO+THMr+BnA9u3ScQArq2otcEySA2ka2dOq6opJDr85D8z6vR+4MMn1wKXAnZv+aiRp+C55xdGjLkHSPNbpFUiSnAzcVFXv28C4k4AX0TSYlwN/Vhv4h3EFEkmSNF8syBVIknwa2Ivm1vNk455G8/bwXsCewD7AM2e9QEnaBF50/mmjLkHSPNeJZjDJ4UnW9v8A36+qZ1fVz/rGDco0fBjNSyuLgC1pniX88UguRJIkachG/szgplBVZwBnTGHcoEzDq5J8HrgNCPDeqvrWrBYsSZI0R3SiGZym44HVwN3A0Ul2A34X2Lndf3mS/avqqvFfNHRakiR1TSduE09TL9NwG5rbwy8HvlJVd1TVHcCngf0GfdHQaUmS1DULsRl8UKYh8M/AM5NsnmQLmpdHvE0sSZIWhAV1m3iCTMMLaNY9voFm7eNLq+riEZYpSZI0NJ3OGZxN5gxKkqT5YkHmDA6S5NIkP03yyXHbP5jk+jZ25twkW4+qRkmSpGFaUM0g8C7gNQO2/9eqemJV7UXzDOFRwy1LkmbmRed9YNQlSJrnOtkMDgqXTrJnVX0O+MX48VX18/Z7ockf9N65JElaEDr5AskE4dLrJvtOkjOAFwLfBP7b7FcpSZI0ep2cGWwdDzwXGANO2tDgqjoc2IkmVubgQWOSHJFkTZI169ev35S1SpIkjUSXm8Hx4dIbVFX3Ah8DDppgv6HTkiSpU7rcDI4Plx4ojd16n4GXAN8eSoWSJEkj1slnBgeFSyc5AHgbsDuwdZJbgNcBlwNnJtkWCHA98IYRlS5JkjRUhk7PkKHTkiRpvjB0Gkjy2CTXJVnbRs28vm/foiSrktyY5NtJBj4zKEmS1DULphkEbgP2q6plwFOAY5Ps1O47Dri9qp4A/B7wf0ZUoyRNy4HnnTnqEiTNc51sBgeFTgNPqKp72iFb8uBr/yPgfwFU1X1V9ZMhlyxJkjQSnXyBZKLQ6SS7AJcAuwHHVNWtSbZrv/b2JM8CvgccVVU/HkXtkiRJw9TJmcHWQ0Knq+pH7frDuwGHJdmRpiHeGfhyVT0ZuBp496ADGjotSZK6psvN4ISh01V1K7AO2B/4N+Au4Px298eBJw86oKHTkiSpa7rcDD4odDrJzkm2AkjyaODpwHeqyda5GHhW+71n06xPLEmS1HmdfGZwUOg0sAfwriRFEy797qq6of3KW4CPJDkFWA8cPoq6JUmShs3Q6RkydFqSJM0Xhk5LkiRpoAXXDCbZNsktSd47YN9FSdaNoi5JmokDzz171CVImucWXDMIvB24cvzGJK8A7hh+OZIkSaPTyWZw0AokSfZMsjewI/CZceO3Bv6cJqRakiRpwejk28SDViChiYu5Ang18JxxX3k78Dc0eYOSJEkLRidnBlvjVyA5EvhUVd3SPyjJMuBxVXXBhg7oCiSSJKlrOjkz2OqtQLIFzQok+wH7Jzmy3b4oyR3AzcBYkh/S/HvskOQLVfWs8QesqlXAKmiiZYZxEZIkSbOpy81gbwWSXYETq+rQ3o4kK4Gxqjq23XRau30p8MlBjaAkSVIXdbIZHLQCSZIDquqKUdcmSZvSJ5cfuuFBkjQJVyCZIVcgkSRJ88WcX4EkybIkV7cRMF9PcnDfvgOSXJdkXZIzk0w4m5lkZZL1Sb6W5KYklyV52nCuQpKG68Bzz+HAc88ZdRmS5rk50QzSRLq8tqr2AF4AnJJkuySbAWcCK6pqT5qXPQ7bwLHOqaonVdXjgXcC5yf53dksXpIkab4aejM4KBAaWFRVNwFU1a3A7cBimjeCf1lVN7Zfvxw4aKrnqqrP07z9e0R77scluTTJtUmuSrJ7kkclubltPGlr+lGSLTbZRUuSJM1RQ28Gq2o10AuEPgn4aFXdvx5wkn2BRcD3gJ8Amyfp3eNeDuwyzVNeB+zefl4F/Oeq2ht4E/C+