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ABSTRACT
Our goal is to develop workflows for simulating arbitrary
collections of mononucleosomes in atomic detail as an on
demand analysis tool for online comparative genomics. The
limiting factor is resource availability. The aim of this pa-
per is to document and share our experiences in providing a
general-purpose, easy-to-use and extensible solution for such
computations. At the core it involves supporting the ex-
ecution of high-throughput workloads of high-performance
biomolecular simulations on one or more XSEDE machines.
Although conceptually simple, it is still a difficult practical
problem to solve, especially in a flexible, robust, scalable
manner. Specifically, we employ BigJob– an interoperable
Pilot-Job. The bulk of this paper is about our experience
in executing a very large number of ensembles including the
associated non-trivial data management problem. Our ex-
perience suggests that although a nascent and fledgling tech-
nology, BigJob provides a flexible and scalable Pilot-Job to
support workloads that were hitherto not easy, if not impos-
sible.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Experience, Technology

Keywords
HPC, Distributed Computing, NAMD, MD, Large Scale,
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1. INTRODUCTION
The need to run many distinct instances of molecular dy-

namics (MD) simulations concurrently arise in many differ-
ent scientific contexts: enhanced sampling and configura-
tional space exploration to name just a couple. As a specific
critical example of a scientific problem that depends upon
the ability to execute and control large-scale ensembles of
high-performance computing, we investigate workflows for
simulating ensembles of mononucleosomes in atomic detail.
Nucleosomes are the fundamental structural unit of eukary-
otic genomes. As such, the nucleosome’s structure and dy-
namics is relevant to all genomic processes. By online com-
parative genomics, we mean the utilization of DNA sequence
data, molecular modeling and biophysical data, namely nu-
cleosome positioning and x-ray crystallographic structures,
to compare the structure and dynamics of mononucleosomes
in atomic detail. Such comparisons cannot be obtained with
traditional bioinformatics techniques or experimental meth-
ods.

Our goal is to develop workflows for simulating arbitrary
collections of mononucleosomes in atomic detail as an on-
line tool for comparative genomics that complements and
extends traditional bioinformatics tools or coarse grain mod-
els such as our Interactive Chromatin Modeling (ICM) server

at Louisiana Tech (www.latech.edu/b̃ishop) [21].
In this study, we seek to localize and compare 5 potential

nucleosome sites, where we need to simulate 105 mononu-
cleosome configurations for 20 nanoseconds This is a non-
trivial undertaking and requires support for scalable, flexi-
ble and advanced execution modes. Since the 105 configu-
rations are independent, a properly implemented solution,
give sufficient resources, allows us to complete the study in
as little as 1 day. Here we demonstrate that on-line com-
parative genomics of mononucleosomes is feasible. The aim
of this paper is to document and share our experience in
an attempt to execute high-throughput workloads of high-
performance biomolecular simulations on multiple XSEDE
machines, Lonestar and Kraken.

Whereas single high-performance simulations are common-
place and the norm, it still remains a challenge to execute
many instances of a high-performance simulation concur-
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rently while also managing their dependencies. Contributing
to the problem is the fact that most supercomputing cen-
ters, including XSEDE, have their environments tuned to
support mostly single-job oriented work loads. On the one
hand, although workflows and gateways have improved the
mix of work loads supported, they do not present a natural
user interface for multiple dependent instances. In response
to the deficiency, there are many tools and ad hoc solutions.
There does not exist a general purpose, uniform and flexi-
ble approach that can be utilized across XSEDE resources.
Our approach builds upon important but incremental ad-
vances – both conceptual and implementation, of Pilot-Jobs
(a conceptual model of which can be described by the P
Model [14]). Specifically, we employ BigJob– an interopera-
ble Pilot-Job. We develop a pilot script using the Pilot-API
to express the abstract workflow associated with the high-
throughput workload, an ensemble of MD simulations in this
case.

An important difference between this paper and a previ-
ous related paper [18], investigating BigJob’s use for nu-
cleosomes, is that this work is focused on understanding
and improving simulation workflow (with dependencies), on
either a single machine or distributed across multiple ma-
chines; additionally, the science problem being addressed in
the current publication is distinct from Ref. [18].

Our paper is logically organized into the following sec-
tions. After the introduction and the underlying scientific
motivation (§1), we discuss the basics of Pilot-Jobs, we in-
troduce BigJob and the interoperability layer (SAGA) and
how they couple to provide an interoperable and flexible
Pilot-Job. We then outline the abstract workflow of the
scientific problem of interest, and examine how we use the
Pilot-API to implement it. The bulk of this paper is about
our experience in executing a very large number of ensem-
bles including the associated non-trivial data management
problem. Our experience suggests that although a nascent
and fledgling technology, BigJob provides a flexible and scal-
able Pilot-Job to support workloads that were hitherto not
easy, if not impossible.

