// // Tiny module that provides big (64bit) integers. // // Copyright (c) 2016 Samuel Groß // // Requires utils.js // // Datatype to represent 64-bit integers. // // Internally, the integer is stored as a Uint8Array in little endian byte order. function Int64(v) { // The underlying byte array. var bytes = new Uint8Array(8); switch (typeof v) { case 'number': v = '0x' + Math.floor(v).toString(16); case 'string': if (v.startsWith('0x')) v = v.substr(2); if (v.length % 2 == 1) v = '0' + v; var bigEndian = unhexlify(v, 8); bytes.set(Array.from(bigEndian).reverse()); break; case 'object': if (v instanceof Int64) { bytes.set(v.bytes()); } else { if (v.length != 8) throw TypeError("Array must have excactly 8 elements."); bytes.set(v); } break; case 'undefined': break; default: throw TypeError("Int64 constructor requires an argument."); } // Return a double whith the same underlying bit representation. this.asDouble = function() { // Check for NaN if (bytes[7] == 0xff && (bytes[6] == 0xff || bytes[6] == 0xfe)) throw new RangeError("Integer can not be represented by a double"); return Struct.unpack(Struct.float64, bytes); }; // Return a javascript value with the same underlying bit representation. // This is only possible for integers in the range [0x0001000000000000, 0xffff000000000000) // due to double conversion constraints. this.asJSValue = function() { if ((bytes[7] == 0 && bytes[6] == 0) || (bytes[7] == 0xff && bytes[6] == 0xff)) throw new RangeError("Integer can not be represented by a JSValue"); // For NaN-boxing, JSC adds 2^48 to a double value's bit pattern. this.assignSub(this, 0x1000000000000); var res = Struct.unpack(Struct.float64, bytes); this.assignAdd(this, 0x1000000000000); return res; }; // Return the underlying bytes of this number as array. this.bytes = function() { return Array.from(bytes); }; // Return the byte at the given index. this.byteAt = function(i) { return bytes[i]; }; // Return the value of this number as unsigned hex string. this.toString = function() { return '0x' + hexlify(Array.from(bytes).reverse()); }; // Basic arithmetic. // These functions assign the result of the computation to their 'this' object. // Decorator for Int64 instance operations. Takes care // of converting arguments to Int64 instances if required. function operation(f, nargs) { return function() { if (arguments.length != nargs) throw Error("Not enough arguments for function " + f.name); for (var i = 0; i < arguments.length; i++) if (!(arguments[i] instanceof Int64)) arguments[i] = new Int64(arguments[i]); return f.apply(this, arguments); }; } // this = -n (two's complement) this.assignNeg = operation(function neg(n) { for (var i = 0; i < 8; i++) bytes[i] = ~n.byteAt(i); return this.assignAdd(this, Int64.One); }, 1); // this = a + b this.assignAdd = operation(function add(a, b) { var carry = 0; for (var i = 0; i < 8; i++) { var cur = a.byteAt(i) + b.byteAt(i) + carry; carry = cur > 0xff | 0; bytes[i] = cur; } return this; }, 2); // this = a - b this.assignSub = operation(function sub(a, b) { var carry = 0; for (var i = 0; i < 8; i++) { var cur = a.byteAt(i) - b.byteAt(i) - carry; carry = cur < 0 | 0; bytes[i] = cur; } return this; }, 2); // this = a ^ b this.assignXor = operation(function sub(a, b) { for (var i = 0; i < 8; i++) { bytes[i] = a.byteAt(i) ^ b.byteAt(i); } return this; }, 2); } // Constructs a new Int64 instance with the same bit representation as the provided double. Int64.fromDouble = function(d) { var bytes = Struct.pack(Struct.float64, d); return new Int64(bytes); }; // Convenience functions. These allocate a new Int64 to hold the result. // Return -n (two's complement) function Neg(n) { return (new Int64()).assignNeg(n); } // Return a + b function Add(a, b) { return (new Int64()).assignAdd(a, b); } // Return a - b function Sub(a, b) { return (new Int64()).assignSub(a, b); } // Return a ^ b function Xor(a, b) { return (new Int64()).assignXor(a, b); } // Some commonly used numbers. Int64.Zero = new Int64(0); Int64.One = new Int64(1); // That's all the arithmetic we need for exploiting WebKit.. :)