qvoZsBZ4ZjvmQOCyqvrVdK9NkiRpvhnV28THA6uBu4GjexuTPAb4CHBYVd3XblsBnJxkS5pl5O6d5rnSHmdr4GnAx5P09m3Z/j4HOBj4PLACeN/AAyVH0M4yLlmyZJplSJIkzT2jagbHB0LfmWRb4BLguKr6Sm9gVV0N7A+Q5HnAE6Z5ricB36KZBf1pVS0bMOYi4K+T/AawN82ydQ9h6LQkSeqaUb1A0guEPhs4Mcki4ALgrKo6t39gkh3a31sCbwFOn+pJkjyTZibv/VX1c+AHSV7Z7kuSJwJU1R00M5V/SxM6Pd3ZR0mSpHlp6DODgwKhaW7NPgPYvl0dBGBlVa0FjklyIE3jetoUgqMPTvJ04BHAD4CDqupb7b5DgdOS/HeaWcmPAde3+84BPg48axNcpiTNuk8uP3jDgyRpAwydniFDpyVJ0nwx50OnhyHJY9vw6rVtuPXr2+2PSHJJkm+329856lolaSpefO75vPjc80ddhqR5bl6uTZzkcODPxm3+UlW9cZKv3QbsV1X3tG8Wr0tyEfBT4N1V9fn22cXPJfnDqvr07FQvSZI0d8zLZrCqzgDOmGh/kn2ADwL7Ag8DrgEO7ssz3JJ2VrSq7qKJlKGqfpnkOmDn2atekiRp7piXzeCGVNXqdtbvHcBWtMHWSXahia/ZDTimXe3kfkm2A15M81axJElS53X5mcHjgecCYzQrnVBVP6qqvWiawcOS7NgbnGRz4B+BU6vq+4MOmOSIJGuSrFm/fv2sX4AkSdJs63Iz2Au23oYm2Pp+7YzgOtow69Yq4KaqOmWiA1bVqqoaq6qxxYsXz0LJkiRJw9XlZnB8sPXOSbYCSPJo4OnAd9q/3wE8CvgvI6pVkiRpJDr5zOAEwdZ7AO9KUjTrFb+7qm5IsjNwHPBt4Lp23eL3VtUHRlS+JE3JxctfMeoSJHVAJ5vBqjoLOKv9fC/wlHbXZQPG3kLTHEqSJC04Xb5NLEmd9pJzL+Yl51486jIkzXNzphlMsizJ1e0qIF9PcnDfvgPa1UPWJTmzffN3ouOsTFJJntO37WXttuWzfR2SJEnzyZxpBoG7gNdW1R7AC4BTkmyXZDPgTGBFVe0J3AwctoFj3QCs6Pv7EOD66RQzWcMpSZLUFSNpBpPs087+PTzJI5N8A1hUVTfB/dEvtwOLaSJifllVN7Zfvxw4aAOnuArYN8kW7dJzuwFr+87/P5OsbmcaV6V9ayTJF5KckmQND13uTpIkqXNGMvs10Qohvf1J9gUWAd8DCtg8yVhVrQGWA7ts6BTAZ4Hn00TGXATs2rf/vVV1fHuujwAHAr0HbxZV1diggyY5AjgCYMmSJVO/YEmSpDlqlLeJH7JCCECSxwAfAQ6vqvuqqmhu+Z6c5BrgF8C9Uzj+x9rvraBZWaTfHyT5apIbgANoYmd6zpnogIZOS5Kkrhnlc3G9FUK2oFkh5M4k29KsHXxcVX2lN7CqrqZdLSTJ84AnbOjgVXVNkt8H7qqqG9s7wSR5OPA+YKyqfpTkrTx4hZI7N8G1SZIkzQujbAZ7K4TsSrNCyJ8DFwBnVdW5/QOT7FBVtyfZEngLcMIUz3EscPe4bb3G7yft84TLgXORpHnmouUvHnUJkjpgJM3gBCuErACeAWyfZGU7dGVVrQWOSXIgzW3t06rqiqmcp6o+PWDbT5O8n2Zt4n8FVm/0BUmSJM1TaR7J03SNjY3VmjVrRl2GpAXspedeCsCFy18w4kokzXVJrp3oBdmR5wwaNi1JkjQ6I28GmWHYdJLDk6zt/dC8nfxvbGTYtCRJ0kIy1GZwU4ZNV9UZVbWs9wP8T5pYmGmFTSd5XJLr+sY8vv9vSZKkLhtqM1hVq2kCoN9Bky04Wdj0T2jDptvd0w2bfml7rn7vrap92pnGrYADq+p7wM+SLGvHHA6cMejgSY5IsibJmvXr10/pmiVJkuayUdwmnoth0x8ADm/fbD4Y+IdBBzZ0WpIkdc0oomXmYtj0ecBfAVcA11bVv22KC5UkSZrrRtEMzrmw6aq6O8llwGnA62ZwTZI0dEbKSNoUhtoMzvGw6bOBlwOfmf6VSZIkzU+GTreSHEcz+3hWVR21ofGGTksatZed+zkAPrH82SOuRNJcN1no9CjXJp4zklxA82zi5aOuRZIkaZjmQuj0tIwPm25//m6K331IzmGSPWmibj4LXDyrxUuSJM0x825msKrOYIIcwCl8d3WSXs7hVsBHgW/SvEX8auA5k3xdkiSpc+ZdM7gJHE/z8sjdwNHAkcCnquqWXgzNRJIcARwBsGTJklkuU5IkafYtxGZwfM7hfsD+SY5sty9KckdVHTv+i1W1ClgFzQskwytZkiRpdizEZvBBOYdVdWhvRxttMzaoEZQkSeqiBdUMDso5THLAVPMLJWkuMVJG0qZgzuAMmTMoSZLmi8lyBuddtIwkqfHy877Iy8/74qjLkDTPzblmMMmyJFe3GYBfT3Jw374DklyXZF2SM5Ns8DZ3kk8k+crsVi1JkjQ/zblmELgLeG1V7QG8ADglyXZJNgPOBFZU1Z7AzcBhkx0oyXbA3sCjkvzOdIqYSqMpSZI03420GRy0IgiwqKpuAqiqW4HbgcU0kTC/rKob269fDhy0gVO8gmZVkY8BK/rO++EkpydZk+TGJAe221cmuSjJFcDnNuW1SpIkzUUjnf0atCJIVa3r7U+yL7AI+B5QwOZJxqpqDbAc2GUDpziEJmT6x8B5wF/37VsK7As8Dvh8kt3a7U8G9qqq/zv+YIZOS5KkrpkLt4mPB54LjAEn9TYmeQzwEeDwqrqvmteeVwAnJ7kG+AVw70QHTbIj8Hjgi+1s4q/adYh7/qk97k3A94Hd2+2XD2oEoQmdrqqxqhpbvHjxTK9XkiRpzpgLzWBvRZBtaFYEIcm2wCXAcVV1/8sfVXV1Ve1fVfsCVwI3Djhez6uARwM/SPJDmpnAQ/r2j8/U6f1954yvRJIkaZ6ZC81gb0WQs4ETkywCLgDOqqpz+wcm2aH9vSXwFuD0SY57CPCCqlpaVUtpXiRZ0bf/lUk2S/I44HeA72yi65EkSZo3RvrM4KAVQWgatmcA27fLwwGsrKq1wDHtyx6bAadNtHJIkqXAY4H+WcUfJPlZkqe0m/4ZuAbYFnh9Vd2dZFNfoiTNmgsOevqoS5DUAQtyBZIkHwY+OX7mcTpcgUTSqB103jUAnHfQviOuRNJcN29WINlUgdNtRMx7N3C6xUnWbWCMJElSp82pZpAZBE4nOTzJ2v4f4DWTnaSqVgKfns0LkSRJmg9G1gxuqsDpqjqjqpb1/9BE0vTO8+Eky/v+vmNALVcmWdb39xeTPHHTX7UkSdLcMrJmsKpWA73A6ZOYPHD6J7SB0+3uqQROT8cHgZXteZ8APLyqrh8/KMkR7aola9avX78JTy9JkjQao75NPCuB0zPwceDAJFsAfwR8eNAgQ6clSVLXjDRahgcCp7egCZy+c7LAaWB/gCTPA54wxXP8mrbpbZ89XDR+QFXdleRy4KU0YdV7z/SCJEmS5pNRzwzOVuB0vx/yQHP3EprGc5APAKcCq6vq36dxDZIkSfPWyGYGZytwurU5cE/7+f3AhUmuBy5lguXmquraJD8HztjIS5OkoTBfUNKm0MnQ6SQnAzdV1fv6ti0DTqNZceRe4ISqOqfd90HgqcBuwMU0DehD3jruZ+i0pFF75XlfB+DjB+014kokzXXzJnR6U0jyaWAvmlvP/QZmGLb7vkrTJL6aZpm6o4ZUriRJ0kjN62ZwgsDp7wPHAldNMcOw95bwLsC5wFZA96ZLJUmSBhj128QbparOYIJn/JL0Mgy3YvIMw962M4AXAt8E/tssli1JkjRnzOuZwQ2YUoZhb3tVHQ7sBHwLOJgBDJ2WJEld0+VmsJdhuA1NhiETZRj2VNW9wMdol7obsN/QaUmS1CldbganlGGYxm69zzRZhN8eQb2SJElDN6+fGZzIdDIMga8DZ7azhgGuB94w9KIlSZJGoJM5g8NgzqAkSZovFlTO4ESSLEtydZJvJPl6koP79iXJCUluTPKtJEePslZJmoqDz/8uB5//3VGXIWme6+Rt4gn0QqdvSrITcG2Sy6rqpzS3i3cBdq+q+3rrIEuSJHVdJ2cGk+zTzv5NKXSa5hnB43tRM1V1+0gKlyRJGrJOzgxW1epphk4/Djg4ycuB9cDRvcZRkiSpyzrZDLaOB1YDdwP3PwPYFzp9WF/o9JbA3VU1luQVwIeA/ccfMMkRwBEAS5Ysmd3qJUmShqCTt4lb0wmdvgU4v/18AbDXoAMaOi1Jkrqmy83glEKnW58A/qD9/EzgxqFVKUmSNEKdvE08ndDpqloLvBM4O8l/Be4A/ngEZUuSJA2dodMzZOi0JEmaLwydliRJ0kBzohmcbHWQvjGnJrljE55zpyTjnx2UpHnh6At+dP+PJG2MufLM4GSrg5BkDHj0pjxhGzy9fFMeU5Ikab4Z+szgdFcHaV8AeRfw5ikc+8VJvprka0k+m2THdvszk6xtf76WZJskS5Osa/cvTXJVkuvan6fN0uVLkiTNKUOfGZzB6iBHARdV1W1JNnT4LwJPrapK8sc0DeR/A94EvLGqvpRka5og6n63A8+tqruTPB74R+AhD1kaOi1JkrpmVLeJp7Q6SHvL+JXA/2/v3oM1qes7j78/AYbCwkGE4aLDCEpYNiKOckRJxCgX7/G+isVlZiPBiBQqFVe3sMoNSBU38S6GJesKS1ZWEERAUEEWL2AYlOUaHHTJMoAwJiAYBCN894+njzlz5nnOHI4z3XP6eb+qTk0/3b9uvqe6pvjO7/f0p18+y+suBs5trrMA+L/N/u8DpyU5B/hqVa2a1lhuBnw2yVLgcWC3YRevqjOAM2DwNPEsa5IkSdpodfUAyWzfDvICYFfgjiR3Ak9JcscM1/0M8Nmqeh7w7slrV9WJDLIDtwC+n2T3aed9ALgPeD6DGcEFv+8vKEmSNB90NTM4+XaQXRi8HeQYhrwdpKouAXaY/JzkV1W16wzX3Qq4u9leNuW851TVTcBNSV4E7A7cMO28Vc1s5DJgk9/rt5MkSZonWm8G5/B2kCfjvwBfSfIAcCWDZhPg/UleATwB3AJ8A9hxynmfB85varsM+Jcn/YtJUos+/eadui5BUk/4BhIgyUnA65qPx1fVues6xzeQSJKk+WKmN5BsLDmDnUnyOuCFwFJgc+CqJN+oqoe6rUySRvvYBff+bvsjb95xhpGSNLON4g0kT1aSY6fkBk7+HDuL84ZlHL4QuLqqfltV/wLcCLx6Q/8OkiRJG4N5OTNYVScAJ8zhvLUyDoHrgY8m+TjwFOAVwK3rsVxJkqSN1rxsBn9Pa2QcVtXjzRPGPwBWA9cwyBpci6HTkiSpb+blMvHvaa2Mw6o6oaqWVtWBQICfDDuxqs6oqomqmli0aFFrBUuSJG0o49gMTmYcnsMg43CTJNsAJNkT2BP4Zof1SZIktWaslolHZBy+Cji1eT3dQ8AhVfXbDsuUJElqjTmDc2TOoCRJmi9myhkcq2XiJJcleTDJxdP2H5XkjiSVZNuu6pMkSWrbWC0TA6cwiI9597T93wcuBq5quyBJmovPXXDf77bf++btO6xE0nzXy5nBYeHSSfaoqiuAh6ePr6ofV9Wd7VcqSZLUrV7ODA4Ll66qmzsuS5IkaaPTy2awsUa49Pq4oKHTkiSpb3q5TNxYK1z692XotCRJ6ps+N4NrhEt3XIskSdJGqZfN4NRwaeBE4EVJ9kvyXeArwP5JViV5VTP+6CSrgMXAjUnO7Kx4SZKkFhk6