2. SCIENTIFIC PROBLEM
A genome is more than just a sequence of DNA. In eu-

karyotic organisms it exists as a biomolecular complex of
DNA and proteins called chromatin that resides inside the
cell nucleus[16]. The length of DNA is typically many or-
ders of magnitude larger than the diameter of the nucleus.
But, the width of DNA is about 2 nm so its volume is less
than the nucleus. The trick it to wind and fold the DNA
strand into a compact form. Herein lies the problem. Fold-
ing affects access to the instructions encoded in the DNA
and therefore all biologic mechanisms that require these in-
structions. The proteins that affect DNA folding are called
histones. Eight histones associated as two dimers and a
tetramer ( [H2A −H2B][H3 −H4]2[H2A −H2B] ), wrap
147 base pairs of DNA into 1.7 turns of a superhelix. The
histone-DNA complex is known as the nucleosome. To a first
approximation, folding of the DNA, or at least local access,
is determined by the location and conformation of all nu-
cleosomes on a chromosome. X-ray crystallographic studies
provide a number of atomic resolution structures of the nu-
cleosome[19], but because of the experimental difficulties in
growing crystals for an arbitrary nucleosome, all structures
to date contain essentially the same sequence of DNA and

Figure 1: Left: Each individual simulation task is a 1 ns sim-
ulation of a system containing approximately 158,000 atoms,
mostly water. Right: To investigate nucleosome stability as
a function of sequence we thread a 167bp long segment of
DNA onto the histone core, 147bp at a time. This yields 21
separate systems that must be simulated. The entire sim-
ulation ensemble includes 5 sets of 21 systems, as pictured.
(Water not shown for clarity.)

represent only one conformation of the nucleosome. The
nucleosome is a dynamic entity[7] that can exist in vari-
ous states of association[23]. A canonical octasome can be
formed with O(4147) ≈ (1088) different sequences of DNA.
An exhaustive study of nucleosome structure and dynamics
is not possible. Our goal is to develop computational tech-
niques that allow us to compare ensembles of nucleosomes
for an arbitrary realization of the nucleosome. Having such
capabilities available on demand provides a powerful tool for
comparative genomics. Our current studies extend our ini-
tial investigations of the relationships between nucleosome
conformation and dynamics and the material properties of
DNA as a function of DNA sequence [17, 18]. To achieve
this end we thread different sequences of DNA onto available
x-ray structures of the nucleosome. Computationally, we are
deliberately mis-positioning (translating) nucleosomes to de-
termine the rules governing nucleosome positioning.

2.1 Nucleosome Modeling Study
In our most recent study [18], we simulated 336 nucleo-

some candidates (comprising 21 translations about 16 dif-
ferent sites) that were experimentally determined to be as-
sociated with the most highly occupied and least variable
nucleosome positions in the yeast genome[11]. This simula-
tion study contained 50 times more nucleosome systems than
in any other molecular dynamics study of the nucleosome,
and collectively it represents 6.7 microseconds of dynamics,
approximately 8 times more than any other nucleosome sim-
ulation study [6].

In the current study, we chose five sequences representing
167 base pairs of DNA (147 base pairs bound to a histone
core plus 20 translations), that are known via experiment to
be nucleosome free [11]. For each of the five nucleosome-free
regions, we model 21 systems, see Figure 1. One system
represents the 147 base pair in the center of the sequence.
The other twenty represent the 10 neighboring positions on
each side of the center position, i.e. one full helical repeat
of the DNA in either direction. Threading one helix repeat
of the DNA around the histone core allows us to investigate
the contribution from sequence specific defects in the DNA,
e.g. DNA bends or highly flexible regions. As DNA is thread
around the histone core such defects will be oriented toward,
away and then back toward the histone core.

Here we model 105 systems (comprising 21 translations
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about 5 different sites). Each is simulated for 20 ns using
NAMD [20] as the compute engine and the force field param-
eters distributed with Amber [8]. This is the typical simu-
lation methodology for nucleosome simulations [6]. To keep
the simulations tractable, each 20 ns trajectory is divided
into twenty 1 ns long simulations (tasks). We thus have
2,100 tasks consisting of 105 independent threads (chained
sequences). Each of the 2,100 tasks requires 41MB of input
data, runs for about 1 hour on Lonestar (or about 4 hours on
Kraken) using 240 processors, and generates 3.6GB of data.
In total this is nearly 7.6TB of data and over 500,000 SUs
of compute time on Lonestar (or 2,000,000 SUs on Kraken).

Aside from the DNA sequence, the systems simulated are
nearly identical to our previous study[18]. Each system
is represented by an all-atom model containing ≈158,000
atoms including: 13,046 atoms of protein, ≈9600 atoms of
DNA, 426 ions, and ≈135,084 water atoms (differences due
to differences in DNA sequence).

3. SOFTWARE TOOLS AND
COMPUTATIONAL INFRASTRUCTURE

XSEDE is inherently a complex infrastructure with het-
erogeneous resources. In order to harness the power of such a
distributed environment, we utilize Pilot-Jobs. A Pilot-Job
is a mechanism by which a proxy for the actual simulations is
submitted on the resource to be utilized; this proxy, in turn,
conveys to the application the availability of resources and
also influences which tasks are executed. The abstraction of
a Pilot-Job generalizes the reoccurring concept of utilizing
a placeholder job as a container for a set of compute tasks;
instances of that placeholder job are commonly referred to
as Pilot-Jobs or pilots.

In general, Pilot-Abstractions provide a suitable means
to orchestrate heterogeneous sets of both compute and data
resources and support the efficient utilization of different
kinds of commercial as well as science cloud resources. Pilot-
Abstractions have been extensively used [14, 13, 15] on both
HPC and HTC infrastructures for a range of application sce-
narios as a resource management abstraction to, (i) improve
the utilization of resources, (ii) to reduce wait times of a
collection of tasks, (iii) to facilitate bulk or high-throughput
simulations where multiple jobs need to be submitted which
would otherwise saturate the queuing system, and (iv) as a
basis to implement application-specific execution, schedul-
ing and policy decisions

The P* model [14], a model for Pilot-Abstractions, works
to clearly define the computation and data components of a
distributed application as ’compute units’ and ’data units’ in
the context of Pilot-Jobs and Pilot-Data. A compute unit
describes a self-containing piece of work, e.g. a computa-
tional task that potentially operates on a set of input data,
while a data unit is a container for a logical group of data
that is often accessed together or comprises a larger set of
data; e.g. a data file or chunk.

