{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 3+1 Simon-Mars tensor in the $\\delta=2$ Tomimatsu-Sato spacetime\n", "\n", "This worksheet demonstrates a few capabilities of [SageManifolds](http://sagemanifolds.obspm.fr/) (version 1.0, as included in SageMath 7.5) in computations regarding the 3+1 decomposition of the Simon-Mars tensor in the $\\delta=2$ Tomimatsu-Sato spacetime. The results obtained here are used in the article [arXiv:1412.6542](http://arxiv.org/abs/1412.6542).\n", "\n", "Click [here](https://raw.githubusercontent.com/sagemanifolds/SageManifolds/master/Worksheets/v1.0/SM_Simon-Mars_3p1_TS2.ipynb) to download the worksheet file (ipynb format). To run it, you must start SageMath with the Jupyter notebook, via the command `sage -n jupyter`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*NB:* a version of SageMath at least equal to 7.5 is required to run this worksheet:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'SageMath version 7.5.1, Release Date: 2017-01-15'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we set up the notebook to display mathematical objects using LaTeX rendering:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%display latex" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since some computations are quite long, we ask for running them in parallel on 8 cores:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Parallelism().set(nproc=8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Tomimatsu-Sato spacetime

\n", "

The Tomimatsu-Sato metric is an exact stationary and axisymmetric solution of the vacuum Einstein equation, which is asymptotically flat and has a non-zero angular momentum. It has been found in 1972 by A. Tomimatsu and H. Sato [Phys. Rev. Lett. 29, 1344 (1972)], as a solution of the Ernst equation. It is actually the member $\\delta=2$ of a larger family of solutions parametrized by a positive integer $\\delta$ and exhibited by Tomimatsu and Sato in 1973 [Prog. Theor. Phys. 50, 95 (1973)], the member $\\delta=1$ being nothing but the Kerr metric. We refer to [Manko, Prog. Theor. Phys. 127, 1057 (2012)] for a discussion of the properties of this solution.

\n", "

Spacelike hypersurface

\n", "

We consider some hypersurface $\\Sigma$ of a spacelike foliation $(\\Sigma_t)_{t\\in\\mathbb{R}}$ of $\\delta=2$ Tomimatsu-Sato spacetime; we declare $\\Sigma_t$ as a 3-dimensional manifold:

" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Sig = Manifold(3, 'Sigma', r'\\Sigma', start_index=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

On $\\Sigma$, we consider the prolate spheroidal coordinates $(x,y,\\phi)$, with $x\\in(1,+\\infty)$, $y\\in(-1,1)$ and $\\phi\\in(0,2\\pi)$ :

" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Chart (Sigma, (x, y, ph))\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "Chart (Sigma, (x, y, ph))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X. = Sig.chart(r'x:(1,+oo) y:(-1,1) ph:(0,2*pi):\\phi')\n", "print X ; X" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Riemannian metric on $\\Sigma$

\n", "

The Tomimatsu-Sato metric depens on three parameters: the integer $\\delta$, the real number $p\\in[0,1]$, and the total mass $m$:

" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "[x is real,\n", " x > 1,\n", " y is real,\n", " y > -1,\n", " y < 1,\n", " ph is real,\n", " ph > 0,\n", " ph < 2*pi,\n", " m > 0]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('d, p, m')\n", "assume(m>0)\n", "assumptions()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

We set $\\delta=2$ and choose a specific value for $p$, namely $p=1/5$:

" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "d = 2\n", "p = 1/5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Furthermore, without any loss of generality, we may set $m=1$ (this simply fixes some length scale):

" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "m=1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The parameter $q$ is related to $p$ by $p^2+q^2=1$:

" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "q = sqrt(1-p^2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Some shortcut notations:

" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "AA2 = (p^2*(x^2-1)^2+q^2*(1-y^2)^2)^2 \\\n", " - 4*p^2*q^2*(x^2-1)*(1-y^2)*(x^2-y^2)^2\n", "BB2 = (p^2*x^4+2*p*x^3-2*p*x+q^2*y^4-1)^2 \\\n", " + 4*q^2*y^2*(p*x^3-p*x*y^2-y^2+1)^2\n", "CC2 = p^3*x*(1-x^2)*(2*(x^4-1)+(x^2+3)*(1-y^2)) \\\n", " + p^2*(x^2-1)*((x^2-1)*(1-y^2)-4*x^2*(x^2-y^2)) \\\n", " + q^2*(1-y^2)^3*(p*x+1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The Riemannian metric $\\gamma$ induced by the spacetime metric $g$ on $\\Sigma$:

" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "gam = 1/100*(96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)/((x^2 - y^2)^3*(x^2 - 1)) dx*dx - 1/100*(96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)/((x^2 - y^2)^3*(y^2 - 1)) dy*dy - 1/100*((96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)^2*(x^2 - 1) + 9600*(24*(y^2 - 1)^3*(x + 5) + (2*x^4 - (x^2 + 3)*(y^2 - 1) - 2)*(x^2 - 1)*x + 5*(4*(x^2 - y^2)*x^2 + (x^2 - 1)*(y^2 - 1))*(x^2 - 1))^2*(y^2 - 1))*(y^2 - 1)/((96*(x^2 - y^2)^2*(x^2 - 1)*(y^2 - 1) + ((x^2 - 1)^2 + 24*(y^2 - 1)^2)^2)*(96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)) dph*dph" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gam = Sig.riemannian_metric('gam', latex_name=r'\\gamma') \n", "gam[1,1] = m^2*BB2/(p^2*d^2*(x^2-1)*(x^2-y^2)^3)\n", "gam[2,2] = m^2*BB2/(p^2*d^2*(y^2-1)*(-x^2+y^2)^3)\n", "gam[3,3] = - m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)\n", " + 4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)\n", "gam.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A view of the non-vanishing components of $\\gamma$ w.r.t. coordinates $(x,y,\\phi)$:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "gam_x,x = 1/100*(96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)/((x^2 - y^2)^3*(x^2 - 1)) \n", "gam_y,y = -1/100*(96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)/((x^2 - y^2)^3*(y^2 - 1)) \n", "gam_ph,ph = -1/100*((96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)^2*(x^2 - 1) + 9600*(24*(y^2 - 1)^3*(x + 5) + (2*x^4 - (x^2 + 3)*(y^2 - 1) - 2)*(x^2 - 1)*x + 5*(4*(x^2 - y^2)*x^2 + (x^2 - 1)*(y^2 - 1))*(x^2 - 1))^2*(y^2 - 1))*(y^2 - 1)/((96*(x^2 - y^2)^2*(x^2 - 1)*(y^2 - 1) + ((x^2 - 1)^2 + 24*(y^2 - 1)^2)^2)*(96*(x^3 - x*y^2 - 5*y^2 + 5)^2*y^2 + (x^4 + 24*y^4 + 10*x^3 - 10*x - 25)^2)) " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gam.display_comp()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The expression of the metric determinant with respect to the default chart (coordinates $(x,y,\\phi)$):" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "1/1000000*(x^18 + 60*x^17 + 331776*(x^2 - 1)*y^16 + 1599*x^16 + 25880*x^15 + 110592*(x^4 + 15*x^3 + 99*x^2 + 485*x + 1200)*y^14 + 266700*x^14 + 1555560*x^13 - 9216*(17*x^6 + 60*x^5 - 417*x^4 - 3040*x^3 - 13425*x^2 - 31020*x - 16975)*y^12 + 3533300*x^12 - 4005000*x^11 + 9216*(9*x^8 - 60*x^7 - 509*x^6 - 2430*x^5 - 9525*x^4 - 24260*x^3 - 71775*x^2 - 227250*x - 290600)*y^10 - 17787450*x^10 - 18420000*x^9 + 5760*(7*x^10 + 90*x^9 + 473*x^8 + 2460*x^7 + 10050*x^6 + 15200*x^5 + 53790*x^4 + 120900*x^3 + 198455*x^2 + 741350*x + 1103625)*y^8 + 15656250*x^8 + 31485000*x^7 - 192*(143*x^12 + 675*x^11 - 1043*x^10 - 7575*x^9 - 52650*x^8 - 224850*x^7 - 156150*x^6 + 1001250*x^5 + 3726075*x^4 + 6217375*x^3 + 4145625*x^2 + 19413125*x + 33330000)*y^6 + 3527500*x^6 + 12975000*x^5 + 96*(93*x^14 - 105*x^13 - 1693*x^12 - 13470*x^11 - 99575*x^10 - 222675*x^9 - 149025*x^8 - 1024500*x^7 - 2270025*x^6 + 2366625*x^5 + 9545625*x^4 + 11931250*x^3 + 451875*x^2 + 11346875*x + 28273125)*y^4 + 80032500*x^4 + 102025000*x^3 + 192*(x^16 + 30*x^15 + 399*x^14 + 3955*x^13 + 19950*x^12 + 3765*x^11 + 19850*x^10 + 197000*x^9 + 47025*x^8 + 77000*x^7 + 646875*x^6 - 598125*x^5 - 2642500*x^4 - 2896875*x^3 + 1117500*x^2 + 1581250*x - 687500)*y^2 - 78609375*x^2 - 180937500*x - 150390625)/(x^14 + (x^2 - 1)*y^12 - x^12 - 6*(x^4 - x^2)*y^10 + 15*(x^6 - x^4)*y^8 - 20*(x^8 - x^6)*y^6 + 15*(x^10 - x^8)*y^4 - 6*(x^12 - x^10)*y^2)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gam.determinant().expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Lapse function and shift vector

" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "(x^10 + 20*x^9 + 576*(x^2 - 1)*y^8 + 99*x^8 - 40*x^7 + 96*(x^4 + 10*x^3 + 24*x^2 - 10*x - 25)*y^6 - 350*x^6 - 480*x^5 - 48*(3*x^6 + 10*x^5 - 3*x^4 + 20*x^3 + 125*x^2 - 30*x - 125)*y^4 + 350*x^4 + 1000*x^3 + 96*(x^8 - x^6 + 10*x^5 - 10*x^3 + 25*x^2 - 25)*y^2 + 525*x^2 - 500*x - 625)/(x^10 + 40*x^9 + 576*(x^2 - 1)*y^8 + 699*x^8 + 7920*x^7 + 96*(x^4 + 20*x^3 + 174*x^2 + 980*x + 2425)*y^6 + 39450*x^6 - 960*x^5 - 48*(3*x^6 + 20*x^5 - 3*x^4 + 40*x^3 + 925*x^2 + 5940*x + 14675)*y^4 - 39450*x^4 - 6000*x^3 + 96*(x^8 - x^6 + 20*x^5 - 20*x^3 + 375*x^2 + 3000*x + 7425)*y^2 - 9675*x^2 - 97000*x - 240625)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "N2 = AA2/BB2 - 2*m*q*CC2*(y^2-1)/BB2*(2*m*q*CC2*(y^2-1)\n", " /(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)\n", " +4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)))) \n", "N2.simplify_full()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field N on the 3-dimensional differentiable manifold Sigma\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "N: Sigma --> R\n", " (x, y, ph) |--> sqrt((x^10 + 20*x^9 + 576*(x^2 - 1)*y^8 + 99*x^8 - 40*x^7 + 96*(x^4 + 10*x^3 + 24*x^2 - 10*x - 25)*y^6 - 350*x^6 - 480*x^5 - 48*(3*x^6 + 10*x^5 - 3*x^4 + 20*x^3 + 125*x^2 - 30*x - 125)*y^4 + 350*x^4 + 1000*x^3 + 96*(x^8 - x^6 + 10*x^5 - 10*x^3 + 25*x^2 - 25)*y^2 + 525*x^2 - 500*x - 625)/(x^10 + 40*x^9 + 576*(x^2 - 1)*y^8 + 699*x^8 + 7920*x^7 + 96*(x^4 + 20*x^3 + 174*x^2 + 980*x + 2425)*y^6 + 39450*x^6 - 960*x^5 - 48*(3*x^6 + 20*x^5 - 3*x^4 + 40*x^3 + 925*x^2 + 5940*x + 14675)*y^4 - 39450*x^4 - 6000*x^3 + 96*(x^8 - x^6 + 20*x^5 - 20*x^3 + 375*x^2 + 3000*x + 7425)*y^2 - 9675*x^2 - 97000*x - 240625))" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "N = Sig.scalar_field(sqrt(N2.simplify_full()), name='N')\n", "print N\n", "N.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The coordinate expression of the scalar field $N$:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "sqrt((x^10 + 20*x^9 + 576*(x^2 - 1)*y^8 + 99*x^8 - 40*x^7 + 96*(x^4 + 10*x^3 + 24*x^2 - 10*x - 25)*y^6 - 350*x^6 - 480*x^5 - 48*(3*x^6 + 10*x^5 - 3*x^4 + 20*x^3 + 125*x^2 - 30*x - 125)*y^4 + 350*x^4 + 1000*x^3 + 96*(x^8 - x^6 + 10*x^5 - 10*x^3 + 25*x^2 - 25)*y^2 + 525*x^2 - 500*x - 625)/(x^10 + 40*x^9 + 576*(x^2 - 1)*y^8 + 699*x^8 + 7920*x^7 + 96*(x^4 + 20*x^3 + 174*x^2 + 980*x + 2425)*y^6 + 39450*x^6 - 960*x^5 - 48*(3*x^6 + 20*x^5 - 3*x^4 + 40*x^3 + 925*x^2 + 5940*x + 14675)*y^4 - 39450*x^4 - 6000*x^3 + 96*(x^8 - x^6 + 20*x^5 - 20*x^3 + 375*x^2 + 3000*x + 7425)*y^2 - 9675*x^2 - 97000*x - 240625))" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "N.expr()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "beta^x = 0 \n", "beta^y = 0 \n", "beta^ph = -400*(2*sqrt(6)*x^7 + 24*(sqrt(6)*x + 5*sqrt(6))*y^6 + 20*sqrt(6)*x^6 - sqrt(6)*x^5 - 72*(sqrt(6)*x + 5*sqrt(6))*y^4 - 25*sqrt(6)*x^4 - (sqrt(6)*x^5 + 15*sqrt(6)*x^4 + 2*sqrt(6)*x^3 - 10*sqrt(6)*x^2 - 75*sqrt(6)*x - 365*sqrt(6))*y^2 + 10*sqrt(6)*x^2 - 25*sqrt(6)*x - 125*sqrt(6))/(x^10 + 40*x^9 + 576*(x^2 - 1)*y^8 + 699*x^8 + 7920*x^7 + 96*(x^4 + 20*x^3 + 174*x^2 + 980*x + 2425)*y^6 + 39450*x^6 - 960*x^5 - 48*(3*x^6 + 20*x^5 - 3*x^4 + 40*x^3 + 925*x^2 + 5940*x + 14675)*y^4 - 39450*x^4 - 6000*x^3 + 96*(x^8 - x^6 + 20*x^5 - 20*x^3 + 375*x^2 + 3000*x + 7425)*y^2 - 9675*x^2 - 97000*x - 240625) " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b3 = 2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)\n", " +4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)))\n", "b = Sig.vector_field('beta', latex_name=r'\\beta') \n", "b[3] = b3.simplify_full()\n", "# unset components are zero \n", "b.display_comp(only_nonzero=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Extrinsic curvature of $\\Sigma$

\n", "

We use the formula $$K_{ij} = \\frac{1}{2N} \\mathcal{L}_{\\beta} \\gamma_{ij}, $$ which is valid for any stationary spacetime:

" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms K on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "K = gam.lie_derivative(b) / (2*N)\n", "K.set_name('K')\n", "print K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The component $K_{13} = K_{x\\phi}$:

" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "2*(6*sqrt(3)*sqrt(2)*x^16 - 13824*(sqrt(3)*sqrt(2)*x^2 + 10*sqrt(3)*sqrt(2)*x + sqrt(3)*sqrt(2))*y^16 + 240*sqrt(3)*sqrt(2)*x^15 + 3793*sqrt(3)*sqrt(2)*x^14 - 6912*(sqrt(3)*sqrt(2)*x^4 + 20*sqrt(3)*sqrt(2)*x^3 + 150*sqrt(3)*sqrt(2)*x^2 + 500*sqrt(3)*sqrt(2)*x + 817*sqrt(3)*sqrt(2))*y^14 + 27650*sqrt(3)*sqrt(2)*x^13 + 72403*sqrt(3)*sqrt(2)*x^12 + 576*(27*sqrt(3)*sqrt(2)*x^6 + 310*sqrt(3)*sqrt(2)*x^5 + 1033*sqrt(3)*sqrt(2)*x^4 + 1060*sqrt(3)*sqrt(2)*x^3 + 10493*sqrt(3)*sqrt(2)*x^2 + 44870*sqrt(3)*sqrt(2)*x + 69503*sqrt(3)*sqrt(2))*y^12 - 81820*sqrt(3)*sqrt(2)*x^11 - 374975*sqrt(3)*sqrt(2)*x^10 - 96*(109*sqrt(3)*sqrt(2)*x^8 + 520*sqrt(3)*sqrt(2)*x^7 + 1504*sqrt(3)*sqrt(2)*x^6 + 19360*sqrt(3)*sqrt(2)*x^5 + 92770*sqrt(3)*sqrt(2)*x^4 + 157960*sqrt(3)*sqrt(2)*x^3 + 148264*sqrt(3)*sqrt(2)*x^2 + 731920*sqrt(3)*sqrt(2)*x + 1256425*sqrt(3)*sqrt(2))*y^10 - 313810*sqrt(3)*sqrt(2)*x^9 + 669975*sqrt(3)*sqrt(2)*x^8 + 24*(9*sqrt(3)*sqrt(2)*x^10 + 250*sqrt(3)*sqrt(2)*x^9 + 6873*sqrt(3)*sqrt(2)*x^8 + 40920*sqrt(3)*sqrt(2)*x^7 + 63402*sqrt(3)*sqrt(2)*x^6 + 146220*sqrt(3)*sqrt(2)*x^5 + 1047426*sqrt(3)*sqrt(2)*x^4 + 2249400*sqrt(3)*sqrt(2)*x^3 + 876525*sqrt(3)*sqrt(2)*x^2 + 4308810*sqrt(3)*sqrt(2)*x + 8401925*sqrt(3)*sqrt(2))*y^8 + 1617000*sqrt(3)*sqrt(2)*x^7 + 999675*sqrt(3)*sqrt(2)*x^6 + 96*(20*sqrt(3)*sqrt(2)*x^11 - 179*sqrt(3)*sqrt(2)*x^10 - 50*sqrt(3)*sqrt(2)*x^9 - 2897*sqrt(3)*sqrt(2)*x^8 - 28400*sqrt(3)*sqrt(2)*x^7 - 57446*sqrt(3)*sqrt(2)*x^6 - 9020*sqrt(3)*sqrt(2)*x^5 - 237650*sqrt(3)*sqrt(2)*x^4 - 731060*sqrt(3)*sqrt(2)*x^3 - 267175*sqrt(3)*sqrt(2)*x^2 - 1037250*sqrt(3)*sqrt(2)*x - 2111325*sqrt(3)*sqrt(2))*y^6 - 2277250*sqrt(3)*sqrt(2)*x^5 - 4979375*sqrt(3)*sqrt(2)*x^4 - (187*sqrt(3)*sqrt(2)*x^14 + 3590*sqrt(3)*sqrt(2)*x^13 - 5207*sqrt(3)*sqrt(2)*x^12 - 73540*sqrt(3)*sqrt(2)*x^11 - 454637*sqrt(3)*sqrt(2)*x^10 - 1150150*sqrt(3)*sqrt(2)*x^9 + 199401*sqrt(3)*sqrt(2)*x^8 - 1059000*sqrt(3)*sqrt(2)*x^7 - 7811175*sqrt(3)*sqrt(2)*x^6 + 2899610*sqrt(3)*sqrt(2)*x^5 + 1675075*sqrt(3)*sqrt(2)*x^4 - 32834500*sqrt(3)*sqrt(2)*x^3 - 24681575*sqrt(3)*sqrt(2)*x^2 - 69684250*sqrt(3)*sqrt(2)*x - 122823125*sqrt(3)*sqrt(2))*y^4 - 4037500*sqrt(3)*sqrt(2)*x^3 + 3461875*sqrt(3)*sqrt(2)*x^2 - 6*(sqrt(3)*sqrt(2)*x^16 + 40*sqrt(3)*sqrt(2)*x^15 + 601*sqrt(3)*sqrt(2)*x^14 + 4010*sqrt(3)*sqrt(2)*x^13 + 12935*sqrt(3)*sqrt(2)*x^12 - 1060*sqrt(3)*sqrt(2)*x^11 + 10449*sqrt(3)*sqrt(2)*x^10 + 139590*sqrt(3)*sqrt(2)*x^9 + 57825*sqrt(3)*sqrt(2)*x^8 + 146960*sqrt(3)*sqrt(2)*x^7 + 781475*sqrt(3)*sqrt(2)*x^6 - 702250*sqrt(3)*sqrt(2)*x^5 - 2108075*sqrt(3)*sqrt(2)*x^4 - 348500*sqrt(3)*sqrt(2)*x^3 + 2381875*sqrt(3)*sqrt(2)*x^2 + 5456250*sqrt(3)*sqrt(2)*x + 6941250*sqrt(3)*sqrt(2))*y^2 + 7231250*sqrt(3)*sqrt(2)*x + 6109375*sqrt(3)*sqrt(2))*sqrt(x^10 + 40*x^9 + 576*(x^2 - 1)*y^8 + 699*x^8 + 7920*x^7 + 96*(x^4 + 20*x^3 + 174*x^2 + 980*x + 2425)*y^6 + 39450*x^6 - 960*x^5 - 48*(3*x^6 + 20*x^5 - 3*x^4 + 40*x^3 + 925*x^2 + 5940*x + 14675)*y^4 - 39450*x^4 - 6000*x^3 + 96*(x^8 - x^6 + 20*x^5 - 20*x^3 + 375*x^2 + 3000*x + 7425)*y^2 - 9675*x^2 - 97000*x - 240625)/((x^18 + 60*x^17 + 331776*(x^2 - 1)*y^16 + 1599*x^16 + 25880*x^15 + 110592*(x^4 + 15*x^3 + 99*x^2 + 485*x + 1200)*y^14 + 266700*x^14 + 1555560*x^13 - 9216*(17*x^6 + 60*x^5 - 417*x^4 - 3040*x^3 - 13425*x^2 - 31020*x - 16975)*y^12 + 3533300*x^12 - 4005000*x^11 + 9216*(9*x^8 - 60*x^7 - 509*x^6 - 2430*x^5 - 9525*x^4 - 24260*x^3 - 71775*x^2 - 227250*x - 290600)*y^10 - 17787450*x^10 - 18420000*x^9 + 5760*(7*x^10 + 90*x^9 + 473*x^8 + 2460*x^7 + 10050*x^6 + 15200*x^5 + 53790*x^4 + 120900*x^3 + 198455*x^2 + 741350*x + 1103625)*y^8 + 15656250*x^8 + 31485000*x^7 - 192*(143*x^12 + 675*x^11 - 1043*x^10 - 7575*x^9 - 52650*x^8 - 224850*x^7 - 156150*x^6 + 1001250*x^5 + 3726075*x^4 + 6217375*x^3 + 4145625*x^2 + 19413125*x + 33330000)*y^6 + 3527500*x^6 + 12975000*x^5 + 96*(93*x^14 - 105*x^13 - 1693*x^12 - 13470*x^11 - 99575*x^10 - 222675*x^9 - 149025*x^8 - 1024500*x^7 - 2270025*x^6 + 2366625*x^5 + 9545625*x^4 + 11931250*x^3 + 451875*x^2 + 11346875*x + 28273125)*y^4 + 80032500*x^4 + 102025000*x^3 + 192*(x^16 + 30*x^15 + 399*x^14 + 3955*x^13 + 19950*x^12 + 3765*x^11 + 19850*x^10 + 197000*x^9 + 47025*x^8 + 77000*x^7 + 646875*x^6 - 598125*x^5 - 2642500*x^4 - 2896875*x^3 + 1117500*x^2 + 1581250*x - 687500)*y^2 - 78609375*x^2 - 180937500*x - 150390625)*sqrt(x^8 + 576*y^8 + 20*x^7 + 96*(x^2 + 10*x + 25)*y^6 + 100*x^6 - 20*x^5 - 48*(3*x^4 + 10*x^3 + 30*x + 125)*y^4 - 250*x^4 - 500*x^3 + 96*(x^6 + 10*x^3 + 25)*y^2 + 100*x^2 + 500*x + 625)*sqrt(x + 1)*sqrt(x - 1))" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "K[1,3]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The type-(1,1) tensor $K^\\sharp$ of components $K^i_{\\ \\, j} = \\gamma^{ik} K_{kj}$:

" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (1,1) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Ku = K.up(gam, 0)\n", "print Ku" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

We may check that the hypersurface $\\Sigma$ is maximal, i.e. that $K^k_{\\ \\, k} = 0$:

" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "Scalar field zero on the 3-dimensional differentiable manifold Sigma" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trK = Ku.trace()\n", "trK" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Connection and curvature

\n", "

Let us call $D$ the Levi-Civita connection associated with $\\gamma$:

" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Levi-Civita connection D associated with the Riemannian metric gam on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "D = gam.connection(name='D')\n", "print D" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The Ricci tensor associated with $\\gamma$:

" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms Ric(gam) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Ric = gam.ricci()\n", "print Ric" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The scalar curvature $R = \\gamma^{ij} R_{ij}$:

" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field R on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R = gam.ricci_scalar(name='R')\n", "print R" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Terms related to the extrinsic curvature

\n", "

Let us first evaluate the term $K_{ij} K^{ij}$:

" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Kuu = Ku.up(gam, 1)\n", "trKK = K['_ij']*Kuu['^ij']\n", "print trKK" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Then we compute the symmetric bilinear form $k_{ij} := K_{ik} K^k_{\\ \\, j}$:

" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,2) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "KK = K['_ik']*Ku['^k_j']\n", "print KK" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

We check that this tensor field is symmetric:

" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "True" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KK1 = KK.symmetrize()\n", "KK == KK1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Accordingly, we work with the explicitly symmetric version:

" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "KK = KK1\n", "print KK" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

 

\n", "

Electric and magnetic parts of the Weyl tensor

\n", "

The electric part is the bilinear form $E$ given by $$ E_{ij} = R_{ij} + K K_{ij} - K_{ik} K^k_{\\ \\, j} $$

" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "E = Ric + trK*K - KK\n", "print E" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

The magnetic part is the bilinear form $B$ defined by $$ B_{ij} = \\epsilon^k_{\\ \\, l i} D_k K^l_{\\ \\, j}, $$

\n", "

where $\\epsilon^k_{\\ \\, l i}$ are the components of the type-(1,2) tensor $\\epsilon^\\sharp$, related to the Levi-Civita alternating tensor $\\epsilon$ associated with $\\gamma$ by $\\epsilon^k_{\\ \\, l i} = \\gamma^{km} \\epsilon_{m l i}$. In SageManifolds, $\\epsilon$ is obtained by the command volume_form() and $\\epsilon^\\sharp$ by the command volume_form(1) (1 = 1 index raised):

" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3-form eps_gam on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "eps = gam.volume_form() \n", "print eps" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (1,2) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "epsu = gam.volume_form(1)\n", "print epsu" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,2) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "DKu = D(Ku)\n", "B = epsu['^k_li']*DKu['^l_jk'] \n", "print B" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Let us check that $B$ is symmetric:

" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "True" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "B1 = B.symmetrize()\n", "B == B1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Accordingly, we set

" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms B on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "B = B1\n", "B.set_name('B')\n", "print B" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

3+1 decomposition of the Simon-Mars tensor

\n", "

We proceed according to the computation presented in arXiv:1412.6542.

\n", "

Tensor $E^\\sharp$ of components $E^i_ {\\ \\, j}$:

" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (1,1) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Eu = E.up(gam, 0) \n", "print Eu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Tensor $B^\\sharp$ of components $B^i_{\\ \\, j}$:

" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (1,1) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Bu = B.up(gam, 0)\n", "print Bu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

1-form $\\beta^\\flat$ of components $\\beta_i$ and its exterior derivative:

" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "bd = b.down(gam)\n", "xdb = bd.exterior_derivative()\n", "print xdb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Scalar square of shift $\\beta_i \\beta^i$:

" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "b2 = bd(b)\n", "print b2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Scalar $Y = E(\\beta,\\beta) = E_{ij} \\beta^i \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Ebb = E(b,b)\n", "Y = Ebb\n", "print Y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Scalar $\\bar Y = B(\\beta,\\beta) = B_{ij}\\beta^i \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field B(beta,beta) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Bbb = B(b,b)\n", "Y_bar = Bbb\n", "print Y_bar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

1-form of components $Eb_i = E_{ij} \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Eb = E.contract(b)\n", "print Eb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Vector field of components $Eub^i = E^i_{\\ \\, j} \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vector field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Eub = Eu.contract(b)\n", "print Eub" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

1-form of components $Bb_i = B_{ij} \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Bb = B.contract(b)\n", "print Bb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Vector field of components $Bub^i = B^i_{\\ \\, j} \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vector field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Bub = Bu.contract(b)\n", "print Bub" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Vector field of components $Kub^i = K^i_{\\ \\, j} \\beta^j$:

" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vector field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Kub = Ku.contract(b)\n", "print Kub" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field zero on the 3-dimensional differentiable manifold Sigma\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "zero: Sigma --> R\n", " (x, y, ph) |--> 0" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T = 2*b(N) - 2*K(b,b)\n", "print T ; T.display()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field zero on the 3-dimensional differentiable manifold Sigma\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "zero: Sigma --> R\n", " (x, y, ph) |--> 0" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Db = D(b) # Db^i_j = D_j b^i\n", "Dbu = Db.up(gam, 1) # Dbu^{ij} = D^j b^i\n", "bDb = b*Dbu # bDb^{ijk} = b^i D^k b^j\n", "T_bar = eps['_ijk']*bDb['^ikj']\n", "print T_bar ; T_bar.display()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "epsb = eps.contract(b) \n", "print epsb" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,3) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "epsB = eps['_ijl']*Bu['^l_k']\n", "print epsB" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "Z = 2*N*( D(N) -K.contract(b)) + b.contract(xdb)\n", "print Z" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "DNu = D(N).up(gam)\n", "A = 2*(DNu - Ku.contract(b))*b + N*Dbu\n", "Z_bar = eps['_ijk']*A['^kj']\n", "print Z_bar" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "W = N*Eb + epsb.contract(Bub)\n", "print W" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "W_bar = N*Bb - epsb.contract(Eub)\n", "print W_bar" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field zero on the 3-dimensional differentiable manifold Sigma\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "zero: Sigma --> R\n", " (x, y, ph) |--> 0" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M = - 4*Eb(Kub - DNu) - 2*(epsB['_ij.']*Dbu['^ji'])(b)\n", "print M ; M.display()" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field zero on the 3-dimensional differentiable manifold Sigma\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "zero: Sigma --> R\n", " (x, y, ph) |--> 0" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M_bar = 2*(eps.contract(Eub))['_ij']*Dbu['^ji'] - 4*Bb(Kub - DNu)\n", "print M_bar ; M_bar.display()" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "F = (N^2 - b2)*gam + bd*bd\n", "print F" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "A = epsB['_ilk']*b['^l'] + epsB['_ikl']*b['^l'] \\\n", " + Bu['^m_i']*epsb['_mk'] - 2*N*E\n", "xdbE = xdb['_kl']*Eu['^k_i']\n", "L = 2*N*epsB['_kli']*Dbu['^kl'] + 2*xdb['_ij']*Eub['^j'] \\\n", " + 2*xdbE['_li']*b['^l'] + 2*A['_ik']*(Kub - DNu)['^k']\n", "print L" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "N2pbb = N^2 + b2\n", "V = N2pbb*E - 2*(b.contract(E)*bd).symmetrize() + Ebb*gam \\\n", " + 2*N*(b.contract(epsB).symmetrize())\n", "print V" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "beps = b.contract(eps)\n", "V_bar = N2pbb*B - 2*(b.contract(B)*bd).symmetrize() + Bbb*gam \\\n", " -2*N*(beps['_il']*Eu['^l_j']).symmetrize()\n", "print V_bar" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Field of symmetric bilinear forms on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "F = (N^2 - b2)*gam + bd*bd\n", "print F" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,3) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R1 = (4*(V*Z - V_bar*Z_bar) + F*L).antisymmetrize(1,2)\n", "print R1" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,2) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R2 = 4*(T*V - T_bar*V_bar - W*Z + W_bar*Z_bar) + M*F - N*bd*L\n", "print R2" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R3 = (4*(W*Z - W_bar*Z_bar) + N*bd*L).antisymmetrize()\n", "print R3" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "True" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R2[3,1] == -2*R3[3,1]" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "True" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R2[3,2] == -2*R3[3,2]" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R4 = 4*(T*W - T_bar*W_bar) -4*(Y*Z - Y_bar*Z_bar) + N*M*bd - b2*L\n", "print R4" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,3) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "epsE = eps['_ijl']*Eu['^l_k']\n", "print epsE" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "A = - epsE['_ilk']*b['^l'] - epsE['_ikl']*b['^l'] \\\n", " - Eu['^m_i']*epsb['_mk'] - 2*N*B\n", "xdbB = xdb['_kl']*Bu['^k_i']\n", "L_bar = - 2*N*epsE['_kli']*Dbu['^kl'] + 2*xdb['_ij']*Bub['^j'] \\\n", " + 2*xdbB['_li']*b['^l'] + 2*A['_ik']*(Kub - DNu)['^k']\n", "print L_bar" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,3) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R1_bar = (4*(V*Z_bar + V_bar*Z) + F*L_bar).antisymmetrize(1,2)\n", "print R1_bar" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,2) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R2_bar = 4*(T_bar*V + T*V_bar) - 4*(W*Z_bar + W_bar*Z) \\\n", " + M_bar*F - N*bd*L_bar\n", "print R2_bar" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R3_bar = (4*(W*Z_bar + W_bar*Z) + N*bd*L_bar).antisymmetrize()\n", "print R3_bar" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-form on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R4_bar = 4*(T_bar*W + T*W_bar - Y*Z_bar - Y_bar*Z) \\\n", " + M_bar*N*bd - b2*L_bar\n", "print R4_bar" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (3,0) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R1u = R1.up(gam)\n", "print R1u" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (2,0) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R2u = R2.up(gam)\n", "print R2u" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (2,0) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R3u = R3.up(gam)\n", "print R3u" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vector field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R4u = R4.up(gam)\n", "print R4u" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (3,0) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R1_baru = R1_bar.up(gam)\n", "print R1_baru" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (2,0) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R2_baru = R2_bar.up(gam)\n", "print R2_baru" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (2,0) on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R3_baru = R3_bar.up(gam)\n", "print R3_baru" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vector field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "R4_baru = R4_bar.up(gam)\n", "print R4_baru" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Simon-Mars scalars

" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "S1 = 4*(R1['_ijk']*R1u['^ijk'] - R1_bar['_ijk']*R1_baru['^ijk'] \\\n", " - 2*(R2['_ij']*R2u['^ij'] - R2_bar['_ij']*R2_baru['^ij']) \\\n", " - R3['_ij']*R3u['^ij'] + R3_bar['_ij']*R3_baru['^ij'] \\\n", " + 2*(R4['_i']*R4u['^i'] - R4_bar['_i']*R4_baru['^i']))\n", "print S1" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [], "source": [ "S1E = S1.expr()" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field on the 3-dimensional differentiable manifold Sigma\n" ] } ], "source": [ "S2 = 4*(R1['_ijk']*R1_baru['^ijk'] + R1_bar['_ijk']*R1u['^ijk'] \\\n", " - 2*(R2['_ij']*R2_baru['^ij'] + R2_bar['_ij']*R2u['^ij']) \\\n", " - R3['_ij']*R3_baru['^ij'] - R3_bar['_ij']*R3u['^ij'] \\\n", " + 2*(R4['_i']*R4_baru['^i'] + R4_bar['_i']*R4u['^i']))\n", "print S2" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": false }, "outputs": [], "source": [ "S2E = S2.expr()" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lS1E = log(S1E,10).simplify_full()" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lS2E = log(S2E,10).simplify_full()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Simon-Mars scalars expressed in terms of the coordinates $X=-1/x,y$:

" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": false }, "outputs": [], "source": [ "var('X')\n", "S1EX = S1E.subs(x=-1/X).simplify_full()\n", "S2EX = S2E.subs(x=-1/X).simplify_full()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Definition of the ergoregion:

" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [], "source": [ "g00 = - AA2/BB2\n", "g00X = g00.subs(x=-1/X).simplify_full()" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ergXy = implicit_plot(g00X, (X,-1,0), (y,-1,1), plot_points=200, \n", " fill=False, linewidth=1, color='black', \n", " axes_labels=(r\"$X\\,\\left[M^{-1}\\right]$\", \n", " r\"$y\\,\\left[M\\right]$\"), \n", " fontsize=14)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Due to the very high degree of the polynomials involved in the expression of the Simon-Mars scalars, the floating-point precision of Sage's contour_plot function (53 bits) is not sufficient. Taking avantage that Sage is open-source, we modify the function to allow for an arbitrary precision. First, we define a sampling function with a floating-point precision specified by the user (argument precis): 

" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def array_precisXy(fXy, Xmin, Xmax, ymin, ymax, np, precis, tronc):\n", " RP = RealField(precis)\n", " Xmin = RP(Xmin)\n", " Xmax = RP(Xmax)\n", " ymin = RP(ymin)\n", " ymax = RP(ymax)\n", " dX = (Xmax - Xmin) / RP(np-1)\n", " dy = (ymax - ymin) / RP(np-1)\n", " resu = []\n", " for i in range(np):\n", " list_y = []\n", " yy = ymin + dy * RP(i)\n", " fyy = fXy.subs(y=yy)\n", " for j in range(np):\n", " XX = Xmin + dX * RP(j)\n", " fyyXX = fyy.subs(X = XX)\n", " val = RP(log(abs(fyyXX) + 1e-20, 10))\n", " if val < -tronc:\n", " val = -tronc\n", " elif val > tronc:\n", " val = tronc\n", " list_y.append(val)\n", " resu.append(list_y)\n", " return resu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Then we redefine contour_plot so that it uses the sampling function with a floating-point precision of 200 bits:

" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sage.misc.decorators import options, suboptions\n", "\n", "@suboptions('colorbar', orientation='vertical', format=None, \n", " spacing=None)\n", "@suboptions('label', fontsize=9, colors='blue', inline=None, \n", " inline_spacing=3, fmt=\"%1.2f\")\n", "@options(plot_points=100, fill=True, contours=None, linewidths=None, \n", " linestyles=None, labels=False, frame=True, axes=False, \n", " colorbar=False, legend_label=None, aspect_ratio=1)\n", "def contour_plot_precisXy(f, xrange, yrange, **options):\n", " from sage.plot.all import Graphics\n", " from sage.plot.misc import setup_for_eval_on_grid\n", " from sage.plot.contour_plot import ContourPlot\n", "\n", " np = options['plot_points']\n", " precis = 200 # floating-point precision = 200 bits \n", " tronc = 10\n", " xy_data_array = array_precisXy(f, xrange[0], xrange[1], \n", " yrange[0], yrange[1], np, precis, \n", " tronc)\n", "\n", " g = Graphics()\n", "\n", " # Reset aspect_ratio to 'automatic' in case scale is 'semilog[xy]'.\n", " # Otherwise matplotlib complains.\n", " scale = options.get('scale', None)\n", " if isinstance(scale, (list, tuple)):\n", " scale = scale[0]\n", " if scale == 'semilogy' or scale == 'semilogx':\n", " options['aspect_ratio'] = 'automatic'\n", "\n", " g._set_extra_kwds(Graphics._extract_kwds_for_show(options, \n", " ignore=['xmin', 'xmax']))\n", " g.add_primitive(ContourPlot(xy_data_array, xrange, \n", " yrange, options))\n", " return g" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Then we are able to draw the contour plot of the two Simon-Mars scalars, in terms of the coordinates $(X,y)$ (Figure 11 of arXiv:1412.6542):

" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false }, "outputs": [], "source": [ "c1Xy = contour_plot_precisXy(S1EX, (-1,0), (-1,1), \n", " plot_points=200, \n", " fill=False, cmap='hsv', \n", " linewidths=1, \n", " contours=(-10,-9,-8,-7,-6,-5,-4,-3,\n", " -2,-1,0,1,2,3,4,5,6,7,8), \n", " colorbar=True, \n", " colorbar_spacing='uniform', \n", " colorbar_format='%1.f', \n", " axes_labels=(r\"$X\\,\\left[M^{-1}\\right]$\", \n", " r\"$y\\,\\left[M\\right]$\"), \n", " fontsize=14)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAJICAYAAAAaW1FNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnWd8FFXbh6+Z3Wx6pUNo0pEiVSkKKAoSARVFEWwgCupj\nr2DjERvY9bU9AiKC2EEUC116F0ERaYGEnkJ6Nrs7//fDLIFIkIiAoHPldzIzZ065z9mdvec+1ZAk\nHBwcHBwc/uGYf7cADg4ODg4OJwNH4Tk4ODg4/CtwFJ6Dg4ODw78CR+E5ODg4OPwrcBSeg4ODg8O/\nAkfhOTg4ODj8K3AUnoODg4PDvwJH4Tk4ODg4/CtwFJ6Dg4ODw78CR+E5ODg4OPwrcBSeg4ODg8MJ\nZdOmTVx99dVUr16dyMhIGjVqxJNPPklBQcFJlcNw1tJ0cHBwcDhRpKam0rRpU+Lj4xkyZAgJCQks\nXryYcePG0bt3b7744ouTJov7pOXk4ODg4PCv4/333yc7O5vFixfTsGFDAG666SYCgQATJkwgKyuL\n2NjYkyKL06Tp4ODg4HDCyMnJAaBixYol/CtXroxpmng8npMmi6PwHBwcHBxOGJ07d0YSAwcOZM2a\nNaSmpvLRRx/x1ltvceeddxIeHn7SZHH68BwcHBwcTihPPfUUTz/9dPEgFcMwGD58OP/9739PqhxO\nH56Dg4ODwwmlVq1adOrUiSuuuIKEhAS+/vprnnrqKSpVqsRtt9120uRwLLyTjGVZ7Ny5k+joaAzD\n+LvFcXBwOA5IIicnh6pVq2Kap1ZP0fbt20lLSzuheZQvX54aNWqUem/y5MkMGjSITZs2UaVKlWL/\ngQMH8vHHH5OSkkJ8fPwJle8AjsI7yaSmplK9evW/WwwHB4cTQEpKComJiX+3GMVs376dRnXrku/z\nndB8PB4PGzduLFXpderUCcuymD9/fgn/KVOm0KdPH2bMmMH5559/QuU7gNOkeQxMnDiR+fPns3Ll\nStauXUtRURHvvfce11133VHjRkdHA/aDERMTA8DVV1/N5MmTy5z/vyn8qSTL6R7+VJLlVAv/V9PO\nzs6mevXqxc/3qUJaWhr5Ph8fPPk0jWqfcULyWL91CwMeHUZaWlqpCm/Pnj0kJCQc5u8LKmG/339C\n5CoNR+EdA4888gjbt2+nfPnyVK1alW3btpU57oFmzJiYmGKF53a7i8/Lwr8p/Kkky+ke/lSS5VQL\nf7zSPlW7KRr16EbLli1PTOKrVsGjw454u379+syYMYNNmzZRt27dYv9JkyZhmibNmjU7MXKVwqnV\n2HyaMGbMGJKTk9mzZw+33HLLSc+/X79+p1T4P8ufSf90lv1khD+RaZ9Ksh9L+ifye+ZQdu6//34C\ngQAdO3Zk5MiRvPnmm/To0YMvv/ySQYMGUbly5ZMnjBz+Es8++6xM09T48ePLFD4rK0uAsrKyiv16\n9ux5osQ7KZzO8p/Oskunt/z/JNlLe65PBVauXClAK1eu/FvzWL58uZKSklS1alWFhoaqYcOGevbZ\nZxUIBE6YXKXhNGk6ODg4OJxQWrduzVdfffV3i+E0aZ4KnO7NKaez/Kez7HB6y+/I7nCycRTeKcDp\n/vCczvKfzrLD6S2/I7vDycZp0jzF8Pl8rF27lpSUFAoLCwkEAliWZd9MScHIzcWoWxdzxgzM/HxM\nwyh2rgNH08Q0DNzBc9fvjiGHnLtNE7dh2MffuZDg0TSMU3b02XHlssugbVvw++GNN2DXrr9booM0\nbgwDBsCYMbB5898tzT+Ltm3tz97hH4+j8P4m6tWrh2EYVKtWjWrVqgH2W+OHH37ItGnT/mbpSmIA\nbsN2ISaEHDg3wGMahBzi7zEP+ntKXAedYRAaPA81wWNAqGn7hZoGoYbtHxb0CzMMwoLXYaZBmAHh\npkG4YV+Hm+DCBAEybGcdcrQMsEwIBJ3fBT63ff9QsrLgvfdgyxaYPBnuvBPOKG3eksAdAJcFpsAM\nHg0Fj8EwBrZfcSUeYX2HA3LIOLwMARN8LsgXpKTCxo3w5JNwRg0ID9hyuK2SMhyQ40Ceh8pTmhxH\nkqv4k7ejH1p8+J2sAmRC4IDMbijwQMAFhgXhReDx2/IeqLMD9WP8gWxHQofKdYgsR/rc/S67Hv2u\ng2U6QGEhjBoFv/wCDRqUKfsPP/yQDz/8EIAdO3awY8cO5KzfcVrgKLy/iY0bNx42j2f37t1cc801\nPPvsswwcOJCwsDBcLpe9VNEHH8DgwcjjwTIMdMMNWJe1wZr+Olbyj1gWBARWGASCvzUBDAJ+EfCB\nPw8CPgj0fwb/d28TyErGH+/GH+EhEGLiM4UfETCEzxJ+68DRso8SPgN8lvBZ4AuAPyB8AeELQJHf\n9vP5bVfkV/AIOX4o8tnnB47e3x0Li4L3j2EOaogLIkIgPMQgIgQi3AYRLhHhgghDRJrYzoAoN0SG\nQlRcAtGJdYhqeh7RTTsSnZdP9LXXEv3QQ8RMnUrMpZcSOnkSxvofYOVXsHkl7NkMWXtLF8INhASP\nLuzOAvPAuQmmAYdayZLtLNkfnIHtCoGs36UdHgO74uGpJyEpHiJ2gBWw70UDYdgVEOYGjwvcpv1G\n4go6M5j2gWOxO6AYj1CxOvRogBU8t4IuIPADPsv+IPO8kO2H/UB4NNz7Kbx+PezfDVFAnAuiQm05\nD7w1ucyDdXWobIcJckCxKajUDpEhIPBbthyFASjwQYEf8oL1eYCQUEhsDI3OhY7XQP2zbYVXty6M\nHAkTJhyhIkrSr1+/w5o0s7OzT9qebg7HjqPwTiGWLl0KwPr164mNjS25T9Snn0Lr1uB2w5IlcENv\neL4HNO4Ed461H+TcGfDro4ek+Lu3Tm8MrHwYWgNVQYYfEuIhPgZFhkC4wONHIT5we8EVdKbXflM/\nCVgWFBVBYQEUFrrxFrgoLHThLXRRkG9QkG9SmG/gLYSCPFGQD4X5Ij/PoiA/QH5egPw8PwX5FvkF\nkFcAmYWQWgC5BZCf5yK3EHI3Z5K3aDl8vBx44aAAr75qH7dtIyQighgPxIabxEZ7iIsKIS4qjrgo\ng7hIER8RICHSR0K4l4QoUS4KykVB+WiICjtUv/3Jujt3DoTWgrz9trL4aQZMexHOA8Iy4ZpnoHIR\n7P0Qcn8NRvLZzh0F7jBwRYArDMxQMD3g8oARAobrEGcedBgQKALvXgirDKYbEMgKugDID5YPrCL7\nGCgAfz74s6Eozw4DUO9ZeOkJGNkNyiXCPQ9B8rNAAIxC8MSDOxrckeAKt+UzPXaeRvBtwTgwvMCw\n608KynBAjiLbBby2HIF88OWAv+CQijSh7gMQfzlk7Ybdm2HbGlj6OUx/Fe79BNpdAQ8/DHfcAY8+\nCvXr/7nPyuG0wlF4pxBJSUk899xzPPLIIyQnJzNt2rSDSxX16gUHVhV3BU0agNvfg4q1IHMNrHoS\nal8H5TvC8puhfDtoPxEVZUDOTNg9Bqpko0puVLsGeHYA+4LOA0Y1MKqAURGD8mDEgxEHxIERh2Ek\nYL+qu2wX/HESBkXsJ58deEmjiEx85BIw8glQgIUXiyIs/CA/KjYVDjUXwAj6GxHCiBUGFgbCxCIM\nESE/BgFMAhjyY1KEiQ9TRZjyYsqPiyJMZLeccdDYcgWvzYALw+8Bn4FV4CM/vZCcTMjNhJwsyM6B\n7DzI9kJuIWTlQVa+yMoPsD9X7M8x2JVhsH+byMwKkJHlx+c7vDkrNNRD+XLxVKxQ3nYVK1CpYkUq\nV7JdVVZTNf1/VE2sRXTFlrDxF/AWQpsbIbFTSWvwrIvAKIDv34ReF4BehS27oEo3aPUCxDSA0HIQ\nEnOIovgTFOyBDa/Ab6+DP8dWeA3vgtrXQ3gZJwVbAfi+HWQsh51eKAqaVv3uhpTh9vfyrOcgrOKx\nyVhWLD8U7bcV95b3YP2zUCcd2rwJpisYxoKnk+CDB6F1Lxg0CJ55xrby3n//xMnm8LfjKLxjYMyY\nMSxYsACAtWvXIon//e9/zJkzB4COHTsyaNCgP52u2+3mgQceoH379iQlJdGtWzc+++wze4XxQYMO\nKjzTtB9agG0/2Qrv52dsBdT2HZibBBiQthiZJlbEQxA2EyoEM1IYhvtsMM/BMJviN6rxm/EWWcYq\nLAox2IOLPEIpJBw3kVQhmgbE0BQT2+r0spd9fMteviODeRSy45CSGLiJxkUULsJwEYGJB4MQDMOF\nwYG+lAM/6rbiE0IEgs5f7Cx8CF/wWBRUnrYSPcyKPSpFmApg4sKFiVk9FBMr6GcRBkQLaglC5aH4\nT25C5cYjuyQmAVARUi55eYWkZ0BGBqSlQ3q6QVpGPPvSEkhL87A3LZctyRksXraS3bv3kZube4g8\nycS4k0kMh+oRUCP8cWr0+I2ajWpSKzaL2lGpVA0sxnTvhR4AS6DatVD/NohrcjCZgl2QtR5i6tvK\nr6wkT4ZFweY531nww4/QtTL8+JDt6twEZ//v8HjedNj5LWSutq20jOWQsQI6TIERN9lhYiuC9xOI\nrGkrHHfEn/uojgXTDWHlbddiFMQ2hqWDAB0sh2nCdaPh3mYwZxxcdMtBK2/ECKhd+8TL6fC34Ci8\nY2DBggW8f8iboGEYLFq0iEWLFhVfH4vCO0DHjh2ZMWMGl156KS1atODrr7+mVatWkJYGK1ZA9+7w\n8w6ofiY81xv6PgENG8L2j6Bgh/2jt2cWADI/B2smhmcShtkRyACjLoYRCUCAApZwHrmspxI9cRGJ\nCOAnhwKSSWcehaQA4CaaBM4DxD6+QwSIpRVV6UccbYmkHmFUw0MCBi5WM4AMFtKR5bgIO6ycQuSS\nTjopZLGHPDLxkkMR+fjwEsBHAD+HKjUTFwYmJm7chBxUXBi4ceHCwI15yLmBG4qdiYVlFGJRQIBC\nLMO2QAN4seTFogAfmeSRTqaxDy97CZDxO8kNPJQjlMq2i6hEaIV44hVJZVyEWgWEWrvxWKm4tRVD\nqYfETSA3rw27ftnDzvU72LU9QOo2g9RkkZoJK/PgiwkTScs5GCPU4+KMGtWoV6sS9Zq0p0FWMxp6\nM2ncOJ1yoTmw4nbY+XVQtBBI7A31b4dKnY7+ZQurcPA8NNyuak88eA/4lS8ZPmMlrB0BO6fbzYuu\niuAJgYjqcPYY+CUFsoNb0XS8Bva/Dc2fPjnKrjTOuAEChbB8KNS9Gcq1sf1rNIEWPWDRR7bCS0qC\n22+HTZschfcPxlF4x8C4ceMYN27cCc2jbdu2rF69mt69e9OlSxemT59Ox44doVs3uOgiGDkKhj0M\nLX6Bj5+AYVPs5qKfHrd/eKr1QhE5yLoewzUI032gk706lu8VZFTAdF9DOj+QxQraM58EOpYqS4B8\n0ljGj4xnHSsJUEgMVxBPa0KojklVQqlFNNUwg1M797OSHUwEIFlvUMe4B4BC8ljMh6xiKptYQg4l\n9+kyMPAQTghhuIIKzcDEwMDCQlhYBLDw48dHAB9+vKiMlp6BSRhRhBFFODGEEkUEsYQTQ7gRQzgJ\nhFObCGKJII6KVCSGeCLwEIaFn3S87MbLnqDbRYGxjUyW4DV2EyCvxOxWkzBCVZNQYghVKB6Ex5NP\nSLsA9c5x0cIKECnh8pvgM+0ROC6Rl2eQvD2MLclRJG+LZfPWGDZtgi++nE7yq28UT1WpFAtnVvfQ\nLDKUszxezmoZT+PQnwhJ6QxRZ8AFcyHyD7ajqnwBXJkFv74Mv74AXQGtgcYPQb2hEHnI6vepU2HB\nlRBVB1q8BB9NhLVLofP1cNs42LIKJhzyHeo2FOa/XabP5YRSZzD89hr8+DBcMPOgf/ML7WZNb0HJ\nJmSHfyyOwjuFqVSpEjNnzqRnz5507dqVd999lwEDBth9DRdeCNddD598DM0uhP+7GW67HX59zG7S\navki8j8NvgKMkJIrmcs/DowYcF/DTiYRSiXiaX9EObawhje4kX0kAwQtrK1YfFxC0YQSQSJNqE1r\nylGAH/sL9jNfso4CfuUHfuUH/HhpwHlUpTEbWcR1vMpZJBFFAqFEYhxx2OCR8QcVn49CiigIuny8\n5OMlDy95FJIbPM+lgBwKyKYweCwgm2z2kk8WBWSRTxaF5JQon4FBDJVIoBrxVCOBRBJoSQKJVKEG\n5ahODLH4yQgqxV0UsguvsZsi9uA19pDNXorMHIrYT4AiO12ZRFCOaJUjWolEqzrRnqqcGR9Ok2Zp\nyNoA1kIgG4jC6+vKpi2NWb9gAz/P/YZ1KX6mbbB4eT8wfy+hb+yjeQ1oW2cL7TY9TvvLH6NmzZoY\n3nRYP8q2zkJiocYVcMZA8MRC08fsZtLdM6FKd9vv92weY1t1bf8H/oqw9g7bf8EkuPFlGH8PVK4H\nmTtt66lSHYisBb++BJW7lmyCPZmYLmjyOCy8CrI32H2eYA/48nlhy0qofKY9IGzNGvvZcvhH4mwA\ne5I5MHw5KyurzNuReL1ehgwZwnvvvcerr77Kf/7zH8jJgZgY+PBD6N4FHmoDGTuhNtBc0GQ4anoX\nVkEDDFc3zNAPitOThPCxw/iQNdxAU96iOgPZwKOkMYsEOtCYlzAwKKKQO0ikEnUZyNtUp2mxFSdE\nATlksoO9bGEXv7KdNWxiKbv5jXCFEkEI6UYu4cRQj/Y0oStt6MNPfMc4hhBPeVxE8gxrCefU2kvM\nIkA2+9jPLjLZyX52ksGO4mMmqaSTQh6ZxXEMDOKoQjlqUJ6alKcm5ahJBWoFr2sRht2c7GM/OfxC\nDuuCbi05rKMoaPXatmgjomlClOoTZYUQae0hPLAO01oE5IHCITsGY+cecnbDTxth5dbyrNhcgaXr\nc9m0xW6OrlatKufVzadL/QK61qtK7aoeMLeAOxwa3Q+N7rNHdf4RhWnwQy9IX2bHWZ0JX78Nt4+H\n2i3sPrHzB8LssTDgOfhsJNz6CmS+DEUZ0G0FhFc6IZ/VUfEXwGflocmjcOZDtp+vCAZEwsBXbWv0\npptg2jTYuhUi/lwT7LE81yeDVatW0apVK1auXHnCtgc6GXkcLxwL7zQgNDSUsWPHUr58ee644w5y\ncnJ4+K67bDsoKwviKsFjM+3h1gsnw979sG4kRkgsxhkPocADKHArhsu24gzDYB13s403qEJfqjOI\njfyXzTwHQBYrqERvytOFn5lFLunUoS1VqF+s7MD+cY8ghghiqEYjWpBUfG8vW5lqPMV+dnIL99OA\nc3Ed8nVbxVQAGpDGEtJYyAd0ZWiZ62QbyfzIarayhb3sIYv9FFBAEUUIYWDgwoUHD2GEEU4EkUQS\nSRQxxBBDLPHEE09C8K8cccSVKJ+JizgqE0dlatHiiLIUkkcGqaSzvdilsY00trGZZWSQEuyLtClH\ndWrQnBo0pyZnUZMLqMFgDAyE8LLnECW4jlx+YY8xFb8r2x4cG+ImTm0pr0aUs0KIjU/GjF1MVKMs\n2neB9qQBmWBeSPr+YSxZlsD8T59n3sLlfPQDWNpK3Ujo3jyRS5Ki6Zz/KKEZq6H2tbBnNhTugXJt\noeZVEHHI7t1h5aHrPFj3FKwbATEV4GO/bUF9PALcIba1lNgYJj8K/iIY9wi8tBS+a2OP4mwyHGpe\nbU9J+BNIARQYD7gxXD0wjPJHjVMCdzhUvRhSpxxUeCEeqNoAtq+1r4cNg3Hj7JfIv9AH73Dq4ii8\n0wTDMBg1ahSRkZEMHz6cffv28eKFF2K8/joMHgxV68NlD8Ga78FbE864AH58ACO1DerYAcubhBn2\nI4ZZM5iiRQjlaMVHAFTD7s/LYB4R1CUW+02tEZ3pRn9m8ymj6cHDzMTEdUQ5hdjMJjbyG6F0IIYC\nFrKB1aQQRzwVqEg1EunOPWxgPkvIpQr1aMPlR60DIT7hI57lSdbzCwCRRFKJysQRTwQRePBgYmLb\nsD6KKMJLIQUUkEsueeSSTTYBAoel78JFBSpQgYpUpBKVqRL8X5WqVKMq1UikOpWpjPuQRyeMSKrS\ngKqUvlKHRYBMdpFGMvvYSirr2M5PzGUMWewGIJwYatKCWrSgFq2oTStq0aW4rm1FuJtcNpDLz6QZ\ns0k2PmOjuR+XO4py6kQ5zqGcWhNDBQgsQ4FJlIsZSlLXCC45vxNsbETWj+uZtzKa79d4mfbrDl5f\nJKLDDZI6rObKJp/To30twrw+SJkCq++3+/jq3gzVettz+cwQ20raOh48cQeH+ic2tge87NoII+bB\nrHdhxtvQ6XqITITOX9ujPpcOhtUPwPkzIKFs1oBUhOXtAdbsYE1EY4Q8iuG+F+PPTHGochEsv9We\nrxcSbE2oUt+enwf2yjqxsZCeXvY0HU4rHIV3GmEYBk888QSVKlXi1ltvhb59eWHGDMzPPoMrr7T7\nI35bDP2ehnPuhvyaGLtHYG59GKv2NqyiazFDv8cwwginVnDYv20NRdGQ9syliDRcROMiFIA8VhHP\nRDoRzizm8T2v0507S5XvdV7hBZ5jNwfXoAwhJDjMpKSC8eAhkWqEE49BMybzGUn0IpFEsthbbPF5\nCC+O8ywj+S+PcQEX8jgjOZt2VKLSn+7zEyKffDLJZD+ZZJDOPvaRThr72Ms+9rKHPWxmEwuZz252\nUXjIkh0uXFShKtWpQU1qUZd6NKARjWhMPerjwVMiPxMX5UikHIk0+N3AoCz2kMxqtrGaZFaxii/5\nlpcBCCWSmrSgLufQlAtpwLmUpzPl6UwtbkME2M9K0plFmjGLDYzEMryEEEe82ZHKIddT2XoDd+Br\n5P8YGqwnpr5JzyTolR8HhRfy8+6uTJm7ic/ee5Y+MyHm9WSuSIQbm8TQ4cmnMPZNgQV9IaySPe/P\nkwA5v0FeMrS3p+bgLYAX+9ormFw7Gmo2gHMqQKM+4F8FSwZBjb7Q5Ts73oK+MK8XJK21R4QeDWsB\nWLMwPV+C62zkexr5HkSBWZihX2IYnqOnAVC+g90HmbESKnW2/SqdAcunli2+w2mPo/BOQ4YOHYok\nbrvtNnKrVePtESMw+/Sxb3rCYe8W+/z8x2DRZoyNEzFrPo9lXI+KrgPPZBKMjvjJIpX3qc71xWl7\nKNlU5Av2T4VSgJswstlLGtuZzvP04F7KU7M47Ku8SDzxvM1YGtOESlQiBHuCvBcvmWSylz2kksI2\nktnMJraxle3s4D7u5C5uox0duJRLuIzL8OPDwF2cRkhQkWSQTkfOoxx/Yr7ZIRgYwebNSBJJPGp4\nITLIYCc72EEqqaSQwnZS2M42kpnF9+xjHwBu3NSjPo1pQhOa0oRmNKU5NahRqmKOpRLN6U5zuhf7\n5bGfZFaxlZUks5LFTGI6zxNCGI3oTDO6cxY9qEw94mlLPG2py8MEKCSTJWTwA+nM4SduZp0ZRhWz\nD4khoyhnnQHWTHAvQtFLQRNpXGsbTdrfwSNt6vPb+vVMnAIf/Ahjv8qm4a9vMuT2O7jh0tHEbnsH\n9i4PriHqgWYjoUKHYIUaUKc1dLkRzmgGc7tD+gqo0N5eUSV9KWwZC5W6QIsXILoeZK+H9JXgTYMK\n7ey5ekckvDgfw6iI4XkZuS7G8iYh/2iMkOFl++BjGtr9lJlrDiq8comQscNeycUZqfnP56RuN+tw\nXHdGfv/992WapgaDrOefl3bskD59SrrKI+3bbgfau0D6tII0OVzWjjvlzzMUKHpCkrRS/fSdKsin\nnMPSTleqPtA9GqWL9bau0e2qojtVU2v0rQYpWv2FRqqzAjq4Y3E1ldMoPX1MZclUpibqffVSd4XL\nUKxCVUmxChPqqLZarmWSpB+1WhUVo/t19zHlc6JIU5rm6we9ozd1p27TheqkKopXmFCYUBXFq5u6\n6AHdo0n6QJu1SZasMqVtydJ2rdVXGq1n1FXXy6P+QnerjsbrP1qjb+WX77B4+UrRRj2t2aqvaUIz\nVE0/6z5laY0sKyDLN0X+gnPkz0P+vFoKbOsga6qhwPtuzRoeor6dK8ntdisqPFR310UpFyON7iMV\nFR7MZNMK6cE20vZ19vXSW6TJ4dLehYcUwJJSv5Km1JImYrt1z9rhJmJ/P/N2/GEd+AvayF9wUQm/\ngPdB+fNCZQU2lqkeJUnTz5KWDD54PX+S1AcpP/gMxMdLzz1X9vSCODuen9g8jheOwjvJHO8H4733\n3hOgoSArJkZK3SpdGyO9M/RgoKJsaXY3aZKpQMEw+fNQoOhJ5WubvlKIftb9h6X7f+qv/kKjlaT7\n1Uiv6Wrt0WY9o67qL/SCeqm/UIrWFcc5Q9XUVecpX/l/qUxbtFmv6iW9oFF6R2+qmRooVqF6Q69p\nizarqeqrvmrKH/w7VbEV1XZ9rWl6Rk/qavVRQ9UuVoJ1lKgbNUDvaYySlVzmdAuUo5X6UmM1RHeo\nhvoL3apKmqT7tUPrS5UjQ4v1k27VdyqvaULL1FtZWmPf9y9WoPBG+fOi5c81Fdh5rqxf/it9UV2p\nb8VqWLtIxYWgENPQkNoo5atx0urvpBFdpStNW2FMGi4F/NIkl/TTf0sXvChH2jVD2v+LtOJuW9mt\nut8+rnlM2jxOChyuuCUp4Jsgfx6y/LMPlsvKkz+/mgKFN5W57rSgn/R9x4PXa2bY8u/ebF87Cu+U\nzON44Si8k8yJeDDGvPOOAN3hdst6+GHp61fth3j9AjuAFZCmNZLm9pRlBRTIv0/+PEOWf442aZSm\nyVCGFpdI801dqxHqcFhe+7RNw9RC/YVe1uWyZGm95ukrjdYPmqsYefSURhy3sklStrJ1u24pVhT1\nVEPLtFQX6FzVUmW9rleOa34nmnSl62tN04O6V+3UUuEyFCZ0purqDg3Vl5qibGWXKS1LlrZqlcbr\nP7pFCeovNEId9YPGy1vKi0dARUrReM3SGZomtEJXKEtr7bSsQgWKnpU/L0z+/BoKFIyRNetCaaKp\n7Oeq6ZnmqFxUmMI8IXqwPsq6t600/XXptjrSmDvsDD6vKv34yNEFL9grzb44aOGVlxYMsM9/Ll3Z\nWFZA/oIO8uc3lmUVHSyP9zH586JlWXllqi+tedSW8QCbV9nPysbl9rWj8E7JPI4Xzjy8k8yJmq/z\n9ttvM2TIEJ7weHg8NQWeT7L7JJ5aBGnzYdb59qoboeXQ9KZYnaMhzg0hw1jo/hDDgA4sLl4rcxL3\nsZzPeYngyDOVAAAgAElEQVQth+VVRAHzGEd7+mHiZjB2Oe7iCz5nEa/xEu8zmcvoU2b508hiG/vI\npQA3LhKIJpFyRHNwPtRKVvAd07mVO/iRVVzMBYfcW0djzjxqPvvJZRHr+Znt7CCd/eThxQdACC4i\nCCWGCBKIpiKxVCaeapSjOhWIJ+qYJsUfjUwymccc5jCTmXzPFjbjxs15dOYKrqI3l5NAwlHT8eFl\nJVOYw//4mVlEEMdF/IeLuYdI4kqEtfCRyvtsZCQFJJPI9ZzJy4QQh6zNWEV3gfUVGO0wt56LseZF\nwCC74XM8P3gEz/+UQ0xMHKNvGswAYy5GaCQ88i3M6w6WF7rOP3qfmCx7Tl/BTpjfB6LqQkEq9NwK\nEYcvWi1rNVZhK4yQUZgh9wX9NmMV1sXwTMZ0X3X0yt4yHpbcAH3z7akK+7bB0Fq27Gd1g4QEeOgh\neOCBo6d1CM48PGcensNJ5JZbbiEjJYVhTz1F5NX9uO//XoHHzoXPn4auvexAvv0Q29jeGi3tWhS9\nFXE/TY3RLHIPYyNP0YARADSiC9N5ga2spDatSuTlIZwLuRWwh9zXoDnbWUMVGjCMrmzkV/pzJe8y\nnmu49ogyF+HjDabzDt+yPrhe5++pQgLNqEVr6tGBRtzOfcQQQX0aciHdmMF3tKAlVan2h/Wznb3c\nzzi+YDE+/EQRTiLlSCCa0OCgGD8B8igkm3wyyCWDnBJpxBDBGVSmLlWoTzUaUZ3GVKcR1QkPjmo9\nFuKJ51Iu59Lg1IytbOF7vmUKn3E7t3Ant9KNHvRjAD24hLBS1iUFCCGUc7iKc7iKPWxmBv/HdJ7n\ne14lifvpxp2EEQWASQg1GEQi15HCWNbzAGnM5izep7zZGVfYNBSYi+Xth1V7H2btxRg/vU3Mr/fz\n3+s6cPPCddz3aQbXPfcc4+tU4N0GadR68iIYMBCWXwe/vgiN7v3jghsmlD8HCvfaOz3kbrKXLZvT\nFWpcBU0f/V3wFhjuu5BvOHJdiGE2xzDrgFETrNVAGRTegcEx+Sn2mrMRwReB/N9vQvgPY/1uOMIz\ndnzSPj1wLLyTzHF5E/R6YcwY2L//oF/37tCyJcPbtePpJUuYcNVVDOhSEea+A6/8Cqv62gsBd5lu\nh/fnoS/qYLXdA7EV2Rg7iC3GC5zHT0TRgAB+7iCRc7iaa4PD5I/EgeW3DAzSSeEOarCHJvzIVlbx\nCzWocVicLPJIYgRL2UBfOnIJbWlANaIIx4efdHLYzj42kMqPbGEZG9nLfkxMWlGHLjTjGjpRl0pE\n8seTmH9mG+25nyjCeIA+XEJbzqDyUa01H372sJ8dpLONvSSzhy3sZiM72cAOdmDP1zIxqUdVzqI2\nrahLOxrSmnqEUcbh8n/ALnbxOZ/wIR+wkuXEE09f+jGYoZzJ0Zfq2s9uvuRpZvM2EcRxOU9wPreU\nmGAPkM82fuR6MviBOjxIQ0Zi4ELWFizvRUABZshMjLlDIWczTC+EnBy+S/Vy82rIsDy81tLF9Z3O\nwriiI2x4Eboth4QjT9gvQfIkWDMcKnaGre+B4YaLVx+2HJnkxSo8GyjCDFuBYUQQKLwQjFhcoZ8e\nPZ+cTTCtHpw/055jaFlwlRtufhsuHPzPtfDoS0sqHD3CseTBPlrx8Wlh4TkK7yRzXB6M0aPhwQeh\nfHAKQUGBvRTSli0oL49BjRszIT2dL1qdxSWt0yG+Kgy6BZYNhO4rIKFV8YOvCmB1gACwILwyHqMm\nHViIgYtJ3M9c3uVlthHBkWVdzSpWsYIqVKU8Fq/Sm0gq8z1Ql/rcwT30pHeJOO8xkxt5mYWMpj2N\njlpkITaxk7msZQ5rmcUa9rKfLjTjAfrQjZZHVGBP8zHDeZ/9fETsUZTjnyGbfH5hO+vYxhq28iNb\nWM0W8igklBDOpgGdaUoXmtKORsWW5LGygV/5gPF8wHh2s4sL6cY9PEAnuhxVeaexjc94nPmMpwHn\ncjPjqESdEmFEgM2M5leGk8i1NGeMrfS0G6uwIxi1cRW9Dl81hJpP2jsjNG9H9ot3cNeSHMZtg/61\n3Lw9fz2RK3pA0U67Gb1c67IXcv6VkBJUXO0+gFrXHNY0KusXrMI2GK7eGJ6JqKgf0l5cYbOPnr4/\nHz6OhHYToPYA2+/aGLjyceh17z9X4X3wNS0bNT0xeaxfS6sBSaeFwnMGrZxkytS5bVmSr/TRasrN\nlcqXl2655aDfli2S2y2NHCnl5Mjn8+nSli0VAVr+3DC7U/67t6Qv60nzLjsY7/tOsj5F/ux4+dPQ\nvuwwTbMMbdJoSVKaUnSdQvSNXipdTFm6Qf2LB5OECSUoQnfqFo3QcN2vu9VE9RQm9L2+LRH3GX2s\nBF1dpjorjSL5NFnz1EZ3CSWpmW7TGH2nLNmDF2ZphsZrrCRpkuYKJSmzlOkXxxuf/FqhjXpZU3SZ\nRipBVwslKUKX62I9ppc1Rb8p9S/l4ZVXkzRBbdVcYULn6mxN09QyTXP4RXN1l2proCI1W++UGidV\nEzVNpn7UTcX3Ld8Ue5Skb670Yag9wOTDEPv4SSXpnTM1qU9tRYaHqUnlWG3pgfR5A2lqHXuUcFnJ\nXBscyFJRWn6nNL2F5C84LFjA91FwtPFI+QvOV6DwqrLnMTlCWn/Id3pwVekje6qOM2jl1MzjeOEo\nvJNMmR6Mu+6SWrWS/KUMuR81SgoJkZJ/N4x98GAJpOhoafVq5dWqpbNBlSMitPXxy6Ubykk/vWj/\nmKQFR6QFfLZyndlL1jTkz0PrAkmargjl6FdJ0uvqp7t1RqnzvL7VdIUJvau3VaQibdRvGqFHi+fP\nVVM5LdcynaVG6qlu+kKfaZ/2SZIe1QQl6Ooyz0U7EpYszdYaJekJoSTFqa8maHaxAs5Upn7SVqEk\njdOMv5TXsRBQQKu0SaP0qbpquDzqLZSkMzVUIzRJG/6C8rNk6Tt9o/PVUWFC5+kcLdWSo8bLV7b+\np5vUX+ht3Sifig4Ls13vaZrQ5uDLjmVZ8udXV8B7r/R10+Bcuqek1GnSstukj6KkiWjduz1UJxKV\n96DFgxrY/t+fK+XvLnvBAn5p97yDc/aOMM3BHqFpf28D3j8xL/OLGtKPww5e/6e+NP4++9xReKdk\nHscLR+GdZI76YGzdaltrIE2cWPJeadbdAYqKpG++kRITpYoVJZdLu998U2fUqqWG9etp/7UVpCcv\nlL5qIs08v2TcTeMUWIL8OYa8vlmabdXWPJ2lgHxK1mr1F/pB4w/LcqLeV5hQoQpL+AcU0D7tUwe1\nKVY8d+hWhQldoyslSbO1RihJS4OK9XiwTXvUX6OFknSJHtFs/VB8r6dGqIZuUP7vZD3Z5KpAU7RY\n/TVa0bpCKEltdJde0VTt0/5jTneOZhVbfDfrRu3V3qPGma8Juk4hGqWLVajDh/X/pFv1jWLkDb6k\n+AtaKeAdImVvkpX9rQK+sQr4xssKrJVVlCP98rw00VTa6Fh1qIDCQz365oYzpMlx0rfn2IqsrPgL\npW9aBS3JUCln62FBLCsgy79IAe/jsgKH3z8i08+Slh0yT/Xes6R3brXPHYV3SuZxvHAU3knmqA/G\nkCG2wrrgAqlBg5JW3gsvlG7dHcrrr9vK8oYbJEkbNmxQXFycLu7QRr7LkL682f4R2fm9JMkKbJM/\nr5r8uS758zrJn4fS881g0+bzkqTRStKDanKYNfaexihMlFht5VAKVKCJel+PaZjqqbrigsrvR62W\nX35V0DW6S++UsebKzgTNVpSuUJz66j6NkV9+bVCq3OqlR/T+cc/vWMlXoT7RfPXWk3Krl0LUW330\nlOZp7TFZvn759Y7eVBXFq4riNUkTjhrnJ32vgYrUk+okr0o2HRZqr75RtNYFV7XxF7RWoPAmBQpv\nKLasil1+bQWKXpOV8oX0STnlfxCvni2rKMRAU5LCpImGtPrhP1egvQsPWnkLjr35+zBmni/NP6QJ\ndFh76bXr7XNH4Z2SeRwvHIV3kjnwYFx88cXq2bOnJk2aVDLAuedKAwZIy5YdbuXdeKN09tl/nEFB\ngTR8uJR6sKns+++/l8vl0h3nN5H6uqQpTW1LL+CXFdga/MFqqEDR+OIfsHXW7fpKLu3Xaq3XPPUX\nWqEpJbKapqkKE0otQ7NcY51RbO1N0gf6UlM0TOMVqkuVErQgjidbtVsPapxM9dQgvaJ0ZetxfSCU\npFc09bjn91fZq/16WVPUSEOEktRKd+pDzZXvGFaS2au9xX2rN2qAco7Sd7lBC3SDwvSmrjtM0f6s\nezRD1WRZufLnhcuf5wkuT/d/sqwCWVaOLP/3ChReK3+eIX9BK1n5c6R5l6lovKEr6qAQE339bJKt\nuH59tewFsSzp6+Z2vMU3/Ol6OCI/XC7N7n7w+okLpBf62ud/UuFNmjRJPXv21MUXX+woPEfhOfye\no74JnnuudN119nlSklS/vjR1qt1keeONUrt2pcdbv1Ca9pI0a6y0f89ht998800BGpNUVxoWXNNw\n8zhJkj+/qQKF10qSLP9XsgJrFFCR5qiRFqqTLFl6Up30iFqX+EHcpm0KE5qur45a7nmaozChS9VD\nNVRRMfJojdYpVn31QHBwyYlgnGbIVE+51UtTtUS3601F6HLtVsYJy/OvYMnSt1qhrhoulKTaGqi3\nNF3eUvrZjsYkTVB5Ram5Gmq9fvnDsAs1Uf2FZuntEv47NFnThAr9Hx3sLyt6qnTZ/Uvkz28sf16I\nAt4nZM3tpaIJHvU6t6HCXWjhQKSJppS+ouyF2L9e2jJBmtnFHtByPFh8o93EeoCnL5Ge6WmfOxbe\nKZnH8eJPbCblcMLxemHzZogLTob9739h1y7o3dvenDIuDrZsgcKDW9Ugwdu3wCMdYOJD8OYguCUR\nPnzE3tE5yJAhQxg8eDBDZ2xjyeJkCGkBPz4MvhwM16UoMBUpF8OVhGE2wySExrxEBvPYzrv05CG2\nsoKfOTj0uzrVKUc5lrHkqEU7j87kEWAQt7CXvRRRxBqWM5SLeY2vjjjx/K9yA13Zxlg60phBvEJr\n6pGPl2t5sXj+4KmEgUE3WjGDkaziFdpQn6G8wZncymcs/FMy92MAC1mBCxddaM9CFhwxbHuuoQs3\nM5G7yWRnsX9YcDeJAt/tQQFbYrhLH7JvuM7GDFuF4X4A+