PUeGTkuSpPnC0Ol1SLIsycrmZ1nX9UiSJLWlz08Tz0qSpwMfBSaAAq5PclFVPdBtZZI02tlfXf277UPf4gNtkuZurGYGh4VRA+8FvlVV/9w0gN8CXt1tpZIkSe0Yq5nBYWHUwL8Cd00Ztgp4ZgflSZIktW6sZgYbxwEHMlgWPvnJnJjkiCQrkqxYvXr1uk+QJEnayI1jMzg9jPpuYKcpxxc3+9Zi6LQkSeqbcWwGp4dRXw68MsnWSbYGXtnskyRJ6r2x+s7g1DDqJJsAPwCWAsczeI8xwHFV9c9d1ShJktQmQ6fnyNBpSZI0Xxg6DSRZmuSaJLc08TLvmHJs/yQ/SnJDku8l2bXLWiVJktoyTsvEjwCHVdXKJM9gEC59eVU9CJwOvLGqbktyJPARYHmHtUrSjL563i9+t/2Wt23bYSWS5rtezgyOCJdeUFUrAarqHuB+YPKR4AIWNttbAfe0XrQkSVIHejkzOCxcuqpunjyeZG9gAfDTZtfhwKVJfg08BLyk5ZIlSZI60cuZwcbQcOkkOwJnA/+xqp5odn8AeG1VLQa+CJw27IKGTkuSpL7pczM4PVyaJAuBS4Bjq+raZt8i4PlV9cPmvHOBPx52QUOnJUlS3/S5GVwjXDrJAuAC4KyqOm/KuAeArZLs1nw+ELit1UolSZI60svvDI4Ilz4IeBmwTZLlzdDlVXVDkr8Azk/yBIPm8M+7qFuSJKlthk7PkaHTkiRpvjB0GkjyrCnB0rck+cspxy5L8n+a/V9oZhMlSZJ6r5fLxCPcC+xTVY8l2RK4OclFTebg26vqoSQBzgP+A/DlLouVpFG+ce4v1vj8mncYOi1p7no5MzgidHq3qnqsGbI5U373qnqo2dyUQf6ga+eSJGks9LIZrKrrgMnQ6ZNpQqeT7JTkRuAu4KRmVhCAJJczeCvJwwxmByVJknqvl81gY63Q6aq6q6r2BHYFliXZfnJwVb0K2JHBrOF+wy5o6LQkSeqbPjeDa4VOT2pmBG8G9p22/1Hga8Abh13Q0GlJktQ3fW4Gp4dOL06yBUCSrYGXArcn2bJ5RR1JNgVeB/xDRzVLkiS1qpdPE48InX4ucEqSAgKcWlU3NUvFFyWZfKjkO8AXuqpdkiSpTYZOz5Gh05Ikab4wdLrRhEs/mOTiafvPSXJ7kpuT/Lckm3VVoyRJUpt6uUw8g1OApwDvnrb/HOCQZvvvFhp5MAAAEvlJREFUgMOB01usS5Jm7TvnrJlm8IqDfaBN0tz1cmZwWOh0kj2q6goGOYJrqKpLqwH8PbC49aIlSZI60MuZwaq6Lslk6PQWNKHT6zqvWR4+FHjfBi5RkiRpo9DLZrBxHHAd8Chw9CzP+TxwdVV9d9jBJEcARwAsWbJkfdQoSZLUqV4uEzdGhk4Pk+SjwCLgmFFjDJ2WJEl90+dmcI3Q6ZkGJjkceBXwzqp6ooXaJEmSNgq9XCYeFjqdZD/gr4HdgS2TrALeVVWXMwiZ/kfgmiQAX62q4zoqX5IkqTWGTs+RodOSJGm+MHRakiRJQ/VymXiUJJcBLwG+V1Wvn7L/vwN/Cvyy2bW8qm5ov0JJmtk1X1q91r59lvlAm6S5G6tmkNFvIAH4YFWd13I9kiRJnerlMvGTfQOJJEnSuOplM1hV1wGTbyA5mdm9geSEpoH8RJLNN3iRkiRJG4FeNoON44ADgQkGDeFM/jODyJkXAU8HPjRsUJIjkqxIsmL16rW/tyNJkjTf9LkZnPUbSKrq3hp4DPgisPeIcb6BRJIk9Uqfm8En8waSHZs/A7wJWNeSsiRJUi/08mniObyB5Jwki4AANwB/2VXtkjQTY2QkrW+9bAar6izgrGb7ceDFzaErR4zfr6XSJEmSNiq9bAZnkmQhcCtwYVUdleQpwFeA5wCPA1+vqg93WaMkjfLjM+9fa98LDt+ug0ok9UWfvzM4yvHA1dP2nVpVuwMvAP4kyWvaL0uSJKl9vWwGR4VOJ9kL2B745uTYqnqkqr7TbP8G+BGwuJvKJUmS2tXLZeKqui7JZOj0FsD/YLA0fCVwCHDAsPOSPA34M+BTLZUqSZLUqV42g43jgOuAR4GjgSOBS6tq1SBBZk1JNgX+J/DpqvrZsAsmOQI4AmDJkiUbqGxJkqT29LkZnAyd3oxB6PQ+wL5Jjmz2L0jyqykPi5wBrKyqT466YFWd0YxjYmKiNmTxkiRJbehzMzgZOr0LcFJVHTx5IMlyYGKyEUzyMWAr4PAO6pQkSepML5vBUaHTVbVWzmCSxcCxwD8AP2qWkD9bVWe2WrQkzYIxMpLWt1S52jkXExMTtWLFiq7LkCRJWqck11fVxLBjvZwZfDKSvAL4xJRduwMHVdWFHZUkSUPddvp9Q/f/+/ds33Ilkvpk7JvBJmNwKUCSpwN3MCWHUJIkqc96GTo9yqgw6ilD3gZ8o6oe6apGSZKkNo3VzOCwMOqqunnKkIOA0zopTpIkqQNj1Qw2podRA5BkR+B5wOWjTjR0WpIk9c1YLRM3JsOon8ogjHrS24ELqupfR51YVWdU1URVTSxatGgDlylJkrThjWMzOBlGfQ5w0pT972TwOjpJkqSxMVbLxKPCqIGfATsB/7vTAiVpBkbISNoQxqoZrKqzgLOa7ceBF085/MxOipIkSerQWDWDAEkWArcCF1bVUUmeCnx3ypDFDJ4yfn8nBUoaG3d+8ufr5To7v3+H9XIdSeNp7JpB4Hjg6skPVfUwTeg0DF7XAny1g7okSZJa18sHSEaFSyfZC9ieEW8YSbIbsB1rzhRKkiT1Vi9nBoeFSzNYGr4SOAQ4YMSpBwHnVlW1UqgkSVLHetkMNqaHSx8JXFpVq5KMOucg4NBRBw2dliRJfdPnZnAyXHozBuHS+wD7Jjmy2b8gya+q6sMASZ4PbFpV14+6YFWdAZwBMDEx4eyhJEma9/rcDE6GS+8CnFRVB08eSLIcmJhsBBuGTkuSpLHTy2ZwVLh0VV05w2lvB17bToWSZCSMpI1DfFZibiYmJmrFihVdlyFJkrROSa6vqolhx3o5MzhMkmcBFzCI09kM+ExVfWHamIuAZ1fVHh2UKKlH7j357tb+Wzv+J1+gJGnuxqYZBO4F9qmqx5JsCdyc5KKqugcgyVuAX3VaoSRJUsvGJnQa2K2qHmuGbM6U371pDo9hkEsoSZI0Nno5MzgsdLqqbk6yE3AJsCvwwclZQQavqPs48EgnBUuSJHWklzODjeOAA4EJ4GSAqrqrqvZk0AwuS7J9kqXAc6rqgnVdMMkRSVYkWbF69eoNWbskSVIr+twMToZOP5VB6PTvNDOCNwP7MgijnkhyJ/A9YLckVw27YFWdUVUTVTWxaNGiDVi6JElSO/rcDE6GTp8DnJRkcZItAJJsDbwUuL2qTq+qZ1TVzs2+n1TVyzuqWZIkqVW9/M7gsNBp4LnAKUkKCHBqVd3UZZ2S+su4F0nzRS+bwao6Czir2X4ceHFz6PJ1nHcnYMagJEkaG71sBodpHhQ5HVgIPA6cUFXnNse+y+C7hQDbAX9fVW/qpFBJ88bPT72j6xIA2OGvdu26BEnz2Ng0gwxiYw6rqpVJngFcn+TyqnqwqvadHJTkfOBrnVUpSZLUol4+QDIidHpBVa2E3z1NfD+waNp5C4H9gAtbL1qSJKkDvZwZHBU6PXk8yd7AAuCn0059E3BFVT3UWrGSJEkd6mUz2DgOuA54FDh6cmeSHYGzgWVV9cS0c94JnDnqgkmOAI4AWLJkyfquV5IkqXW9XCZurBU63SwDXwIcW1XXTh2cZFtg7+b4UIZOS5KkvulzMzg9dHoBcAFwVlWdN2T824CLq+rRFmuUJEnqVC+XiUeETh8EvAzYJsnyZujyqrqh2T4IOLH