3.1 BigJob: A Pilot-based Framework
BigJob is a Pilot-Job system implementation which pro-

vides a framework for running many types of distributed ap-
plications – including but not limited to very-large scale par-
allel simulations, many small high-throughput simulations,
or ensemble-based workflows. Consistent with the P* model,
BigJob [4, 1, 12] provides a unified run-time environment

for Pilot-Jobs on heterogeneous infrastructures. For this
purpose, BigJob provides a higher-level, unifying interface
to heterogeneous and/or distributed data and compute re-
sources. The framework is accessed via the Pilot-API, which
provides two key abstractions: Pilot-Job and Pilot-Data.

Applications can specify their resource requirements using
a Pilot description. In the compute case, the user typically
specifies the application to run as well as the number of
cores required by their application. Pilots are started via
the Pilot-Compute Service. BigJob eliminates the need to
interact with different kinds of compute resources, e. g.
batch-style HPC/HTC resources as well as cloud resources,
and provides a unified abstraction for allocating resources.

BigJob has seen its widest usage across the heterogeneous
resources that XSEDE provides. Simple installation into
user space on any resource that supports Python 2.5 or
greater makes the uptake of BigJob easy for the end user.
BigJob supports thousands of jobs and millions of SUs on
XSEDE. It has been at the heart of two recent and successful
ECSS projects [18].

3.2 SAGA: Interoperability Layer
In order for BigJob to work on heterogeneous resources,

it requires an interoperability layer which provides access to
a variety of middleware. This is achieved through the use
of the Simple API for Grid Applications (SAGA). SAGA
defines a high-level access mechanism for distributed in-
frastructure components like job schedulers, file transfers,
and resource provisioning services. Given the heterogene-
ity of distributed infrastructures, SAGA provides a much
needed interoperability layer that lowers the complexity and
improves the simplicity of using distributed infrastructure
whilst enhancing the sustainability of distributed applica-
tions, services, and tools.

SAGA is an Open Grid Forum (OGF) recognized standard
(GFD.90). It allows developers of distributed applications to
construct higher-level functionality and abstractions, such as
gateways, workflows, application management systems, and
run-time environments. The key advantages to running with
SAGA on XSEDE is that users do not need to worry about
the individual batch queuing systems implemented on the
various machines. Using the SAGA API and appropriate
job adaptors, the different submission mechanisms for these
queuing systems is handled on the SAGA backend, which is
transparent to the user.

The SAGA API has been used to provide almost com-
plete coverage over nearly all grid and distributed computing
middleware/systems, including but not limited to Condor,
Genesis, Globus, UNICORE, SGE, LSF/PBS/Torque, and
Amazon EC2.

3.3 Deployment of BigJob
Both SAGA and BigJob are designed in such a way that

they can be easily installed into the home directory of a
user using the Python Package Index (PyPi). This elimi-
nates the need to have root access to a system and alleviates
many common errors that arise from installation dependen-
cies. SAGA is packaged within BigJob, so users do not have
to install two separate modules.

The main deployment of BigJob is on the XSEDE infras-
tructure. XSEDE is a heterogeneous environment, and of-
tentimes users have custom python versions or installations.
In order to not disturb these custom environments, BigJob is
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recommended to be installed using a virtual environment. A
virtual environment allows a user to create a local Python
software repository in his or her home directory that be-
haves exactly like the global Python repository, except that
it grants the user write access to it. In order to use the vir-
tual environment, the Python version must be 2.5 or greater.
Since some XSEDE machines use Python 2.4 as the default
python version, it may be required to load a python module
file before installing BigJob.

After activating the virtual environment, the BigJob python
package can be installed by typing:

e a s y i n s t a l l b ig j ob

In addition to the BigJob package, the BigJob python de-
pendencies, including the SAGA package, are also installed.
The SAGA package includes the proper adaptors for a wide
variety of middleware systems. This allows the user to sub-
mit jobs to any of the XSEDE batch queuing systems.

BigJob requires SSH password-less login to the machines
and a redis server [2] running either locally or on a remote
server. The redis server is used for coordination of the Pilot-
Job and its compute and data units. For the purposes of
this project, we utilize a private redis server hosted on a
virtual machine at Indiana University. The BigJob docu-
mentation [3] provides instructions to users for setting up
their own redis server.

In order to provide a more seamless uptake of BigJob by
users, we will provide an open-access redis server available
on XSEDE. This avoids the overhead of new users having to
start a redis server on an XSEDE machine’s head node or
on their local machines. This effort is currently underway
with XSEDE ECSS staff to make the server only accessible
to registered users of XSEDE.

After following the aforementioned steps, users will be
able to write their own BigJob submission scripts using Python.
These scripts can range from simple ensemble-based simu-
lations to more complicated workflows based on the users’
needs.

4. COMPUTATIONAL WORKFLOW
This section covers the specific implementation of BigJob

(a Python script employing the Pilot-API) to address the
workload described in Section 2. It begins with an overview,
and then presents the approach as originally planned, fol-
lowed by the actual implementation.