Z/EOtuFu04fJg/8ldZVoOcHsDmtEszt\nAXll/LxjG0J8C9gzBzaPKVucoxESA/7sQ67DoKjwyOEd/jE4Cu9UYswY2L0bhgZ3/k5wwz1t4J5b\n4P/+D/r0gX374N13D8aZ+T+Y8Q4MfgMmFcDYfXDZMJjyHDx8NqSuLw762muv0aZNW/qsimDPlA1Q\nlAk/P4PhvgnIRYFJJcSpSDeqqTcbNJxGnENtWjGFJ4vvGxh04nxmM7NMxTMx6cEltKYt1UikGtWZ\nytOUJ4rhvF+mNLaTywMspwVTiGECbsYRwwQa8zl9mc1LrOMnMkoohkTK8ykPU4FYbuAlAGawmo/4\noUx5/l20oA4f8SBreI16VOUKnqEzD7OmlOXejkR9GjCbhTTjLHpyETP47ohh+zEKFx6m8VyxXxFp\nAHgse/ujHM9Q1hsPspQeLCOJX7iPNGah4H6HhhGK6RmJ6fkcrG+wWuwkrNktTHkEysWG0fONKLLz\ngdX3lb0i4s6Eq33QYlTZ4/wR7mh7E9gDhISC33t80nY4pXEU3qmC1wvPPANXXw0NG9p+L/aFdbMh\n8jdwu+CLL6B/f3j+efu+3wcT7ocLboJuQ+0JutHl4Kon4Jll4CuEB1rBqm8ACA0N5eOPPyYQGkW/\nOX78mXXg1xcw8nxgXoT8Y0uIJGsl9QqnEmA/v/EYvRjGr8xjM8uKw3TmfFaynGyyKQsmJvNZyiZS\neIyH2cpG6hPgCxbzHSv/MO7XpFCXTxnLbzQngcc4i9dpx2OcxQVUYTcFDGMlzZlCfT7jedaShW3l\nliOGtbzOywzGxKQmFXkyuNv7H7GLfN5gPdcyj/Z8RWM+pxGf0YqpdOM7bmIBz7CGL9lOCrknxGps\nSi2mM4JvGcE+smjJXdzHGAoo2490LLFMYTqdOZ8r6c0PzC01XASxXMw9zOFtsoP7+3nZhSHwABvd\nBgvMm9nBJExCAZOdTGYJXZlDfXYw6eCqO+5emKEzwfoJq9Ei4ht1ZdpDAVJ37GDgxJpo28ew4+uy\nV4LptndbPx6ERB2u8HyOwvs34Ci8U4UxY2DnTnj0kPUD3R5bgf0yB268CN54A2rWhD177Pu7foP8\nbOhUynqVZ7SA51ZAk/Ph6R7w2vUQCFA10s3k99/jhz1+hr/yC1gRsHwopnsoWEtRYPHBNIwziHC/\nRgPdRzKvUR0PlanPlzxTHKQrFxEgwBxmHbWIO0nnMxYyjaXsZT8dOQ+AvnTkfJpxO2/hw19q3D0U\ncCPz6UpVkunLe5zHfTRlCA25j6a8Rjt+IIlM+vMd3TiHCgxjJTX5mMdZRRZFuHAxkAupSQW2sZcr\n6MAGUktVUn4sHmQ5tfmEO1nCJrKpRwwXUZWLSaQ15YnCzRoyeI619GYmNfiYakzmSmbzBuvZVMaX\ngLLSjVas4TWe4Tpe5ytacicr2VSmuOGEM5nP6cC5XMVlbOS3UsNdwBD8FLGaaQBksoRIK4xUF2zy\niPrGE1xACm34grZM4wJS6MASomnGavqzlAvJZxsAhqsDZth80A6sNvnUb9aC8bdH8tm3y3nj+wRY\ndD0U7js+lfNncEVCIP/gdUgo+IuOHN7hn8Pf3Yn4b6PUzm2v154/179/ycBj7pCG1pJGXyFdGytV\niJRCQ6WwMPv+gsn2KirZaUfO0O+zt3Dpgx3+ujipDxp1WVsB+vYSe9i3tf0T+fMbKFDY97AkLFla\nom6aqZqarTfUXyhVPxffb66GGqJBf1juSZpbPOkaJclUT3XXo1qjLQoooDXaIkOX6E19XWr8IVqo\n8pqoPX9ir70dytM9WqJwvad4TdDr+lkBWVqjLXpBn+tTLSh11GZAlvpollwaqye0SplHmbtnyVKK\ncjVFyXpIy9VB0+TWWKExqqdPdJ+WaoX2/eVJ9ofys7appe6QW700Wp+VOe392q/maqhmanDELYiG\nqUVwxKZf3ypBi6y2mm6ZWm398dSAPfpWM1Rd3yhGO/RJsb/lXyx/XoT8uefLmpKo2y4KV5gLrXvK\nlBb2/4MUS2H57dLy//y5OL9n01h70NaBvffG3ind3cQ+dwatnJJ5HC8cC+9UYPt2SE2F664r6W+Y\ndlPL0P/Z1l6PqnbT54FBK/nZdjNm+B+s3edyQ/dbodG58HI/yNsPXW7gXmMZ3ZvWov8sF6lbwjBW\n3IVhDESBz5CVXFIMDM7kFXxk4OET4qjCdF4ovn8xlzCdaQSC/Ti/pwAvt/MWvTibXUxgO+N4i1vZ\nxj7acg9fsJhm1GYAnXmUD0gvxTKax26uojYVCS9TlQJUJYIXOJtNXMkV1OJ2ltCN76hIJe7hMrYH\nm+2WsoGtHFzxfQVpfEYy73Mej9OCuKPshGBgkEgkvanJM7RmAZeQyQCm0pXOVGY8m2jNlzThC15g\nLWn89QESjanBYp7nbnpzP2Ppxyjyy5BuLLF8wlR2kMqjPFRqmFq0ZAe/IAIIP+nGMqKMszjTePsP\n065INzqxlgp0ZxVXsiXYX2q4zsEM/QKMueiCSxjdz0fteLjhdfBvngipU8te8HJtAdmLTR8r7uCW\nUwesPFeIY+H9S3AU3qmE55DV9QMBWPQRtLsSIuPg1jGQvwWaHxK+Qg17lGbGjpLp+HLgl1H2QrwL\n+9lbtdz0jK30npgNt43D7P80H9RKJowA175eSCBvL8b6VCAO+Z8/TLQoGtCSj8lkDh24iAVMIAM7\n355cyl72soylpRZrLmvJIIf/MoDKxFOdCgymO6t4hctpz5U8ywOM5Qn64yfA/Yw9LI2d5FPjGBd+\nrkoE79CRmXRnHZk0Zwrfkcpd9GYDbzGJeXTi4eLws9lJFG6upPYx5QcQRQi9qME7dGQnV/MNF/0/\ne/cdHlWZvw38c2YmhQ6hVxEQQQUUEAFRUSygC2IH6y7Wn3XtZW27rr271rWtHde1d7ECgoKAgFKl\nSe89pM2c94+ZhASSUESXd819XbkmOec5z3PmZObc51tv7dRynTEaG+x0XxmTSgjZXqRLc5dB/u0a\n7xrlYNdZbOUWj9tNa391myc8aoSvN9tfTW3rrRSRrrkLxVTTyevSymkgXog0NXQ0WCvXmuQyU1wn\nFAqihwvSbhVGHpe5/9GeuTBq7GLuH9GW0RdQsKHEPIm8q8Wz60vkXSws3t9+19OSmnYjTtl+d2g0\n9dAUTz0gRGPES3elV+B/CxWEtzNgbipFO7OYztnIf7NyIQeckvy7c19Ou4uWFKl8NNwt+TqmWPA/\nfx2fdGXCjeStSIprTriekQdzUm/2SMbNHHut2ncO8+K+fLWYu16MCaY+ISg4QVjwrDAseTMOherp\nLctBGpomXSVDPAz201U99byn9Cf10aaro7o2qRT3QmRK96LL3eo0D3nXn/3TrU73L5/5zPdF4wok\nrJandhk6cFuLXhoZr7+OauvjE/8y3TCTwFxLi5JAvrPcvupK20Ffj5iI3poY7GDzDfB3nQyzWGfv\nOMLHRlryi+Y/QQ9D3WmuZXq4ylxbJoLzXKCTfV3ris1imBmqyklpAe7uFoeYrbLmW30+gUAbt9nD\nvX5yu2luTG6PXS2IniDR+GP77d/MRX2z3Pz8bD/PW8Tku0vMESZGY4mw4B/Cgn+WXCCeIsfvLko+\n8G0riggvNU80jXj+ts9Tgf/vUEF4OwPuuIM996RLl+Tfa1fw7J/pehy7ddk47siLad+LPlnMHk/9\nFkkL8MOHNn7xpz2UlP7pPYZen3HoVxy7hDaXJ4nvq6PIXc7k4SyYqudxp7pmd24YkmPUwqaC0aMR\nCPNLauCN90fD7ae2A63zrR4G+szjcqwTFXWkvmUS3hrZslQrVcImIuJaJxZZKbny9dLBQHcXCbDG\nRFQRK8q4/CWop5L3He4cuxtkuOXq2EU9Zzm8SMS1sqgCiV+8VmmoI9OV2vnJ8QbraYFs3b3nKJ+Y\nYMV2z9tJK8PdJV9cT9eavwXrMSrqBn81yjebZW2utUw1SempQES6LHOM95rr/cNJHjbQa643yZcS\n5VynFi7Txp2m+7s5/ikIAkH6UwS1Jfar5a9/WKZGlTRXvNuKSbeTvbH+L4j2QhVB9GRh/lXCsBiJ\ntzgj+frzqyz5apuuU/LNp1zU8VRmZiRKonR3fAX+t1BBeP9tjBnDJ59w001EUv+OV/6SLCkY9FDJ\nsdEYJw2kWz7XdOaUKlStxYJpTP82qfU16S5anZesXSpEWjX2vp2eH7F8NB904J4DeOwsTvqbv159\nmY4NqjnjwbU2/DxGsP6g5JN1mIylrTLaPM9bb5oZ7kLC7iJyrDXUs+APjjbNVFNN2ewtbpCn0hbE\nUPvZz58d7TJPqamKNbJd6ZmiuGB9lSyyodw5thYRgcd0d6k9Xe17V7vSky4u2p8lw/KtTPnfXkRF\nnKSF8fobrKdp1tjbW8423PLtjPG10MCXbpcvrpfrN1Ns3xSH6629Dv6RirUVYpWFamoIcqzzpDP9\nxd4+87i1llljsS/8020OdpkWvvCURBnx25au1NyFfnC+pT4RBNVF0p8lOla1nvu784Qcrw2Z6utp\nMX68rei4IHoC1hM9GKEwf2NtoCbHpgZFmPbwNl8nkULCK+bSLKiw8H4PqCC8/zZmpoqIDzss+frz\nD3z6T064maxGm4/P2p3DnuLkO6jdJFl0nlGZrMbkLCZ/NU36lb5Ww8M4cjyZ9Tg8i6PPJ6uxtD/d\n67l/v2HO4jWufHtXwYhhyBUWJG8mccngfif/kZ7yp2ZpqIsTfOQBCXGHOFRllb1bipWXJiq/jBti\ncdznLI863xtGypXvGUM8JqnQvpvqpli1hRm2HoHAvbq42B4u8o0hNsZBm6tmprXiv5KVVxwRgZO0\nMMmxHtLVf8y2u9e96Kftqulrrr7P3WqZNY5zW5llHiSvwWn+ZIiPrbOuaPsys9WxiwJ57tffN141\nyBMettB1PnOdzz1isZuM0EpXTzvbX+1vvsmlrrGnB9RxuLEG2mCuIHqwIHaesNFEJ/eupWPrmq58\nPUv40xOsT5U0RFoT7En8a0HsUmHBI8JwYXLSBoeQVpMwQXrNbb5GRRZeIuUxiESTc1Xgfx4VhLez\noFDV+cVrqN+S3heUPq5eD1qemFRnvncCPc/g3H9Sp+nGJ9ZIOVmFlZtw0HukpVHnG3KTbqS2+/dy\n19//5tG3Z/nym7WCFW2F+fcKw3Vq6CwQtd4MHTytijbS1XGE8y0x03feUkklh+ntHW9utmRNVawq\ndkMt8xII/J8jPesSUE3oFq/IlW9vWb7/BS6/sta7VxeHa+x4n5uYmr+dWnLE/bQFC2lHIk3EhfYw\nxXEO19hphurrU4tkb/ngTdBKI2+6znCTXKH8dlx9HCVPXok6ysV+Uk9LL7vCVMNc4X2HOEesmGJ7\nILCbbi402I2+tsFqN+hkqOc2WyMQtY8XRFUx1gAJBYK0W5Em6N7KHceuMnL8zz6YWIlJGy25IPoH\nYfx9QdrFiAoLnkzuiGZufKirs/+2x/EiKW9DccKrcGn+LlBBeDsT5v7I2Pc54UbSyncBIumKaTuP\njK+I5yVbJsHa6eUfV7kRPT9IJrV8fmjSzYnzj+zuoDoMepz1X0/FGmHB42KqqKGTpT5R1+EOMFoj\nJ9jFntrq6X13C4X66W+0b81XMmu0tuqWW7vVFkt/3WSIWW+pJdb4ykQd1TbXegu3gwDKQ0zEqw62\nq2pO9IUcBfaWJSIwrFipwm+F+ip5WU9vO9R3lungrRLW59biAHu531ke8q53y8iehZZa2VULX/kC\nLDTNeivlWGeIh53kDm0dVO5arXV3izG6Geif/uh1N2/2v05XWyevWukbM90tCLIE6bcLK32t11Ft\nHTAdVYMAACAASURBVLBXNTe/U03409NF2ZdB9HgsJTFWEB0oLHhSGKYs1q7/otdQvh3EnFe27eIE\nKeKuILzfFGPHjtWvXz+1a9dWtWpV7dq18/DD2+GS/gWoILydCe89kHRjdjtx68bPfEa45DNmPcfH\n+/LZ7SzGxLu3/NSb1ZFDPk020v2kG6t+FGnSwDMXHG7J+ohrnsoVrGwjzL9bGK7XwLGW+lBctpiq\n0tWRLsuRLjfDt6YbqY8/iIpulrzSSJZc+VuMKRWiusqudoKopEt3uEl6pmJKnxVrbLyjUE2aFx1k\nhrVuNV5tmXqo781Ux5D/BvppZoL+OshyhI/d6nuJbXRxXuAPjrKvczxc7rVvb28/mghGeU2GKsZ4\nS3OdHO6irVorQ2VnecqJbvOmv3q5lOzPWrpp6UrT3GytSYLoIIK9hO3T3Nh3re9+XOCTiZj+aPKA\nSCeC5sL4fwRpFxLOI576bAUBG+Ylf185bhuuio0tyhKFcbtg+7I9K7DV+OSTT3Tv3t2yZcvceOON\nHnzwQX379jVv3rzf9DwqCG9nQW42w17kiPNLt+7WzWTMZXx5FOOvJ1HA5LuF7fcTHn4vYQFrHmcp\nsieTXbIbfRiGwvjHEvl/l8j/hzDxA9VacvhIYlX56XE+76VF60/cdmAlj36aMOKFyVghLPinBo4V\nl22Jj0rM28GRGtrdh+5VSy0H6rkZ4TVJZfzN3Ya6s6scp51dwD3eVE8lHWQZ8isQHuylluu0d6eJ\npljlWLsYYoF1/nvJDPVU8qHD3WBv1xvrZF/KKScmtykCgSdcYIM815XiaixES63MNguM9obq6llg\nsv5uEBXbpvX6udYZHvah+/zHDZuNae1mlTQ30bkEEZH0O4hNcMjRbezbuoq7htRNJqLEc5NZndET\nhAVvEuxFpLNEvJg1lz2v5OvWYlPCi0QqLLxfEWvXrnXGGWfo27evESNGuOSSS5x55pluu+02d9xx\nx296LhWEt7NgyrCkREnX4zffN+NZ3t+L2c8jkoxzfPMnMhsIVjYQVm8ncch5wlgme6LS7lRqXHR4\nGOYI806VyO0tzL9PmH+FRE478ZxDhCay1w1Me6QoYeDCPxXoulsdZ/0jlDu/qTD/LlXCJqrb2wIl\n3UcREb1d6jtvWWKWo/Qz1JfWFrMoWmgAZm6Di7CKTF+6XRtNXCN5TY7Q2Mfmb7Ols7W4RntNVHap\nbx2usXwJI35hjdwvRVTEX3X0H4d428/6+GSbyjMaq+NGAzzlkzIlmKqqaoNsqywy21hLzdJUO/s4\narvO+TAXGOAub7vVl5vEEKMytfOYFYab7yUiRxLpKmwbuqL3ep9/N9/YKctYkKwtDaInSro1PxFE\njyX+oTBMZevWS9WU5ixjxditP8EgReJhIckF7IRSUf8reOmllyxZssStt94KsrOzSzYT+A1RQXg7\nCyYOSdbVNWpdcvukO5NxiuYnc/Qcer5L12eY/WKyg/zi4cK8Y4XhxRJH1hQ2qELPwcm4RAphwT1J\nt1D6KyKVlotUWiuS/hrhUoncLhItFggbHVY0PprV1tMXMmMJd984i3CJsOCfGhlosfcUbOIe6+E0\nldXwqUeKkiA+M6Rofx3V1VDF9G20zqqp7EePutFA0FsTi23Ypnq1bKGh4t4WN0zcqnJubJli7tXF\nR+ZbZIP6Kvn8V7IotxXHaW6II3xvhV4+tGIbyiYu8AdN1XWDF0rdny5Dnjzf29jA4FQPiIiWOn5r\ncJQr9HKeZ51nimEl9tVxiAaOM9nV4kG2SNpNxKY6pn9DuzSo4h9f1WH6Y8nBkU4E7SQKnk4Snmzi\nKYmjOvtx0Pss/pRR5279yQWp91UYDww2rw+twI7DZ599pnr16ubOnatNmzaqVq2qevXqzj//fLm5\nv61KRQXh7SyY+An79Cn55ZvxNN9fw1430uVJYqnWWrsMpErz5FNt3nLCDYLoSaQ3k+i2XqLaqBJT\nh4nRRA4ViQ1IuomCdEHseJHMcYK0O4XxhyT2SxfW6Uz9Xhz0nj12qeaK4xu77fXAtK8zhPl3ahge\nLSHHIm+VmD9DZT2d5UtPa6yhtvbwvneK9gcCrTUybTuSLyLFPqLd1VNNmne3Qix2hdAF8mTJcZA8\n/eU5MPX3/nI9rUBuKeTX3y46qu0vxuijiTfN2WmEYnto4Et9zLFeHx9bu5Xu1gxprnG8N31jtsWb\n7Y8rEBUVT7lLj3GTPR3yi841WfLwkN3s7xEDrbW8xP627pJnqVkeJHIEwT4i7as796ANBg9dZcVP\nn5K9IPl5jZ1C/EOC5smYX/yNjRNlp+KsiW1wPRc+DBZaeEFFDO/XxPTp0+Xn5zv66KP16dPHG2+8\n4cwzz/T4448bNGjQb3ouFYS3M6Aylv3M3kds3LZsFKP/j1bn0O7mkkQYidH+7+SvFoQE61sKE+MU\nZLxpTvqBCvLOlcj/q3DC9fzw9+STbLB5qUIQxETSrhTJeItwiMSBlYWHvErlxnR9xo2952lSJ8Ml\nV+cIEwtVKhgiy0HmlSLW2st5NlhtpFf01d8H3lVQLN7URhNTbF2sZYkNXjfbOMtLkE2GqKM08YbZ\n5R6/UKi7XC+Ku0HMBBkWy/SDDE9JUw1ny9dKrpcVlFgjELhDZyMtUU+madb8og4oOxod1PaJI0y1\nxtE+lbsV9Y1wqoNVU8njPtxs32qrVVfDAU53uof0c60CBV7xkoGO11k7nbVzomM85mHLtjIWG5Pm\nfC/Jl+MpZ5a4zlW0sIvzzHS3gmC1IO0qKk01qF+aeDzhuWER5r4OgmgfZJP4TBDtJUyM2LhI1ZbJ\n17yShFouiiy8wtq734GFN3k9Y9f+Oj+T15e79Lp162zYsMEf//hH999/v/79+3vggQece+65Bg8e\nbMaMGb/RRaggvJ0DhQIADVolXws28M3p1NqHTv8o3eXSfCBN+oNgdhXCaWaHV5sUG2pN+iBh/t+E\nsVuZcIMgqEJiqrCM4togepRIxuckJknk9hWGedTvqVLPVzx4Sq4h34f+81QgzLtFk/Bky3wmexPS\nqaeF9vr43BP66m+FFUYYXrS/jaYmm7tFa+ktc+zqNcf7XEdvO9RHZhdzoR5jF99bYWYZWnOh0AB5\n1gmNkeEv0rQTUU9gTxGDxHwkw48ydBE4Rb7j5JVwdR6qkeaqmmOdGtK9sxUWZb7QVAnfSvhewmLh\nr2YZ7qO2dx1qhCXONnyr1qki0+kO8ZzPNmsHttQStWRJV8nhLjLPfN10NMipFlvkAD31cJDVVrnK\npXa3i+tdU6JYvSxkaewsTxnjbV97scS+Vq4Vl2OmBwTR4wgaqtujsWM6p3lmaLpwxrNJyytoR9BO\nWPA8kW6EMzYWoVdvs/UXrgip217R9yH837fwTv2RTqN/8c8rne7Ur9MRJX4uPbWMmuEUKlVK3uAG\nDBhQYvvJJ58sDEMjR44s7bBfBRWEtzOg0Piqlsxm9OOtrJudrDWKllGPF0Roe1Xy94WLUVPzeBO9\nzJMf6ycv/T5hcxLH/U0QO49wEonNO+MXTRftLpLxLonvhPkXJYPKu5zkD+c+4ehOXPn30Pr1SzQo\n2CCmqrmlKBocZJCZRqsnU331fZTqkkLSwltpnSXldEtZIdc5vnawhmY70Vt6mWGt/bxbpCxwpKYy\nRf2nDCvvSwlDJTwhXatyPt5tRbwuw5vSfSGhm1wzUkQQCFxuL6+ZraFKPirHMh0t4Ti5qsvRRq6u\ncu0jVwM56srRV65HFFiwg8nvAA08o4cXzPBQqgH2lnCc7hZZaayST9Q/mmhPe4FppjpIV9myDTfa\n54a73z884GEf+8IsC13sMo96yD72KFM9vTg666+7k73oUmuLWYeZGmrmHLM9JB7kCmL/J6w93+k9\nc/3wc45x48axdFjKrXmcMP6RINIdhPHUulWacWI26Vl8d8lWXYeND5BhKdv+R/HinozZ9xf/DBxz\ntXfGfFzi5/4XHyl36UaNkuVF9evXL7G9Xr16YOXKLSt87ChUEN7OgEJOq1qL7PlMuZe2V1CjbfnH\nZe0DgmgmkX3FEhOtN8UY/X0W+7NpGd3kxm+UyLsCUWH8/XKnC6JdBemPCwv+Kcy/Kbmx1dnuvbSn\nJau562aiObdqFA4w1zMSm6TId9RXNXUM9awjHOlD7xXta6splJkpCH8zTp6Ep+xvF1UdbRej9bWr\nao7wsRnWqCrNUZqWSXh3KrCPwJFb+dHuL+pbGeI4QK7pKdI7S2vNVDHFaiMssaSUPp53ybefXFOE\n/ibmc+nGyzBKhjeku1BMNi6Vr4kcveX6UHyHWX4na+kye7rcKN9sRTZpd23VVMUHvivalifPj37Q\nTgdLLdVPb7XV8ZVvdNJ5sznqqOMmtxhnkuZ21Ucv//DAZuM2xSnukxD3iqtKbG/hMgXWmOsZQewc\ngrjDjq2rQTX+9SkmJjuvBNGjsZpwGsEexD/fOMm6GayakGycvlWW2iYWXhj+7xNe2yp0rPbr/LQt\nX7arU6dOYP78kjH8BQuSCWF169bd7JhfCxWE91/CgAED9OvXzyvDh5OGzGrJzik//C2ZnLLHVVuc\nQzST/Z6h+8uCyG4k5oilNMsqaWZWdKxvKzVXEIRICAseFca/KXfKSGyQIO12YcEtwoLXWTpSy4Mu\nc+VR3PMUc+Yv1TS/rhzzLVGSQGPSdTPQt17V25GmmFxU39VKQ2lifiinmPtD85yihQYqF22rq5IP\nHC5Lhn4+tV6+fpr6zjJLNyGh9UKfSjhLrFRlhrLQWsQwGWoI9JJngVCmmOcdWDSmWrG2WvCyAlcr\ncLWY8TJcKc3BotqL2FfEMaJuluYzGZbI9KQ0y4WOlKejXO/tIOK70746q+M0Q7dYM5gmZn97GFGs\n5+Uo38iVq740V7vMWmu87SN1UrWTZWEXzX3kc5e43FUudYNry30/NdR3otsM9axZNpYQVLaLhk5M\nJq8EdYn2FW0VNaA7/x5NfNnIZBehoANBY2H8dUH0YGGiWOZnXrEYa8GW3aybkVsY2t443iuvvKJf\nv36buesqsBEnnniiMAw9/XTJEpWnnnpKWlqanj17/mbnUkF4/yUMHjzYO++8Y2CPHsRQqVpStmfW\n87S5LNkBZWvQ8k9JSy9oQLhADZ3V0l2a2lb6o9HBfBMzWgpj12GtRP7ftjhlUrfsRInc04XDurPg\nA9ece7isKlx7BdXXP65G2NnPntrs2K5OstICzVSVJs2HKVJME9NGEz/6udQ1l9pgmjX2V3+zfVky\nvO1Qc6xzvpEO01iITzcpGRib6tnffTs+1vUFPpUhIdRXrhyhHqlzqSezRO3bGqEL5DtZ1G1iYlu4\nWdYUOFPMKBm+kK6GQF95DpVn8i9sUB0T8YIDzbfeX4zZ4vguWhttehE5fWaIdDzlAq940e3u0Uyz\nrVo7Kuo2d7nTfe5xh+vLUFAvxMHO1tgeXnZ5CXLc1SWyzbTERyKxs8hY5KTeaRav56sJK5n/TqoI\n/Y/CgpcIdk3F8VIEH934gCR3G5JXirD9Ft7AgQO98847Bg8evF3H/x6w9957GzRokJdfftmAAQM8\n9thjTjzxRIMHD3bVVVdp0KDBb3YuFYS3MyCG9MpJJecwTsuztn2OoDmWEa63m+utMc6HnjBRwpLg\nXaNiL6cckCWLlkMJC71hhnss8rYC61K6ZU8gJmyDMK5q+4vcdiL/fp+R36/QNNHBEh/YsEl8q5Vu\namtqonf1cKCPi8Xx2tnFxDIsvIkppe7OZVgWbdX0iG6e95OJVuooywubxKImCUWw53Y+rTcWeE+G\nH4WukS8QmO1EB2mgi3flp8jpP+JW405p22RJBgI9RX0h3XvSzRXaW25K02D7rb3d1HCLjh422Tjl\n3/Db2cWKlMgPjDNGFqaitdZO88dtXv9il7rL/e5zV7nuzaiYAe4y2Zd+KFanWVMXNXT0s8dTJQqN\n7Nu/heb1Yl77vjbzk67xIHY61hDORQFh6uGpUjFVkVgx8tsiUtf89+DS/C/jiSeecPPNNxs1apRL\nL73U+PHjPfDAA2655Zbf9DwqCG9nQFRS4mfGk0mtr8x6pQ4Lww0SBc+K5x4vnnOERP4dwjCZwRgE\nqQzP8CdZeiBwqyc9J19Xn1sTLDOuUk9hxsaSglDCBOcY4zjT3OQ7/X2mmelulQgqCdJvFTYPhJ1O\npNFRTj9qb3vvwhWX0yD7U9Gw0mbJKxER+znRKP9xmCN85QvZqYbPe9nFD2XUtf0smdrcTNnxgNO1\ncoD6LjHSWJ/60Dw/FcvWnC/UEGm/IM18bxF3SvOguC/FVRb1ptnmWu/tFFm/Ju4AEU22c51A4ChR\nE2S4TMwNCvSUZ+4vsPYutqe2arjUt+W6FhvKAgutEAr9YKJa2lqMG9yyTQReHBf5s0td6RqX+7iU\n0odC7O1ILe3nDX8tOs9AoJlzLfa+nGBBssC89jLHdi7wxsj1EktTbvhgN4KGwnB28u9CwqvcKFk/\n2rgf+VvRr7Uozpd6r2GiRKOGCux4RKNRN9xwg5kzZ8rJyTF16lQXXbR1fVp3JCoIb2dAFFUD1kxJ\nlhuUgjA+SiKnvTDvTMIliAnzb5bIOSiZoh1JdmgJE1PFVFNNO6uNEghk2V/n4G0LghFGBQMUpNLJ\nl/rEXE/r4Bl9rHew6Ro7zTQ3G66LDbE+RA6VyOsvDGeL9HjGPafGfDuO996bo2HY1VzPCDe5Ue/n\nJGssUdM6OXKKMvnaaW619eZaalPMs14dmTLL6d0YCNyjiynWSD6d53mpmJW3UKjhDqipukhUdxEX\nyPeRBSnLOO4/ZsoX+kxC/1/QhaQQmQK3SzNUup+FOsr11VbW1W2KNBF32ddXFvmwnKzSepL6cUus\nNt98880z2WT76OhYpbS12wbc4nZH6OOPTvZzGa7rQOBYN5luhB+LSRI1MkBEhnleEESPIbpc/54s\nWZlj1LiprJ+bcmv2J/4pCMNiCVC9PmXZSN5ttRXadinCK7TqEnG/i1q8ClQQ3k6BKGpsSJYa1Ntc\niiUseEci9yCCWiKZP4hmDhXNfF8kcxQWS+QORC2CxiSSneMz1JdfrARgjjVek+c7o4zU04ZwrkiY\nTA+tqSuoopW9POgAY8StNSLoYW3GjQR1JHL7CGvW1uv4KxzRnr/cmKZ+9nwbzLHM5yXOt6V97e9U\nYzypqWZFbcb2SjWDLi2Ot1qeWltQRYcu6uqlPlprJt23xcgzG1V3wI0rIvCoNFOFZqVUGojqr7nF\nyMfuO/AGub+ocTK0F3GYPC9sQ4Po4uijiR7q+5vvy7TyMlPJN7ny1S8WL/23t0t0tdkeREU97QXV\nVPcnpxSp1W+K9nrbxd7ed0/RtjTVNXSseZ4XRg5EfV371pdVLea976PMTHoSgtjZpLwBwtUbJ92w\niNzUZ2Fxyc/j5ii8Nqn3m6iw8H4vqCC8nQFRVF1DVufNFJzD+CcSeccRPUokY5ggskfRviDSXiT9\nBRJfCQseJ9JJmBibmrJykVJ5ng3udIa38AFWmmNCeKBKOaeCbD+VWLO69vY3UqamRga9rcq4AzkS\nOe0l2q5zx22XmvZTvrefm6Jq2MzcYskrCQmPO12GKVZZqL1WPvMJaKauKjJNLKWkYK38zTIhy8Jt\nuqCaTNUNMd/KVF/JHKHN+8lsHzqIOF3UYwIXa6erurqoW1RP12gHWwS1BT6S7jRRp8t333aoNAQC\n12rvW0sNL6WFGMnkIchXIE2auuraTzdNNPlF51+IWmp5xotG+tqD7ivzPPu43EQfm+uHou1NnGG9\nqVYHYwWxY0QaJhzZvsC738SZ+lgq1rY3CpMcijUfmPsGCeRg2pPln2ShBVjcwqsgvN8FKghvZ0AE\nlVdS/+ASm8PEFInc44kcLpI+WFBae7DoIcnstfzC4G+i6DUo9u8tfNrOk2uFAy2JzDY7oyMUlTIU\nR4b6uvlCDZ19F7nQhszXBLGzhPGXtev5uJMODNx6e1TddZkWekNuqg5smTmGe8HnvtNAc3WFJptk\nrrkiIvYqI3ElR1zmVroJu6jrRLuaZo0CYVEySWDHOqauE7MUze3jVC219YaZkqrytXbgOoVIE3hK\nmmvEXK7APdtBen00sbsaHilWelAcuak508ScZoAXvOqTrSge3xb0cICLXOoWN5qxycNUIbo6SS2N\nfOIfRdvqOESG+hZ6TRA9irSljurGhEXMX7SYDanemmnJ2E8QKdaKL5q5UfRgSx+Coh6aqc9bBeH9\nblBBeDsDaiCaS90DijaFYY5E7gCCxiIZrwqCcmJbaZdiEfF3CKqCuGzRVAJIukpOcrFTVHW0Y33q\nDd9p4qfI+yIyjdTT+lJuTDFVdPaGdLWNDk6Rn361SKWZRDu46R91LFyU8MFj0wRhxNyUDMxcE4qO\nX2U5fhIVLcrWbK95qRZeXCi6DXR1jfZFv9eViSRh7Mje661EDBT1qAL3myhPwvup+Fj6rxTzCQRu\nE3OdmCsVeGwb3ZuBwDl296Y5RZZvcaxN1S7+bIb/eNV5zpS+Fa7kbcWN/qauei53canu1Zg0PZ1t\npJdtSLWOC0TV198irwsjh6CKXv1qCwKGTMTqZEeZSNp1IpXigmixwvgm/ZNEVwmNtyBrVER4hS7N\nCsL7vaCC8HYGZBa+bszODPNvIZwskjFYkCKxshBE2hPpkfwj/rYw8bMC60WLmnRyhIslxDWwu0u9\nbY4lRmmvmn3BQm/IL6U/ZbosXXwo32pjnEBQVSTjLa1bBU4b2Mh990XUWtfYHE8Ixa2ySCDQQR85\n1lprrk46GSIp6dJec5PMlb/JjTwhFNkGEtlHbd3Us4eazvF10WXcsINbeJ0p6iehmZL/g6mpa7T1\nsqjbjkDg72IuEXWhfO9sYyLLyVrIl/BWKZb0qlTC0qqURb4y1Rh7g1yPet/+rlTTSWo6SWd/dp3n\nzLBwm99DFVXc40Ef+9AHxTruFEdPZ8mVbYSXirY1dJxss6wNphI9QtYeMR1bxAyZlMm8N4vGBcEm\nt66MrI0akA0OUy4qLLzfLSoIb2dA4d0zJf8TJqYKC+4WxK4RRDps1RRB7Myi38P4YAkbiiw8kp0u\n9tHXFF/ppJ+OrvehH/xkLwf43hRXG19GDVYVLXTymhWGme5WQVBfkH6L666Zb9ny0JCHZ9tgjsXe\n11hboVBPZxcdf7BDjTBMKNROc/kKNpMKiomIbyNZfa63SVZ5yjQLZatJGS2ltx8HidhToGaq1+SR\nqVjXr62DHgjcJ01/ESfL88M2lCw0UFk39bxdSnLQ4lQi00DHO8Mg//Qv35upo0tc7Al11XCN413n\nBHto6jEfaO1cZ3vI8m28un0dradD3OCaEsoZhaitiQ76+KpYaUttPaWpaZE3BdHeZC7Va68Cn3+f\nI5z+QvnK5MfMY++7eatRsjtLWSgivNQXL55PbOvixxX4/xsVhLczoNCjFE1aZIn8awkaC9LK71xR\nHEFkn9RvVYTx98VtECkyHZPYXQ8zjbbaKle70WQJr3nMW26AzVqFFUdtB9rNDab5q5W+EUQHadGi\nnTNOreHRBxIqrW9kjkc0kyToDdaoLmmxHuhgyywzyY/aaQ6buTVjAgXbWIe2sFhrsSHmqykoV+B1\nexAInC4qVz3TnKhbqjC+NC29HY2IwPPStRDoL8+abVjzaM18Yr6cTYhmrmXSxTTTwOOe1lQ7h7hO\npnQTPOwt17vGCa5yvOddboHn3edMrxthT+f7ysStPodA4FZ3mWySl0qRlIID/dFMoy0wJfWe09TV\n2xLvCyIHECT06saidUyaty5ZelAexqe+M8tGlD0mUSj8mrLq4gUVFt7vBBWEtzOg0MKLVhYmJhJ/\nU5B2oyCoVO5hJZCSUGG9INIRYYmkFchQVVy+SsVcnce53BDvmqe+Xf253CV2c72aOvveHyWCfJH0\ne111+SrLljP08aWW+kRouV3s7QdD3GOaq3xkuldVUsnHPpSlmoayNitNyBCVt42E17hYz80u6qot\nsIwdLsvTV1Q2JqukWsrtmr1DVygbVQTelG5Jqp3Z1qKXRjaIG7eJlt9YM+xlFxERi6zUx01aaegL\nt9mjlJZilWS4xNF+9Kg9NXOo6z1frH5uS+iok2Mc7w5/l1/K+e/tDyqrYYSXi7bVc5TVxsoJqhM0\n0f2QTLEIQ6dg3cyyFytYvzEDc8EHZY8rbEkWSVl18XyiFRbe7wEVhLczoIjwMoX5txM0F0RP3aYp\ngiAiknYT0pJyQILNCsLz5YiKSZdhmp/9ZJ5B7tbL/xlpuVDvcteIiOngXzaYbYprBdHDtGzV2ykD\nIp68J18iJ9PPnrC3o0zwoUxVPWKgYZ6yn84+SlmQe2q2GeFlisrZxlhVuqjJjvW9o7VRU13Jxmk7\n2q3ZVkRbgf+IFxHeVvTz2GFoKeJRaV4U9++tTGJpL0um6GYqCqNN00VrodAp7hYIvOtGNZUfJ24o\ny0f+5gy9nOF+jyuHUDbBNa432yyvFiO1QqTLtK/jjPBy0YNKPb0RWBp8JIj0UalVps4tY4ZOS2ft\ntLIXWjEOIasw9+2yxxVZeIUuzYIKwvudoILwdgakvndhZH2yG3zsIkGw5S9gKCHfKmGKKILYcYLM\nhcLEcNEwQ7ywQDeFFeYVuRmbaqqxxgKB0zyolR4edpIVm8TW1lpmiZniqRttNW21cbtZHrLcMJH0\n21x1ecKixYx9LjQvfM5eDrXOCnN8b32qR+Z+OvrWSLly7anZZqoJlURlb0fBdRs1dVAb1E2R0ZJf\nwd14oqi3xIvq/LJ/A5dmcZwi6lgRF8m3YivWThPRXi0TbNQaW2eDSebqbDevGe5zEzznUvW3ssgi\nTcyTLnKxvs73mH8btuWD0F4HR+nrPneVan13NcASM8zxPUhXR01dLPWRIHoEGavs37bA8GkR5r9b\n9kJhQeEbJaccuaREKRZeRQzvd4EKwtsZkAofhOGbiAtip5Q7fI2JxjrFR2r4WC2fqGOi/5NvCjta\n9wAAIABJREFUtSCcIMw7S1q4Vt4mjYR/Nr4oxlYcb3vL/b41QY57HGlt6rjZxrlYU5dp6TItfeFJ\nodCuLlZLd+MNkojsru0epzjmaJ6/K1d2YrFqlktXyWRfusEwA90tarE8ecYZq4Nd/WShdcVicFWk\nWb+dHUYKUX87CC8vQXZ8yzJq3USsxdLU3OWkRPwqCAT+IV0Ort9K1+buaphqYzeScWYIhbItdI1/\n+YN9Ha7jNp/H/c52ip5Od59vTd2q4y5xuckmFXXdKY62eqqspu9szMKso5flvhRGuoD9OwfmLc3x\n808TynZr1t6PSDpNUH23sk8mkfrvRVOPLwV5xHZ8aUYFdj5UEN7OgCjCiDD+EpEjBMHmEjkQipvq\nBkPtbZVvtXSVjgZr7kLzvWSYfeQkkn0G08MCucW6bYRCc4zTzN4l5kxIONNpMmUaZ72Zfna3PtZb\naYhHVFfXlT60ux6edo6HHC9Prg6ekWOeqW4SpP3FVZczaybjX49ZGP5La/ubaIjd9bDAZJMNlinD\ncEN1sGuqcfFGK6+q2Bb13LaEBinCW7QVYz9fRs9vqPJx8qfpF1z0I7PLCM61TM09I0V4O7Leb2vR\nSOBmaZ4QN3Er4p2t1TC9mIN3jBnSRT3tZbMs9nenbdd5REQ85WKdtHKMW8tVsS9EDwfaR0cPl6Km\nEJNmH38oQXi1HSzPUuuC1aiv+0HVwNdTsaiM1mGxStROEmS58lqFhFfoRSnIq3Bp/k5QQXg7A6KE\naRESIwWxE0sdErfBaEeb7ja7+6ueJmntBo2cZHe3ONB4cTnGxD6UiOyvSnCQ9TbGO1aYZ6UFWupS\nYt6IiCMcqY66Wmhpqvrm+8kdDtfAbtZZYS+HOt9L/uxNE3zkTkeIaKC1G81yvzWRXPvue4qDDuT1\nuwssDj/QwaEm+dx6q3RxvAi62c8nPtRWUxGREoRXTZoN4lvM1MwTeliBS+Vtph6eJZnwumALFt5f\np9NrFPkh97fl+Q6c1JDBC2k7lIdnb27xtRRoiC9/oX7dL8UFonYVbJWV11Bly+QUXdMRJuughXwt\n9dZJBy22+zwypPmPaxWIO9ODW0wUCgTOc6GPfWiWzS20Tvqb5wdLUoLBWboLpFkefCmIHqhOmwyt\n6vLtjCi55bgr6yT7wlryFfGc0sckUo8rxS28tB3VlK4COzMqCG9nQBS1kxZEEDlws91xuUbra7kv\ndPGB3Vwvskl3jMp21dkbVgXjLMwcpGqkj1wLi4rJZ6dUpnfVebP5z3W+6aa5xOXmmW+eNmb6TkJc\nrvV+Nh501t+1PjPXBPf6g8bOV1VbE51L2jWu+DMTvuOHYQmNwjxx+cZ5Twd9vCjU3wAjDJcvVysN\nSxBe9dT7WVPOjTxfqL88l8r3hoQj5TlHfgmZmV0EZpdz8310DjdP5++tGd6VC5tzWmPubcvsnpzd\nlIsmcfEkEsWmCQQOFfVpijx+mfN1+5EucLOYdySM2QL51kuVpSyVIxQaYpxZFpvkZzcpXZVjW9BQ\nlmf92XtGezLVWKA8HO8kNdTwbCnCwXs5TFTM+FQyTFRltXSzzGdEelJlhX1bB0bNSSO7bDUIzVIP\njGEBS8soTYinCC+S+g7l51ZYeL8TVBDezoAIYW0EjVJCrhsRCo03yArDdfGheo4oZYIkaumqkQGm\nuEZaKhFhQ4pU5vlRFbVkabzZcQc5WJo0BQr8y8uG+9YMdX3hn+DHYmoIrXR1lY/MNsZTzrGXR60y\nyrzIN3of2sUebfjoflZ6THMdTUhpoyUkrDdeXNw4Y+yhqUk2yrvUSDWOXl1OdOyf4j6W8IF0s2V4\nQpqnxN1XjH5aCUwvgwgW5XL1FP6vGX9ptbnmZ5UYD+3JE3vxyByu3yQh8HARc1NkOuu/aOkNFNVK\n4I4tWHlVU9e0MDa6QZ5l1uivq67a7JBzOcq+znS4Kz1jwRbEZyurbIBTvOi5zZQUKquutR4mFCPO\n2npaYRjRAwjiOu8VGjczT/68IWUHXWvvm9TGg6VlJNUUWXip8pz8XNIySx9bgf8pVBDezoAoYVZC\nENlfsMldeJYHLPCyvb2gts2tv02xh/vkWW6Vb8GGFKnMN0lje5Qq8BkV1UJL001zlL4e9aTxlhpj\nARjqmRIuq910c54XfOvfRhihsVNNdo2Cyje5+EKGvsP0mQu1Cncz3ofiCgz3gu88IU3UWGO01dSk\nYqUJNVP5j2URXlzoAQWOF3WYaKpnZMxlYq5XUOTGbC0wtQwL74ZppEe4dffyr+E5zbirDbfP4N/F\numodJapQy2JeOVbk1yu4agpHf0ff77jwRwYvYM0Oas8SFbhMzBsSfi6HeNNTX+98CcutKWocfVY5\nD03bg7sNUkm6y0qx3DbFaf5koQWlJq+019skn8tPRUhr6SrfctlBOjJ03reanLyESVN+SmpHloX1\ns5OvS8ogvEILL5oiuYLcCpfm7wQVhLcTIExDrTiR/UtsX22sya7SwhUaOWGr5srUUJYDLPGBiMyi\nON5i0zXQuszjqqluTSqj7wyDnOdCYxRYgnWWS2zyRL6vY/Vzndf8RboBiJsWfcspJ+2vdm0+fpC6\nFllvpamG+9n3AjRUxdeG2lMz8y0v6u1YM+XSXFkG4Q2T8JPQxZsoKtwopgquSd3MdxcxUyh/E0Ja\nlc/z87mqBbW2wnt1+a6c0IDzf2BJ6v5YS+DsVA3JnFIIb3kefUbT4xteXkBBashnyxj4PQ0/54If\nWFBGaGlbcJqoqniqnNrFwkebuIRDXV+0/bBNEpd+KWqp6k5/8qphhhWT+ykNHXWyuzal1uS111uu\n9aZLuiJr2g+sCr4j2NPeBzQUBHw3K2Dp8LIX2TCfjLqs+r70/fFUdnAkRXL5FYT3e0EF4e0MqIlo\nqgl0Cgn5xhukmj21cds2Tbeb66z2nYQca1K1TSvMU1vTUseHQjP9pKVWRdvOdqUaDjNdUzcbK1pK\nu+Tj/FVL+3nKhZq51s+eklvrdGf+kY/+FbF+7VA11DfOuw5xHuhmX1/4TJuUa7WwxVih+OuqMvIf\n3xHXGN03+cjWEPi7NC+ImyOhtUABm8Xx3lxEfiIZr9saBAEP75l8vbKYMVE466xN5l+WR9cRjFnN\nGx35+WDe35d3OzP5oOTfV7XglYW0/or7Z5WMEW4rqgoMFPWsuEQZ1mZhXeNEM4w3S1RCLx2kb6Xu\n4LbgNAfrbDeXe7rcBJZA4EQDveNNG4qVpUBT7VRV2yRfINm4vIrWVhopiHZWpc5KbRswZlrIulml\nLxDPSyar1OpA7vJk95XNxqSeOAotvPwc0rehq1EF/r9FBeH9lzBgwAD9+vXzyvDhNt5/NrbKmuUh\na/2gg2dEtvEGVcdhGkoG7+d5TiKlYlBTo1LHTzfNCivsVUxy51wPWyTNYlVd49pSb2JRMf/nRWst\nM9SPaulqQvQ+555/m5zshC+fC7XUxDjvamR3Lwpd7j7Zsq0wR5qYCSnC25KF97WEnilX5qY4RVQm\nXhS3W2r/9E3O99WFHJhFo20I1dTL4OZWvDifqUlDtKifZXHCC0P+OJ5VBXzTnWMaENnkNJtW4qbd\nmNWTQU24fDK9RyeJcntxmqh5Ql+X4dZclyK8t3yJXAnZGv4qSn7JbN+7/Mlo072l/H6XJxhgnXU+\n2qRbS0REGweaXEyfr5ZuVhlJpDMZy+zTnO/nKLsWr9B6q5p6eCstwSW+IaWfl/on/QIL75VXXtGv\nXz8DBgzYruMr8NuigvD+Sxg8eLB33nnHwB49NrYWSwm85lnhJ3/XzDlqbGNhMMmn6H28UPR3ng1C\nCZXVKHX8C/6lppp62Sir0t6u4DjHedmLXvCvUo+tZ1enedAwzwucYr3p8nfNc0z/dj56rJI64XKL\nTDfPj2APe6qssh9N0FqjohZjURHVpVlRioVXIDRBqHMZH9dqAqeJeliBGinCW1aMkDbE+WIF/Usv\nbywXZzWlcWaylIGN9XdrUucFby/m/aU8244WlUudpgg10pKJMUO68P2apFU4vRQjZGvQTURDvFUG\n4S22QVTgOF2RIVTVmQ4vMSZXXLaCHdJ/9GDt9dLBTV6WKCe2uJvW2mnvXW9ttq+Ng8w0Sl6R0G5X\na0yQiHQgCLXbg4mLIhJryyC8tOqkZ5XfczOeTbTYPypvw3ZbeAMHDvTOO+8YPHjwdh3/W6FgMgVj\nf6Wf0rWGd0pUEN7OgLSSv8xwl4QCrd203VMWL1vITbUYS7f53Thfvhc95ySnlGgqfYczvOkvXjRO\nWye6xPkmpMoTNsWB/mQvh3rVXXZ1jWn+5pQLzjRr8gZzh86WqYpvvQZGeEkrLUw03p52KdFTM0uG\n5aUQ3jShHOxdjl7eBWIW4TsJlSjWUItxa5IdVQ7MKvPwMpER5YoWvLaIpbklZYEKy63vnUWPWvxh\nGwi1Vx2+7U5awAEjmbQdzTkjAn1FvV1GHG+BbA1Ucrz9tdVUT+301F6euIf8qL03Vfa8Kp5X18sG\n+sLXxZoVbA9uMtBEs71ndLnj+urvQ+9t1lC6rYPkyzXTKFBDZ6ECa4M4qmjXPmJdTsKsaeNLr7ML\ngqQ7c0Vq/dKEkwuyiZVCeGFI4r9bZ/lrIftU1nb6dX6yt63t738VFYS3M6AoDyNdgbXmeNwu/k+G\n7TBJimFPD2rnMcohive9a5GFBhXTr4NqKlud0gSoobndtXGy460ppTVzIPAnj1ttkWnSZemuSs97\n7N5mNx8/kq6lXYrqq/Z1rH3t52vDtNXUFBtdTlkySlXpnpKyPvYo5+O6l0AdfCKhgcD8YhbL92uI\nBexVrczDy8UpjZIuyhfmJ7udkBSbrYpxqxm+kj833/Z5d63M0K7Uz+DQUWV3eSkPR4maISy1TGKW\ntZqpKiLiC7d5w1/MslY377ncKG3V9LjuXvx/7N13fJX1+T7w9znZiwABwt6CgAtBRUVx496tWleX\nddRqrVqrtmqrrdparVrHt9paW+use9S9RVFRUdl7rwRICNk55/fH8ySchGzwR625Xq+8kpxnn/Oc\n5/rc9+e6r9sE5xnhU2uN97wTvW5lO/tB7GMH4410o3+3cN5HW2+9SeqLT/rZUaZcs0Kfzhw7iEhS\nHPmSyDA77R54wX65qJKCyY3vPHdHKsMhz4a5my+v3rh5hJeSzquvUlTEzq3rQfl1QuYD5Ez5an4y\nH9jWV9d6dBDefwPqBqEpFvubGhsNckGrNq1RbaoXPe4a/3Ch/7jFurCcYJALDHCO1DByq2ogEoD7\n3GOs3e3UiMfmCfZyndNlybCz062y2oXOa/Q88g1xiAs85/cGuUUsUuqYc/O8/1S1lNXrLPCxEmul\ny3a4Yy2yUK4kq623LlRqdpXWaEpzrphO6N7M+5Ak4lhJHg/n8WYlEMAXG9g+KyhJaA/yUjkun78u\nZf94NLzeiHQRj6+kWyrHtHNs0j2Nl3YnIylQeBa1sXRh7/Ar3Ng83ixFhodp7HxdFIrZ1wuKVJrs\nKI/Y31mGO9UQv7Gr6Y73LxO8a5VdPO2dVpm0bY5LnWCSGc36bI62q156e159M+ioJIPtbq4PQJJ0\n2bZX7DOR6PZ6Donqkh3x5fJUVr/Z+M4770AkSnJO433xqjfWNVsGFaWkZXLNNey+O4ccsvk2X3Mk\njyB516/oZ8S2vrrWo4Pw/htQax4t2WJ36+VEGWFn7aYQF/euB/zMEH9wmNfc5UuveNQVfmqAZ9xQ\nNy+TJlNEVGmCkTAstdQrXtosuqtFtgxH2M0LPvYXr9vDDz3kX172YqPrH+NKydK86G+GuNSup30i\nEomYev8KcXGfhA+3CfYXFVUc1gjW1uPlSVPQCOHNEzdEpFHBSiJODKOdSnyaEOFNL2FUO6O7Wpza\nO9hP79LgK3NE+NV5dx37diF5C75JPdP4z9igMP70qW1Tb+aJGC7igwaEFxc3W7FhAk/JMtWO9apM\nSd5xhF3DRraJiIr4jiGmOtb2ch3sJc8nmAO0FkcYa4hebtd0Z4OIiIkO83JoTJCIIfYwz+S6+7eT\nXRT7lOj2IhnFduwb98WsStZOaXznuaOCvnipnSlsJLVaXbKJ8Kqrgi7qpRVMmsRFF23uSNCB/xl0\nEN5/A8IIb0NkrhIz9WnB1LfEWjc72t1ON9hurvWxO6z0e9PdYaXDXeJRl3vARQhGzZ31slZ9xdrj\nHpUq1Qka9++EkfrJlSUi4nmzdHeoc/zQfX5qneUqVKgMlZVZOjvK5d50j3SHyuvaw/4n9vD6XyL6\nxwea7JFwvSxDbWetxZJE60oTuku3xubzMkvE9WuB7OAgUZ0ErXuWiNelNeeVMrQFMUlLmNCVpAgf\nFkbMluZPUlTF+HA9e20F4eOwbB7YhWdX8+dFLa+fiF1ETW0gOlmt3HqVOouLi7vcx+bZ4HEH6tXI\nXG4i8mV4yUSH6eN4r3k9zBi0FkmSnOswj3nXmgaDrEQcZKJZZlrSgFSH2kOxNQrDgVBAeJ8TGUW0\nxKiBTFuByrWb7xRywnrTpAzWf7758uqSIPojiO7Y5KuZl9fKq+zA1xEdhPffgPBTWOE5Kbro7qAm\nV11tvmuMM8f7LvasC/3bIGPqop9MuU5yvTP92Utu9YZ7QDf9FYTEUovnPO1AB+ukaWf5VClOtZ8e\nct3np5ZKskSyv7rVQy51lImG6OPBUBV6iJ/opIfn3Wqwi+131irL58aVvlPgS6/U9ccbaQezfGl7\nfX0R2p/1kNEo4a0S16sVhJckYpiILuG6H4kpr2FZOUO2kPA6pTA2l9cK2U5UiojPN1AWY8+tpPQ/\nogcXDgxcWtoiYtlZxOdi9ZSWs0OiOc+N7vCWP5vh10bboZVlCWmSPGJ/++nlGK+aXk8G1DK+6yAR\nEfc30x19fweKiHi9gevKYLuBeXXCldFqbLQxGvjcjBjC7AKqSwsa33F6N1I6B8KUsmVUNCDG6hJS\nwoa3FaFEtsNa7BuBDsLb1ojHxcOU5grP6Om4zYyha7HafL+1H/i1yUY7ssndHuzH9neWB1xklWly\nJVls02i3RIkPTDLR4S2e4j5GWmW94+zpp45RbQdz9LWPs80yQ4ECP3CGa10tRZojXOo9/7TSPLvs\nm2vAoO6m3leiRrVp4QNwV2NN8VHoqRmM5HtIV6B8s0LqAnRrBeEF+416N0zvZWFJyJ8DtkJd8UF5\nvF64KeX44fpADLNrM51o2oobhgfnes6XrU9tDhNVTD0ny08UShM1y80escEgOS4wsk3nkirJ4w4w\nUI7jvKa4DV0A83RyrHH+7tUmSx666mq0Xb3RgBRz5cvTz/xQ6ZljR7AhUogcw0dQWcPChYua9tRM\nSiUrKK3ZrEShasOm9kG1hNdReP6NQAfhbWvE40SD+q6NkTm6O6zR1YqsdoODpUh3pTflG9Lirk/2\ne2my3Osoce9a6su6+qZ3va1atf0d2OJ+egn0/Cut8z3H62QfBYa61yN6yHeun/iN6/3Ob9zmFgc4\nR2e9vOFJNdF1xn9vjcmPkVXMZI+Cfe2nRIlcSXWlCd2lqxHfTKlZKC6vlYS3l2hdn/dBIlaEu2pL\nwXlTOLBbUCj+ZRh9fVbMqGzSk5rfri1IT+KuUbyzLrBCaw0Ghe/N/ARiecMKe+phgxTvWuMPdpPe\niFtOS8iW4kkHWqHMeS0UlDfEdx1kmsU+NqfJdSY4wFve2IwUBxlrgWCOLlV3KbraGJlDdCfDdw7S\nkbOWlrOhiX1Xl9EpNMiu9dasRVXxppRmeXi3pGXpwP8+OghvmyMgvPXhQ7NLg351UK3SnxyrQqnL\nvKxLE44pDZGls+NdY6YFooipqZsXed97euppqGY6Q4eYa4WIiGzpplmvt4FiurnLM5ZaYq7ZLvUL\nF7vM5S7xqlcd5DyzrVCGA86kbCNrn2Sq51WrMsZYmTJVKrBGkbU21LWzWZWgJq0St5E60+aWsF/C\nLT1AxLpQ9dh1K7hp7Rg+I2eHz8gVFfT9CjJhB3Tj272Cbg1lTVtl1qF2fjOxFGOyNfaW7xqfGiLH\nUU3YyrUGQ3Vypz39yzxPNEiLN4eD7aKnLh70VpPr7GOClVZs1iNvgNEWmyouHt572ysxQyQyRJ/h\nGTLTImYu17gKE8RI7x7U4ZU3qC2sKm4kwtvCnHcHvhboILxtjXicJIoipOkpvZEH04MuNd/HLvKU\n7ga2aff7+p4cPRQaAzYK5jOmm2YHO7WofKxR4zbPOMwYfXRziiGmOMEo+4gba50Sr3jJGmv8xu8c\n5ghnOdMIR0uXa6XxevRnz/2Y/g/KlZrtPcSNNNKa8EE313L5YflE4jxereQht5UR3gBRe4m6QJIU\nkTqZf27bg5vNkJdCTjILQj5eXRnYj30V+O0wVlUEbYpaQu1goCgkvALlViqTKuo5S1xrV0lb+FU/\n1RDH6O987zfpd9oQSZJ8y3iPebdJ55Vx9hIR2awer7+dlCi0XtCuIiC8WUQGiqRXGNYzbs7azhR8\n0MTB04OuCMlZQaF5IqqKSAldh8pDz7iOlOY3Ah2Et80RRnhROtt9MwKa6j9edptT3Wxo6B7fFqRK\nd5ifmR+mh1YKCnHnm2toM90TanGjx31hkV/Z5BX4lEWmycZI1WGEONn7oqLucb8MmS52scNd4iPv\n24jdz2TGG8QWp/nci2Z6Wy9Z5ofzirMs0yMkvMQIr7hOmt56vCfNrbUNZauD+ru0rZB2jEQYnMH8\n8Pm5ppLujU+3bjGGZvG9vvxhPuUtRHkpIjJsGhxMtgbMVCRDkmMN2OLziYj4sz2VqHaVT1u93Un2\nsUyh90xvdHkXXYyyg/fUb+XTL5y3q20+nG2EEjPFowNIKjKsF7MWljZedkBQWF5bfpBoIB2rCUUr\n4R1V3hHhfZPQQXjbHHHxCEVJm9qh1KJUkXv90I4mOtiP232EvXyn7u9F4cNqtVV66dXsdu+a5lce\ncIVv12sYurd8e+rhB3YQN8QlrneYIxAIEW53t1e8ZJ3uMnW2wXecfsLPpWaw9l/ZPvSYUQ5wqFMt\nMU8/3XxpkU5SpIpanRDh1Y7Ns1sZ4dXiTJV2V660hqytOMc2ODMocyCYz/uqCA8uGRSQ6gOtqApI\nscnb8zEL9JbpP5Y6y3AZ7Zi7awx9Zfmlnd1phpl1xmrNY0/b662rxzWVemRPe/ugwfJuBkqXbYkv\nEER4NUpURIJ4dmh/5iyvZMO8xnea0YuyFaR1ozyhqWF16BSU2iDC65jD+0agg/C2NeKUZVEdCeTX\niXjc1UoV+aF7Wkw9Noc8/fQW2CEsDruOFyrUrRnvkvVKnOome9neNQmECQNke88RpsvRw87esFY0\n4VY6zBFOdJJr/Mo+zvaex3XNOcQeRzPzoQqrzTfXB4YZLiZmkDyfWygiooeMehFe7di8rePvf6jx\nkbjSWFzGVrzLh2Qyd2PgzVlcHbisfFUYls3R+fxpQdNixFokC3w+4+KetcRypSrU+HkYKW0tXGCk\nfrJc5uNWrR8VdYxxnk4oJG+IPexpphnWJ5BoVFRfOyQQXnD/lkSDDhDbDWJZMaUbixpvAZTRJ+iU\n0GV0/SiwfHXwO61H+H8JSckkf4UfZAf+a9BBeNscMbEwAklOSNwtM90r/uxYv2qyj11bsLdTQXeD\nVKoUF5fRDI1c5u/WKfGASyTbPESKiLjSLv7gaO+Z7oGwh1ktfucPNtjgE8XS5ZjkBaefcr5FX5Qo\n/TLFNK/Z1VgZMiQprVeakBjhlYUPyfYmnEpipG1lwltcHsyv8dVGeHBuf6aV8HHT9dugxiaHuqpw\nvuxndtDH1o1c0iW71q6esdjHmqiDa4Cj7WGhVfU63CdibCjU+lR955R+drQ0bCibaaCoVCVWEs81\nOOz+s3CNTb6ZicjsQ9lyuu5K0TRiAVEqC6O9jFD4VV5Cxhba8HTga4MOwtvWiKsjvEhC37t/+5U8\n/R3qp1vlMBNd6EiX+Zbr6kbaTUWN75nuL150g+8aoEcz++wrTy8THOBSf1OcYDjcTz8/d4V7/J/h\njvGO+0089GjZXVj+YJWZ3rbGHP1lW2aaxdYoURYS3qYIr1Ye0V5tSFmMlK1MeDXxoAMDX22EBwd1\no3ca97dQolCOtNB+rba34FmGfyXndIrBhst1TSvn8vazo0xpTXZQ2M4w2bJNaRA19jHSCrPExEQk\nyTBIWWQBSSMNGh58aeav1nSEV7ac3B2IVW4ykS4L88MZYTq/rJj0DsL7pqCD8LY5NhWeR8Mx+iJT\nfeQJx/qVlDY+6meZ6W/ucb1r/Z87TQtHyOmynewGufIlhRFbTdggtMHZuMzf7WqIc5qoCUzEH3wp\n0/aKlblO/Z5g5/upPHkmWaFEoWmpT9nzeOY9xvT46/7jj9KssVTQUGt2KFxZlRDhbSK89qV0Y/Gg\nOLwllFfx7hyemMKsZjyTB4Wh5uQw+9Zt6zcPr4ekCKf14eHlVDfRuaZGXIUgCv6LmU431K32MED2\nV3NOon5pZ89b4gtN2HslIF2qA+3shSbSoFFRo40xpQEh9jJcpTJrQ+uxTIOUWiASGaHndpnSUqIB\n4W1sJHLM6BVYj2UPDv7fEBpZly4NBCu1Tisl68juQm4uKSlMacKfswP/E+ggvG2OQLTCpgjvOTfq\nbpC9ta7RVFzcC56zr3F2McIFznW3P7vEhcba0ZEOsSihfipNmgwZ1jViF/Waqd4z3bVOqzcv1xRe\nd5g77OPbjvMnz5hnk0AgS5arXOtZL0g31DwFxn+bgrkUflajv12c7LeE3RLmWalHAz/N2uYBbeWV\nSyQ7QVSqSItX8fgUhl7BPjdywl1s/0sOvYVFhZuv2y89aLY0KXzr8r+isoREnNCTwireb0InUvsp\n5og72yS/M9U5CSKjrwInGayvLDeHjX1bwkS7et9MJY107IBd7Gpqg4ixZ6giXhkWrmcaqMxCov1F\nM2MGdI9YUJhGYSNtgmojOHGiaWwM6ztKl5CZMEWwoYBO3encmR/8gJtuoqSkVdfUga9bDuerAAAg\nAElEQVQfOghvWyNO2HFGRJIiq33o3w52vuRWPOZXW+1bjnGCo6RJ87AnrFJkkVUKbfSAR802yx52\nqdfAtYuu1tr8if4HjxtrO4cZ2+pLGONp96vUTTe/aNAZ/TRn6qe/edJ96j8u3L9ATh5rHuFzL+oi\nX0y5LrLMCWvxGhaeo1md4SdF7DWJvFe4fWEg8PiDFP+WJh5v3vz+nrc58S7GDODjX7Lyjzz0I2au\nZNzv+LJBKjEtKbASe3MtmUlkbx0BZLMYm0t+Ks+vbnz5mvA9WpvQq/CDsDThq0KKqJ8a6V/mtap3\n3sFGq1LtrTDj0BCjjbHA/HqDsO4GSpZqRdhmKCOM8OLySSozqFuNBesyG++LV5eyXBkQXG0U2JDw\niteQ042ZM7n8coqLueOO1r0JHfjaoYPwtjk2pTQjUrzlr6KS7Ou7LW75kQ/tYRcf+sDDnvCyNx3j\nOFmhUCHohPAtH5pqsCGOcZgVVnjFnTpJt6KBC/4yBV7xmbMd2iZV6LrQY/FgR/q390wKU5SQIsUv\n/NIHvlSgzPsp/7TXCUFac158svH2Ad1kmGWpXjJtUKUkjO1qS9CaqiwoqOTYKZTUcFQPLpjO/yVk\nuCKRphWO787h7H/y4/156seMGUh+LifvzuQr6J7NcXdQ3CAoOTjsrNPr/0N0R9B89sBugY9nY1gQ\nEt6+Ns1F7RLawcXFvaXGb1S5SKUbVPmogdF0e/F9wySL+Fsz1mG12E5vfeR5QyPdC6jrxzgtgRCj\nkvQwOCHCG6RasepoLpGYgT1ZtCYWiFIaIj1sUFi+iox8KsIBwMZFZA3ctF7xGorKGTGCOXOCKO8P\nf+iI8v5H0UF4/wWIJUR477jfHr4lO3xgNYWX/MchJuhvgMmmOsZxTZJUZ5094XkxNS50jr/7sWLz\nLGmgmnvQW9Kk+JbxbTr/NU4xSLZ/WKu33Vzh/noP1NN9Vy+9rdPfK+5wwfHPWjuf5Z8XKzbLcNtL\nUeYLi/QO9ZgrwqihdtqqKcK7fBalNTw/lr/vzGm9uW7epmLtaMI+ElFexQ/vZ9xgbj1l8ygwP5cn\nzmNVMT97pP6yQ8JqjsLWeylvMQ7IY0oR6xtpEDtPXBq2l2KVU6x0ik5STRMzVoX9VLpVtZfF/E61\n3VXYQ4VJWuFb1gy6SHOywf5ilpomnFRqERGxv52aJLxhhkuRYlpYhlCLfNtZaTYCwoOy8LMa2IcF\ny4rZuGBz4Upq2OanoiCsxQsJr2Qh2QM3rVe0morwXl2wYFOUd9ddzV5PB76e6CC8bY5Nc3grLbDC\nLLs5sdkt/uN533KMg0z0kjdaLCCHnnr6o9s96xlLBQKHRQ18EZ/0vsONldtGKXuJaguU6C3TWgO8\nZZ6XfFK3PEWK81zgE4stMFe3/at07txJwROZpnrB7sYps9IMS/QIRTorwrRm7WO0MSovruLB5Vw0\niH6hM9SvhgYlA7U95ZIjVDcSzNz7DnNXc++ZJDXxLRiaz3XHct979YUse4VeXhlNsPBrM/jRP5jw\n+2Au8FdPNS+EaQ3GdwneiymNlCfMFDNURDSsY8yX4VU19lChAq9KVSDdNOnWSveCVBGMV+laVVsU\n7Z1tuEVKvJ4wd9sU9rOjT82vp+atRYoUwww3vUHKs6ftrArdgWoJrzQSSJkG9KWoLK6oFKUNcs/R\npNBerJROI1n7ERWFVK3fFOHV1ARzeKkJPj79+7PXXnzyiQ58NbjuuutEo1E77bTT//djdxDetkbC\nHN5Ur0mTaUcHN7n6u97xHSc61BEe9Jh0rXcvPtG3HeYI62znQneYa07dnMlG5T4yx0F2afMldA1J\n6hqjdZWui/F+7aF6D9KznSdLliJ9PZx6iTFHxS14vNQ0L9neSIUWKFepOiw1X97godgY4T26Mojk\nzuyz6bVh2UFq89lwvislSlWD4KO6hptf5ttjGdmCD/ePJtC7M79JaN6dlsTre/BaA6e3jRVBCvSg\nP/L2bPp0Ji2FO98IhDBn/JWCNvS5S8TQrMAx5tPizZdNE7dDwlf5IzHHqDRe1GRpDpRUF/0nizhM\nkknSXC3ZVap9X5WadpLe7rrbXq5/hKTUHMYbKS7uAzMbXT7CKNMbiGB6GGKNhWpUS9FVkmyl1iBb\n/9AxbVGBTSnLRESSmPIcxV2DSG/+fcHr2WGnkQ0FxGL1CQ+StqI1TwfqYdmyZW688UbZ2V+Ngrgl\ndBDeNsLJJ5/s6KOP9tD7H9RFeFO9YkcTpWrcyHa+eU52nN2N8w8PSWmzdpHL/NIccywM05m1yrhP\nzVOtxl7tUPe9K3Cjz5XiduOsk+MDxV71Wd06OXKc7FRzlFtntfxjN1gzjTlzF+ijh4pQZLHEClmS\nNyO8xvDQ8qBOrW+Dt2u/PD5Yz4ZqUiNUNCC8pz9jQQGXTGz52tJTuOhgHvuY9QmntH8eIxK+s+VV\nHHwzr07n0XOYcS0P/oinz2f5Tdx9Os9NZfRv+Kzx+utmkRQJujV83ghhThOrc0XdIO4UlUaJeEKq\nrCbS3EkirpbiASn+ocaP2xnpRUScbqgnLLJRI/nWBAzTRzedvNuEr+ZIo8xoQHj5hqhRZa2lIiKB\nUjOyiEh//QcG6ywuEERvm51cMl+8wm2XBoXmn14amEbnBq4tisJR0Y6hQGvXXVt51Zvw0EMPOfro\no5188sktr9wBF198sXHjxhkzZsw2OX4H4W0jPPzww5555hmn7Lm7eJRqzPeJnZuofStV6iTH6ayL\nhzzepsguEXsY50jH+I/noG4eb7oloqK2b4Ory2IlTvOWI7xioj6ON9DxBjpSP6l2da1HzEwQsPzY\nhQoUKjdEj0PypKSx/Nkkq0xBuTTJ5lmhl8y6Obzax3XDR3F5De+t47BG3NGO6hFYf/17TdzipJiy\nBoT3rw/YfRC7ttJT+dtjqarhmc+aXucXj/PJIl69mG+NrT8nmJbC2RP44tf0yGHCH/h4YeuOnYhh\nWYGtWSIKxRXgWm951Hw/V2WluAelymyF8OhUye6V4v/UuLWdc3qnGKxUtaebcFKpRUTEOMNNDlWX\nDTHcCIUKrUlQmHYLja8LBDnqDP2VW0JkkPz+yZIiLFsnMITe7IBJm26gjDANMPIXgaE0rA/zzHtM\nCJRN7SC8U045xTPPPOPhhx9ueeVvON5++21PPPGEW265ZZudQwfhbWuEKc31iIsZ1EQ5wCUuNM9c\nj3hS1xYELS3hJN+pSx3NC1NRMy0xWL60VkSNMXE3+cL2Hveq5e413gsOkRzeTjfZXY1U76i0szF1\nkcN2hjnEoeYosya70D4H7qPo6W5meFYE3cPShF4y6ubwonXHrI+PioLIbd9G3opBmeycw5UrY+5L\nqlZas4kuN1bwny85sQ0DzL5d2WtIEOU1hg/mceur3Hgiewxuej99uvDmzxnVm4m3MK+JMoOmMDST\nOQ0C31l178wG11voHjWulWJoG77a35PsUskuVuW9dpDeIDnG6e5RC1pcd5ztTTa70XZB24d+mbMS\nBkl5+mMT4aXprdxykehASV3S9OqaYkmhoIt5Q0STN91Awy8IxCvDL9i0vCjsk9c5v+WL7MAWIRaL\nueCCC5x11ll22GGHbXYeHYS3zRGIVtYiWaq+Rm22xvOedZ97/dFtRtnym+UIR+ktGPH+w32qVVtp\nvb66tbhtiSrHec3PfeRs25vjRD8wTDQhmhgu19mGixhuPxdbrlBPp3nNZ073PdPMth67HjvEvHdW\nW1O40AgjRZRaYJVeMutqu2pnUxo+Hj9YH8xp7dxE36B9ulJeEpxTUkKg8/K0IP143OjGt2sKJ4zh\nlenBtg1x7XPBXOBPDmh5PznpvHAhXbM4/k5KW9daDoEwp6CSigROeltMuhiKLTfSYBHnNqlpbRq/\nk2xPUaepsqEdqc0TDPSSZS2mNfcwXJGNZtvcK22IoaKiZidEgGky5ehW57aSrpcKK4gMJK1S325R\nyzbkUNzIvGBSBtmd2P+7DDqNE9aQnODKun5V4KOZ1tEa6KvGXXfdZfHixa699tpteh4dhPdfgHgk\ncMvoa5Rk9c0Z11nnx85ymCN81w+2yvEyZLjS1WCF5SZ511obdNW8p+BGVQ73sjes8JyD3WIPOU1E\nhFfbVYoUL6t0vcesst4hrjLegfrpb7FM2x3ZSSwWt+JFxhmj2DIzLdUzIcKrfXQ3NEH7cD1jcuuT\nWSK6p5JWGXVjTar06KaVnvksiLCGtnFQv/dQKqqZ1uA5/dliXviCyw8j2spvU+dMnvwxs1dx+ROt\nP4faur9VCeUQL4k5SLJ3nWq1XDdIkd4OG7ZkEf+UYrW4K1ogrcZwrAHK1XipESJLxBiB6/OURkQu\nadJCk4L6y/L0VxCmS9P0UmGleKQ3SVX6dq6wrDiDdY2oKpOzOPh7/Pi+xk+maHXgsvINwLoZFHzy\n1fysm9H8sdeuXevqq6921VVX6dp1y7JTW4r/Dz4RHWgeQQPYddi5EYXkr/1SqVK3+78tahHUEGf4\nngucq0aNAgU2KtdDbjNnGXeGt32q0CsONa4ZU2noIcPFdnKjmDu8IEeGJFFXesD3neV615jb6w07\nj97JqhemSzt1nY1WKNJDVylWhoSXHF5zQ8L7uIjjezZ9/F5prK4I+sllJwQ8787l0HYEyTv2Cebl\nPl8aFKjX4u+TAhXnybu3bX879OF3x3HxY8G2ew5peZtao+o1lfTPCD6TD8X8WrLrxQwRccwWjGEH\nibpOiotV+a6YMW3Y11CdjNLZMxY73sAm1+si2yD5PjHPqfbfbPkQQ81tUMiep5/CkPDS9RZXoyoS\nSLZ6d2fatCrWN+LgkpTVuLF0LTYUBC4r3wC8eZpWJJxbxmQP+chD9V4r1XwrjyuvvFJeXp7zzz9/\nK5zBlqGD8LY14lRGgm7Vg9SfWJrqM39xlxvdrI8+jW/f4u7jVluvWKl8XXQKC7uTJbvFn13gXAeb\n6HZTVDdTPHyr6Z6wyJMObJHsavEzO/iTafrZz2wv+7Ej3OkFz/m5SjUm+9KAw8d69a6YuTUviiYF\nYoKYMmtVqFST0PJmEzZWs7CMnZoJSIdlBWnQd9fRK9T3FGwIau9aQy4NkZnG4G5MSzCnicd58pMg\nPZrcDiX7BQfxzw+46BHev7x5CzTICY+xMUxprhA0yI3jeTH/kiJpCwdFP5Hkr6r9TJU3pbZpkHWE\nfu43V0y8Xoq7IUYb4jPzG1022BAf+qDea131NcNbCCI8KI/E6ghv+ZqNVFZSsZa0hAgiOZOaxr07\nwYZCcvJad3Ffc+z3ADuP2PL9HOsUnFLvtakzPnHQaY1Pis+dO9c999zj1ltvtWxZEP3H43Hl5eWq\nqqosWrRIp06ddOnSZctPrhXoILxtjrj1ycFDq2eDdi5XudxQ2zmnHd3OPzXPXV7wrA+tTPAn3MNw\nFzvOifZ2lnN831mSJEmTolzj1iGLlLjcxy400rFaKW1EN+l+YqTbTUOKVMmG6eNOr9vbPoqtlH7E\nR0p/S+kHMZG9A6XdxrAR6CplUsISjUTCqxVuDGumPn77sGTgg/UcG6YvJ4dD3HHNCEuaw6g+9Qlv\nyiIWr+W4tov7EBS83/QtDvwjT3wSzBM2h8yQ8EpDwns1FJh8JC4Lx7Vj7q4hkkXcJMVhKj0j5pg2\n7PMwff3eFz5VaEwz88E7G+RWz4iLb0aogwzxsH/VW9ZVv3pzeFChUg769MlUVFJqYzlZG+aSlhBq\nJ2VQ3Ux5y5qFbDeu1df3dUaXEXRr533a4r6bWbZs2TLxeNwFF1zgJz/5yWbLBw8e7MILL3TzzTd/\nNSfXAB2Et80RVxN+51MSSg3e9baXvehfHmtTvd1SBS5yj397Tz/dnW5/e9peZ9kWWuVhb/u2Gxxr\nnAdcIis8Zk9dGhUSwC98pLNU12p77czFdnCb6S5zmSvsZKztnOom1zjWDS525O5k5UVseDFT+t6V\n0qXaELacWaq0riaxUlytxnx++Awb2ozWID8tSGuuqAjq1+DDBXTLZlA7s1jD8oOIrhaPfhSWGQxr\nepuWcMAIDhzBdc9x/K7NR3m1y2q9Qf+mxi4iXlLjHMkytlLKe6Ko/UVdo8rRoq2O8vbSQ5Zkr1jW\nIuGttcEKa/VWP8IaaJASJQoV6hbuo4s+ShUpt1GaYPRSEQkit169AkJesZ6hZfW9YSVlUFOuUcRi\nLJ/NhDNadW0daB922GEHTz755GavX3nllUpKStx2220GD27nCLQd6BCtbGvEN3lpRhNG07/3Ozva\nyXFOaPWuHvSmkc71nhnu81Pz3ev3vu84e9nfTr7nYC+51hOu8IrPHOoqRYpd6iI9dLK0ke4JsxV5\nxAK/NrpJgUpzeFOKbEe6x3wkO8k+hutrUnisWNIAIw4aYNlLcd1kyRS3WlAftURJnYQnUcw4vzSY\nl2up+WrfcPywS6jk/HBBUH/XUuqwKQztwcJCqsIJxckLmDC8fenMRFx2KJ8t4Y3GDUjqUEt0kQjL\nxL0lJlWQ1rx0K45dIyKuluwzcc+24JGZiFRJJujplQam5A2xUzjHN7WRWaVBgoffwoRlXcN0/jrL\nRKVKkaciUoBcvfKDD2NZIcoaDNiS0ptOaRYupbKMPl9tG6VvOvLy8hx99NGb/XTr1k1OTo6jjjrK\nqFGbK9O/KnQQ3n8Bah8ptQ1gv/C5V7zkIpe2anRdo8ZP/cWpbnK0PUx3p+86SHIT6ajj7OUV1/rQ\nbD/zN5e50hC9LFWwWb+yu82UJ92ZtmvXtS0Sly1DsTR3mylJkp873is+N9I4i0VkTyyw4uNSKQXr\nlSu01ArZki2xsU5xmJhsXVjGwIyWiWtUmNYcH+ZcPl/K6P7tugwwMI+aGMuLgt+fLGLXLdhfLQ4a\nGShH73ij+fXKwxslLUqqID3zsbijROVvRUETTJBkvKgbG2kS3BwO1Nskq1U0U883QA+Z0kxvpFB9\nQEiGi8O6O4IID9aFRJqupwqriOTr1St4U1aujVDZoGFgUjqxJuo+loelD72/mq7wHWgZkfaOPLcA\nHYT3X4BY+LnXRnh3uk1f/ZzopBa3rVDlW25wu+fc7mz/dLHOreh0vacRbneOv3nVVEvtZpi4uC8T\nHjQVatxvru8aKq2d80OXSvEdKaod7kaFKtX4jv1000kXu5lmkdRDSoLo5VU2WGGBlfrJtlRpXZI3\nMTG1uIwBjbuv1cOtI3l3HD3SKKtk+fogSmsveoYi1s9W88UySiraPx+YiEiEs/bl2akUNtOVZkPI\nPZ2S6S7iCFExXNaOyLs1uFiySWI+akOUN0FP5Wp81Ew/vsDRp68Zlm62rIsusmXXMzbPFchxi0ML\nu1T5Kqwkkq9THhnJrFgnMIqud6BUYk20tFg+i+RUug9s9bV1YOvhjTfeMHXq1JZX3MroILxtjria\nhJTmRhv92yPO9P0W5+4qVTneb73gY0/7pfMd1SZV3VkmGm+ks91hgB4iIvVG3e9ZZa0Kp2qHrDFE\nXNztYZSwVmePWCBdqvMcbpKlcnRV0Jseo4i9QsRGhTbIlxpGeAHKE4qhl5Rv6o7QHDqlsHco2psf\nPn8Hb0HZVXr4cRz7ET9/LxCdjB3Y/v0l4uTdgqjxiWZM+teHhJebzAwxJ0lynWR7fEVf46NEDRZx\nWxuivF101UmKt0Nyagoj9DMjFKIkIiKin/6WJizLkCNFuqJwn2lhhBeJ9CQjIj+blevjm5cgRFOp\naSLCWzmX/MEdRtHfMHQQ3n8BEiO8pz2hRInTnNnsNjVqnOomr/rMs65ypDYWggkeLn91oYVW+Zc3\n9dbVgoQH1VtW6irNTltgZRYRqVP6dZfnllCO/kMTVag2xP6KdZJ3ECtfIzketANIV2NZAuElJlqX\nldOnjVaiCwqC30O2gPAShxKTZsftMYjs9lmabob8XPYdVl8U0xArwjC3ZxojVfiOKld+RdEdgcH0\nOZI8psbaVrqvJIkap4f3WiC84fo0KZLqrY/lCcsiIjrpoVjgxZamh0qrieSTkSS/E6uLIkFHhERE\nkok3QdaFS8lrvW9sB/430EF42xzxeoT3kAfsY4KBYe+vpnCxv3rC+x71Cwdro09WAobp4yT7uMmT\nBujhi4SU5jtW2Ud+szVVrcHPJeuGNbr7VL7PFOqrm4PtYo1MSyPFuhwYVbyIjPkbRRFXZomNdcrD\n2mRVZSwovG5rt/EFBaQl06vp2voWUWfYEmdjETtv5eflcaN5dQYlTQgLl1eQk0z2/0dt9ZmSxfBA\nGzw299bDJKvFmiHJYfooUGytzT0w++hbj/BQj/BS5alUSKQnaTXy8zOt0mvz4vNoMrEmCG/tMvLa\nV9vaga8vvlGE99FHHzn88MN16dJFdna2Pffc02OPPdbq7e+//37RaLTRn6SkJG+//XbbTyqurj1Q\nmXJve9Mxjm92k3u86FbP+LNzHGPL64iu8R0rrDXTUu+aXmf2PM06u2yhUTXsKGp0eKuly3Jv2MH6\nXIebq1BUV5EJGSJJRF8jQ7UyRVYqkx6eS1n4e3WYoWor4S0sYEBe6+2/GkNGrSq0hmj5lpFnYzh4\nZNCV4f15jS+fXxqIdT4Qc7dkD3+F0V0teoRzhf9oQ1pznB7WqzRXI837QgwLhShzG1F09tTLigav\n5+hmgyCCS9FVlbXikR4kVeieU2l1SRIbZhNPmG+MJGm03308zuoFHRHeNxDfmDq8N954w6GHHioj\nI8PJJ58sJyfH448/7qSTTrJ06VIXXXRRq/d17LHH2mWXzW3ABg4c2K5zqx07f+BDlSpNbKJFEHxo\nlvPd7VyHO9fh7TpeQ2ynjwPs5OWwN94MS/SWb7Vyw5uxG2sM5eJmiCsSlytiOxHZIvYX9YqYrrq4\nzyQDrPJTR4YShZ0VdHpbv90pepX4j4qts0aN3jaEBQm1EV5BWIHeUklCQywsZOAWukh1qp03rCBW\nEdFvK9sCbt8rqBN8azYHN6LUnlfKoMy4PVWEEfOmicz1VTy3elPJxviu7Jbb/hKMRJwh2fEqTRcz\nshVj5LFh/dyH1hjWxP0zJCwgn2O53RsYLvTS20or6hWfd9Ld6rBUIUUXcdVickUjcT06V1s9qywo\nQShdQlatOUIkIMDHrg0iurPvDl4uXBoYRw/+iiqxO/Bfi28E4dXU1DjrrLMkJSV555137LjjjuCq\nq66y2267ueKKK5x44on69Wt5xBeJRBx77LHOOGNrFazG6yK8t7xjsCGGNlECUGSjk/3eaEP8yVlb\n6fgBTrVfHeElidY1YO2nGTuTBHwm5nrVnlZTr2Yuil1E6hJXy2VipMUKpEh2or094nXrxW23Hyv+\nSiy+1urIKvS2UqlMmWrlCOtCwuvaxuBmYUF9D8z2ICs1qLn7USfutGUCmMYQibDXUCY37rplbilH\nha4xtbNVNXH+tICr5lBWQ49UiqspizE2lztGsXvnLTuvw0Xl4lE1rmkF4XWVZogcUxQ6LTSLbohO\nMnWXa15Yc5mInnqpUlWv+Dxbnvk+QkB4UBVJk4YeeawuKBaPEymZv4nwIhHEeeSq4P8f3RW8Nvv9\n4P9he7b6PejA/wa+ESnN119/3fz585166ql1ZAc5OTmuuOIKFRUV7r///m12frVzeG97xyHNRHcX\n+D8Fij3oUqlbOZ31HfsZY6j+ujvOb20Izbw6aT6UqhZ3mSq7qvCpmGsle1+a2dJMluZuKUaJ6iNi\nqjSnSZKrvxdssF6FHzlUsSrl8lTuR9VqzCy2JhQ9LFcqCxvDlGYt4XVpK+EVMqCFiGzZcl5/m/kL\nG18ejQbOKi+HTbl36tu2c2gNxgzgk8WbisxrUVHDwlJ2yI4ok65YurIavvUJl87kh/1YcgArD2LD\nRP6zW7CPPSdx8/zN99cWpIk4OhSvtPo6dPNJI0YGiRgk38JGxC35YRnC6oRlObopCfe3ifCCx1f3\nrpRXVNpYgY0Jys94LExrhlgTzk/PmkTPIR198L6B+EYQ3ptvvikSiTj44IM3WzZx4kTw1ltvtWpf\n8XjcJ5984uabb/b73//eo48+au3atVtwdnExgZPIYovtae9G13reR/7hdbc522DNtAloJ5Iled9N\nFltjhiXKwjmb5urvqsV9W6U/qna9ZNOkuVSKcaK2E7W7qLMk+4dUb0izk6h9RZXItkqGG3xujKEG\n66m7nZXtlSaSTNKbG8SUShaxWIkskboIb31IeLltyE2UVbJ2oyZTkOuL+Pb36DuKA49hyGhOPYui\nRkzg+3cNDKgHdgva/GxtjO4XnOvSdfVfn1sazEYNyyJdRHY84oypvLiGZ8YENYe1ytWkCId254O9\nuGQwF8/kmjmbHapNOFGS6eJmtLImb7SuPlXYrHBlkPx6quBa5If2YasSor9seTYoFBNLILzgZujR\nLXiMrS7LpSyhti8eCyzEajF/SvB73scM3SP4e8a7PH1Tq66pA19/fCNSmnPmBN/27bbbPFWYn58v\nOzu7bp3W4Pbbb6/7Ox6Py8jIcPXVV/v5z3/ervOLh90SYCc7b7a8RJlz3OFQY5zpwPYdQ9wH1njW\nYp9Za60KuVKNkec0Q4zURYpkdzoPZIURZFkTYoW4uHNVeVbMU1Id2crC9DMluVvUEuP82xuuM8aJ\n9nab1fKyo3qOZf1bpZxLnmQLlci2KcLbUB2YKCc3MVT7ZFHQn26/4YwPP+4NoeqxMYJau469JrJq\nNX/5E/vuxVvvcelVFKzl+UdITviWnDaOD+YHritfBYaHY5k5q+oT9Ifrg7KInUNf0FsX8u+VPLEr\nRzYRqCRHuXH7IBq+fBa90zm7nc4wB4vKwHNqjGjFOHlnXW1QZaENBmu8S29/3X3cSF+8HiHhrbap\nJXyWruJiym2QIsjRVoX3Zrf8LGxQUJ5rcHlCwXusqr5mZVVoV7Z6IaP2D7ol/PHEYD5v3PFBXV4H\n/qfxjYjwisKhem5u4xPonTp1qlunOQwaNMif//xns2fPVlpaaunSpf75z3/Ky+QIuzMAACAASURB\nVMtz+eWXu+OOO9p+cnFhv2pSpTY6f3edRxQodqdz29wTLy7uSQvt7Cl7ec69ZksWsYMu0iX5i1lG\nedI53rNBVZ0YptY3s7iJZqAPqnGvGvdIaTXZQaqIy6VYI8sCGW4z3SkmKBezNp5juwlUvxUjViFT\njQU2yKZuDrC4elObnIZ4fx67/5arnuao2wPSIHBEgawGys6aGk76PmsKmPwqZ53J8O340Xd54p9B\nevMPt9Xf5sy9gt9n7dvqS24TBuQF00wLG2QDJ61nhxxyU1hQypWzuWAgx7Ui2L9sMD8ewPnTmLy+\n5fUbQ4aIg0Rb7a25c2gK/bl1Ta7TX3dLrBFrsM8sWTJkWFOP8IKorsTaOsKrVook3fMDZ6E1C9dQ\nkUB48Sp1AWZmJwoWU1XB+hV068fDvwr+T8/m7QdadV0d+HrjG0F4Wwv77ruv8847z5AhQ6SlpenV\nq5dTTz3Viy++KC0tzTXXXCMWa70NUy1qI7xhhktuEHTPt9LNnvILJxrUxlTmIiUmesnxXtdThldM\ntMLJnnGwe433tIMsc7LbjfMv8xzoPwpDE6/eYd+8JTZvoLlO3AWqnCLJd9uRJDhK1D7xqEj1vl63\n2s4GGSBPZaSnqn2oWomFBWJKLFIiW0St41ZJTeN1aGWVnPHXwPlk1c3kd+KscFq2NHSXym5AeH/9\nJ6++yaP3MayBtuLACfzoTG6+k9IGjlWxe/jOHo1fW3FxkCJt75xZWgp5WaxsMP56qzDwBI3H+cEX\ngTjlulZ2aYhEuGVEIGI59bNN7YXaisMlmSSmqBVF6L1k6CzVdE0zbF/dVKpW0KB8ISIiTzeFNhWS\n1xJeqfWiUkWlq44Uo5O8MKVZsKaMyoQ3rqacaJjnrQytCz5/NUhzDtuTKc+z//fY8UCmtW5KowNf\nb3wjCK82smsqiisuLm4y+msNRo4cafz48dauXWvGjBb63TeCmIDwRhq52bJf+aduOrm0hdq8hnjK\nIjt7ykxFnnewlx3qIH0kNfjI0yQ530hvO8ICJY7zmioxnaTqJcOsRroZ/1G1ctzSTuFMmoicT1PV\nvJLj0+osERFH2VNUviWhcC7y7holCi2yUScUhw/ZjTX1O5jX4pGPgrm1+75L9xwuOJD35lFaEfxA\nZoL+Zt16rriWM04OyK0xXPKTYL2/hoP/L5aScz7vNMh+x+M8/QKj9yV3AF0GMnAnfnsTFU04WzWH\n7jmsSajHXlYe9ADcP4+XC3ijMFBf5rRhrJES5f6dWFrO1bPbfk4EbYNq8HororyIiJE6N0t4fcIo\ncKmCzZZ1a0B4mWFUVxruL0WuKkVEOklLq9QpLWjwqyIhoqwpIy1Mp1ZXkdWZSY/SdwSZuUHEN3Jf\nho1j3kdByN+B/2l8Iwivdu6usXm6VatWKSkpaXR+ry3o1i2QT2/cuHlE1NQ59ezZ05hf3+B3J7H6\naCoeqv+F+8JCD3rLNb4jU+s8rOLirjfVcV5zoF4+d6zDtVxuMVqeJx3gfav9zGQwShdT1RfklIj7\ns2rnSW63Q388zgsrI8QjlpflW6fCIUarkmp112zZo/BOkbVWW6VMtrj1tYRXvakRaiLue4+DRjCi\nd/D/vsOormHSvE0RXkYCP9/1VzaWcsPVTZ/noAEcOZFHw3ZeM1YEv9+cVf9aLv4lx55K9278/U4e\n+RsTD+TXv2fs/ize3DKyWXTNCoQrtfgw5IxxnbloRhDpHdaOkohh2Vw9lFsWMrMZk+qmMEjUUJG6\nxrMtYYTOZrSC8JY1oubsKk9BPcILBqS1zYGTdVKtGLlEq3TLYk0xChNqOqpLSU+oyUhJ5/NX2O0Y\nPnic5BRG7MOAnSjbwLqw2L1XLz76iOrG568feuihujY3Y8aM0bNnzy1+fnTg/w++EYQ3YcIE8Xjc\nyy+/vNmyF198Eey3337t3n8sFjNlSqAAGzCgdR3B58yZY+XKlaZcfZkfPkbKM3znlPrdEW7wmP66\n+56DWnce4n5qsitMcbVd/NsBOmu9Jcl4Pf3JHv5shtctt6ce3re6znkFHlejCOdvQXftSITv10r6\ns7q62McOsasc6Wr00XVvIu+ViYe1gMmq6x6b5TEyGhx6YQFvz+aMvTa9Nqp3ECm9MTOB8MIIr7KS\nP9/L6SfRq4Us8UET+PCTIK1Za0C9LoGMrruJW+7k9ht5+QnOPIVvHxcIYD5+nZKNTDiSpY3bRjaK\nzFTKEqZO319PfmpAfDNKgvRkewvKLxoU9Am8fFbL6zaG/UW91cp5vOFyzVZU7/5JRA+dRUWtaGSe\nr4uu1ie8nhEKX8rD2dyA8DYQ6URyXF4mhUWIr9zU9LV6A6mdSQ0Hi6vmsW4FQ8byxt/Y4wRy8sgN\nVT/F4Qd88cXMm8e//tXoeZ9yyimeeeYZzzzzjClTpli5cmWbRG8d2Hb4RhDegQceaPDgwR588MF6\nLSmKior87ne/k5aW5vTTT697feXKlWbNmqW4uP7cwiefbO7sW1NT47LLLjNnzhwHHHCA/Py21vbE\nVYQPr6yEtj7zrfSwd1zqeCmtmCeLi/ux991uurvt5Rq7tlngAucaYV89neU9Y+RZo9z8BL/DJ9XY\nS9SALbx1/roTXxweI5riPuU+t96BdhTTTZfxEbEZNaxdH15bpXW1FmOxoB9cIp76NPDJPC7BUjQS\n4YDteW3mJvKojfD+/TQrVnLh2S2f54S9A4KcPIXZoQim9vekyfz6Rq76Oef/aPNtd9qBt54LMmUn\nfpeqxvU/myE9hfKEdV8pYGJ3/rAgiO7GbkEheXoSvx3GU6vaJ2DZT9Q0cWtaMY83XK4S1VZovAlr\nsiQ95Fph87KeLrrUI7wUaVKkKQtT7MlywggvRzyFrpkUFiMS3+SpWVVMSg4ZYVrz9b8FN0b/HVk2\nk5FhLjs37BlVFIpkRo/myCNpjwitA//V+EYQXlJSknvvvVcsFrPvvvs6++yzXXLJJXbZZRdz5851\n/fXX699/k177F7/4hREjRnjqqafq7Wfs2LF22WUXZ5xxhssvv9zZZ59t1KhR/vjHP+rfv7977rmn\nXedXO15OSSjyvsNzusj2A4e0ah+/8LG7zXSv8c7W/i7OURH/Zy+LlHhDkMOrnceLiXtbzMFb6bbZ\nQdRIEZ30cZ73HWisuFxr9wqJ+sOV4XErrBOQemWM9AaHf2t20JeuYeeCvYcyZVEgaGFThPfgv9l7\nD0aNaPkcR25PZiafTA1IlcBiLB7nx5cydjS/vKTp7fv347G/M+UzfvvHlo9HfcFLTTyI6tZVBQR1\nzVbInJ3Sm+FZXN+EZ2dzGB9+9pNaEeUNFdRQzGvGUzNfZ6sbmSfuJFdRg9fT5SgLB19JstUoEYl0\nIjVZXjbranm1OGwdX7GW1K6kJGQ5zvtbUJZQU82I8cFrOWGNyYaE1Orw4WzY3Ni6A19vfCMIjyBl\n+e677xo/frxHH33U3XffrWfPnh555BH/j73zDo+q6rr4705ND+kJCTWh914VBAQVFBVFULBgQey9\n8FpeG3bFjgWxgKBYAUWkN6VD6D2EkEZ6nUy93x/nTmaSTI34gnyznidPJjO3zczNWWfvs/daDzzw\nQJ1tJUly6cb7yCOPEBERwYoVK3j77beZP38+ISEhPPPMM6SnpzdOS1MGi3IqtRLJ1WDiC1ZyCyMI\n9iEl+S77eI09zKQfU/CxdM8D2tOE22jLVxxFg8QWxczzADIlwAVn8LYZgIoYmrGNQk4SAUjkt45G\nHQvSX3lokLFQgxmoRLgl6JxOb7OJdOYQF8bVceFiHa9QWa8K0ooKyj9Wi7SjL1CroWsn2LkbohSV\ntaaR8POvsGsPvPpf0Hqp3enXGx69F16ZCScamnw3gNUmvPYAtpWB0Qa7yiE1BIadgf4/lSRaFX7J\nh/1+junNUZGCxAYfCK814UjgUUQ6nibku0hpRhBBeT3C0xOKUaka1hAmUpqEg05FdBgU1QDBTR2E\nZyoShKfRwej74e29cNHNkL4MopOhmSJYqgsWpFjhWRkmgH8//l80ntvRu3dvfv31V6/bzZkzhzlz\n5jR4/rXXXvsnLsspwhMj5w9spJgKbmeU131/5xQPsoWH6cz9uFAcbiSepjuzOYwFuTYltVe50p5n\nkPBuQM1srKhphgYdyUSTJyUS1K+Qqs1FqKmhQlnLK0HGLEtonOYih/JEgccFLiIfe6N5XpmIziRJ\nVFNaLDDuct+vsUtHEaENmST+bhkLzz8nqjuHuBbGaYDpD8Gcb0QKdI6XTFmNxSFU/exhoZySVQMz\n2p4ZMWiAG5JFL997mfBRZ//2HYiKTT4QXhAakgghA/cVMvFEkuWiSjOcCCrqWQfpCcWk3AtqQrFS\nDVI4qG1EhUOJRYLwNKjMEMavphIIUqp7tEGC4GRZFKz0Gu34MCUJwqKhupFNigH8a/D/JsI7l2Ef\nOuwR3tes5gI61VqouMNxypnIGi4lhVfpfUavKZlQrqOu8sQJZJoAUX/TH88ZF9jURJxSYbXE8Tnz\nGEkPrMQT1x/YXIXRVky+UrJSBFhk0Dqd/q/jYrzq68I+MEJJceaVO1oSfv4VBvaF5Ka+X2NCHBQW\niaZzw0cwOF5Ed76sAdoRFiaivHkLISfX87blBogMFg3mfxRC8yCI0MC9LX0/nzfoVHB7M5ibLdRr\n/EEfJHZgw+LDOl4Lwsj0QHgxhFPkIgIMJxwjRsxOwgc6QjDWJzzCQG0lKkZPiRQCIc2h+iSUKGv1\nkV1E+lKtzO1PnxCamr2vqHvC0CZQFSC88x0BwjvrcBjASqgopoKVpHMdF3jcy4iVa1lNNHrmcmGD\n/rozgfuVvsDjlLOJ0xQBMX6QnSxDTo1Ix2UZXDdjby6F8t16yGhNPmnsIBYIQt9PBaU2OHySk0oE\nUISMxSYiHju2nYAOSU7WPU6IVJ7LLRPrdzYbrPsTRgz1+S0AEBEOZeWg04i06NxvITpKtB74g1sn\ngV4Pn3jRKS+tFte+vUwIhRhsMCLmzBu/3t5MNKF/09CSziP6oKIaOOgT4YV6IbwIilyYwIYp63/O\nUZ6OYMxKtkFNiBLhhYHKRFSQkaqqKky6ZKg6CYUbQaWHqG5CTUWjzHiylIKWZvWyISGRUOVeFSaA\n8wP/r1Ka5yrsEZ4GDYvYjBUbVzPQ4z5PsZ09lLCJMX61HviDPsTxOyO5hD9YyRIeYrJPzQg1VqH1\n+EmW8GezIyUIbk6B+1s6/Oz6NYHZw0zcqtcCLTlGKSBxum8ToBg2Z5DfXkQAxYrQtsqJ8PbnQGc3\n0ZqdBHNLhcrK3v1CO3PoYH8+BQgKAqNS+GKxwOdz4fYbQeenJ19kJEy4Gr74Bp593H16Mr8cEiOF\nAHSEBvKM8PA/IPOYEgwj4+DrbP80Nrsrk6ud2OjsZaLVjDC2eXBNiCKMEheEGKrYUlVRRbRiQqwl\nCJOiBKQmGCs1QChIptr11RJLLAmGbDj6CcRfAGo9VJdBiFLaum8txKRAXL32oZBIqHa/1vhvx8kD\nKFOIf+bY/xYECO+sQ65t41Wh4if+YgDtSfLgNL6OPN5kL6/Rh5403tXUhMwqbKzBxlFsWIEWSAxH\nzWWoUCNxWEk3yUA1FvAS4R2pgjHbBNFNToY32wvR4nyjUPZ/OwM+PgmzOsPViULg+OYgLS9hwcBF\n5LKQEOIoj4xFalOCvD0H201m1MgUIaJE5yvYnyuEol3BntLMKRMuB6s3CJLq18u/z0mnFa0JALv3\nicKXyy/x7xh2XH8NfPYVbNsJfVz4j1YZhfZnQoSI6J5oDXsrYWBU487nDZObwg3pIn3aykf3h0gk\nWiOxExuTvWybQginqKpj5uqMKMIwYsaAsU6BVohCeNVO0nZa9JgVwlMRhA0DSCEgWWiidPSUhF5E\ngj5OFK60vllEdyaDSFkC7Fsj2hHqzzaCI6Dy77ienNuYMQk3Et5/H/+maUKA8M4BOJb/Jdawh8cY\n53bbaizcygYGkcBD+FltoKACmZlYeB8Lp4GmQEdUaIHF2HgHK6lIzEJLLxxlgbGoKfegsnGoEgb9\nBXE62H0BdAir+/rlCfBMG5i2F8btEFqQ01NBJUnMQMcEzCQSRRB9OE02Nb0PI28XvVFhyBQpKTT7\nUFVaLSS42rlpHg8PEtFgUaWIAlevF+t3wS7Sn95gHx9/Ww7h4dDXT9K044IBIkX6+0rXhJepBEPN\nlfnOk679U88YrkiAYBUszIXHUn3frysSe3xIaTYlhBqslGAi2kUmIlLRbC2nug7hBStu7jUKwQFo\n0FOjRIMq9NgwgbJdlDKal1VboP8cOPQuNL9WuJuDqMqsKIaMHTDqroYXGhzu8Ms7DzF9rm9tOI3B\nvgNw1aR/5thnGgHCOwdgX8M7TB7lVDPEA5G9yC6yqGIJF6NqRPHId1i4HzPFwG2omYqGLkh1Zt/b\nsfEoZi7GxFvEsIerCEbNH6gowIoNucG5y8xwxXaI18OG/hDtJt2XoIcfesLzR+Gpw4K8pqcJwgW4\nmC4soBQzetS91fBzCVgsBGustYRnh90Noa2bXn+VSlRqFldBZAhs2iZSkf7CYnFYBP3yG1wyXKzF\nNQYajajuXLYSnn604ev299Tmf+RNGqaBy+KF1ZA/hNcZFZ+5sY5yRpJCaLlUuyS8COX1MqpJwBHG\n2gnP4NS0rkGHVSliUaHDhhGJYGSgiZKvK83PhX5XQlMlBD++UvyOawFHt4gUQScX4qnB4VDTCL21\nfwmad4A2LiZYZwL/pm7FQNHK2YbsiPC2kYEeLX3c9NIdpow32MsTdKEd/oldVyFzEyauw8xAVBxB\nzwfo6IqqQaqpFypWouNxNDyEmZWEk0oELZGwIqo16+O5I6JAZVEv92RnhyTBs23guTaiNP7LU9AW\niaan1SzLS8aMDIQLeX+DDQ5kosVMkbKv/ezHFCWotHj354pRoswgm/C869yIWa5NFuR5MkukIq8a\n7f8xnDFiiFBuMbgQINmTrbRT6MV56+NUMRzIgcqahq81FlcmwNYyyPXjmJ2QyINajVN3SFSIK8+N\n2kq48no5dS0p9Ao5Gp0iPDUaLIjcsgodMhZkSWxnJ7ySl+o1WOYfF19ebHMozBKP66/fAQSFQ82/\naegOoDEIEN45APuQsZ0M+tEOvRsXgofZQjIhPE5Xv46fhY3BGPkeK1+h5Qf0NPfy1UtIvIKWh9Dw\nMGbWYqW3ss/Wej1Yx6rg/Ux4IhXSQn2/rqfThKbm1L3wUYZEzutaTr8RBObmhJGA3CNahIDbjyFT\nQwkyaskxQTheIISWIz2sPSUqqS5Z6WHu0tCQwmccUFwGBvRt/DFApEMtFtizv+Fr2zOhWzNIWgXP\nKOez2WDeJuj4NDR7DDo+A1H3w9j3hYPD38UlcWIg+K3A66a1aKfcC4e8EF68QmgFuGbTMOX1qnqv\n6xTCc25LUKGpXfGWlPIpWflfCQsR6esyM6INwY6cQxDfCrQ64YMXEe9oUXBGUCjU+Cb8HsC/FwHC\nOwdgXxXbQQYXuGkeX0suS8jiFXoT7Ecm+iA2BmKiGPgLPZP9zGK/ioYBqJiKmXBEUcv2eoPcGxmi\n6vJBF71wniBJ8GEn4eL94AbgZwkWS+iyuxJGSzTh0UhtJdieiZEqihA3rFU5/fECaOWlZidRCYQN\nhUIRpY0fabva60ToYR46KlKSyUn+H8MZnTuIQCN9b8PXdmRCnJLO/DgLzBaY9Jn4aZcIP0yD9Y/D\nW+NFhWqvF2DOhr93PbE66B8Fv532vq0dbZWswCEvDehhaAhCTb6bCC9McQFpSHgiTWDE4a+kQo1V\nSaNKyn0sK8Qn6fRE6qHUDOQ6CTlnpkNTRWqvJBeauFnwDQo7r1OaAQgE1vDOAciImWohFXSjIWvI\nyDzBNvoQy3gXr7vDAWxchJFYJJahJ7kRa34apXilB0ZmYKE9EoedBjmLTaz/3Jzs2rbHG/Rq+LYH\ntBKaZaCCJrFB5BNGImnkd9+OnJ5NDUZKkImTRPM5wMli4RDuCU2V4ryyPOjU3rsMmCtERIgqzaXL\nhQZnY47hjKAgaJ4CR4/Xfb6oUryn59pAUgSMjIHrP4VF6fDdnXCtk7bA4DYwdQjc+w1M+QKMFrhz\naOOvaWSsqKC1ynX7HN0hFIkk4JiXCE+YueopxrUxoL1QxaCkKu1QK0RmdSqSkpCcnBek2i3Fr2Ai\n9UYR4eUcEp53Zadh72qYotjWVxY7dDPrQxcCFlPdJvUAzjsEIryzDtF4Litl2G1p2FS2ghw2UcDz\nfjggZGBjOEbikFjdSLKzoxMq7kfDu1hIQGILNmWdDdaXQKEJxv+NqKdlCJwcDuOnAVdBRahGmbnH\nENw9DNLzqZArKUBGqwKzwre5ZQ5Cc4dQZT0x76TQxGwMgpX2ht9XwsiLGneM+khtBcdO1H1ul+Kb\n178lvNsJ1q2HH3fAd1Prkp0dOg3MmizMbu+aB7/ubvz1DI+BMgvsdO2R7BKpqDjqQ6VmDHqK3BBe\nkJKSrK73ukaZizunNCVU2BcAav8PJDvhaYgMUiK8bEVLc8MCEUoPUmy3Kksg1E1/R5CSizdWu349\ngPMCAcI7B2DDQXhtXBDeS6TTh1hGeZEas6MYmUswEYLECvTEnQEpsPvRYAKOI5OLaF8AWFcMMVpR\nX/J30CwYLowDJDAUq4FYcqnhme4vQrkJTmRQBKglGbMyxp4uh3gv3bTtEgEZMjOgexfX29RUw5bf\nYdMSqHQx4P+5xfF4jHd5U5+Q0lRYFDlj7SGIChEVmmsOwuvL4LVrYGwP18cAkRZ++zq4rAvc/LnQ\nDW0M+jYRLhTr/RAbaYXksoCpPpqgp7ReBGeHfb3aVK/iU6UMTc5eeuKxVO95e1pBEF65GZG6BNi5\nFDoOdUR1xioIrtcrU3shAcL7/4AA4Z0DkAEboSTSpIGz+VYKWEseT9LVp+jOjMw4TBQh8zu6RruS\n10cKEg+hYTtWmlDJB8rMe1uZILszIWo8rQVcEC2j2qNFIycQTBQ7uimNabtEhYdNJRwTbDbhghDv\npZt28gD46TYwGaF1y4avb18Bk1rB9EvhqcvhpjQ4sLnuNgeV4pH+faDLGdLnjo+F0/U0k5fshku7\niPd225fCtf3Bi70fS6WCz28WRRt3u/Ys9QqdSqjerPej97oFEpk+iEhHoqXMDeGpUKFB3YDwXEOu\nJUJH6ZLytyQIr8yqEpFcTRUcXC/czFfOFqlNsxE0bvpJ9Erlk8n1WmMA5wcChHfWIddGeK1oWF//\nHvtpSRhX4Jv202OY2YCNH9GRdoa/3gmoMSBRisQBZcDJMkBrHxU6vEElwYMtJWzVKnSm5qTShW8T\ntxIcHw67hH6RVSXsckqrRdl+rIsJe9YpOK1UHEoStFWyWLH1xGs2/QpPjoLUbjB7P3x5BFLawuMX\nQ7ESfdls8OdW8Xjy+DPnVhAdJWTO7Cipgp0nYVQn+HANHC+ED24QZOYL4iPgnYkiBbqykVJPg6Jg\nY4lrzVNXaIFEDtSmt90hAh3luHe/1aLBVO91qUEkBzasSlrToU/knNqMDIIygw1OHILVcwTpLX4T\nProNPpkGVjNo3CzA6hQ1AlMgwjufESC8cwCyBDIhDQivAAPfksFddPBJHPpHrMzEyltoudAn1Uv/\n0BkVV6ICQrlXSUVVWoXe45lCjLLmVm2OYC8awqQ4bN3CIP0oABaVjNEmmskBYuq1Qew/CF0HC1Pr\nmR+J5/IV8ktw+nhPHYGXJkC/MTBjKbToAMlp8MJiQILv3xLb7UgHu/H9vkNn7n0663OCIDuA1Dh4\n9he440Lo7FsGuxbX9YEBqfD4976TljP6NYHTJjjpYz9eMhIykOeF8MLQUOWB8FRI2Oodw16sona6\njy2YUCv3nVBZUaGy7yZLROiVlGZxliA6AJUaht8KRVnKh+JmxmInPGMgwjufESC8cwCiSjOElvUI\nbx7HkYFb8G5znYWNWzExDhX3nCGyq7SAoZ6S2OtouRE1dytFBdXWxlVnukO0MgEPrVIRRFva0A9j\nlyDYcwo1VswqcU12wotyIjyjEUZfB82S4eKh8MLrIkLLV8rt45UWBlmG9++FyFiYPk+YvNoREQ1X\n3guLPoTKUli7ETFGJsBfOx3bmU3w+xx46Xr479WCIA1+VLU763MCLN0rpNDWHoZqEzw/1vdj2SFJ\nMOMq0cu3JN3//fsqBUDbfHTJaaqQR7aX7ULRUOUhZalGhbVeatQV4VkxOxGeERU6sBOpLBGuhwoz\nUJkrbIBAGL72HC3W5soLQHaTgtUpSwmBCO+8RoDwzgEY0AC6BoQ3l6OMoRmx9db16kNG5lbMhAKf\novO5krPBdViF6smYrRC9HML/gJBl0GIV3LUXDlZCGiq+REeEcg69Cmq8LOMUVcJ/f4HeL0DSw9D+\nKZgyBzYda7htxzDo3wSkw1rC5FhUREDncMgoQVNVjEktY7BBqTIRb+KUTv1xsXAU/+ZTeGCaSBke\nOATZucKPLlwpcNn4M2xbBne947qGYcxUkQ3bsVK0ISAD+TBSUaTKz4RpPeGNKXA6E6rKYPZ0mNIB\nDm5peDxXsFgdcmVGM3z5J1zSBV77XUR33tYm3WFoexiYCq8t83/fRL342eWj4Eiicg+c9hLhBaOh\nxoMGqxCWrgt7daa9Hw/AhAGd0qhupQo1IWDv37PYiNAphNf6MrjqSfH82MeEMDSAzSLSmq5Qm9I8\ngxI2AZxzCDScnCVMmDABjUbDxMRIqm8S/9TxTnJhhyhjO0VMp5vXY83GynJsLEXXKHNWqywcDJ47\nIlJaF0bDgy3F2pxVhvQKmJ8Dn2bBk6nw3zYOi55wDZR7qDdYkg43zhb9eld0gyu6Q2EF/LoH5mwU\nRSXvX++w8lFJQlR6xBYVqvJwKiNVgvBkGfbvpiY8GbMVyhTCi3QSgv7oc7joAujcEVpVCUJZ/xec\nyhFVkZIkDjP/Zeh+EQy8ouH1AsQ3g9hkOLQVbrsaenYTqigP3AElp+H+uuKHzAAAIABJREFUQcJe\n7eNdYv0PIDcDZlwPj4+EN9dAWnfPn7nJJKI8EOtuBRWwsAi0JnjGDzd2V3hoJFzzkUiT9vDD9geg\ne4TwL/QF9o62fC+EF4TaI+EBDSZpJqXIxZnwzNQQrGj+W6lGTSjYJcksVsK1UGED2l4Fx76D9oOg\naVsoVRZkJZV7QrMXs7gjRDeYP38+8+fPx2Lx00U3gLOCAOGdJSxYsICIiAj47G1+4ScApwo0+J4M\nwtBwGSkej1OAzGOYuQk1lzQilXm0CianCyPWG5PhqTTX8mAz2sIrxwUpZhlgdldBTgk69xqMP+2A\na2fBmK7wyY11o5aZNvjiT3jwW0jPgt8fgCQlpdZP+V1eEYI+UlNru2DctwfDoFGYrGrKFcILV4Lf\nI8cEuS2YLf4ODYVunYVmZVm5aPQG2L1OENmM3zx/Lq27Cp8vSYIPXofDxyAuFp4YCRYzvL9ZkKId\nSa3glWXw0BB4ZRJ8tEOoWblDRaWIOgFWHIDoGKgoghEdGh/d2TG2u+hP/Gy9KHzxB13D4Tsvjux2\naJCIhgai3vWhQ4XRA+FZsdW598Ghoal3Epw2UkUTRMOnhXI0hCPbNeNMBsK1It4zV+Sj3bMCpik3\ng6QcW6NzX4VpN4g1u+4XdIeJEycyceJEysvLiYz8m705AfzjCKQ0zwE4G8DasYQsRpFCkJc5yRNK\njdzrbvQ3PWFxPvTcCAUmWN8fvujmXgtTrxaCz3O7wZfZ8KRSwNE+DA66kCA8dhpu+hyu7gnfT2s4\niKtUMGUw/PkEFFXBJTNF5SUIBf/mwTJUqCgglpfCbiWsZSzsO0iZ2ka1VXjGhehArdzBf6wSCijO\nfXK9uwux5+MnoLWiF/zTO9CqC/Tx4meX2AryMsTj/n3gxgmwci7sXAVPLahLdnaERsBjX8DJg/Dd\n656PX1gEcTEi4lx3GIqLwFwG/3UTdfoDjRpuGij0N2v8C1joEAYnDFDlY8ASjYS3TgYNKiweSNGM\nFW29yVqV4oNn98UDMFBOkGJjaqIYHTEgFwF6MJYRpgSJlbm7Bcn1V2y27Ot2QWHeCc/iun0igPMD\nAcI7B2BTat3tljuF1LCZAkZ7ie52YuNzrLyI1u/m8o8yYex2GBEDOwbBIPd+s3VwfTK82QFeOy4i\ngS7hcKhKEe11wt3zIC4cPrtJDMDu0CkZ/ngQsoqFXqS9urBvpISuQAVyPBMYhbGzHvYepkotU2UV\nbgGhTi1Vq9YLY9dQJ8Ie2A/2HhCala1biqbyzb/ByJu8txfEN4eCLFj4MyxfLZrTv3gGBl8l0qHu\nkNpNFL18+xoYPGgR5xeIiLGoEo4qRTW3XQB9z5Cz+c0DRdr3Nz/VV+wehod81FGOQggdeIIaCYub\nfj0ZGTMWtPUmdg7CcyzSVlNWm9I0UYiWaJALgBgk2UK48p1WmAuhVQ8IqTfLUmvcE1ot4fkX4QXw\n70KA8M4BOFpoxdexghxkYJQXwnscM+2QmOpnKvPN43DXPrivJXzfEyL8DA4faAlXJ8B9+yC/iQWr\nLNzM7dibDcv2wYtXOtbmPKFjU/jqViGN9cFqxzlMlWoojOd2NmLulAD7jmNWS5hlqDSJCA9EJeba\njTB0cN3jThwnzFYB2qXB+h/EeHfRBO/XFBoJ1RUw/mYYeTUs/QyKc+EOL5EbwLgHwFABKz00gZ84\nCS2aQayTUswsb/bhfqBtInRNgR92+LmfMmE44iPhRSJ59UPzNLcwKsUpwdTN/5YjUpURTuvalRQS\npqwcGskliKYgZ4JFzNbCFC6rKs0WhGdHiJIjL852KKrUh70/z+JnSBzAvwoBwjvrsNXWqNkjvJXk\n0JEmNMV9R/dapVBlBlo0fkR3H2XCIwdF8cnbHRzFJ/5AkoTWY6VV5plcGSJsLHZS2n9/lVhDusYP\nV/Ax3WDaUHjyB8gthQFRoFXLUBHGKvKgfUfIOo1sFCNxmRGClTFq/0EoKoYhg+oeU6uFeZ+Ix726\nw6p50H2Y63RkfQSHgc2q/IPIsOgT6DcamvrgtpDQAvqPgSWz3G9z4iS0bCYeb38aDrzgSM+eKYzr\nBYvTRRWor4jSitaQYz5W50cA5V4iPE+v2kWj6xNemUJ4kQrhGanGSDURSiVzDdkE0RRZzkAyagEN\nYSoxu6o4dUw0YtoRpigPVJYIo1dXkCTPEWAAjca2bdu455576Ny5M2FhYbRo0YLrrruOI0eOeN/5\nDCNAeOcAHKqAIlLbTAGD8Wx5/RIWuiFxlR9f4eJ8uHsf3N8SXmr791RDkoPgjmYS6kwNicEy+5Ue\nNFmGn3fC9f1A62dJ1EtXQZAWHl0oiLhlCFCtYRw9ob2iTn1C/JNUmcS2AH9tFWuCA/o0POaYS8Ba\nBNGRomBl8FUNt/GGKAtk7YMxd/q+z7Ab4OhOKHDhV1dSKgg6TUlf9mzheHtnEmO7Q0UNrPdzXGkV\nLNbxfEEIEt6CQSsyajeTskrFNshuBGtHMUXo0demNEuUbr9okrFQgYkCguWWYNsNBUUQ1JkwizhW\nldEiDF/tiIx33OyRHtyC1Vq/qzQD8I5XX32Vn376iREjRvDuu+8ydepU1q1bR8+ePdm/34Up5D+I\nAOGdA7A5RXiVmNlHKX1wb/S2DRvLsTEdjc89d3vKYeIuGJsAb3U4MxJZT6aKAS8vX83OcqiwiLW4\n/HK40HuvfANEhQrSm7dZeL11CQVtlcRBUqCdIqqdIYQtDWbhFgCw76Agj1A32SqVCvZuEM4vPYb7\ndi32zNbMV+DaXtC8A/Qe6ft76TlCfMbblzd87YjSf9gYbz5/0DUFkiJFetkfNA+Gkz4SXjBg8BLh\nmbGhdTPU2J3Ow+tlMwopIIbY2vu7ECFFE00zqhAMHiqHAGVIOSeh3e2EKfdDpYW6NkBaPUQqE8ho\nD+G9RhdIaf4DePjhh8nMzGTmzJlMmTKF6dOns379esxmM6+88sr/9FoChHfW4VALVKEinWJsyPT2\nQHjvYqEVEuN8XLsrN8O4HZAaIqosG5PGdIU4Pcx2yhyVmeFwvnjcsaHpg0+4eRA0i4YXl0DvCAmp\nRMU+UwhENYX4MDgmykOrLQ7C238IOrbzfNwdyyGmKTTzsp0dhkrRVnDXbVB8CHqP8m+SEBkDqd1h\nz/qGr+3aI9Rd2rogPFmGiorGSYPVhyTBxR3919ZsFgxZPvZf68GNl7kDJmzo3NyrpUp8GFmP8PLJ\nI8Epy1FABhIqYmhGOemARIj1KMhqKAGaNCe0WVtAyN0RUq9FwG7/45HwtIGU5j+A/v37o9HUTfek\npaXRuXNnDhxopPBrIxEgvHMIdsLToqIjro3eCpH5FivTULtNE9XHvfsh1ygKVELPcOfltUnwSjth\nIJoSLKoOwbWosy/QaWD6ZbBgK4wIVm7QLA0xxEG7JDgm/kFMFtAod++hI9ChrefjblkqWhF8Ja2S\nfGiSINwUSvJhuJ/9bABte8OR7Q2fX7sRenSFmWscrRiZJ2HqAxDTGiKai9/THhJC2H8HQ9oJn71S\nPxSzmurF/eILtOClpRwMWAhxQ3hFSslLLHUrKrM5RTLNav/O5SBxtEKLnmL+JJxOaKzfg/oypIi+\nsG4sIT1FXrjKQkORaJtylXEt3F9oIKX5P0V+fj6xse4n9v8EAoR3tiHLTlWaErsppj2RbmfEX2JB\nAm7xUTPgh1z4Khs+6ARt3KT8fIXNJlT9q+oNho+nwrK+4rFdAcWX6kx3uHGAaCj/ZYsgUnWhimG0\nF+Z2R0SEV2MVRR7V1XDyFLTzkEItK4LM/b6nMwFK8iAqAVZ8LdKZbf0owLEjrQec2Cd0N+2QZVj3\nJ6R1hKd/hjkbRNtDz6Hwy1K4+zaY+zHcdSv8sBi6Xwjr//T/3HYMaSvOufGo7/sk6aHELD5jb9Ag\neTX2qcZCsJv7tUApTommbjHJSTJp5uQQks1+mtIeGZki1hAl9wXbViT1SLh4A8RdgCrFQIhapNZR\n1fv/sRNerAfpmQDh/c8wd+5csrOzmTDBh5LpM4gA4Z0DcFRpqjhEGe1xr9jwDVZGoyLWh+iu1Az3\n7BfrdpP9VN63o9oIn6yF4W9A+D0QfT+E3Q2pTzoqKp0RrBTbmf6G0lKIHib3F0oh8RoJySzRjVjU\n7ZLgaAbIMjVWkZo9pjSHt/HQv3Zir/jtTe7LGQWnhMTY0Z3Q6+LGrXkmtxHjbEGW07WcFFJno4dB\nxfvQRgVjJkCfnrB/E7zwH7hhPLz4lFCE6dYZLh0POxvpZt46TvRDbj7u+z6xyndYdIbG/nLMROJa\ndiaXYuKIrNOHZ8XKMY6Spoimy8gcZyut6EUZO6jmKInSeFANQrbOQ5Y0kDAMqjMI1QhBcywm2HgD\nLOsPWT9CC0UDromHYjCNViz0BvCP4uDBg9xzzz0MGjSIG2+88X967oC02DkAxxqeRCaV9CPO5XaH\nsbEDmSd9VFX5zyGossL7Hf0fsG02QTj/+Uk4E1zcEZ4bCy1iwGCCTcfhozXi54Mb4Ib+Yr8IReqr\nzADxbi5zzz74cYkY/ONi4JIRoofO2ftt2lDRk5eXCXIUbMSG1LY1VFZDWQ5GWzKSWvAfOCoeXSFj\nj1iPS/ajkKbwFGgSIe8EJLT0fT9n2NsfinIc7QzrlGht8s/wVxu4YYrQ//xlHujreZNGNYHF82Ho\n5XD5RNi9Qfjo+QNJgj4tYesJP65b4aZCk6jG9QQPhju1KMNEpJt7Nodikomp81wmJzBhoh3tATjN\ncSoopDV9yWE+OuKIZTiS1orNOBrZPA0pfCgYCwjVSlRZZKjOgcxvQNJA5rdw/zzIO+r5H+E8jvAO\nHIZ/wDHMcWwfcfr0aUaPHk1UVBQLFy5EOlMGkz4iQHjnFCRyMZDkpv/uF6wEA5f5EJjvr4BZJ+H1\n9mJtzR/kl8Hk2bB8v0gv/vcKaFWPg28cKBrL75svFFIqamDqEDikTJBzyxrKiZlMcM9j8OmXYuBu\nkwp/ZMPr7wn5rs/egU4dxLadkqFTU0E4Nr3EUpsN0sYAr0DBUYy2ZFCLCC80VKiWuMORHdCik3vv\nT1dIaCkqO00G6DzI6+YuEaGM4xVORq9Ll0ObttBrINz7IDSJFPqf9cnOjtBQ+HkudBoAjz0Ln73r\n/3X0agGfuiiecYco5XMq9WHstyJ7HUSKMJLs5p7OIJ/m9SZ46ewCoCOdlb9/Q42W1nRhE5NJ4WZU\naMT6nfZ1ZPOjyOEDkYBQvYoqixWqFYPB2H5QfkiorrTu6flC1edvhDfpds7MaG+aL36cYdcz9YLy\n8nJGjRpFeXk5GzZsIDEx8QxckH8IEN45hGqs1GAlAdcMtRQbw1AR4kM68/FDoo/tbg9r9K6wOwvG\nvCdSkssehJGd3G8bHQZf3wbRoXDXPMhTwXOF4rWMQujmqDnAYoGrJsGKtUKM+fabRGO4LMOqdXDv\n4zBgFPz4FYwYKva5sge8twrkVImJ5VrmtxIzfk4fxRg+BFmGzCzRwO1ponh4G3QcUPc5mwUOz4Hj\n30JQHHR+AOL7OV6//E7Y/Cu06QntXPT3+QJ7YWCN0qhWWQmLfodnHhXl/N/ugA1LBel5QnJTeOVZ\nmPYw3DZZTA78QdcUyCuD0+W+CVPbDX09uWDYYQQ3yUoHTlNDd1xr1x0lh7H0r/PcTraTSBJJilD0\nVn6kE8M5zVdYqSaVR2q3lTQPIJtfRQ7epRCeJFKa1Uq1T/xQOPi2uNG8RRNqzXkb4c39FDp0OBNH\nmqj8OHDgwA4mTfS8yG00Grn88ss5evQoK1eupF07H8ulzzAChHcOoVRZ/o+h4XTfiMxGbLzqQzpz\nayksOQ3fdBeiz75iawaMfBtaxcKieyDFB31NSYKZE+BEEbyyABgm0of7sgVh2fHeJ/D7Sli6EEYO\nq7v/8CGweTmMvwXG3gBrl0DvHkJ4+qVfQVsIwcUq4VeUkgB5xzCGgdUGpwsh0cOyTHUFZO6Dq+5z\nPGeuglXjIWspJI+Aoh2wdARcthrieottug+HHsPgirsb37NY6ymq1O2vWAsGg1ivG3sD3HmL0Pv0\nBbffBB/Ohmdehj9+9O86uigKdXuzYZgPhBfuJ+G5CU5rkUe1y0mcETMZ5NOGuj0sm/iT3ogqqFPs\n4yBruY3PKOUXgmiGzqllR5I0oB6ALO8DlZ5QvU1UaRpyQaWDmL5grQZDDoR4WchWa8/bPrwObYXN\n1T8CL8VNNpuN8ePHs2nTJhYtWkTfvn3/oQvxjkDRyjkEu2dYmAtSS0fGBAz04St79Ti0CYHxfqh3\n7M0WZNchCVY/4hvZ2aFSwdzbICoY+mXC8A7C786O0wVioJ42pS7ZOSM8HH78Grp2EmRQUiq83FrE\nQFIpHC5UWCe1BeQcxygLwisoFOuAzti0BA4r7QDHdon1yPYKscgyrJsCuWvhkmVw6R9w5XaIbAcb\np4lt8k7AmBAY/xhccLXvn0N92LNjaoVA1m4U+pmz5kBUJLz6X9+PpVbDfx4WFZ3bdnrf3hmtY4WA\n96E837YPUm4xb8a+ABVAuIeMQxVmSjDRnIZ9KgfIwoqNrrR0Ol4Ff7GR4VwMwFLeogkJ1DCdKAZh\n4AQraMZfDMOMqJiSpM4g74OQZEKCRI8mNYWgj4HwNHHgShduw/Wh1ojQP4AzioceeojFixdz6aWX\nUlhYyLx58+r8/C8RILxzCDVKg0Kwi9XlrdjQAd28pDOPVcGPefBoa1D7GJnklwl7nhYxsPR+iHQv\n4ekWEcHw3kTYfEDUlWw6Ltb1AL7+VqQ0n5/u+RjBwfD9F1BVBQ886Si40JTD1mLQGiRCUttD9jEM\nsozZKmx2YpzI+c9F8NTlcFdvOLJTkBc4ikaOfAUZ38GFn0OKGFPRhkH3/0DhNig9KFKgAOu+dxzX\nVA4HZsGGOyH9VajK8f6Z2LNjdsJbtU4Q1/e/wIynHQ7svuKasdCqBbz7sX/7aTWC9A7l+7a9SgKd\nyre2hApkF1TmwEmlsbwZDXtidiFKRzvjyLuvYgUWLFzMKPaxivV8STfSMJPPYZ6hG3NIYRLl7GIX\nNysX3AnkbOTwREL0olALcwnoYiC0lXKhPhLeeRrhnU2kp6cjSRKLFy/mxhtvbPDzv0SA8M4h2L8M\nmwuppkPYSEVC74XwPj8l1mAm+diGYLbA+I9FtPRbI8nOjnG9YHxv2HBEpEXDlFzX8jUwdJBvFYbJ\nTeGdV+CrBbBmAwxKg+wciFVLNN2to7pVKziVgUEGsxWKSx2EV1UuzFd7j4KWneHDB+DgPpFaDAoB\nUwVseRRSb4DW4+ueN2WUKOjLWelYe7OnJPM2wA+d4M97IH8D7HoRvu8AGT94fi9VinN4qLJGl5Mn\nvPn69RatB/5CrRZreD8sFmos/iA1Tqyr+gqNBBYf1F6KkYnycE8eQXwIaTTMpf7JATrRvI6s2Dy+\nojs9aEEL5nAnqfRmBELENIGxpDCJjrxJB94gn1+oIQdJUspvI8MJCbJhsCLMBXWRoAmG4KZQ6UNf\nhkrj6NcL4Ixh9erVWK1Wtz//SwQI7xyCXW/Q6MI77BgyqV7IzirDF6fg+qYQ7OPa3XOL4c9j8P2d\nwuHg70CS4M3xguhuHSz+NpthwyZReu8rbpwg3A2mPw8XtQOjBe4Nh8wiFUSnQkkRmMqpMkNxiSjf\nB2H/Y6iEhz+DnsNh/2548x2HQP6+d8BUBn1mNDynJgTi+ohUZ5LS4tD9IijcCcsug/BWMP4YjNsL\nE05CykhYPRFy17l/HxWKM2p4tEilFhaJv196qm4Lhj+YfJ1YB/x+kX/7tYiBzCLft1eBGwe7uigC\njz2hhygjDA1JLtbwNrCfQXSs/buAApayhEnczEbmkscRWrOZBIYxGhs9mFu7bSJjARX5/Aoq5QsL\nkQjWyUofXhVolNgzrLVvhKfWnLdVmgEIBAjvHIB9uAhVHhW5UCcsQCbJC+H9WQI5Rt+bzLdmwMu/\nwX8vh0GNEHt2hZRoODoDHlMcxbOyRYrSnwVzSRJViX9tFQUn8eFQmAUDmoA6TBncSo9TZRCDv73K\ncflXwv4nLkVEVRYDaGXhRG6pgb1vQYc7IcyN2EZcXyjeI/Q2V8jQ72JYPlas7436DcKVzJs+CobO\ng/iBsO5msLnJghUKgX+iE4UiTP/ecMlwGHah759FfTRLETZI3//i537RcKrE+3bO8EXPMx/ZTdeo\nwF5K6EiTBiLnJ8jnAFkMo2vtc2/xGnr0XMJwKilChYQKOMQaKihE5bS2rSOGSHpRzDogBghDDjIQ\noreJNTybAdRK5BjSHAzZ3t/MeVylGYBAgPDOAaiVFGYT1OhRk0Flg21qAC89wPx6GuJ10M+HSM1i\nhTu+Eq0Dj1/q/zV7QkKkw+W8SIlyYmPcb+8KI4aKasaPZotU6dxN0CEEpCiF8MpOYFD0ISPCBbmk\nr4GLFRPVsCgR5d56rRCNPvEDGEug4z3uzxkUAyYn5Zht08FYBMMXinU+Z6h1MOBdqMiAI1+7Pt6p\nw6JiNTYFwlIE6S/59u87VVxxKaxcJ9ocfEVSpNA59VUBxyyD1svoUIFMBZDsYSK2kyJ60PDL/5lN\n6NBwKaIsNossPuI9pjGNZ+nMJhYQQSJ/oOENruduEvmdd+ocI4p+lLJFNC9LzUBnIEQPBhsgm0Gt\nRJXaMBHxeUMgpXneI0B4Zx1SLeGZMZNGODtpmHuy4l3RYnmh0J70xQ3hs/WQfgpmTXKQk6+QZaHv\neOeD0P0CSOkkGqNvu69hBWGFMiiHNULHc9oUWLYKRjUXfWSG0yAHJ0BQEJRlYlB0O8PDIH2teNxv\ntPjdJB5qqoXKSkxTOPgxJA2FSA+RrDoIrEpwXZEJBz6CHs9CeEvX28d0hZbjYPerrqOhrIOQlAql\nSl/u19+Jdbi/i8svAaNRFMH4ikQlCj5d7n1bWQazDbRe7qMs5b5Ncet1Z2Y/pfSsR3gyMt+whhF0\nJ4IQqqjiFm4gjDB6I5qRM9jOKB6gH+N5mvWM5F7m8gAHWFt7nCb0oYrDmCkDKRE0BoJ1iDU8YzWo\nlUVkdYiPhKcORHjnOQKEd7YhqQmVxbQ7gzyupiU/cAJDPUneRCQ8FdkZrbCnAvr7EN0ZTPDCEri+\nL/T1IMnlCrv3wpDRcOFoQUZ9esKtk2DIQDEA9xkmVP+rq0UUGaJERsV+ptMAJo4TkeGK38Tf6UUy\nNJEhpRmUZlKjRHhhoXBwMySnQaTSotVO6ac7li4qG/PWQ/upns8n28Amw7ResOMFkbrseLfnfdrd\nCmWHodSFy8nhbdCiM4y8Gn7/HjJ2+f7ePSG1lWhvWOWHekq0MuEo9mHcN9rE+l2IF3I+phBeqpth\nZAP5WJG5kLqKGts4wlaOMI3LAHiSR9jFDhayiBHcSndGcxF3MJpHuIt5tGMwk3ibZnThd2bWHicc\n4U1VyQGQopHVRoL1CuHZLKBSUqCaUN8ITx2I8M53BBrPzxImTJiARqNhYmIT4m4yIFHGAtbzIU/w\nArt4md08j0MKKQWJwx7KCPZVijRUTy+qHQCfrhMmrc9e4fv1yjK8MwsefQbapcGSBXDZyLrpOatV\nyIY9/DQcOwFpY+EXpcQ/x00PWG4G/LUIqsuF/FfvURCsDM5BQTD2Mvh9OdAdDpWBNcIGzVtAUSZm\npTozJBgObHb02kFd3cxYI5xSQzMvqVubBYwGOLkDju6G3i+A1ktkmjRUZM6yfoMoR/0FZpMg25A2\nQvj5jfdh+U+ej+UrJEkUAa3Z4Ps+UcpyVokPNkFVypgf6oXwjmAjGOq1jTuwilwSCaZdPTH0d1hE\nC+K5lF4c4TCz+YRXeYsBDATgEZY0OJaExDCm8jX3U0Y+kSQQqohLV3GUSKKQ1QaC9aIPT8aGJClv\nQBMKVh8Jz8+ilfnz5zN//nwslkCxy78BgQjvLGHBggUsWrSIif16YEFCRk8CTUgjgsfowgvsYgWO\nhfbeqNiOTLkbd2m7YWeql7YCmw3eXSnaB9p4UChxhizDfY/Dg9PhvqmwfQ2MdmGIqlbDnVNg6Xei\n4OT4b7D6P0Lnsn6q02qFL5+FG1Phsyfg5/fguXFwU1rd/rdxl8PR46CrhHZakHZoIKkZlGbVKjzo\nNKLBvL2TgIMkOSx9LPsgYbCoUvcES7UYG5MR0V7bKd4/G02wKHYp2Fz3+Yw9YDaCTvmM7Qa1RgNk\n7BVE/3cwoA/s2S8KgnyB3a6pwgdjV7uGZpQXUZ+9yHRAalCQAiJt+QuZXEpKndc3sp95rOFJrmUq\nU7iDWwC4UfldjXtG7s91yNhI53cANIShJQYDmSBFgaqGYJ2ITi2SGpwJz+ID06vUfkd4EydOZNGi\nRSxYsMCv/QI4OwgQ3tmGLJMvhQJBXItQKX6Z3oygKTexngrE6HMFKszAUjc6PgWK51q0l0Fq1UE4\nVgB3XeTz5XHvY/D+pzDrLXjzRfdCx3ZcOAgWfAbLV8CihXDhQKEy4ozPHoe5L8BNz8EPhfD9afji\nkNC8fP5a+PZ1sd2IoRAfB+ps2L9WQv5UIszYEkpO1tbNF2UKcmlTT87v5d/huQWQvxZa+qCYYsiH\n2DS4aiQkDYHgeF8+IYjtCUX1CP3gFpBU8PJs+PVbePkp0Rd4TTzc3gUmt4bbusD25b6doz769BST\nF19tg0IUwctqHwy97bZAMV5EMtOx0d3NELKfUg5TzjVOKipWrDzOF3SjFU0oYx5fsYk/sWEjgUii\nCSGGUHrRmR9Y2OCY4cTSkl7s5Q/H+6IFBk6CFA0qA0HKNdfIamqHN00oWA1iFuMJgZTmeY8A4Z1t\nyFZqJPE1xCipHxUSF5FEDtXkUM1OikjAxiBUvIAFi4soz2AV6hgaL9/ovE3CR3VQmm+X984s+OAz\n+GQmTL3F97d1+aXw2H3w9AxIjIdtisQXwKFt8P1bcPtrMOlpRwozpS08+wNcPx0+fQyWfw0aDYwa\nJqQQKQNKobKmOZSfBrMIV3KEJyyp9fzuImOheYRoG2g+2vs1lx12fnOaAAAgAElEQVQU413OCkid\n6H17O6I6Q/kxsDoZ425dCkGJYJNg9w64py/8+glc8xC8vR6e+xmi4uGJUbDsC9/PZUfnDqDTwc49\n3rcFCFImQgYfCO+08j7iPBBeDTJ7kenhZgj5kqM0Qcdwp4TnE3zJXxzkdaawnz2EODWcv8V7/JeX\nmMVsmtGcm5jIXzR0vm3PhRxlk+N90QwDWUAUSFXo7e/TjCMFoVZuMG/reCp1oA/vPEeA8M46ZGoU\nKbF84Hl2cgvreYYd3Ewb9lNCT37hDjYyEy37kPnSRZQXpQWTTVmwdwOrDRbvFqLMvpTGb/gLHn4K\nHr1XiBf7i2cfh/hYQZg1NZClCNjPnyFcxMc90HAfSYJbXoRRN8PMqZB5QEQzmgoY0BcGjQdiFBsG\nRRG/KBtikhzE6YzidNBGQLiX4hyrUUiL1RSASg9pk31/n6FK32O1sk5ZVgRblsK1d8PGJXDoS7FG\n+dEOEdF2GQyDxsIrf8Clt8Fbt8Ou1b6fD4TTRLs02OeiWMYV1Mp/utWH3rpTNUKWLsFDJL8FGyZg\nsIshxICF2RzmFtqgV+7tNezmTX7iFW7iYnpwF/ehRUtb2nGS00zjHu7jQW5iCgv5hd705U6mYKlX\nvNWCHpzmONWKU3oQydSQDVITkGSClN4do81pAVLjB+EFIrzzGgHCO+uwYZJUQATXsZW32Md+Srib\nDnzKIO7mLwC+5hjhVHAdah7GzMJ6pGc37cwz4hY7T4perNFdvF9VZSVMmirWimY807h3FhIC773m\n+Hv/ITAZYfNvMOoWh8ZkfUgS3PehaCf48AHo00Nocb41UvSGRUQrhGcQVuLF2RDvxgapaBdEd/VO\n8KWHBOmZKyC+P2i8NT06IUhJfRoV6a4NP4rs2ZgpsOwNYQD72gpo3r7ufmo13PcBdB0CL08Cg4/r\ncXZ0ai8+U19gb1Wx+SCfklUDTfWetVjXYiMC6OJi/e5LjlKMkWmKgetP/Mk4XmYwHXmIKwFIIIGN\nbGMNfxFXr3Vdi5a3eZ/DHGIhddfGWiIsOE6SDkAQTakhG0kS5clBStBosKgdvSI+E15APPp8R4Dw\nzjZkGxYkoCNJBJPLBDZzBe/QHw0qnkLk6S4iiTTC+RAtI1AxHhNLnEivt1KQsb7Y/al2nhQDX6+W\n3i/r5bchvwC+miXSio3FlaOFU/cFA6B7F8g+ItbbOnixxdEHw10zYfsfYMwU8mFLV4gCldqQqkYQ\nXlEOxDVreAxZhvyNgsBqnzNAzXtQORFq3hD9yQCRbUEbLhrP6+tseoNK+XzsY+XGn6HTIPjjS/H4\nia8bkp0dGi089CmUF8J3r7nexh3SWsPxTN+2tSpEp/bhP/5otffipyVYGYkKdT3Cq8DMs+xgMqm0\nIZJNHGQ8r3IBnfieJ1E7CaOnkkYUrgVWe9CTIVzEF8yu83wibVGjIZv9AOhJwkwRNiU9GqQU5xhl\nLeAv4QUivPMdAcI7B2CgCdCU+2lLcL1OkbvogImbWc4o1KiIRmIhOi5BxZ2YqFH+qWN10D0Cfi9w\nf57dp6BtgmM9xx0yMuHND8QaXOuWf++9AXTpBOt+g6REOKmk4Jr7YEbZf4zwpPv+Tbh0BHz3M+jU\nUGMLEXbiRiWlmSPkxOqj8iRUnYLEweJvuQwqhoDhQbBlgOFJMDwkXtMEQfMrRPN56wn+vT9lCRbZ\nBuXFgqQTW8Gcp+C6x2Ggl/aPpFZw1f1iXbPCj37FVi0gJ1c0oXuDWRnHtT40vh+ugjYe2jFykdmC\nzOUuXD1mkE45Zl6iF1asXMerdKMVC3mC4+TxJF9wO+/yPospcaEo5Izrmcx61pKHo6dFg5YE0moJ\nL0gxiTVKYrahVwivxqYBWXnTAcILQEGA8M46ZEyKhWYb6vrF7MTGHZjogYlWmOhHDU9g5k9slAHa\negXhk5vCt7lwyM04klsGzX2Q+HrjPSHX9dh93rd1RlEu/PIBvD0V3rxNVFpmH627TbWi8h/mg3MC\nwNUPwIFNMKwTHDwMXUPBdEyCiKZgzAWgJA+inbz/CndCdb5wPkCChAvE2Fd5BdiOQPgmiNgEwTPB\n+D5Ytor9+rwMo34FvZ8i2hZF8UUdJKJKmxVWzxdu6be84Nsxrn1YRL7Lv/L9vM2SxflyfbD9sRer\nBHupvDTb4EAldPTg+TMXC3pgTD3C+5UsXmU3N5PCdD6mjCpqMGPFxjhmMIBH+IKVbOUIDzGb9tzJ\nUra5Pc9lXI6MzCrqlrIm0Z48jgCgR/R9mCTxBj1GeN568VQq33K+AfxrESC8cwBWZeDQK9FdDTJ3\nYqInRv7AxmBU3IyatqiYhYXBmNiJja/Q8Bhm+lHDTCzc3UIUGrzsxvrLYHKUp7tDcQl8MR/uuhVC\nfZQDKysUJDexGcx6SKieHN8NXz0Lt7SDd+4Sa3fgmIGbfOgHAyEV1rITZK0Xac0ZD0OTXwFbUzDm\noJJFQUhMkmLueiv83BM2PyiqLeN6Q1A0GGeBZR2E/gwaRYVFPw2kSDArVe5hzaDpMBGpGWdBeTco\nbQ6V48F62P01GpU0clAMHE+HVl1Bo4Mn5oqUpS+ISoBBV4lKTl9Em0FUvwLk+UB4FcrnH+FlbfJg\npVBa6eWmZ1FG5nOsXI2aaKfpVg7V3MJ6RpPCWhYyl9U8yhwW8zRHyGED+1nIE2TzJbt4jxPMpjdp\nXMmLLGO7y3PFEktXurGGVXWeTyCVfMRMSqcQnlHp39MpqVijRQpEeAE0QIDwzjps2BTC06JGRmYK\nZr7AyodoOYqeWeh4Hi1foyObILahJ58g2qLmXaxsQeZFzOjUMo+3hi+z4eOTLs7kw0A6byGYTELH\n0hcc2gZ39oC138Htr8LCfPh4F3ywBX4sgjvegN8/hycvEdY99siu9LRvx1epYNgNsG0ZdGsPOhmC\nraCuSYKabHTKhDwqQTR/H/5cOf5BOL1ZRHe2QjA8Abo7QDvEcWxJBepeYHWS/JLNUH0jVE8DVVvQ\nTwbrZqgYAFY3zeIGJeMWFAuLZ4lrmfEbpPjpQHHJFMjcLxRafEG8UuuR7yGNbUepXWi7oUtPHWwp\nE4NCNzfmtCuxcRCZKU7RXSaV9OQXrMg8Q3sOIFLN37CGHqSynZns5QOuYTAqZchpSgw/8R9G0J1J\nvEmFm4bzC7mIdayp81wsLSjiJDZs6JWCFyOlgNaR0jQHCC+AhggQ3jkAm/I1aFHxBVbmY+ULtExD\ng6ZeUUAoEr1QEYFEAhJZBPExWpajR0LivpYwrTnctx92ltU9T4sYOOHFBPSnJTBiCCT40HS9dyM8\ncpGopvxsr0jLhTmlA/XBcM2DokLx8DZ49UbYLepMOFhPmcRYCrtfh9XXw8a7hfalHUOuhZoqiLOC\nSQW5erAGiZSmViHxyDg49Lmw/un+H9FEbsiH0BT4P/bOOz6Kuuvi39maTScBQui9V5EOoiCgdAQF\nlKJiQQXsKCj2Aoo+ihUURRGpFpCiIArSe+81hJJOQnq2zPvHnWU3m2346CsP5nw+kTgzOzub3f3d\nufeee07hJ4ANLK+VfA26eFDdgm/Bi1A0H8LmQ/hCsLwOEbskE8wdCKoXEl/mYQirIp56LyyAN5ZB\n0z9hAdT8JgiNhM0llbW8wmmLlBWEIHSydkxcSR/WYlibIb3gSC+ZqYrKi9hojUJX7TObj43+/IoF\nPXvoTyuq0k1jUr7NvRgxUI/KVPTimGDCyKc8wiXyeA/vfketaUsCp0nB9SbFUAUbRZplkAk94diU\ni0Ak5lDNU9KGK+A5XRNKA96/HqUB75+G6rgc8GzoeRorI9AzJEiZ08ooPIDh8gCwosB/GkD9MHhg\nv/RknKhVDo6niMu5N2Rnw7pNosYfCIlHYGJPUTd5+zco68eDr0lHmDAH1v8ALz0KeTrpy11+3gT4\nriFsfx5yz4ku5dIb4I97RRGqUm2RDStw7weGxEvA09LWUAucnAd17obQeMg7L+tbSIT06Ux3g86L\ncZsSKxkggG09FEyBkJfB5MbU1MVA2Dyw7wJrSQEQLh6AaDcWpq9xi0AwmkRLNNiAZzbLz5UEvPI+\nMjeQUurv6dA5xvv+VTjYiINJbt3jF9nFITKxsJPlyF3KYp4niwU8Qu+A11WFcjxML6byA7lefCCv\nQ+Rz9uCSsolBGEoZyN2TkTJYuQhKJOYIqdkX2hRX8FJ0EvRKA96/HqUB7yqAqr0NvxLCReDlAMHO\nrsKqVHjyENyyFTpsgl7bYMJhWJsOh7Xv9fYsuG0n/KH1mLo3gpxCWLHf+3n3H5J5t/YBRgaKCuDl\nQdI3e+0n7wPfnmjfF7oOgyZ6qFnfRWZxWGFlbyF8DD4BvdfC4JPQ6XM4MQ9WDxa6f/t+UHieyzwE\nSc2s6FWhNRYelRm6moMlSDoMYFdAt04yuJAnfFyYFRSTLPZ5T4K+FYSML3mYoTUYOkKhh/edqkLa\nNijbsuRj/gyu6yrZcH6QXnch5uBYmgnpEBsOoX6GyXdekqHzXl6y+xxU7sPKTejoiY7lJNKFFbzL\nfp6jOb/zDB1pxFGy2EUmKQQ/zzaG3lwij6VsLbGvBjUJJZQDuD60ZZC7q4ucB8BItFgEEYk5VL47\nRe49PNDkxQLoaZYGvGsepQHvKoBDm4peiIm+6Kju522Zfx7qrYXu22DhBQjRQ91QGRL+4izcuAWa\nr4e9GhvyaC503won88TstXElWLDN+7n3H5KeWf0AvafZr8C5ozBpIYT6yRg8MeoNUGyQdBB2azyE\nU9/Bxf3QdZGUH0Gy1Hqj4Obv4ezPsGOSjDHYC6WHB4BDLGd0jgvojZC1TxRVoutD7gXIsUGuCrqN\noG8Beh+vyZEp5UrbKrBvBcuroPi43zAOBdtKV0YIMvaQd6H4rN9/gyadZM09tCXwsSDyYkVByIWd\nSoMaZf0f82OyKPZ4y/BewUYqKl9gJJUC7mItlyiiKxV5hV204Geu5zfq8R0dWEYdFlGLhXytsSn9\noRbxtKEeczx6dQA6dNSnIYc4cHlbFOVR0JGJsHSNRGEjC5QIDKF6FMVZ0nQLup4C0htHwJnvPJ5M\nH1hvsxT/0yi1B7oKIBmehWPoeNPHW2J1wNgDMD0R+sXBN83E2dxdQcShwv5sOFcgAW7MQciwCusu\nuRBqhsI9HeDphfBAZ7ihbvHnOJ8kvbsQP0y+pNMyFzd0ItQMQrHFHeWrwHPz4MX+4hoAcOYnKHu9\nCDB7osotcN0LsPNlaK9Z67SvCzEN4OixCuw/CTiSMIc1Im2nnEPRSeCzIIa5EQlg9KcUUwSYpZSp\nbwOGm30fauoN+Y+AbbP8DnBBkwQr3851nOoAa67M9umCZGlefs31wRIOx3ZIthcIOp1rqNwfjiRB\nHT99WYcK35yD/nEl9VjnYONtbLyJgero2E8BWRQRh4X1JKMCt1GdmkTQjBjisJBADl9znJGsI5UC\nnsT/h+UOOjKRr8mjgFCKfwAb0JDDuDTUdOiJpPzlgGcgCiuZQCSYdJiMOgqtipQPnPD0xDs9W37u\ndGNyKbprNsM7dAEIUqTgT537fwSlAe8fh4qKAhrbzJs2YaEdBu6EX9LgsyYwqrJ3qSydAk0j5Qeg\nfrj0ZBqGQzuNHfnozfDdDhgzB3a/KAumEw5HYCWO+W8JseL2p/7ES0U0JD/ZIQPaIPqVlXr4Pr7p\nM3ByIZyYKh53LVpCbm34/Q+ho6tqMkaLuBVU6yePafAA7H4VKjtAbwXTXb7Pr5hlCN2+Fyzv+5cg\nUyoDYeA4As721JmfxB7IUl7W1z1viVN63jkwhkPtEdDqjcDWRE7odFC9sdgLBQObLbBjvarC/nPQ\nu6nvY1alwel8eMBDseYEDkZjZRh6mpJEErE0pgyP0YgZHOEe6vAaLYmi+LxLY8rQk8rUIoKn2EZN\nIhjg5pzgiVtoyZPMZD0H6U7xu5861OVnlhXbFk0FsjRLZANRFHIeRYlDNSiYjTqK7BQvaepDXSVN\nX3Mf13CGN+wzIECG/6cRgAh3NaE04P3jULUMryxVUYnzYGWqKozaB7+mw9LroYcX4oUvdC0rP+7Q\n62DyQLjhLej/Efz4iCvo6XS+CS0AOVnwy5fiZhBM3w6gIEPkvYoyIaoOlG0lA9kA9iJxC2/ytO/H\n603QYhL8dge0GQx/LIXbP4KLWeGgD0VVkzHpIPskxAo5kLCKUGcYlFkpQtD6Gr7Pr0SDfaf8bgxg\nEKvoQF8b7G79x7O/QNOnoSgLfr4FUrdBvfvFXijzIByYJq+/1+/ioB4MqjeWDC8YWK0iJO0Pp9Mg\nKx+aeFGjceLDBGgcLlUDJ5Zj516KKIfCsxTRmFV0oDzr6c07tGYy12PyorbihILCa7TkGJcYxXpu\nIp5ovDcRG1CFCpThN/aWCHi1qEM66WSQQQxSb40kjixNgcVIpLieUxsMKiaDQqEVj5JmqCvDs+f7\nuOBrN8P75n5o0PjvOfeh/TDMO8n2qkNpwLsKIBleDM292P7MPAtzzsPc5lcW7JzIL4JL+UJWiNAq\nRZ3qwoLRMHg6vP0LPKMt9HVrQXKKDJ/HeFmcNy0Rwkr3uwM/b94F2DYBjs8pvu5E1YU274pdj84A\nXrSHS6D6bfI4QxJkJMHpnyA8HHLy47DZUjBr5L6YZq7HdPwMcruDLkCQMT8ChR+D/nr/gdEJJRrQ\nGI9JG4QoU6k7/DpIxhP6rC/ez6txByztBBsfgZu+DXx+gPiasP67wMepKmTnQIQfVRSADVqAbuvD\nMWJrJixNkTK5M8M9joPBFNEBHZ9johJmjjMIo5MNjOI32DmhQ2EabanNIt5iH29wvdfjFBTa04BN\nHC6xrya1ADjFSbeAV45UTgNgIBIblyRd14HJoIiUmmeG5+zh2XwwgnT6a1ZppUE8XOdDYP2/Rvrf\ndN6/AaWklasADgxAGZp6BLxTefDoQbi/Cgyp6P2x3nDgHIyeDVXHQ+jDUOFJiBwDMeOg5Svw7kqo\nUh1ubgXP/whJ2rxeM+0OcKePwedNS6B+G+nF+UPyRvi+KZxZCq2nwJAEuDsXeq+D8OrCytz7ttxQ\nG0LBGoBWr9NDw7GQsQEemwYrZkLDHEBXHruSLAFPKT4aoDOAY7ewLgHIssHjx2DAXvjK1XTQN4SI\nrRC+kuAQBqqWKJz7BSxxcPoHuLBGSDae5JWYxtD+IzgxV44LBhWqi6ZmTpb/43JzJegFCnjrj8uC\nF+vlOFWFSUehQbjrM5aDylCKiNN0Wytrrua1iKQqAZ7MC+IJZSwN+ICDZOGbYdOO+mzjGDYPJ5Bq\nWik0QQtwABGU45I2m3c54GEGnYrZqJFWfPXwfI0n6K7dDK8UgtIM7yqAjfKAgXoeX/SJRyDaIHN1\nwSA1WwgpX2+C+CgY2hqaVILoUHG6TkgXAenxi6DBBhGRDjeD2SCPrVsbatWAGV+J07gnju2EjgP8\nX0P6bljRXWj6N38n6iNOVOgIt6yAbRNh63jJyKLrQ5pH+U5VwZEASgTotHnlav1g01ioEyHmqS/2\nhxBTOeyOVEJUMMdI+dMJ+w4RizZ0BC4UQrsdwuBpFAb3HoI6odBeGmuGVgQPKzh9SzMPy3D73inQ\n+i2o6MNFvtZQOPol7HoNqvUPbFUUqwWezGQI99P7S9XurMv56c2oKizfB/2ae9//9TlYmQY/thSm\n7ybsPIWN7ag8hYFwIA2V37BzTCu+10dHF3REBZOeaxhHI95mP/M5yQN4t45oTV3yKeQwiTR26/fF\nEEMooZzV5u5AMrwcrXlkIAIb2YAZFBWjXpXSvGeGV6ANr/sMeHrwUmUpxbWD0oB3FUDV3gaL2wKy\nPRPmXYDPm0BYEO/SL/thxEyZ0fvoThjVSbPS8YKJvaDfhxIAVz4Oy/bC8JnwSj8Ycz+MfxHSMyDW\njZ5eVABJp/y7HOSnwso+EsR6LAejlz6fohMSR/ou+H04nHJAjQThCig6EXLOe8Al92XoCaHvQ3ht\niOsomdIty0GxgMFWDpt6kDAdhGjl3qLvwdAeir4FIsHQygE99os77t7WUNkMN+yE+w7BQY90bE82\nHMmD6yOhpncNLjUTdFXl91RtvKNKb2jypO+/i6JA06ekx5e0DuIDqLBEa68lM1Vc4H3hgiZpFh/n\n+5h9ZyExA/o2K7kvvQieOATDKgrzdx42hmKltvY5nIqNb7CRAjiAWCQcZADhwDgMvIQBYxCBryKh\n9KASX3LMZ8BrjtRcd3GyWMBTUKhEZc5pkmUAEZQll4s4sGMgAgcFOBQDis6BSa9qpBWPHp6TtGLz\nMY93DffwSiEoLWn+43CA1gtxfzOmnpIkZKQfBRMn5m6BXtOkRr//ZXjoJt/BDmQWb9cLcPAVaFsL\nvtwg2zcch6EDZSxh8L3F2xkXkyVbKOuH+LBtgqwl3RZ7D3ZOOINeYQpY08Q4Nfs0qJcgZ6AcE/Yd\nhH4OjkOQ3RHs+yRTOrdSZMjMYWB0lMOupmLRSSZp2y7yX9ldRV3FfB8oX1+A9VmwoDFUtwjn/qFK\ncCgPcrXFLdcOffdC820w+ADU2QSfnPV67WqqqLMARDeQ5+08y2UR5AuVukNUPTjymf/jwKU3mhPA\nKuiMdomV/XxGFu4Q/UzPEZRCO/TaLgHsbe0mZqlm6tpG+yTeiZ5RGPgMI+cJIQ0L6Vg4jZkxGHgb\nG3dQhC3IrGgYtdhMKok+bIEiCaU6cexzK1064RnwwohBRSWPLPSay4gdQLFj1DkotKrFS5p6iyvQ\nuQ+gq/+OsYRSCEozvKsATqUVp5lmciF8nwRv1S85E+WJ73bAsM9heDv4fGRgiroTkRaXkPD3D8PB\nC6K1GRcNi2ZBj4GwaDHcoZUw9RoT0O6DxZm+V4Sb201z+bP6Q9mWUON2QJPqyj4Fhk9BzYCwP0Bf\nXbYb+0JON8jpD/HzpUqVvgviq4EpIxY76YTqhQFZ8LY8xiFWaYQ8boe2p+HOOOjoRj8so72YSzaw\n6KD3HtieDfMawU1l4I3T8PBRqGCGAS6mkGoFxxnQC4eC7j+BozC4kQNFgRqD4NDHohyj8/PNC9ZR\n4ugJKBvr0tT0hN0BszZIadvsweR88RjszIIN7cBkVjkPvISBYzhYi4P3MTLOx/JQDR1voqMjOvpR\nxHisvOsxluANt1IZPQrLOcuDPrK8BlTmkFvp0okKxJOISxE9FHk/88jUCq9gAwyKHZPBgdWmFncv\nN4S62Jl2tz+sLVfmR0B6eMFaVZTifxKlGd4/hCFDhtC3b1/mbtuPk6rofDNmnZV+ykg/2RTAtlNw\n52dwRyuYeXfwwc4dOTmQmQb1Y6GiFhO6dxHD1Tf/4zrusgq9j/bH/ncgvBo0eDD4524zVUSXATL2\ngvUnMI9wBTsQ/cuwReC4AKYv5UY9fRfUbAgWtSwOsjBgJcwI1kVgmer22OVJkFQEL3rQLyO1P9Ql\nG3x6DtZkwuImMDgOypvgvbrQMxbGHy9mMeE4DjhApwU8Q0jw83UAVftA4UVxcfAHo8bcDxTwjhwT\nZq0v/Lwfzl6Eezu4ttkc8PIxeOskvFIXWkVDVwqpRAG10bGFEBIJ8Rns3NELPf/ByH+ws5TAmVEZ\nzLSnPCvwnj2DjCcc8rK/AvFc0KTEAMK0gJfrFvDsqJLh6cFqtbns7EE+OM7Mzj3gWd2YQYoW8K4g\n6M2dO5e+ffsyZMgVugaX4h9BacD7hzBv3jyWLFnC0FaNUbWSpjPD+yFZ9AzL+JmvysqDO6ZDs8rw\n1b2BB8bdcfI0PPOiCDJHVIHqzSCmBlRvCk9NgiXLhfa/Z7+IQ6/8TVwQYisKccUT9iJIWAx1RgRW\nFlFVcCSBI1GC3e1H4Po3RANTTQZd9ZKP0dcWp4OiT4XBmHUEKtYEiyq1xUL7RSJzAAeYRoi7QVQC\nMC8ZupaR2rA7wrXF/GQBPHFcSpxdPPS0nqkKx/NhXeblTdZfAaPoav4ZlG0pZMGUjf6Pc663gcqk\nO/dCcx8CJqoKry+TUYRWbvH+2SPw6nF4rjY8rY0pvI+RvT7m4wJhDHq6omM81qBKm12pyB8k4fBx\nbF0qcZpkrB5anHFUIAWX8Z8FudPIJws9Uj+3KSooNkwGsNrsHqSVEFegKxbw3CjCl63rgw94Q4cO\nZcmSJcybNy/ox5Tin0NpwLuKoANSCmUuqk8Ae57H5kF6Dsx/0H+/zh15eTDmaah7PXz2NXRuD19/\nAj8vgnkzoe+tMHM29LsLFv4o3/ucXHjiOSnJNeoA+/4oed4La2Xwuvptvp9bVaFwOlyqBVnxkFVV\n/rXNgGbPiMOBegkUH/Y15tEyA1fTJuzIGIP0cQDybOmEZoFSxc0RIbUI1mbC7V7+kOFahvf5ebCp\n8KqXAbVO0UJwWeKSkbCuAEMnYY/+GegMUK4VJG/yf5yzjaTzk7FfuiQZXisvkmwAvx2GTSdgUm8X\nK3RdBrxzCt6qB6/WlSoCwA3oafInlwIFhSkYOYTKV0FkeZ2pwEWK2EuG1/21iceOg9NuwQ0gjjhy\nyCEXKTGEagFPenjODE+azkY9WG224iVNxeAKgA630Qj3gOdUYLhG1VZKURrw/nkorh6eDvg1TYgE\nt/gZMt9wDGZthHfvgBpBDqOfSYR23eGLOTD5RTh3EKa/B8OHQI+uMPg2mDYFzh6AxP0w4z0hr6Sk\nuqp67fvCwU3iZu6OtG3SQ4vxIV2lFkHunZA3GgztIOx7CF8Kxp6Q/7iwMilCWAc+DEqVUDCPg7Kn\nIH09JE+CFprHWpEuA0saGDSllewWUNgxCYy6Yj24y6hihngjfJ8KA8pCrJe0VFGgZYSQWwA1D2y/\nyzUD2PZA3lOQOxwKPpTXGAxir4OLe/0fU6hV3sw+/hYAf2yUm4j2XrLNQiuM/Rba1IRbm8j79+JR\nGLUX4s3wmJbx5dthWyasSBFHjYwgX4MnWqKjPzrex4YaIMtrQzn0KGzBu2ttLeIBOKmpqDhRXnM2\nT9Vm79wDnkHL8OyKFvAMYLU6irM0FYMrABYLeB4lTbhmh5yuzIYAACAASURBVM9LUUpauSrgHvB+\nS4dG4RDno8KkqvDkQmhRFe7tGNz5Dx2BbrdJj2/LKmjSyPexYWHyc/9IWUwnvALPPQkfzhC/vPJV\nRU9zwjeux+SckYFyb/Nlqgp5D4L1ewhbAKbbXfuMvcBwE+SNBJ2WZCl+SqKmYVDwElQsA/bWkPWL\nZHgF6kVMyaC/C1TNJUJfkAVdo7wHs/cT4YIVaobAZD9NsMpm+ENKmtbVQAEYe0P+c1AwGZRyct1F\nc6FoJoQvF9cif4iqI4xUh9V3+TdHq6JG+FGJWfk7VK8Kdbxc/tu/iO/hTk00+569Igzdrgxk5sLt\nOyHHLmavhW5ru16BHmXhpTrS27sSjMbALRSxGQft/CiwWDDQmDJsJw1v7d7KlEWPjlMeGV5ZTWs2\nlVSqUwMDJoyYKSD7cknToWWYRgMU2BzFS5o6vY8ML9vtmNIM71pHaYb3T0NVcZFWFDZlQicfBpwg\nM3NbTsLU24sLP/vChSTofhuUiYJNK/0HO080agBL5kLrljD2GZj4Ggx8An6fBzt+dR1XmCGD395g\nnQ9FsyB0ZvFg54R5OJgfFqdxAOtvzpM64JEjUGMj3LADvk9BV1PKlh3uhO5LoUItiQj5RRnoc0Df\nVPqDADryoZaWIh1Ogk/WCYMD4FON/LCxJdTy6O+5o7wJUoT4YN8KSnkomg0Fb0DIKxB1FiI3ilKL\nI0Wy2EBrZUQtWXdzShIRLyNLq6JG+PibqiosWwndbyp5k/HbIXhtKYzrKuMnGVYZLm8TLYTU1CJI\nKQKjAq/Xha3t4WwX2N8JPmgIiQXQbhPMOef/dXiiGzqqofBlEGXN6ynLDh96VAb0VKEcp90czsEV\n8NLcMkMLkeRzya2HJ89t0IPV7vAoaXoEPJ3GKrW5BTznPGFpwLtmURrwrgrI22B3iH9dMz89ondX\nCRGhSxDqK1Yr3HGPlLR++Q7iKwR/RaoKZw7D1hWw7RfYvQLSTkCf0XB9d5jUB45rw+HmGAl6Jc5h\ng/wXJZMzD/P9XJYpoNN0/ooWauXB8celx9avLJh0MHA/yuTTmAZD0XxQVCjf2IxZZ8Fml0Cmbwq6\n2qBvbkevy4Xm4TB9PTR4DR6eD63fhv3nYXcrONXOdxrthE0FkyyCShkxki14HSxvg+U5l2+e4ToI\nmw22NRIQ/cGiDYkXpPg+JkVj35fzIeG2ZbsQj4YMLL49NRuGzJCZu5HdxSDYrINna8KmTNiSBatb\nw7p2sLQVPFlTMrlKIdAoAh6qBjs7wPCKMGKPjMYECx0Kt6NnMXZhS/pBM2I4wEWseA8slYnlrIcE\nf1lN6j/DLVCaCaeAbHQYUDBg14guRiNYPTM8RVNRUbX5PL1FiCxeM7zS0YRrFaUlzX8cTnsgOJer\nYFNl8fGGfWfh98NCVAkGL02Gzdth7VKoGKDU5oTdBj99CvOnQKoHO9wUAs1uhLEfwfiu8N1/4Jmv\nZBHPPSfrhHvGYf0OHEchbI7/51TCwDQKCiYCl8A+6xKGaWfhg7owprIm+HgSJp7E/HkUhWllKJoL\npjIQopahQJVoq6uhosw4T+QzBhiqgjUJHpsPj9wAT3WFzu/BW7/C1yMg2gg2Oyw/IBd9U13RWXNH\nnh1CZBE0tAVdfbC8AKahJV+DsQsYb4OC18A03DfD0qK1FPO9t7AASE6AsCgI80Hg+XIOVK4Ind3G\nDdJzYODHctM0exR03g1HciVR/rAR9K8AkQbRzPQHgw4+byqz+MP3SHm9XpDymbehYyqwGQcd/JQ1\nm1KGIhwcJYtGlKzbVqFciYBnxkwYYaS5bbcQQQESsPSEugKeAZnDc+/h4VauVLVBSJ2peIZ3uYdX\nOnx+raI0w7uKcC5X3o56PlRKvt4EZcNhQIvA5zp8FN6aBpOehvZtgnv+8yfh0Q7w0Tho0RWmrIQ5\nCfIzZRXc+4b4tN1dV4xgnTJj5dtJxpK+u/j5rEvEhcDgXSC/GMyjXL/rrBprY5QWpRUFXq4JnaPR\nv3gQQ1c7RTNFTixEjSaPLBwmUD48C6OPwJ0HIFoHH6+Am+rAtEFQPRba1oDzGknhRCo0nwz9ZkDf\n6dB2KiR6SJucLYSKEgQN7SHqkPdgd/k1PCqzenY/YwcG7b31pW4FkHDAt4Rbcgp8NQ9G3+NKSNJz\noO0bIh7w3UMQFwXdNX1Np3t5m+jAwc4JvQKzmgnB5ZEDwSc8bdARC/ziI3NzwhnkDpLpdX9FYrhA\nSZmZMsSQ6bZdMjxhbeoJxaEFPL0ebHbPDM95J6YNpCtGMEYUz/Ccx5RmeNcsSgPeVYRzeQpheijn\nRbRCVWHBNhjUUu5g/UFVYdyzUK0KjB8X3HMf3ASPtJL+0bRNMH4WtOwGcVXlp+XNMOhx+GQnPPQu\nvPwD3PE0fDAGfv4VzLFweEbxc1rXgaGzjycsdMDbCdB4C8T8ge6OnURMSSN8BejsVmk4WdyyBL0C\nn9WHc4WE1EzB9ockZGFEk0smiiEfnj4OwysIUaVxOhxJhqkDXJEhwgzZBZCZB32mi6T+1qdh5zOQ\nUwgDPy++2B3Ph9p+qJIeMHSUHmPRXN/HOFtHDj+MyBN7oJYX7UuADz8DgwEevs+17aFvICMXug6C\ndG0QflojUHvC7UFm9p4I1cN7DWB1OizzU351hw6FruhZFaCPV5YQYjFzBO92EPGU4byXsYVoosl0\nC5IhWkkTQI8Fu+IqadrsHkorzv7cYCPkpkuGZwj3CHilpJVrHaUB7yqAk6WZnK9Q3eKd7bj/HJzJ\ngIEtA59v4xZY9Tu8/YqMFgTC2aMwsSdUbwQfb4cGfjLCMuVhwDjo0F8qP/vWQWYGNHgIDn/qElRW\nC0BNlL5aCeTZoc8emHhSqP9PVAGHiuGZvRj3JsBvF6GuFzJJnVDoVgbDpkRAJTRd6Ol5ZKFXs6Tn\n9p86cLwdWE9B78bQwq0RVjUGDifD2IWS6S0dDa2qyTGfDIZtCbBLq+Nm2WBfDjQPfuhO0Um/0rra\nzzFuiYY35GRBwkEZ+PfEqQR4+wN4ZBSUiYYV+2DAR7BwO7w6ANRQ2K/JVKrqf8+u71VeMsRXjgef\n9NyEjm2o5Abo49Ulyk/AiyGHfHIobtQaRTRZbgHPTBgFmi6nlDSFYOS9pKm4/slOlZ6eMcJ7SbM0\n4F2zKA14VxHSCxQq+QhQvx0WG58OtQOfZ+qHUL8u9OsZ+Ni8bHihP5SJg1d/8k+F94TRBNN3w9Nf\nQO1xYIiHnS9rOzVVJ8WTF6KqcM8h2JAFK5vDVw3h+Rqw5jp4rho8cwIWp0nvzhuerYayPwcDWUR/\nAmWJIocs9NZsqBEi2V1eLmw5DYM8PHEGNodLBfDNNnipJ9Rzsxm4uT5EWeCnffL/S9OgSBXSzBXA\n0BYcR8SayBucpUyDj7L13rVyI9GiS8l9T78g2pkvjIfzmaKhukrTDd16EppfgIOrocrToLsfTKOh\n4SSY8J04Y1wpFAWeqgHbsmBrAG8+Jzqgww5sC1DWrEUEJ8j2uq+8JhuW7FHyjCKKS25BMoRwCrWS\npo4QHNqHTq9XsDtUHyVNZLtiAH1YcaugUtLKNY/SgHdVQL6M6UXSN/GGtUegXS2wBNDoTTwLi5fD\nEw8HN7Yw42lITYRXFvv3XnPCXgTHZsPKvrCwHvzQAjY8Al+NgR0XIHEZZB5x9f2L3WQDrMyABSnw\nRQMRanZCp4jiyehKUD0EhmnB6FI+jPwaWk6Bp3+AtuGokXoM2mJYgWiyycRgz4brtGxs0S7RWuvd\nuPhzR4VAuXAxAhztMcRo1EO3+rBKc9yelwytI6FKiAS/0YfhiWPC2/cDp7eebZf3/VYtA/MV8Has\nklnHeA/xl9nz4LslMPkFmZOc9quUMWeO1F7yDpjyMxxLgWFtYcYImDZUbpCmr5XAt9jHNfnDreWh\nhgU+TQju+IYoRCDEFX+QgOfd+TfOR8CLJKpYSdNMmFvAM1+ewzNczvDcS6ueAU8PBotLUNr9mNKA\n95ejqKiIZ555hsqVKxMaGkrbtm359ddfAz/wL0ZpwLuKkG1ViPExjLz3rAybB8KiJdLDGBzAqBXg\n2C5YNkPIKFXqBT4+ab04ma8dIVJiVXpB+TZw+nuI+BFaxUKFGyQIbn8dlMpg93RPfzcRro+AO7xI\nfikKfFIPjraFEL0sPN0+hB/3QpOK8OEf0HUaSjML5s45FNaBcG0Wy6TmQIsIecz0DdC3CcSEwfFT\n4qOjqlBlElSLgX0TJeh5okYsJGfDmQJYlg63xsBt+6DPXliXBbOToN5m+N23b49zgN5xyvv+PM1s\nPdTLiIjdBn8shBsGFU9I1m+Ce8fCsCGwKBXWHIZ7OkKYWcYQ2tUSq6esD2TY/M2BcP8N8PBN8NlI\nOPMW3NIYBn0KP15h0NMrMLwSfJ8MBUGQF/UoXIeOnQFKmjWIIIUC8vG8I4JymopKmkdAjCKKHLes\n0EwYVq3sqcN0mbRiMFAyw3MPeLZCCXju6isQuN5cij+NESNG8N577zFs2DCmTZuGwWCgZ8+ebNwY\nQFj2L0ZpwLuKkGOFKC/rcH4RnEyDRhUDn+O7JdCjC0T6oLS74/NnoEp96PtQ4GOPzoJlNwo5ZcAe\n6L0W2r4LHafDkNNQ/wFZUvRmuWk++BHorgOb++c5rQh+zYD7K/q3/TZqH8ujKbA1QcYIZg2HNY/C\njkQoOoLuXDb6xhBJBPlko8Mmc3erj8CBCzCmE4x6Auq0h2qt4MvFcs7tZ6C2Dz22cLOQVxamyJr3\n1hnYpHnp7W8NJ9uJS/rAfT4zPSUElAri2O4NedpAd6iX93LnavEd7HKna9vWHTD0PmjTEiLbw+Ld\ncPunUD4CvrkPBreCnx+DqrG+/5zhITLK0r85DJkOO4PM1pwYWlGMJX5JC3wswHUo7AiQ4VXX9C/P\nUNJ+I1bzt0v16PFFEEmW2zYToW4ZXvGAZ7Vrz+/Zj1PQAp5O09d0c1QoHUv4W7B161YWLFjA5MmT\nmTx5Mvfddx+rV6+mWrVqjB8//v/1WkoD3lWEQruQEz1xIUsSlGp+FjWA/HzYskOsfQLh9AEpnw1/\nAfQBWJ/nf4N190Gdu6H3Goj1IKLozdD+AxiWIhJjIEHP2AfsG0R3EoDDeeJ328FL7XR7AjwyH4Z+\nKaoodgfs1xpPdbQA1aY6PNMNtm+D4ymE6VMpQzj5TkPRZuGw7gTERcDy+fD1Qpj6IsSVgzVrtCdS\nYekq+M90SPSQE8nMk7TJyfyI0MOuViJArSgQYYCFjaX8+q5vqRSlrPj6eUPmIbEUCvEScxe9I+zM\nOpog9NYd0LW/OM9/9QnEahVbhyoV2P4tYN6DLl9DfzDoJUA2iIdRs2QEMVjUD5dRmWDZms3QcRKV\nHD+ZUhVNHcWbGawRA9GEke6R4UUQQa7b8SYsFF3O8FwlTb0e7HbtuZ1Z3uWRA1wZns7gvc9XWtL8\nS7Fo0SIMBgP333//5W1ms5lRo0axadMmzp27Qlmf/wKlAe8qgh0weEl80rQqTrkAhMFde8FmgzZB\nzL0tmwHR5aGjH4cDkBLcb4Mh/kbo+Kl/+x9FB+3eg06fQ+/1UNAWHBVkGBsQbzoo2aicvh7avgNL\n98PZTBizANq/B4O0flqmW59l0i0QZoKYZEIX7aMsueSTh41c6PQGzNwEtSLgwy/hhSfgydHQrwfs\n2AVF70GvbOgzAp55Hep0gI3bXOc+mQ72UJiVBH1jYdP1YgLrjjJGuC8evrzgckz3/DuEgZrvdRcZ\neyGmWckE9/A2uQEZOlH2pWeIa0WFytBjDNSqAc/3hn0vw9bnJGu7UpiNMH047E6Ez9dd2WNvLQc/\npwYXCxppy8ohPwGvIsLCPYv3gcRYIkn3ILWEEU622zb3gKdgRPUkrYBHWVODe4bnraRZGvD+Uuze\nvZu6desSHl58ELR169aX9/9/oTTgXWXw9lW7pFXPIgIscvsOyt1tk4YBnkOFtQug23BhWvrD1vFy\nM3zTXP8u3aoqdPzCcVBxLkR8AdnfgS0e7NvF+oc8bfExu33s9p6D0fPggQ5w4iVY97iMC2w7CWgU\nRLPbE5sMQkaJTUK9Pooo7SOcE3IBTmfAuUyxb7CEwDhtmr1RPTh6Eia8Dst/hUWfQdoBaNYQHn/R\n9QJ2nwVV+1LGmaGmj9TpgUoytrDCO/VRMSLuD17+RqlbIdaDPGq3wYdjZdi8422wbSds3gZJyZBU\nDd5aBdl5cPQo5JyHENufX5Nb1xRSy6tLociHe703dC8rVdyjPgyA3dFA65cd9FPWDMFAOUJI9FLS\nBIghvETAiyCCAgqwORVVsFBEHiqqR0lTlTk8cAU89z+YrRBQtAzPy+hCaQ/vL8WFCxeIjy85EBof\nH4+qqpw/f97Lo/4elAa8qwiheu9Jg9PvzhqgDJWUAuXKCmnFHxIOQkYSXN/D/3EXD8HxOXDdSy5J\nLG9wJEFOb8i5GWzrxLfOthEiXgLTLjAOgMwosGVr1MSDbovcKyugZll4f5DLsv3WRjC6E5AEXevB\ndVVg1ny4rhsMuAdubwDHUlBaZeNMenNj3WqIZw/DqKEQrZVOU9IgPAw++AJeegoG9obICJgwFrbu\ngj0H4GASJGTAU63glRolXdLdUdMiA+lrvSuFqPl4tTm6dByyT0FFj5LzgqlwdBs8NROmTYfWXeG3\ndVAhDqonwjADVKgDTTqIxVPlRjIr+cEM0Uu9UkzoKWMNC7YFPtaJjjGyWPzho1TrjjAUKqNwLEDg\niMfCBR8ZXgwRXPQod4ZqZdA87TEmLKio2LEWC3h6PTguZ3jOoOsR8BRdcUFpKB1L+JuQn5+P2VyS\nfh6iDQnn5/soh/wNuCItzWnTppGZ6f1L/mcRHR3NuHFByoFc4wg1SOLgiRDtXcoL4FeWmgblAvT5\nAPasBYNRDF39Yd/bEFYZ6t7r+xhHGmR3ADUXwn4EY1+pDKkOKHwP1DQoWiLHFqwJI1yvwE9p0CpS\nmDjf7YaZd0lTyh1v9pXU9rkecPiYEFC63QDb9sDusdC6Nyz7nXCEnZPrcDaYrJCXBfXcfHOSUyFT\nIzuMdLNs6HUzmM3wx2YorAahJhjWUFihnx6AoS2hoQ+pknZRsNU7rV7NkbKmJ878JCXhije5tm1c\nArNfhtseg7h68Gw/GTt49yOY9TF88gX8sQEmPg43tIeoSDhxGhYthscmwOz5sOp7iApipMSJhhWh\nW0P4eA0MaxfcYyIM0DwSNlyE+4NgC9dF4WjAgBdKMt4Xu2jCSpBWwrSAl0MOkURiRBbMIvKlpKlY\nASN6nQ27s0l5OaC5XYu1AAgtGfCuYbeEQ9ngY87/rzm3H1gsFgoLC0tsLygouLz//wtXFPC++eYb\nHnnkkb/0Aj766KPSgKd9GcuHqJzJL9nEq67NPp9M9T+aIHTswM924QRUqAEhfpxx7EUybtDoUdD7\nKHuqKuSOlHJlxDbQV3ftU3QQ8oT2eyTkTwBjTz3ExsMn5+DZasKmBLjFQzgyKQXWbISnWkL9OPjk\nZ7n7/vFLCV6tboWyCbDVQhiSzualJUO/zrD4J0CF7m6aZv1vhc+/hT7dRW/NCaMRIsLE1v1YElSP\ngds+hzXHIDIE3lwJM4bCvV6iQh0L/FyypKmq4EgEXcWS2w/PgGoDwKhVTY/thJcHQpteMPJlMIdC\nlxvgl9XQtBHc1htGetHubNoYBvSGxx4S66d+d4kbhpebaJ+4tyMMnSGfqZpBmgi3jhbX9GBQE4Vd\nAZia5QnhlBfSCkAUYZzwMIF1Brx8LcNzBjwrhegu9/CM6PVW7HZnwPO4BhVNS9PJ0vx3kFaG7QEf\n1eMrw5q5sNZDOy/PfySNj4/3Wra8cEG+/xUrBkE//4twRQFvx44djBw58i+9gFmzZv2l5/tfRqVQ\nlRNePjvlIiA2HA6c9y8tFhkBWd6TjmJIOSPDzf5w/jeZtas+0PcxRbPBthzCfioe7DxhfsCKuVMe\nSh0LubOrEZp+HmV2EqiZIs8f5zZD8cFMePJlV61ucD+ZpWvWUHTSqlURMsqjk6DmHYRdyIJ8yLXm\nw80xMv1eu33xwNbrZlj+DXT0opmmKKLB9cMeIcecuQhrH4XW1eDhBfDQfGhZBZp5KL9UCYFUqwyn\nhbiyUzUVyAOdR0U0aR1kHYEOH8v/2+0wZSRUbwwhHWDO93DfCPj2M/EwjI2BiAAkpVbXwdJ50KWf\nqLBMm+L/eHf0aSYJ7fxtUuIMBtdHwYwzkGOD8AArRw0Uvg+Q4ZUjhK14n3WIJJQsjxXaohFdcrXt\nJi3g2ShEwagprRjQu9/4ecvWHHZAKZnh+RuV+R/HN82gQfPAxwVEh6HwXPG7sEO7dzLsRt8LU/Pm\nzVmzZg05OTnFiCubN29GURSaN/8rLiw4XFEPr0YNP32NP4lRo0YFPugah6LdCdeIcLA/G7I9ypqK\nAu1rifmrP1StLIvlpQBBLz8HQgMspimbIKQ8xDTxvl91QMErYBwEpt4+TpJaBHcfRCm7DqXjDohb\nj+noKXlBWVZIKBSOvbNWu+cAPPES3DsEzu2CT6fA98vh0DEYPcJ13geGyahBTAphRnmxufosGDsW\nUlLhKS+Dhbd2hQgPu4DcPLiYBWVjRFOzfhxseQo61RZK48d3SNY3eVXJ88VoK35W8caqXXuP9G5J\nq8MOmx+DmKbCdj1/Ep7rBaf3w4NToXkzqKRVTmPKiPFuhTiCQoe2MOUlEZXe6Tnk7wdhZujRCJZe\nwWNaRMpUyf4AJSyA6ihkANl+gl45QkjF+zxjJBYuefT3QrWA5+zhGZCU1kqBR4YHTs5KCZam4vaL\nz5LmtZfhNYiA66L+np8GAdaSQYMGYbPZmDHDpS5fVFTErFmzaNu2LZUqVfqbX70LV5ThpaUFOXl6\nBRg2zI8z6DWMIUOGYDAYGFpeh/KAZA+tyjuwHoRVaXCbhxLH3e1h4CciIt3Yx+ejUztJVjZvh+5e\ntBidCAmToOcPmYegTEPfN7221eA4AWFf+zjBmQLouksst9+rA52iYUU6xudOQr1QmJcCu7IBFfac\ng461YOKbUKcGTHsNTCZ4cAQM6CmMS/dgZTJBz67w+yYsl+oDkF/bAGdCIONQcIrZALv3a3Mc18G9\nDWS+Tu92D2g2wt1t4PVfJCiHutV2fZS/bOtBiRXvPCdOzIH0XdB3E2xZDq8NgchYGP0OZFwAReNQ\n/DYXareAqvW5Ioy5Hz79Ep57FVYsCv5xtzSGh+fI+GG0n/K2Ew3C5Q55Xza0DaC5WkULHomoNMT7\nhyiWEC5SiB0Heo977whCyfbo71k0JlCBtt14OeAVomDQSCsGdHr30r7zF7fz6/Uu0orDW4YXfMCb\nO3cuc+fOxWa7AsrrvwytW7fm9ttvZ8KECSQnJ1O7dm1mzZpFQkICX3755f/rtVxRhnfp0iWGDh3K\njz/+SEpKkFOopfCKefPmsWTJEoa2aoSiscvKhTpoFA5vnZQhdHf0bgYVouCpBb77dHVrQ1x5UVvx\nh/BoyAzw9mWfgohavvcXfSuLut4b6cGhihqJTYXtrWBcFZH9mlgdfm8BXzWAXTmg9WQ4lS4lzF/W\nSCZncgss5cuWzMxAenQnT2GJkUUv35QDrVsEH+wAjp+Wf2tWE9KM3svX4bbmkFsEa48V3+5MIXTF\nF3Prz5pNkLY5ZQusfxCq3wbl28Kc16EgF7qNgC+eg8nD4Z37YOq98MadEnffultcE4KFwQCvToSf\nV8P2K5AO69FYPktrjgR3vEUPtcPgQICbJXAFvLN+gkcsZlQg08sMRwQW8ijE7mY1FKIFvHwt4Dkz\nPJsW8FSsoOjR6eQjqKq4DZ5r760C6PTyBim6/7qHN3ToUJYsWcK8efOCfsy/EbNnz+axxx7jm2++\n4dFHH8Vut7Ns2TI6dAjAnPuLccVjCQsWLGDgwIHEx8dTp04d7r77bj777DMOHjz4d1zfvwA6dNoX\nPg+VmU1h9yV4YH/x753JAF/fK+r4z//g/UyKAk8+Al/MgRM+tBwB6rWCk3vFKcHvlfk2rca2BYw3\n+cgA5yfD9mz4uqEoD7vjxjLQLBTGxUJLbbF5cyX8dlAaW5W8iEx6Q2eJtJbnpS+Xf/LU5W1B4zqt\nXtv1dpnRuPfxkk3QOuUksztUnEBBUpEITca6ZkDsR8C+BUx3yf/nnoNV/SD2Ouj8lWwbNkmcKea8\nBreOggUX4Ber/PyYCY9Nhw0/wqPtIflM8C/ltj5QpRLM+Cr4x1SLFcek9ccCH+tEvTA4FgT5oYIW\n8C74CXhltIB10UvAC9P25eFi97kyPCmDGpAbI6vWw1O1DE+vfW4l4GnP7x7wDAYulzSLEWuu3ZLm\nPw2TycSUKVM4d+4ceXl5bN68mZtvDkIS6i/GFQW8qKgoYmJiUFUVVVU5ceIEs2fPZvTo0TRp0oSY\nmBh69erFG2+8wdq1a4Oar+jUqdOfvvhrAzoMCNtvLyptouGLJvD1OXjvdPEjuzWCyQNh8gq45wvY\nd7bk2cbcLxYyjz4LBT6E/Zt2lkrO7t/9XJVBmJreoOaA4zDoW3nZ6VDh+ZPQp6yUMT3x7moo9yxM\n+wx2LJMM6VASzFgr+4OlGsaVgzo1MfzwIwa9nvzc3CsPeI3rw8eTZYShSQP4bhl06CtlTid0OqhX\nXnz03HG2ACqYJOhpKPxEZhDVG6EwE3a8INu7/eBiZrbpCd+eERf5sR9CTAWRdtMbxK2i9wPwwWYo\nzIPxXQPflDih18Pdd8K870ViLlh0qA0bTwR/fJ2w4IbPQ1AoQ6CAJwHrIiUp6+FacMtx6/GFaCQV\nZ0lTrzF0ZQ7PcDngOW/U7A68Z3h6o/ziK8MrHTy/ZnFFAW/btm3cc889fP7553z11Vc8+OCDNGrU\nCEVRUFWVzMxMVqxYwaRJk+jSpQvR0dG0bt2axx9/nEWLFnmlpmZkBMlzvoahIxewX9aNv7OS+JA9\ndQjGH4YdWZL1vXsSHLVhYh9YfRiavgQjZkKq26JolHGb0QAAIABJREFUscD0d2H1H9BnqPfFr0o9\naNAWvnrBt0loRE3p43mDehFQS1LvAdifCycLYJwXP7tZm+HJH2BEa1j8ACx5QH4HuKERxMfBcj/u\nqZ54exLsO0yI3UFhTDS0C8Id1x2KAg+NhG8+gi/fg5+/hQNH4GePO4GYMMjyuHvYlg1NXaVW+z4o\nnAbmp+DnvrCoPhSkgqUCWDyMIYwmcZH3har1YcoqSD8Ps14I/uXcdTtkZ8PqtcE/plV1kRoLZpwF\noFYoJOS7kUL8IA6FFD/BI1oLeFleMzwJbu4ZnlnL+pwZnnvAk5KmHdC7Mjy3/0o2p0Fv0Eqa+uIs\nzmuYpVkKwRUFvNq1a/PWW28RGxvL4cOHmTRpEnv37iUjI4MVK1bw/PPP06VLF0JDQ1FVFavVyvbt\n25k2bRqDBw+mSpUq1KhRg2HDhvHxxx+zbt06zp71kqb8y2CjPKCnntvi8GY9eK0uTDsN12+AFuth\n4lF46Ti8YYSZT4nn2fJ90OwlMQB1om9PWLEQNm6FAcPh9JniVRpFEcLEiT2w0kcJLK49pO8Em5eA\neVlg3puiy68ZEKKDjh6T0IeT4MF5cF97+PAO6NsU+jSFL4dD0fvwaFcY0g9+WhV8SanfLXB0PSHR\nURQ8fr9E+2Dw9QJo1xs8h2HbtoTmjeGzOcW365XiEcGuiotCJ3mNqgp5z4g1UGIFSN0MFy/KoHnG\nHvh1IGx+HA58IJlfMKhUG+6aBIs/hAQfNx6eqFdH+riLVwR3PEDzquLGcSQp8LEgFWqrCuf92wIC\nUA4Ff63iqMsBr6RcTKiXkqYOHUaMFGrbXAHPpgU8LcNzmh44