1YiXNW0a6SOqDXjaDM4ROnzXDOS/f8JVJkiRtXHrZDI6S5DLgJcD3qur1U/bvAnyZwfcMrwcOrarfdFOl1C8/P+2WrkvovR2OeW7XJUiax/r8ncFhTgEOHbL/JOATVbUr8ADwrlarkiRJ6kgvm8FhodNJ9qiqK4CHp40Ng6DpyYdKvsQgb1CSJKn3erlMvK7Q6Wm2AR6sqt82n1cBz2yhTEmSpM71shlsDA2d/n0YOi1Jkvqml8vEjbVCp0f4J+BpSSYb48XA3cMGGjotSZL6ps/N4Bqh06MGVVUB32EQOg2wDPjaBq9OkiRpI9DLZnBq6DSDIOkXJdkvyXeBrwD7J1mV5FXNKR8CjklyB4MZxb/tpHBJkqSWZTAxpidrYmKiVqxY0XUZkiRJ65Tk+qqaGHaszw+QzFqSx4Gbmo//r6re0GU90nx13yev77qEsbT9+/fqugRJ85jN4MCvq2pp10VIkiS1rZffGRxlVBh113VJkiR1ZaxmBkeFUTfN4Qrgt8CJVXVhp4VKkiS1ZKyawcawMOpnVdXdSZ4NXJnkpqr66fQTDZ2WJEl9M1bLxI21wqir6u7mz58BVwEvGHaiodOSJKlvxrEZXCOMOsnWSTYHSLIt8CfArR3WJ0mS1JqxWiaeGkadZBPgB8B7gHcmeYJBc3xiVdkMSpKksWDo9BwZOi1JkuYLQ6dnkGQpcDqwEHgcOKGqzu22Kml+uu9T13Rdwlja/n37dF2CpHls7JtB4BHgsKpameQZwPVJLq+qB7suTJIkaUMbqwdIhoVOAwuqaiVAVd0D3A/4qLAkSRoLYzUzOCp0evJ4kr2BBcBaGYOSJEl9NFbNYGNY6DRJdgTOBpZV1RPDTjR0WpIk9c1YLRM31gqdTrIQuAQ4tqquHXWiodOSJKlvxrEZnB46vQC4ADirqs7rtDJJkqSWjdUy8YjQ6YOAlwHbJFneDF1eVTd0VKYkSVJrDJ2eI0OnJUnSfGHoNJDkWQyWg/8A2Az4TFV9oTn2DuBYYBPg4qr6UGeFSh2579NXdV2C5mj7o1/edQmS5rGxaQaBe4F9quqxJFsCNzcxM48BpwB7VdXqJF9Ksn9VXdFptZIkSS3o5QMkI8Kld6uqx5ohm/Nvv/uzgZVVtbr5/G3grS2XLEmS1IlezgyOCpdOshODCJldgQ9W1T1Jfg38uyQ7A6uANzEInpYkSeq9XjaDjbXCpavqLmDP5h3EFyY5r6ruS/Ie4FzgCQZPGD9n2AUNnZYkSX3Ty2Xixlrh0pOadxDfDOzbfP56Vb24qvYBbgd+MuyChk5LkqS+6XMzOD1cenGSLQCSbA28lEHjR5Ltpuw/Ejizk4olSZJa1stl4hHh0s8FTklSQIBTq+qm5pRPJXl+s31cVQ2dGZQkSeobQ6fnyNBpSZI0X8wUOt3nZeKhkixMsirJZ6fsuyrJ7UluaH6267JGSZKktvRymXgdjgeuHrL/4Kpyqk8b3P2f/WbXJahntjvqlV2XIGke6+XM4LDQ6SR7JNkL2B7w/8aSJEn0dGZwWOg0cCtwJXAIcMCQ076Y5HHgfOBj5ZcpJUnSGOjlzGDjOOBAYAI4mUFkzKVVtWrI2IOr6nkMcgf3BQ4ddsEkRyRZkWTF6tWrhw2RJEmaV/rcDE4Pnd4HOCrJncCpwGFJTgSoqrubPx8G/g7Ye9gFDZ2WJEl908tl4sZk6PQuwElVdfDkgSTLgYmq+nCSTYGnVdUvkmwGvB74dhcFS5Ikta2XzeCw0Okk+1XVlUOGbw5c3jSCmzBoBP9ri+VKkiR1xtDpOTJ0WpIkzReGTjeSXJbkwSQXT9u/f5IfNYHT30uya1c1SpIktamXy8QzOAV4CvDuaftPB95YVbclORL4CLC85drUU/d/7utdl6Ce2+69f9Z1CZLmsV7ODI4Kna6qK4CHh5xSwMJmeyvgntaKlSRJ6lAvZwaHhU5X1c0znHI4cGmSXwMPAS9poUxJkqTO9XJmsDE9dHomHwBeW1WLgS8Cpw0bZOi0JEnqmz43g9NDp4dKsgh4flX9sNl1LvDHw8YaOi1Jkvqmz83gZOj0OcBJM4x7ANgqyW7N5wOB2zZwbZIkSRuFXn5ncFToNPDXwO7AlklWAe+qqsuT/AVwfpInGDSHf95Z8ZIkSS0ydHqODJ2WJEnzhaHTQJKlSa5pYmZuTPKOKceOSnJHkkqybZd1SpIktamXy8QjPAIcVlUrkzwDuD7J5VX1IPB94GLgqi4LHOb+z5/fdQmSNnLbHfnWrkuQNI/1cmZwWOg0sKCqVgJU1T3A/cCi5vOPq+rO7iqWJEnqRi9nBtcVOp1kb2AB8NOOSpQkSdoo9LIZbBwHXAc8Chw9uTPJjsDZwLKqeuLJXDDJEcARAEuWLFl/lUqSJHWkl8vEjbVCp5MsBC4Bjq2qa5/sBQ2dliRJfdPnZnCN0OkkC4ALgLOq6rxOK5MkSdpI9LIZnBo6DZwIvAg4CHgZsDzJDc3P0mb80U0I9WLgxiRndlW7JElSmwydniNDpyVJ0nwxU+i0zeAcJVkN/GPXdcxj2wK/6LoIrZP3aX7wPs0P3qf5oa/36VlVNfSBB5tBdSLJilH/QtHGw/s0P3if5gfv0/wwjvepl98ZlCRJ0uzYDEqSJI0xm0F15YyuC9CseJ/mB+/T/OB9mh/G7j75nUFJkqQx5sygJEnSGLMZVCuSPD3Jt5KsbP7ceoaxC5OsSvLZNmvU7O5TkqVJrklyS5Ibk7yji1rHUZJXJ7k9yR1JPjzk+OZJzm2O/zDJzu1XqVncp2OS3Nr8/bkiybO6qHPcres+TRn31iSVpLdPGNsMqi0fBq6oqj8Ermg+j3I8cHUrVWm62dynR4DDquq5wKuBTyZ5Wos1jqUkmwCfA14D/BHwziR/NG3Yu4AHqmpX4BPASe1WqVnepx8DE1W1J3AecHK7VWqW94kkTwXeB/yw3QrbZTOotrwR+FKz/SXgTcMGJdkL2B74Zkt1aU3rvE9V9ZOqWtls3wPcDwwNMtV6tTdwR1X9rKp+A3yZwf2aaur9Ow/YP0larFGzuE9V9Z2qeqT5eC2DV6GqXbP5+wSDyYmTgEfbLK5tNoNqy/ZVdW+z/XMGDd8akvwB8HHgr9osTGtY532aKsnewALgpxu6MPFM4K4pn1c1+4aOqarfAr8EtmmlOk2azX2a6l3ANzZoRRpmnfcpyQuBnarqkjYL68KmXReg/kjybWCHIYeOnfqhqirJsMfYjwQurapVTmZsOOvhPk1eZ0fgbGBZVT2xfquU+i/JIcAE8Kdd16I1NZMTpwHLOy6lFTaDWm+q6oBRx5Lcl2THqrq3aSLuHzJsH2DfJEcCWwILkvyqqmb6fqGepPVwn0iyELgEOLaqrt1ApWpNdwM7Tfm8uNk3bMyqJJsCWwH/1E55aszmPpHkAAb/APvTqnqspdr0b9Z1n54K7AFc1UxO7ABclOQNVbWitSpb4jKx2nIRsKzZXgZ8bfqAqjq4qpZU1c4MlorPshFs3TrvU5IFwAUM7s95LdY27q4D/jDJLs09OIjB/Zpq6v17G3BlGSbbtnXepyQvAP4GeENVDf0Hlza4Ge9TVf2yqratqp2b/yddy+B+9a4RBJtBtedE4MAkK4EDms8kmUhyZqeVaarZ3Ke3Ay8Dlie5oflZ2k2546P5DuBRwOXAbcD/qqpbkhyX5A3NsL8FtklyB3AMMz+1rw1glvfpFAarH19p/v5Mb+q1gc3yPo0N30AiSZI0xpwZlCRJGmM2g5IkSWPMZlCSJGmM2QxKkiSNMZtBSZKkMWYzKEmSNMZsBiVJksaYzaAkSdIY+/+itotAZNMNIQAAAABJRU5ErkJggg==\n", "text/plain": [ "