4.1 Overview
As described earlier, our workflow requires 105 chained

sequences with each task in a chain being dependent upon
successful completion and output of the previous task. The
data (both inputs and outputs) for these systems are pre-
organized in a simple hierarchy with a common base direc-
tory. The first tier represents the 5 chromosome sites, and
the second tier represents the 21 locations (translations)
along the DNA sequence representing the start of the nu-
cleosome. All 20 chained simulations (1 ns each) for the
same system (chromosome/location) share the same direc-
tory, using a file-naming convention that reflects the task
sequence (dyn0 - dyn20), where files corresponding to the
same dynamic step (task) share the same file prefix, and each
file-type is represented by its own extension (.coor, .vel,

.xsc, .dcd, .dvd, .xst). Some inputs, such as the force-

field parameters (sys.parm) and atom connectivity infor-
mation (sys.pdb), are common to all tasks within a chained
sequence and needn’t be duplicated for each step. Yet other
inputs, such as the configuration (.conf) files, are the same
for all systems, but differ from step to step. These config-
uration files are stored in a separate subdirectory off the
base directory. The following is a brief schematic of the file
organization.

|-dyn-conf-files [NAMD configuration files common to all systems]

|---dyn1.conf [NAMD configuration file for first dynamic step]

|---dyn2.conf

:

| dyn20.conf

|-chr02 [1st of 5 chromosome sites]

|---0068270 [1st of 21 nucleosome locations on 1st chromosome]

|-----sys.crd [Parameter files common to all 20 dynamic steps]

|-----sys.parm

|-----min-eq.coor [Input to 1st dynamic step]

|-----min-eq.vel

|-----min-eq.xsc

|-----dyn1.coor [Output of 1st dynamic step, input to next]

|-----dyn1.vel

|-----dyn1.xsc

|-----dyn1.out [Output-only files]

|-----dyn1.err

|-----dyn1.xst

|-----dyn1.dcd

|-----dyn1.dvd

:

|-----dyn20.out [Output of last dynamic step]

:

|---0068290 [Last of 21 nucleosome locations on 1st chromosome]

:

|-chr16 [Last of 5 chromosome sites]

• Input to step X (1-20):

– dynX.conf: same for all systems, one for each
nanosecond MD step, kept in a separate directory

– dynX-1.coor, dynX-1.vel, dynX-1.xsc: coordi-
nates, velocities and periodic cell data passed from
previous step (7.2MB)

– sys.pdb, sys.crd, sys.parm: topological and pa-
rameter data, same for all simulations on the same
system (33.6MB)

• Output from step X :

– dynX.dcd, dynX.cvd, dynX.xst: trajectory data
in compressed binary format, used for further anal-
ysis (3.6GB)

– dynX.coor, dynX.vel, dynX.xsc: passed to next
step

– dynX.out, dynX.err: stdout, stderr : primarily
diagnostic information (167MB)

To help automate the workflow under BigJob (particularly
for data staging with Pilot-Data), a naming convention had
to be assumed for certain file-prefix keywords within the
dynX.conf files, since these files can not in general be in-
spected during a Pilot-Job’s run-time (unless they are local)
to extract the filenames and orchestrate the file staging. So
the assumption is that input file prefix within a dynX.conf

file would be set to dynX-1 and that the output file prefix
would be set to dynX. The only exception was for the first
step (dyn1), where the input file prefix is assumed to be
min-eq.

4.2 Planned Approach
The initial plan was to use the Python-based BigJob API

(Pilot-Job, Pilot-Compute, and Pilot-Data) to develop a
BigJob script that would orchestrate an ensemble of tasks as
batch pilot jobs on one or more XSEDE resources (like Lon-
estar and/or Kraken) using as many internal sub-queues to
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distribute independent tasks in a round-robin fashion, while
incorporating a shared workflow mechanism to help manage
the dependent tasks, deferring their submission and staging
files from output Data-Units to input Data-Units as neces-
sary.

The workflow was to be defined in an external Config file,
independent of the BigJob script, and read by the BigJob
script. This workflow Config file would be generated semi-
automatically based on the inspection of output files from
prior BigJob runs.

The initial goal was to make use of the Pilot-Data API to
stage data at run-time to and from a remote source, where
the data originally resided and where further post-processing
was to be done. In addition, an alternate approach where
all files are accessible locally was also to be explored and
evaluated against the remote staging approach.

4.3 Implementation
The actual implementation went mostly as planned, in-

cluding the development of a BigJob script (namd_bigwork.py)
in Python, using an INI style Config file to hold both BigJob
configuration settings and the workflow definition, and a
shell script (gen_workflow) was also written to generate the
workflow section of the Config file. Each of these will be
briefly described, starting with the format and generation of
the workflow definition component.

4.3.1 Workflow defined using INI style Config file
Below is an example of a WORKFLOW section of the Config

file. The WORKFLOW section contains subsections for the RE-

MOTE_DATA_RESOURCE, DEFAULTS, and the TASKS. The TASKS

section contains subsections for each task. Each task has a
unique label, entries to help locate the various files, and a list
of prerequisite tasks (DEPENDENCIES) identified by their la-
bels. Most entries have default values if not specified. The
Config entries are parsed and converted into a Dictionary
object within the Python script using the ConfigObj library
(favored over the built-in ConfigParser library).

[WORKFLOW]

[[REMOTE_DATA_RESOURCE]]

PROTOCOL = "ssh"

USER = "jacks"

MACHINE = "lonestar"

DATACENTER = "tacc.utexas.edu"

BASEPATH = "/scratch/02059/jsolow"

CONF_DIR = "/scratch/02059/jsolow/dyn-conf-files"

PARM_DIR = "" # Default to DATAPATH

[[DEFAULTS]]

[[TASKS]]

[[[chr04-1357521-4]]]

DATAPATH = "chr04/1357521"

CONF = "dyn4"

PARM = "" # Default to "SYS"

IN = "" # Default to "dyn3" (CONF-1)

OUT = "" # Default to "dyn4" (CONF)

DEPENDENCIES = "chr04-1357521-3",

[[[chr04-1357521-5]]]

DATAPATH = "chr04/1357521"

CONF = "dyn5"

DEPENDENCIES = "chr04-1357521-4",

4.3.2 Script to generate workflow Config file
To help automate the generation of the workflow defini-

tion, a shell script (gen_workflow) was written to traverse
the directory tree containing all the input and output files
looking for signatures that a simulation was completed and
skipping it as a task. For this particular study, these signa-
tures included:

• dynX.out NAMD logfile contains ”WallClock” in one
of the last two lines upon successful completion

• dynX.dcd and dynX.dvd files are greater than 1.8GB

(proportional to the size of the dynX.coor file and the
number of dynamics steps)

The script uses the directory path (chromosome/location)
and the dynamic step (1-20) to generate the task label. It
assumes that the task is dependent upon on the task that
precedes it, X -1, except for the first step, which assumes
min-eq.* as its input. The base paths for the data tree, the
NAMD configuration files, and parameter files are set in the
REMOTE_DATA_RESOURCE section.

The script takes as arguments the range of dynamics steps
to include in its traversal, with the default of 1-20. Restart-
ing an incomplete run is usually just a matter of rerun-
ning the gen_workflow script, which automatically omits
the completed tasks.

The output of this script can be appended to the main
Config file or kept as a separate file and referenced by the
FILE keyword in the WORKFLOW section. The latter is the
cleaner and preferred method.

4.3.3 NAMD_BigWork Python script
The primary deliverable of this exercise is a Python script

(namd_bigwork.py) that uses the BigJob framework to or-
chestrate the submission of an ensemble of NAMD MD simu-
lations (a collection of independent and dependent tasks) to
one or more batch Pilot-Compute job instances with a signif-
icant reservation of resources for maximum high-throughput
performance.

In this particular study, that reservation of resources is
2400 cores on Lonestar for a 24-hour period, sub-divided
internally into 10 sub-queues, to handle 200+ simulations.
Similar runs were done on Kraken, but it could only handle
about 50 simulations in a 24-hour period. In principle, both
Lonestar and Kraken could have been used together, but
the data management issues could not be worked out (as
discussed below).

The BigJob script sets up a Pilot-Job with both Pilot-
Compute and Pilot-Data components, with the latter only
used if the data resource is remote from the compute re-
source.

If the data is local to the computer resource, no data stag-
ing is necessary, and the Compute-Unit is directed to use the
input data directory as the working directory, which is also
the destination directory for the output and also where the
next dynamic step expects its input data to be.

If the data is remote, then staging is needed to get the data
to and from the Compute-Unit’s temporary working direc-
tory. Three Data-Units are used to stage the data: an input
Data-Unit, and output Data-Unit, and a chained Data-Unit.
The chained Data-Unit is used to selectively redirect out-
put data from one task to another dependent task as input.
The Data-Unit-to-Data-Unit transfer is generally done by
reference only (using symbolic links) and no data is actu-
ally moved, unless the Compute-Units are on different re-
sources. However, with data staging, the input Data-Unit
does need to copy data from the remote resource to the local
input Data-Unit and then to the Compute-Unit’s working
directory, using SCP or SFTP (determined by the SAGA-
BigJob framework). The output data is shuttled from the
Compute-Unit’s working directory back to the output Data-
Unit, where it remains until the completion of the Pilot-Job.
It then becomes the responsibility of the user, unfortunately,
to rummage through the contents of the cryptic Data-Unit
directories and move them to their final destination.
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The introduction of workflow management to a BigJob
script is the primary contribution from this effort [NAMD
+ BigJob + Workflow = NAMD BigWork ]. The task work-
flow is defined in the Config file (namd_bigwork.conf by de-
fault). The WORKFLOW section of the Config file is parsed and
converted to a hierarchy of Python Dictionary structures
for easy processing. The main construct is an array of task
Dictionary elements that contain all the information about
a particular task, including it’s current status, which goes
from WAITING to PENDING (if it has unsatisfied dependen-
cies) to New to Unknown to Running to Done to COMPLETED, or
FAILED, as it progresses along. The script continually loops
through the tasks looking for changes in Compute-Unit and
Data-Unit (if data staging) statuses and releasing PENDING

tasks when their dependencies are satisfied. Any task that
is in a WAITING (not PENDING) state is set up for sub-
mission to the Pilot-Job’s agent. This set up involves the
creation of the input, output, and chained Data-Units (if
data staging) and a Compute-Unit. If data staging is being
done, any requisite chained Data-Units are transferred to the
input Data-Unit. Once all the Data-Units are processed, the
Compute-Unit is submitted.

The Pilot-Compute component of a Pilot-Job is gener-
ally a batch job submitted to the system’s batch queuing
system (like PBS, SGE, or SLURM), and it can sit in the
system queue for an indefinite period of time. Meanwhile,
the Pilot-Job agent queues up Compute-Units for execution
in its internal queuing system as sub-jobs. Each sub-job
will have its own sub-allocation of cores from the total al-
location given to the Pilot-Compute job. Once the batch
Pilot-Compute job starts running, the backlog of sub-jobs
will begin to get spawned as cores become available. In this
particular study, there were 2400 cores distributed among 10
sub-jobs, 240 cores each. Once a sub-job is completed, those
cores become available for another sub-job held in the Pilot-
Compute’s internal queue. When there are no remaining
tasks (sub-jobs) to submit, the Pilot-Compute, Pilot-Data,
and Pilot-Job agents are all gracefully shutdown and the
batch job is terminated.

4.3.4 NAMD_BigWork log and status files
To help monitor, perform diagnostics, and do some post

analytics (performance measures) on all the tasks, both a
running log and a snapshot status file are generated during
the run. The names of the log and status files are prefixed
by the Config file name, followed by the a date and PID of
the script, and suffixed with .log and .status, respectively.

The status file is written out with every state change
showing details of each task organized by state. It contains
the rather cryptic Compute-Unit and Data-Unit directory
names to help map them to specific tasks. It also contains
the current run time for each task since it entered the Run-

ning) state.
The running (accumulative) log file contains every task

status change and the details of each submission, followed by
a summary (tallied by state) with time-stamps. The overall
level of detail for logging to stdout is set in a BigJob con-
figuration file (bigjob.conf) or by an environment variable
(BIGJOB_VERBOSE), but the written log file generally only
contains INFO level output, although it can be overriden up
to the overall logging level.

Filtering the log file (with grep, for example) can generate
individual task summaries. Filtering for the state summaries

provides a trace of the task throughput, which can be plotted
against the time-stamps for a visual summary like that in
Figure 2.

4.3.5 NAMD_BigWork Config file

The BigJob script is generally free of specifics about the
compute and data resources, details of the NAMD executable,
or of any workflow details. All that is externalized to the
NAMD BigWork Config file (namd_bigwork.conf by default).
The Config file is broken into sections - PILOT, NAMD, and
WORKFLOW. The WORKFLOW section was described earlier, and
its content can be further externalized using the FILE key-
word to reference a separate Config file for just the workflow
details. An example Config file is given below.

[PILOT]

COORDINATION_URL = "redis://localhost:6379"

COMPUTE_USER = "jacks"

COMPUTE_MACHINE = "lonestar"

COMPUTE_DATACENTER = "tacc.utexas.edu"

COMPUTE_SERVICE_PROTOCOL = "sge+ssh"

COMPUTE_ACCOUNT = "TG-MCB100111"

COMPUTE_WALLTIME = 10

COMPUTE_QUEUE = "development"

DATA_USER = "jacks"

DATA_MACHINE = "lonestar"

DATA_DATACENTER = "tacc.utexas.edu"

DATA_SERVICE_PROTOCOL = "ssh"

DATA_SIZE = 100

SUBJOBS = 2

PROCESSORS_PER_JOB = 48

PROCESSORS_PER_NODE = 12

[NAMD]

ROOT_DIR = "/home1/00288/tg455591/NAMD_2.9"

BIN_DIR = "NAMD_2.9_Linux-x86_64-MVAPICH-Intel-Lonestar"

EXEC = "namd2"

[WORKFLOW]

FILE = "namd_workflow_jsoloe.conf"

4.4 Results
This section discusses the project outcomes, first looking

at a typical run, then the study as a whole.

4.4.1 Typical run
A typical run for this study was a 24-hour 2400-core job

on Lonestar broken into 10 240-core sub-job queues (within
the Pilot-Job), which handled 210 MD simulations, repre-
senting 2 1-nanosecond simulations for each of 105 systems
(21 locations along 5 chromosomes). Each simulation was
500,000 MD timesteps and took about 1 hour on 240 cores
(on Lonestar). 2400 cores represents almost 10% of Lones-
tar’s 28,800 cores.

Figure 2 shows a typical run profile for an ensemble of
sub-jobs progressing through their states within the Pilot-
Job. Note that BigJob tends to use a LIFO-like queuing
mechanism, as the dependent tasks get interlaced early in
the queue even though they were submitted much later (after
their prerequisite tasks were completed).
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Figure 2: Progression of 210 sub-jobs (number in each state)
over time (hrs)

Figure 3 shows the progression of the last seven BigJob
runs over a ten day period. The typical BigJob completed all
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210 tasks assigned to it. Exceptions are the first and last two
BigJobs. The first BigJob was only assigned 185 tasks (the
other 25 having been completed in an earlier run). The next
to last BigJob completed only 209 sub-jobs. The failed sub-
job was then automatically added to the last BigJob run.
Careful inspection of the running simulations indicates that
during the last hour of each BigJob run less than 10 sub-jobs
might be running. For example, the number of running jobs
for the next to last BigJob do not abruptly drop to zero at
the end of day 69. It turns out that that sub-job failed to
run due to an mpiexec problem and was never detected by
the Pilot-Job, hence left to run out the clock - essentially
waiting for a ”dead” sub-job to complete.

Figure 3: Progression of the last seven BigJob runs over a
ten day period.

4.4.2 Summary
The total study took about 11 runs to cover the full 20

nanoseconds of simulation for each system, plus an initial
minimization-equilibration step, for a total of 2310 simula-
tions. At 240 cores for 1 hour each (on Lonestar), that’s
about 550,000 SUs, or 55,000 SUs per run (per day). On
Kraken, this takes about 4 times longer and thus uses 4
times as many SUs.

There were a few runs that did not complete for various
reasons (see Issues below) and had to be restarted using a
regenerated workflow Config file.

Most simulations ran on Lonestar in just under an hour,
but there were some outliers. Figure 4 shows the statis-
tical distribution (histogram) of run-times (wall times) for
all 2100 NAMD simulations. The shortest run-time was 54
minutes while 2027 tasks completed in under 1 hour. A total
of eight simulations required longer than 2 hours to success-
fully complete. The longest single task (for a 1-nanosecond
simulation) was 8 hours long. The mean run-time for all
simulations was 57 minutes. If the simulations that required
longer than 2 hours are excluded, the variation in run-times
is less than 4 minutes or less than 6% of the expected run
time. These results indicate that BigJob could proactively
kill any sub-job taking longer than 1.5 hours (on Lones-
tar) and resubmit it, with the assumption being that the
sub-job has encountered a hardware or system-level failure.
Interestingly, when sub-jobs with anomalous run-times are
manually rerun they usually complete within the expected
time frame, indicating a hardware or software error rather

than a fundamental problem with the simulated system.

Figure 4: Histogram of run-times for the 2100 NAMD sim-
ulation tasks.

Similar results in variability were obtained on Kraken (with
a different set of nucleosomes) but with about 4 times the
effort.

5. DISCUSSION
This Section wraps up the study with a discussion about

some of the challenges faced, remaining issues, some sugges-
tions for future work, and some final conclusions.

5.1 Challenges
This experiment with BigJob and the integration of a

workflow was not without its issues. The following highlight
some of those issues.

One of the first challenges was to identify the right NAMD
executable to use within the BigJob framework. NAMD is
usually run via the charmrun frontend, which handles all the
MPI details. Furthermore, the executable is usually built
with the Charm++ pre-processor/compiler/library, which in-
teracts with the charmrun frontend. So it is not compat-
ible with mpirun, which is used by BigJob. Fortunately,
the NAMD developers provide a builder for an MVAPICH
version of the NAMD executable, which appears to work
appropriately under the BigJob environment.

The next big surprise was to discover that data staging
only works one way, from the remote data resource to com-
pute resource, and not the other way. Furthermore, Pilot-
Data is not even supported on Kraken yet. Even where
Pilot-Data is supported, as it is on Lonestar, getting data
back to the remote data source is expected to be done exter-
nal to BigJob. One can export to the local system (where
the BigJob script is running), but unless that is the origi-
nal data source, it is of limited value. The workflow in this
study requires a good deal of data shuffling between depen-
dent tasks, and the directory structure is non-trivial, so an
alternate scheme needed to be explored, at least temporar-
ily. The temporary solution (work-around) was to copy all
the data to the compute resource (to scratch space on Lon-
estar in this case) and run everything local. As output was
generated, it was rsync-ed back to the original source (in
this case, a workstation at LA Tech) on a scheduled basis
using cron. With the data and compute resources both be-
ing local, there is no need for data staging, and the working
directory can be set to where the data resides - and run in
situ. The volume of data in this study requires that scratch
storage be used for the data, so long-term integrity of the
data over the course of the study was a potential issue. It
was important to keep all the data and its directory structure
intact to help automate generation of the workflow Config
file.

In an effort to work within the constraints of BigJob re-
garding output data staging (back to its remote origin),
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another issue arose. It appears that SCP has issues with
very large files. The trajectory files (.dcd and .dvd) for
this study are around 1.8GB each, and it was discovered
(after many SUs were consumed and scratch files purged)
that they were getting truncated to about 500MB (with-
out any warning or error messages) while they were being
copied from the working directory to the Data-Unit store (or
when being exported locally). So, any further data staging
was abandoned until this issue could be resolved. This also
precluded the ability to use multiple Pilot-Compute com-
ponents concurrently on different compute resources (such
as Lonestar and Kraken, as originally planned). However,
it was demonstrated that selective Data-Unit-to-Data-Unit
transfers (via a ”chained” Data-Unit) can dramatically re-
duce the amount of data transfer (copying) that needs to
take place for chained tasks. Sync-ing the data back to the
original remote source is still a troubling issue, and the cryp-
tic directory naming and flat directory structure used by
BigJob don’t help.

Going to an all-local solution avoids many issues, but it
contradicts our goal of distributing jobs to multiple XSEDE
machine. It also presents a few subtle issues of its own.
For example, if the NAMD Config file is not in the working
directory (which they are not in this study), one must force
NAMD to ignore its location as the default location for the
input files. This was done by adding a ”CWD getenv($PWD)”
entry to the NAMD Config file to force it to look in the
current working directory.

Not only is exporting output data back to a remote re-
source the user’s responsibility, but so is cleaning up af-
terward. The Compute-Unit’s working directories and the
Data-Unit directories can tend to grow rather quickly and
need to be cleaned up by the user. One can sweep this issue
under the rug by using scratch or temporary space, but it
would be better citizenship to clean up manually if it can’t be
done automatically or programmatically within the BigJob
script. Ideally, BigJob would support both remote exporting
and the purging of working and staging directories.

Although most of BigJob’s computational work is offloaded
to one or more batch Pilot-Compute jobs, the launch script
remains a key component in orchestrating the complex work-
flow, and often that script is launched on the head (login)
node of the compute resource. If care isn’t taken to throttle
some of its activities, it becomes prone to be canceled by
the system’s administrator. This project experienced that
first hand and put nearly 50,000 SUs at risk by having the
batch Pilot-Job sit idle until the maximum wall time was ex-
ceeded. So care must be taken to throttle tight loops (using
strategically placed sleep() calls) and minimize CPU us-
age if the script is being launched on a limited or controlled
resource like a login node.

On the flip-side, if the batch Pilot-Compute job should
somehow be aborted or terminated (e.g., after a series of
mpiexec problems, which happened more than once during
this study), the launch script can be left running unaware.
In one instance a single sub-job got hung with some mpiexec
problem and the Pilot-Job was unaware, causing the Pilot-
Compute job to run with all cores idle until the wall time was
exceeded. It would be helpful if the get_state() method
for the Pilot-Job agents could detect such events or allow
user-configured criteria to terminate the batch job (e.g., ter-
minate if X % of the cores are idle for more than Y minutes).

BigJob uses an Advert service (usually a Redis server) to

communicate and transfer information between various dis-
tributed components of the BigJob framework. The status
of the Advert service is usually checked upon initiation of
the BigJob environment; however, if the Avert service shuts
down later, the batch Pilot-Compute job can abort and leave
the BigJob launch script running unaware of the problem.
Again, it would be helpful to be able to detect such events
and shut everything down gracefully.

Much of the system-dependent details of working in a
distributed heterogeneous environment are handled by us-
ing SAGA and the BigJob framework as middleware, and
much of that is done using somewhat generic adapters; how-
ever, various subtle and system-specific details often remain,
which need to be managed or configured by the user. This
can defeat much of the transparency intended by SAGA and
BigJob. For example, a user shouldn’t have to know what
particular batch queuing system a compute resource uses
(Torque/PBS, SGE, SLUM,...) or whether to use SSH or
GSISSH or fork. System-specific configuration files should
be able to handle such nuances. He/she shouldn’t have to
completely overhaul his/her strategy based on whether the
data is local to the compute resource. Data staging ought
to be smart enough to figure that out. A global file system
model/view or abstraction might be helpful - where every-
thing looks local.

The MPI environment can vary between systems, espe-
cially when they’re adapted to take advantage of certain
architectures or interconnect fabric. The use of aprun on
Kraken and ibrun on TACC machines in place of mpirun are
good examples. The use of charmrun for NAMD is an even
more extreme example. These are tough issues to deal with
even for a veteran MPI user, let alone for someone trying to
be shielded from such details and nuances. SAGA/BigJob
needs to develop some generic wrapper mechanism and/or
configuration file to mask this level of detail.

One final issue, which is more of a workflow management
issue than a BigJob issue, is the potentially inefficient use
of cores at the end of a run, when sub-queues aren’t being
kept full, leaving more and more cores idle as it approaches
the end. Either the workflow manager (the BigJob script)
needs to allocate more cores to tasks (sub-jobs) near the
end of a run, or the Pilot-Compute job needs to be config-
urable to not accept any more sub-jobs if it can’t utilize a
certain portion of its available resources. This, of course,
is very workflow dependent and probably shouldn’t rely on
the BigJob framework for anything but hints about resource
utilization.

5.2 Future Work
This was just the first of a series (hopefully) of experi-

ments with BigJob and distributing large ensembles of chained
NAMD simulations across a heterogeneous mix of compute
and data resources like those on XSEDE. The following are
a few things suggested for future work.

The INI-style Config file format is rather limited in its
ability to express scientific workflow. Workflow management
theories often use directed acyclic graphs (DAG) to express
workflow, where nodes are tasks and edges represent depen-
dencies and/or data flow. There are now markup languages
to express DAGs, such as DAX (DAG in XML), which can
be used by Pegasus [9] and potentially other workflow man-
agement systems. Other graph-based workflow management
systems (often based on web services) include: Taverna [22],
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Galaxy [10], and Kepler [5]. There are even graphical pro-
grams like Triana (http://www.trianacode.org) that gen-
erate DAX. Adopting an extensible language/format like
DAX would help broaden the scope of workflow manage-
ment and allow some degree of plug-and-play with other
workflow management tools.

The original goal was to demonstrate a more distributed
example of using the BigJob framework, with multiple Pilot-
Compute jobs running on different compute resources, data
being staged from yet another resource (and back), and all
controlled by a single workflow management front-end. Al-
though each aspect was demonstrated independently, with
a few caveats, the chore of tying it all together remains.

One thing that was not fully explored was the interlacing
of data staging with compute processing to avoid blocking
while large data files are being moved around. This will
require a better understanding of the states and their tran-
sitions within the Pilot-Data framework to help eliminate
the blocking wait() calls.

The workflow management needs to better address the
”end game” by re-allocating cores (reducing the number of
sub-queues and redistributing allotted cores) near the end of
a run to avoid idling resources as the number of tasks (sub-
jobs) drops below the number of available sub-queues. Not
all tasks scale well, however, so this is a non-trivial matter.
More is not always better, and being busy isn’t the same as
being productive - even for computers.

Many of the issues faced in this exercise were due to lack
of monitor and control points among the various compo-
nents involved. Exposing more of the underlying Pilot-API
could help trap and respond to some of these events inside
a BigJob script. However, exposing more of the Pilot-API
(and the some of the other APIs, like to the Advert service)
to the command language interface (CLI) could provide a
separate external layer of monitoring and control that would
help dynamically manage sub-jobs and tweak the workflow
as needed. In that regard, building a GUI client for the CLI
could be a valuable tool, especially if it’s portable across
platforms and robust to connection loss and restoration - a
REST-based interface, perhaps, that runs in a web browser.
These are obviously outside the scope of the end-user of
BigJob, but some food for thought for the BigJob develop-
ment team.

5.3 Conclusions
To date, less than ten molecular dynamics studies of the

nucleosome have been reported [6]. All except a control
study performed by this group [17, 18] used nominally the
same sequence of DNA. The longest all-atom trajectory re-
ported for a nucleosome is 500ns. By using BigJob to mar-
shall resources distributed across XSEDE we have achieved
a sampling of nucleosome sequence variability and dynamics
that is over two orders of magnitude higher than any pre-
vious effort. We note that the “experiments” reported here
were actually production runs for our nucleosome study that
successfully completed. Successful completion alone sup-
ports what is known biologically: that any sequence of DNA
can be wrapped around a histone core to form a nucleosome,
albeit with varying affinities. Achieving the level of through-
put reported here is a necessary first step in dissecting DNA
sequence specific properties of nucleosomes in atomic detail
which, because of the fundamental role of nucleosomes, im-
pacts our understanding of virtually all genetic processes.
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