wJWtefTwnNu8jS2UljSvWVwRS9OJ\nfv360aNHDz744ANCQkJ46KGH6NGjBz16iFaVw+Fgz549bNiwgQ0bNrBx40YSE0VdPiEhgTNnzjB3\n7lx/T/EvgoqqffEtWg8howi+OQ9rMsQ9oVD7TnaJBZMOFifDijR49wbRQxzzLSzdKzqJTtzYEZZ8\nC/2HQY1mMqPXoQ28+hy0bA6N2sONg+Hd+4SxOWBs8auqeDM4rHDsa2jwYPF9isboU70t3ntyxLUg\nxKMB+N7vUD4cPri9+J104jmY+glYbUJauZQtC06wd9vlymIOC6PgSjS21m2BzTsg/SJUdOsZKgrc\ndRs8P0VWS+fKWWCDWLfX82sGZNvhpjI4MiB3ONhWQNj3cHGDmL1fKoIQIP4mKEiTbPnSCdjzJtw4\np7jaii8MfBx++gTmT4Hxs4J7aT27BSYtuaO5Nq6496wosARCNe2eIiEfqgS4vygHpPrJ8CK0gOUt\nw7No34lcj7EFM+bLAc9QLMPTayxN3eW3ze7AxcIsRlrRftf9e8YSSiH401qaISEhPP300/Tu3Ztn\nn32WlStXuk6q09GiRQvGjBnD3LlzSUhIIDExkXnz5jF27FhatGiBXq9HLf1gAQ7sWvkmVNXxSQLU\nXCPlTJ0CY6rDuw1gQi1IzIe9l+Dp8tDkInR7R4Ld4FYwycssXNfOkLhfAt+TY+HcBWjbTTQYVRUm\nzJFF9aNx8O0bxR8bXQ9qD4OdL7lcup3QVRDPN/sOLy8nxw7RHvdRdgf8sBeGtCxuvLpmIzS4Aeb+\nCBu2Qd2aMOej4Kza3WAymSgqCqC75o7P3gHH+eLBzokGdSTzO++W8pxKF3NYJ94/Cy3CoU0keaPB\nvgnCl4FpADR+QhLf8sCN30Cv38Q7cNBBGHwCohvAzz3gzNIgXpcZ+jwEa+ZDtm/P2WLo3EHuIRKC\nJLyUCZO5/8MXgju+kkaCPRdEhheLQoafgGdAhwU9OV4yPGfAK/TYZ8JEkRYgddr9umR4+sslTWds\nK1bSdB+N0GmkFXQU69eV9vCuefzX4tE1atRg6tSp2Gw2xo8fT0KCd3fJSpUqcccdd/D++++zfft2\nMjMz/99nMK5OqDi0L/eviQYePgCD4yGxC6xoBa/WhcdrwBv1YH5tqLED3v4U7v1SvEoXPQRzHwCj\nj1w9OgqqNIJjZWDDSlkQxz0Df2wUosODU2HES0KRX/1t8ce2fA0KM+CX3pDjsYAaWgkFv0RFqMAh\naag7diVCSjb0dzPSy8mFgfdJGfHYRtizGlZ8C727XfFf0Gw2e9Xq8wtfGWRlbQL8nBbwLuWLZVFN\nTd9tWZq4JIytjP2MgnUhhLwARk2tJKwiDD0LAw9C7buKnzqsMtzyM1TtI2XOrCDYkT3uFjeF34Nk\nvXdsK/+u3xzc8QD1K0jFORhEGiBML5ydQIhBwbufhAvhGMn2GvC0cROP7M+EmaLLJU1nwLNqAc8G\n6ItneM4PaIkMzwtpxYnSG/FrFn+qpOkNPXv25Oabb+aDDz7A4XAwbtw4rwrZToSGhjJy5EgmTJjw\nV13C/ywcGMABs44ZGF4Jpnuom6gq/GcVTPheqOTzH4Sb6vv3xzuTCLv2QeJZKCiCtmYYNUYIDYP6\niYO2E8NfgMTDMGU4bFwsc2IZF6BtH+jyHWx6GJa0h56/QrQ2FG1+AnJuknk8s7t2QG0LLPdY5pI1\nVo17ljR/MVzMhJnviCLyfwGTyYT1z9gGeIOToWnSMtHlB+QN6FoP9uegDtyPvVI51PIVMFQCfVMo\nnAGKGVBA3xxCW0OYD3EAnVEyv4V1Yftz0HWB/8uJqQBNb4BNS4Jzpi8bCzWqwc69cNcdwb3kWuW9\nM369QVHEIjA5iIQ6GsgKkC2FYSCXkkPbIVq5ssAj4BkxYtUCpDPDE+NXHTJioHiYHniMJYAEPEUB\nlJLN7VJc0/jLAh7IwvPkk09y5swZJk6cSOfOnenbt6/fx8TGBiHvf01DRcUAGTrSChUere6xV4Vh\nn8O3W+DxbvDGbcWrgp7HfvoFvPsxHNdILCaTaCQXFEDN6vDFh0Jfd/9uKwo8+gmYQmD/BtHZrNoA\n5k2GswPg8S2wtDMsvxkG7gdzNBhvBGN/yB8LigVMTs3N6yNg2llZEeO0AXKngWuUW9NnwRK40UPz\n8k/CaDReeYbnC9ka59457D53h2hpVo+F3ntQI81kn2sEQ3VEHYDQryBvNOQ5NdVVCYJhP4LehxKf\nwSLZ8x93Q+o2KOdtvMMNbXrDzGchPxcsXlwYPNGiqZgBB4saZWHJFXhwxpkhOYg/dzQKmcgnXPGh\ntuIr4Jn9BDxXSVP6qg4fJc1iGZ7z+RVcjE1FKe3h/cvwt/jhVa1alXfeeQeLxcJjjz3GsWO+azeD\nBg36Oy7hfwoqekjTUdascp1HsjN9rQS7b++Hdwf7DnYFBXD3w/DwU9D2evh+Npw7CAVJkHMWilLg\n6Ha45y6XXvLO1fDO/TCsBvQvA7/MgnPH4PhOEZh22OXGODQeKneHwrTi64PlbXBUh9xBkPuQtrZ0\nj5Ue3iQ32mhZbZU+68ZyOXz8yscIfMBoNP510k679sksYKUKMG87LNkHD98g+wodEKrNcGlJq6E5\nRG6G6EKILoLw32ROMXcgqH6yoNrDILwaHJkZ+JJadgNrERzZGtxLaNIQDhwO7liQ4fO0HGFrBoNy\nJpFJDYRIJOfy7nj3f+ydd3wU1dvFv7MtPSEhkNADSO+h1wACAkoRqYqKCLYfKqiAYkFFRFDEgoIi\nKEhHigVfQKQL0qWD9BIIBNLbZsu8f9zZZHYzWyJBEXP8xCUzd8ruZu65TzuPQCAGsjwQXq7LPiPG\nvAaw+YRnQ1KmMllt4an+7xzDc/zbXQyvGHcqitTCc0Xnzp1p374906dPJysri1GjRhEY6CzaN378\n+Ft5C/8epOpoUML5mbtwA0Yvg+HtYJCG0H/eoanQ80HYtQ8WfAkP9is4Ru3m2bQEvn0bLhyDctWg\nVS+o3gQiykBuDhzdDheOwxPvQ5cBsHMMHP0M6o8Ff5VBfvUSrDkKVQKhwUzQRUDARBO8VRlGnYQR\n5UWtWgvF1Nl5DmooqsiZWaIpaxHAaDQWnUtz/VZo2xxyZHhqCTSpBQdLim7tL1RE1/0AYR2PIveI\nRlc+AsdEKikLEWMHCFoG6c0hZwIETNC+jE4PVQeJlkEtP3HfggmgUm0IDIWjO6ChD9mdNe4SGtop\nqfk9cD2hnKKLGZ8Md/kgWh1hhGM+yIuFKJ9NOnkicgUQgIEcCsbRjMrU5Dvh5ZcaOCuEOVyaajJz\nWHsuhFeMOx63vOO50Whk1KhRDBkyhNdff50lS5bc6kv+62CX9ZCqo16Y88P33v8JVasPNAhMjeEj\n4cBh+HWVNtmpsWgSTBwEZavCtK3wzQl45iPoNBhi74YW98LQifDGYqhmgRXV4einwgXXdJLzuY58\nAvZcOJUFlsqQ86liAT5dDqoGwGPHREfbAD/RtXziWriqSHfp9ZDuw6zpA4qM8OZ/B/+3AXp0ht/P\nQmo2/FFWZGWuTYKuEfB1LXRHktGPOgDPaXsuDLHg/wrkTAZ7ovvLVRkgkoIStnq+LZ1OyMGd8LFD\nefW7xOupM57HOVBOEcS57KN+Z4RRaIJ7gyPE7KljQgB6sjUIT0LCiKFAlqYgPEcMT0xfasKTkfKz\nNNXSYmqXptrq03RfFpPgnYpbTngOlCtXjqlTpxIVFcWIESM4cuTI33Xp2x+5wWCVuCs4/0HLNMP8\n3+GJOAj1UO+08idYtgpmTIVWHqxAgP+bLbIxH30L3vkR6rXR9uKknYEf28DuV6DaYzDoIjR61Xms\nLEPLF6FiDHSIAuN5CPpWCY8YdbCoDpzOhogtELkV/tdHxPJGLBMn6NYRVhaiQtoDDAZDfsPPv4qM\nTNGHr18PGDFUtAgK9oMuCfB7Q+gdKT6AIWXgSmv4rDpMvwSfa2d7+Ck9jXMXaO4GRLsgv5KQ4IMy\nSuW6cN5HudqKisjNBR8TURzJT2rFHk8IM4juTt4QqJCMJ6UzP/SYNQgPwIgeq8s+HXonQWkdemQl\nWQUUl6bDwlP93ylpBSVhRZIodmn+t3DLCS8hIYEdO3awaNEi3n33XRYuXMjhw4eJjY1l1KhRpHlr\n3nbHQ0a2CjdvhCo+t2KfKDt4vI37I81mGDEGenSFgR4atQIc3w3TnhR1XYNfdz8u7Qx830QUS/f4\nDVp9Av6RzmPsVyE9FixtoOk5KGkTbjxTL9WgqgEwuSoMiBKlCo9fhOfvge/2w6F46NlFxPF2FyJb\nwg30ev3NE9787+DadXjvVWFSBfvB0qGw8U944EM4pTLVJAmeKQ/Plheu2/MFp3RdJBh7Qa4HMWdJ\nB9FtIWGb99urWBsun4JcH5JFIkuKphEX472PBQgPFGEtnwnPKAx3b3AELzI9WEwmdB4Iz4DFZZ8e\nfZ5LEwTh5WdpCkhaWZrqGJ66J16x0sp/Cjcdw7t+/Tpnz57l3LlzBV7Pnz+vmT3nKDj/+OOP+fHH\nHzl16tTN3sbfjt27dzN+/Hh27NiBxWKhXr16vPDCC/Tr58WnqAFZFk+gXrXC/PWYaLIdE+nuKKGo\ncfmKcGV6W5zOfkVoNI74xP1YWYZtw8EYCr33gJ9GzzM5DTK6gT1BZCLqKoK+KkiOZJsrZnj1DCy8\nmi8RA9A5HI4dErNr2TCo3gka14duD4r23jPeg44e2N0D9Ho9dneioL6iQR3xun4LDFfqLLrVEQ1h\n+86Gnl/A/peds4YmVYU5V2BeArxeMCXT2AuyHgb7dUGAWoiMhcMfexeXKVtVJBolXhSyY54gSRBd\nGq762MFLpxP98FI8ZZeoEKwXaxib7KSdXQAOx4QnjvZDTy7a350BPTaXfXoXC09C55QFKiM5x/Bk\nlxielPc/5VVNbsUW3p2OQhHejBkzOHbsmBOpZWUVfEq0FFRKlSpFTEwMMTExVK5cOe/fNWrU+Ot3\n/w9h48aNdO3alYCAAAYOHEhISAjLly9nwIABXLp0iVGjRv2l86rFuLaehPvqux0KiKafHdpCzeqe\nx/2xCfb/Cm+uELq57nByLlzeAF3XuiE7GTIfBPsZCNkKetdu6OtuQP8jYJLg7cpwb0lIs8HZdFj6\nM8w/CF8MhJJKyv+qr+HtD2HHXnjmZTi6pdAqKwCSJN084bVsAo/0gyfHwHc/wawPhG+wXjlYORwa\nTYYJ/wcTVWU2QXroW0oQ3msxBRjLoDQCsf7mYv2qUKI2mG8oQtOltceAKBUB3wgPoFSkMFh9RViA\nCFn6gkDlDzXbBsEe/p78FALxVKNuRIfFDeHp0RVwaerRY1eNl5CcXJqoCM8ril2Y/zkUivD+97//\n5XVGcEVERIQTkbkSm2t25r8VNpuN4cOHo9fr2bp1K/XqiVn/jTfeoGnTpowbN46+fftSoYKv9WUy\nrp7l1Cw4kwjN3NRxAVy/AVt3wDefe7/Cmjmirq51bw93IcOhD6DS/aIEQQvWzWBZDUErNcgu2yaS\nVBqHwLK6+f5ZWYaZ38Mvx2H5MNFQFeBqInw5XyialAiFQ8ed9SsLAUmSbt6lCfDl+9ChNYx+G15+\nFxYqH27tMvBcHMzYBm/dCwbV0qRvaZibAGdzoIpzsFVfCaQosO0H3BBemLJYSTvlmfAilUL26z66\nKUuGw41CNCIJDYB0H9RTQDSCBZG46pnwBDxZeAYkrIUgPB06DQtPRXiqucm5LEENOX+81v5il+Yd\ni0K7NKtXr0737t0LkFpwsEZX6jsQGzZs4MyZMzz++ON5ZAcQEhLCuHHjGDJkCHPnzuW1114rxFkl\n1f/hpOKKqumhF6pDOqqjl3aCNivsXA09nvK8oE06BMlHoOlk92PMn4GulnDVFcDn8XDNAltqOAcj\nv90F83bB/EfzyW7bTug7HHLM0Kgu7DkIX0xWGnMWHna7Hd1fIMoC8PODIQMgKxuefRUmjIGqMWJf\n30bwwa+itKK1qhV8U8WXuze9AOEB6KuB3YOEWKBCZFkFO2c5wT9QCAOkedPqUhAWCtcLQXiBJsjy\nsQ7PX/mozV6Mase36Sm/RY+EzU2MT48Ou8s+neLCdEBYeM4uTW3PpGtZgkSxC/O/h0LPEsnJycyd\nO5dffvmFo0ePkpKSgtHophr6DsSmTZuQJInOnQtqPjq6RWze7EPanQecVgivqocV/45dosN1BY22\nc2qc3A/pSdD8Xs/jzq8Sbkx31p2cAZaV4PekG+L89BI8Ei0apjlgt8OYVfBgE3hIkRMxm6HnEKhW\nGU5sg43LIesMPOKjDpYGrFYrer3e+0Bf8dgAwRjzluVva1JRxB83/Ok8NsoEZU3wh3bGh64q2DyU\nB/iFg84EWT6IN4eWFN+lLwgNFY0nfEWA0XfC8/OR8ByzgsVD0ooeCaub/TqkAjE8CcnJpYlCeM5x\nOQG3SSt5h7orSyjGnYpCEV5UVBQJCQkcP36cxx9/nKSkJF5++WVKly5Nq1atGD16NKtWrSIx0UPx\nkQumTJlS6Jv+J+FQjalWrVqBfVFRUQQHB3tUlvEEncIkiRlgMjgrcbni3EWoVtX9fgcunRCvlV1d\nkC5IPgQRDYXWoxZshwAbGNpp7LxshvM5ImanxpErQkfzcVUn8s07hIbmZ5NE13K46VjK9evXiYz0\nkN1TWAQEQJP6cFBVB6BXOp+f0QiMVfCHK9psIZUC2YNVJklgCoNcH5KV/YMgx8fEEn8/9x3vtWAy\niFZTvsCRqOKtCaxjCeKJF3V5hFUQksY+121SXuKJlxie9kYfxhTjTkKhCM8xqURGRtKrVy8mT57M\ntm3bSExMzKuxmzdvHvXq1aN69eoMHTqU2bNnc/y4e52j6dOn39w7+JuRmiqqc8PCtCUsQkND88b8\nVSRliibbnp6/i5eEhecN8acgPAoCPQhNA6QcF61r3MF2ENCDvrbGzj3KbN3URRdt62kw6vOVVgBW\nr4eK5aCeh4sVEteuXSMqygeJkMKgdnU46rJwqRQB5zRMrCiTWzVlKVzpEO8BxhCw+GCN+QWA2UfC\nM5nAXIiOSUY9WHwMgxqUv0uLF8JzTC6eTqvz4NLUIkMtEnT+XXYO57lacAWeqeIY3n8JhQqa3H//\n/ZrbTSYTLVu2pGXL/JX86dOn85q/fvTRR1y9epUWLVrQunVrWrduTePGjfn111+Jj/cxCv8fQq7V\nvWamA5lZ+frGnpCTASEaGZeusKQ5y4a5Qk4BqYTSFcAVSYppUNZlZ2IGlAoWASIHEhKhRtUiXU3n\n5OQUfVJUqZKQ6mJ2hQXAGQ1zLUgPCdqpGZI/yF5q53Qm0WzXG/RGEZP1BQa9o+O3b9DrfLfwdGpC\n8TROefU0zNNfgZbgtOs2qYArs9hK08Ix7Hi2tW/23P8OFIrw3n77bZ/HVq1alapVq/LII48AwjLa\nsWMH27dvz6tfKzKF+78RDsvOnRWXlpZGRESE1/NUq1YNSZIoZwLL96Xhxhq2Dh9I72EPFun9FqMY\nxShaLFq0iEWLFgEQHx9PfHz8bd/MejC5eM6XvRkUwpXwD+OWikerERYWRteuXenatSsg4i6DBg1i\nw4YNf9ctFAkcsbuTJ0/SqFEjp31Xr14lIyOD5s29aHwpx4eGhsIXL+P/YEXMW5+hbUvx0Bh03t1L\nfn6Q7UOMxugn2sp4g96/YGdzJwSIxBXZlt9dJQ9ByoZkC0SqrLlgPyEnZrEJnxlAaDAcOeH9hgoB\ng8FQ9Iun9EwI8HfelpULJo3kGLNdyKlpwQKSl6dMtmp8phpwdK/wBXZ74Yxou5fCd9ex4H28LxTg\naYxWbM+9O9P19dZh0KBBDBo0yGlbWlqa2zDH7YD5mKiFlnvm5nEME4O9D7st8LdpaboiMjKSWbNm\nIf3LAsVxcXHIssy6desK7FuzZg0A7du3v6lrhAeJOJ4nlC8Ll7yksgOUqQLXL4kuCJ4QWl3E8dxB\nXxcwu0mxb6T4Vve4BKJaVRYksf9i/rYu7QXhnb9IUaFUqVJcu+ajrIivOPon1HSp8L6QLOJ4rlD3\n/nOBPVnE8TzBkg5GH9zTudmiPMEXmHPBz0MHhgL3YM1fk3iDI1nF4OXRdazZPJ3WjozOjRtSpKJI\nLtsK9tZz/l1ybpDgOr8U4EM32Zt3GGqhI/YW/dT652ik0PhH7zQmJoZy5XzIvLiNcPfdd1OlShUW\nLlzIgQMH8ranpqby7rvv4ufnx8MPP/yXzm1X3CIRQaI3WZYHo6VieTh73vs5y1UTsZZLf3oeF14b\nkg64j8voG4hX606NnVUDIMIAG12yM5pUgiATfKfSy7ynvcioeON9yC0aV0hUVFTREp7dDvsOQR2V\nCpAsCz3NGA3Cu2x2S3jyDR8Jz0tSEYgMTZOHzF01zGbhBfAVaiPcGxyE50lWDPIJz9Mko86vdIUd\nu1fCyy9JyLfwtBsg+NAV4TZ3Sxbj5vGPU/NTTz31T99CoaDX6/nqq6+w2+20a9eOJ598kpdeeomG\nDRty6tQpJk2aRMWKFW/qGpWVDHutDHgHmjSEP08JxRVPqNFUZPftXuN5XIXuovj52g7t/bqSYIiD\n3K80dkoSPFYGZsTDDVX2hVEPozvBhxvgt9NiW2iI0M1ctAqadoMX34RWPWCLmwv7AJPJVHT98ABW\n/gzxV6C/Skbs+FXRP6eNSy1IqlWorNTV7vhmPwu6GPeXyk0HaxYEehAZcCA9CUK9h4fF2Azfkpoc\nyLY45xZ5gqP+zs/L7OHIgTF6SCSxIWNwMw1pWX8ycl5bIMcWyYXwHJCcdDPdZGPegdZcMdzjHye8\nV1555Z++hUKjffv2bNu2jTZt2rB06VJmzpxJdHQ0S5YsYeTIkX/hjM4PY3Ulw/5Egvsj2rUSr1u9\n8IRfAMR2hu3fex4X3Vaofpyc5+Fc/wPrNrDu0dg5tpJ4G2NPORdojbsHWlaGAV/DMeUNDR0E274X\n5QmLVsHlBBgysnBphSq4k7v7S/jjMLyqCFk3U8VofzwkUmfbu9Rf7lfcuE20TTT7SaG24g5ZSpJy\nYFnPt5VrhuwMUXzuC9LSxdrCV2Tl3krCcw8bdvRuCNGOHb3LFKVl4al/L9ZPKYYnFIrwFi9eXOQ3\ncCvO+XegSZMmrF69muTkZDIyMtixYwd9+/a9qXM6puxSIRAVCns9uCwrVoDaNWHRcu/n7fggHNkO\nR393P0bSQa2n4cRsSDqsPcbYG3R1IXMA2F09iKVM8P5dontAq71CSNouQ5YMkweKBJZG78G6Y2J8\ns0aweCa8NlLUvKVn/POEN+FDaNRZJKy892r+9qtpMPkXGBALAS6s8MN1KGWEmgUtPHsi2C9o6I6q\nkKYYvsExnm8tWVkrlPCx3DAp2bdu5w6k54ivyBdkK1+Tv5fZw+Gw9sSjVg8Wng17AQvPjr2AhZev\ntiJ+1/5TcKnVy/spxn8JhSK8L7/8sshv4Fac898FCUd9jCPmIUnQtpromOAJTw4RDWCveLAEAeL6\nQUxd+NqLvGf9lyCsGmwdBnaNmizJCME/gJwpWgTZzruEPZ4qB9saQ64d7jkAgZtF89fWx6B7P2hV\nBZ5eAjkWceCjz8GIcaLL+JTXb0pL86alxU6dhXc+hheehPO7oami+5mSBYPnClHr913Ut612WJAA\nD0VrBrSsSp87g4euRylHRcJKsBcv+LUL4jWqkm9v59r1fCEbX5Ca7VnZR40s5Q81yMtHnqMQir+H\nMRbsGN1MQ1bsGF0SyW3Y0KvSYAQB6smrMVOphTkr1KqhLiT8byStFEOgUDNMeno68+Z58HkVErIs\nk5HhKRf+vwFJEk+oTcUecTXghSVwIyO/m44rHhkI4ybApGnwiQfRZ50Ohk6EN3rBqunQe4T2OL0f\ntJ0NP7WBtfdC3NyCsSV9ZQheBxntIS1G2dYcgr5SMjlbhcG+prAzDdYnwdEsWHoNpl2GyY1h7CI4\nGA/pF2H5avhuFnTtCEF/vXDcbrdj+ItkmYfV60USzYtP5RPv8QTo8hkkpMGaZ/JbgzswQxHMflQ7\nAGdZI+J3Og9kduMAlKjjfY69ouhxlvYxPHw1EUr7SHiyLHi9hI9fQaYVTDpRPuMJjsRgT4ZjLna3\nMT5BbroC29QWnqwktjgsPEll4TllaTo25ulr20YBAAAgAElEQVRrukqS5e0sxh2MQs0SgwcP5uzZ\ns0V6Aw899FCRnu/fBwl0wvmTrrKq+jcRhPftDhhZUKcaEC6rCePgxddgwP3QuoX7q7TqCQ+Mgs+e\ng4gy0M5Nh/SolnDPGtg0GFbUg2ZToNqjzvVfhvoQegrMa+H4FIg+AbZWELIFDA0Rk0wlf9En7qTS\nZO3N8jB3KbSIEULML8yGstHQ596bXlFbrdabV1rp1wNeeRc+mS3cmRYbdJ4Owf6wbQw0c8km3pgM\nL5yC58tDw4LBMjkLcheD/3OeL3t1K8T44Ak/f0yQXYB2bowTUlMhPd036TmANKVUMtLHJJdUK4T6\nMHM4VNCCPETVzNjwdzMNWbBpWngG1TY5z8JTtQVyGHvuklZk1T+0/vaKLbw7FoUivOeff/5W3cd/\nGpJ/KuhkzmblP2ilQ+H+RjBzM4zo6NyCTY3nnoSlq+CRp2HTj567Jzz5ASQlwLuD4PRY6PM8hGlo\nLpfvDA8cgt9HwpahcGAyNHsfKvXIH6OLgF3r4OQfos6qRwXI6AFh50DSydD/MGTZYUssRBph9DyR\n5bj0cWFyrloDfboXyeRis9lu3qVZNhrGjoA3P4CmDSC8GlxKgcC7ofkJ2BgI7cOFbujrZ+DXZOhQ\nAj7Q7saaOx9IA9Nj7i+ZdgYyLoiEIW84f0T0NPQFF5VEGF8JL1HJu3E1YN0h1QphPhGeYBZPnlIz\nNgLdEp61QHzPhtXFpWlDHRZQR/OcXZoaMTxXl2ZxWcIdj388S7MYoJPsECJz2EWtbGw3OHkV3l/r\n/li9HhZ8CTYbtLwH9h1wP1ang7FzhaW3/EMYWA7e7g/r5sK5I5B6QzQY3bwMln8B4U9Ajx0QEgO/\n9IITc5zP55iowwD9dTA0VxRDViTCtlSYXRPaloDKJlh7DCbcB3XKiIPSMqB8mUJ+UtqwWCw379IE\neOMF0fl8wQqoWkr47O7OEYX11QJhXzpyi73YD5mxP18ZVtbX9OvZL0H2GDANBn0V95c7+51QuCl7\nt+fbkmU4vguqN/btbZxU3J9VPTQQVuOK8ndXxsckl2QLhPvQEcwRrAjxYOHlYMNfozRdRiYXK34u\nOZ5WrBiUbbLynw49shIBl5CxKzFGZ5em3XFinEhQU7qm2MK7U1FMeLcF7BBu52CK84MWWwlG3wNv\n/gB7z7k/ukoM7FgnjJQ23WDqdPdF6QYjDJ8MC87D0Hch4QxMGQLD6sIDkTCwPEzoD0vfh5c6wNq1\ncM/PULkf7HpJ1Iw5UO1+6DMIOhjA0BiC5gEZVhh9CrqVhHuUHPq9F0SCR0vVDBwUKBSwiwAWi6Vo\nejJKEnTtABt+g3KhML47/LQdpoRCOT947zxE+pMa35T0lTHYLQUnansiZD4IBEPAJ54vd3ohVOwJ\nJi+WVcI5SLkGtVt6HufAiZOiJMHXGF58ingt54PIOMCNXOcev+6QrlhVnt5eNjYCNCw8R6dzkwvh\nWbDkuTTtyhg9BqXrudjqFMPTJC9HPM/uZn8x7lQUE95tAAkbhNu4kCVxykVS7M1eUK8cxL0P83e4\n97qUiYbNP8Hg/jD2TajSEEpXg+adoE1XaNwe+j8Ge/aL8WGR0O9F+HwPrLgB07ZAl0eFMku7fvDQ\n66Kl0L71YMsVRenWHMhVWaE5r4K0GPzHQvCvIAUCa5NEIfZUlavP0WGgpiqnvkJZOOxBy6wQKDIL\nD6BFrOiScCEexnWB5pXgvV/EvstmZIMRkLCfBjke7Fcg82lIqw9pDSC1DFgPQPBi0HkgkPj1Qtmm\n+qPeb+mPDWLyruUj4R0+BrVq+O4tvnADQvwh1McszRsukqnukIagE09hxyysBGhYeLlKFZ/JhQy1\nCM/VwtPM0lQ/OA4xUNeklWKX5h2PYsL7xyEJwitlJ0AvM8tFYtLfCJvHQJ9YeHg29P5MuDm1EBAA\nX34E10/DqgXwzONQr7awAOvVFRNh804w8QPnZzs0Ag5tE65NSYIjv8E3r0GDDvDiB7CmC1zfA51W\nQKDihbQdB/MsCJgEAe+A5JgA96QLa6iWapoLUxLTM1RaaX26w88bRMHYTcJiseBXGB0tT3AUr6Vn\nCB/wo81h00mRLvtmZXTxaQTVP0Pg56CrDZmPgWUZ6FuKn8DpEHbacymCbIddo6F0Kyjfzfst7Vwt\nrLswH4vO9x+CRl4a/qpx9nq+uo8vSHCvpOaEFGRCwa1WJkAmVoI0LLwcpYrPX8PCMymVfTaFFHUY\nADuSUp7gcGnqdahcliqXZp570+6i2u2jKnYx/rUocsK73dtk3I6QsIEB+le28dE5mHneWawkyA/m\nPQ7fPQ37zkP1V6HCaPjfAm01lhJh0Ks7vPkyfPUJjBoHUizs3ggd28FrE2HTtvzxm5fBnHEw6BX4\n+jgsvgQ/ZsBrc2HzfZBxHrr9AhW65h+TMxF0FcDPNY/pSCbUd0n3i1DI74qqv9zDfQXrjpt00yvr\nInNpQn6HhCwlu7R3A7DZRQyyUwRMqYrp4Hn8Kl3Hfh6sa8F/PAR9AUEzwe8pSE2E63vdX2LveLjx\nh8iA9Ta3ZmfAnnXQ/D7fbj8zE47/CY3q+zYehIRdYQjvqhmifFhfpABhXlyGgvAKfndmhFScawzP\nggWjsq2ghacD7Hn6BU4uTQfJgWg7ISuJK1KxhfdfQpG2B2rRogUHDhygefPmxMXF0a5dO1q1akVA\ngI++kv8kJPRKn6r+VS2YzAaePgLvn4UBZaBJmEgQSMyFnwwQ+wAMyYbMa7B0D3yxGd7pDS931z67\nLEOEBA+Ug+HPwvpN8NhD0FrpYPTLtzD1cegwCIZMyH/+DUbYN0nE7O7/A4JcMv6s28HYSzQ4dYKe\ngi2uG1cQMh6rD0NDJY00qhRMnwhPjIaDx6B6FShTWhBh7RoUBmazufAWntWqXeiecC3//gCiQ6F0\nCJxMFL+PriTqCj++hO7nSPQtwPwJGLsKCTFLBvzcCcxJcN9mKN0s/9Q2M+waA0c+gaaTIbq199vc\nuFh0Ob/bx+qdHbuFYE1r7x2q8nD8Cgxq5n0ciKLzFCuU9VRNriAJGW/SnxlYCNaYhrIVCy/ApYov\nFzN+yja7YuGJGJ5NsfBsebylk1BZeKo6PNku/iHbtZNWii28OxZFSngBAQGYzWa2bNnC1q1bxQUM\nBpo0aUJcXBxxcXG0bt2a4OBCqNre8dChUwjPopf5sh48UQE+vwBfXYRJp/NHVg+CQD38kA0fNoNT\nfeCNVfDKClE0/FR75zP/eQr6DYGDR8Tv0VEwbwYMHiCe6W/fhrnj4Z7HYNQXIuPTgczLcORjqD+2\nINnZk8F+BvRaWYPBejjn0osowAT31oHFe+GVLsJVCDB8MFSNEaUAf56BJT+IDMnzewo16ZjNZkym\nQvTCmfgRvD8DzvwOES6BtlPnxAdRQSVuWaWks5L38xXg4aNIJzMJmhdExr2QFgshv8LhtZB+WcSv\nfmgOdUYCdshJhGs7IfMStJoOtf/n/TZlGb7/DJp1hygfC863bIeSESKG5wsyzXAhCWr5mDAbr3y1\n5X0iPCjpwcKzI5OJlRANCy9beSZcXZq55GLUcGmqCc/h0tR5svCQEW5OFeHlWXjFhHenokhdmuvX\nr2fjxo28/fbbdOrUieDgYCwWCzt27GDy5Ml0796diIgImjdvzujRo/npp5/cdg7/70BCp6xmc5Q4\nQ5MSMKc+fFMfolULXIMEOcrDXMIAhy7B+mNgMhSsoTpzDjr1Fn3RVs6H0/vh8jF4eKDgkksnBeEN\nfBlemi0sOjXi14lklToapZdyknjVadV53RUIhzKdfbIAT7eFw1dg2kbn7R3bwOaVsP1HeOkpyMgq\nnGvJbseck4O/vw8zsAN+fsJ1qVW7t+JnkbiidpGG+kOmqpVR31JgkmBdEvpqELoP9HdB1kjQmcQq\n0kG/Rz6CCz+JBUSZ9tB7j29kB7BhIZz+A/qP9v2trflVuK11Pj7Zh5Wavbo+1uxdUDy9FXz4uBOR\nPRJehuK2DNUkPPF5B7pYeGaVhWdTjjdgVAhPxPIcLk2nGJ66LMHmLoanoNjCu2NRpISn1+uJi4vj\ntddeY+3atSQnJ7Nnzx6mTZtGnz59KF26NFarld27d/Phhx/Sq1cvIiMj6d69e17z1P8i9FwH7JxV\nTQ6zLsC9e6BeCHxVD+bUg8Zh0DAUPigBy5ZDs4mCG7a/DA+orK2Dh6HdveDvD7+ugt73isQV9XM8\n+xWIiIZHxms/31e3Q3gd8NfwSUmO+UmrI0+ncFGZvNelGWxcNRjTCUavgq+2w8VkuJQM0zdD+BhY\nvEdIjXWJ8322PngUYruQc/0G/gtWiGJEX/DS03DlAISFOm8/cx7WbxGWpxo2WZk9FfjroUmoqDUE\npGAImAK2HVC9tOhwHgyU7wohVaD/KbhvE7SbDRE+JpNkpMCXo6HtA9AgzrdjLl+B3fuglw+JMA7s\nvyBEDer4SHhns4X9U9GHKEUiMp60rlMVUgvTkJfOUiw8NeGJ2rzcAoSXb+EZAFse4encJa04hGJl\n1xbyxTG8Ox1F6tJ0hU6nIzY2ltjY2DyVlpMnT7J582beeust4uPjsdlsrFmzhrVr19KrVy/mzp1L\nSEgh+prcERAPXYrywP2eDM8eFa7NmXXzCemxCrBqP9w/BxpUEIksg5o5q7DY7TBoOJQMhzXfiXIF\nVyRegq3L4cWvwORmpZ58BEo2dHO7ytfjsPSc0CxUNIOdc1n8W41JPUXiyvCFqrcuiTTx+Vvh2El4\nZ6ybi2pg6CjIzCJHJ+F39E/Ye9C5pY8v2L4btu8BkxFmzhMfXD+XDJEMM1Qo4bytZagosFdg7AzG\nB8A8Hh7LFrHPLUNBZwB7rtAp9RUZKfB6T9Hw9ZmPfD9u2ffCMO3mRopOC3vOQe0yIhvYF5zJEu5M\nkw9rkqvIlPJg4aV4ILxMRYlTTXi5ynhXwtNjRMZawKXpXJagcmnarGKl6FqH51zAV4xbiA0bNrBg\nwQK2bdvGpUuXiI6OpmPHjkyYMIHoaB+aQ/5F/O1lCdWqVWPYsGHs37+fpk2bMm/ePMaNG0eZMmVY\ntWoVcXFxJCVpzaR3KuxYKQ3oaIaOC9nQe69IVvmktvOzd/wKPDJblCjsfwMebllQcmzRd3D0uChP\n0CI7gIObxWvLntr7AWQL6N2s4nXhoKvkpi+eUQevxMBXV+CES1GhTgfzHoHDr8LogVC7lSC70sHw\nuNLgz9fJJi0d9h/G9vwTWOx2Akx+sLmQTWTPXYTWPUUM8aW3hatz6ypQ63LKMvx5DaqVdj62kj/E\nm53cr/4vgnwRbFvAFAqNXhcZrluH5Q87cwhG3w19IuH/ZhfsiHRsJzzXEs4dhnd/hlIepOLUkGWY\n/S307FYwLOkJ209Dq6rexzlwMlPEkr3Bgsx1oIwHwktWCCxcQ146U7HwglXCZNkIf6q/sk3t0rRj\nQYcRsOYZ+sKlqTwgsrJRRhAesmLhqR6g4hje34axY8eyefNm+vTpw6effsqgQYNYunQpsbGxXLvm\n2nus6PCP1eFFRkYya9Ysli9fzjvvvMO5c+f48MMPOX36NEOGDPmnbusfgIxNaaAShMSQg8JjtiIW\n/FyexX4zoUIEfDPUPS9M+EBMes2buL/ike1QsSaU8KDEYbd55h59U7D+5mbniHJQzgSPH3dWxAa4\nbIagEvB+LhxVcuGn9oFuDcS/b/hYl/fbLrDbyflSZOT4V6lceML7bZd4Pb8bss/CvnVQq7rzmCup\nkJwFNVwIr6wf5MqQlP/+9C1AVx1y54rfSzaAdl/Dqfmi7g5g+rOwfwPEdoKpw2BQBRheXyjdDK4C\nz7YAoz98+jvUaeX7W9m6HQ4dhWEP+37M9XQ4dgVaa8uBauLPTKjmA+FdQ3CLZ8ITpFZCw8LLUMgt\nSNVcKEex+vyVbVaFMPWYVBae1bksQUtaLI/wXLM0iy28vwvTpk3j1KlTTJo0iaFDh/LOO+/w008/\nkZCQwPTp02/ZdYuc8H7//XemTp3KypUrMZvNHsfWr1+fM2eE8J/BYGDkyJH89ttv7N+/n59++qmo\nb+02hYysKE1kmSU23YDxd0Fpl0Xvlj9FgsHnDwlVDC1cvCRkpYY86PmKKYlQqoLnMUHlhbCxO5j6\ngO13UYBeAP56WFwXDmVAm32wJVlIi/18HWr8DkOOKt1DlZS/6FARcGzWCOYv9y1pZd1mKBNF9iGh\n4hKoDxeuycI0kS2tEO6NZJHAojXRfX9ImAqunc4dPj1L/vUkCYw9wKLKy6k6CGLfhMMfC7Ho1kpL\nvdTrMOJT6DAQ6reDRneLvoWvLhbqN+VdeNcTZBlefxca1IUuHX0/br3Si7ejj6LUVrsw2mv5kGR9\nUSGPch4I74ZCeBEaFl462fhjwqBSYclRSDBAsfAsyvEm/BXCM4IsLDxJchCew8JzITzZg4VXTHi3\nHG3aFFRmaNu2LRERERw7duyWXbdICe+LL76gVatWjBkzhr59+xIVFcWwYcPYsGEDdo2JKD09neRk\n5xV93bp1mTdvHjNmzCjKW7vtMHDgQHr27Mmi3UfyCG/vdR0y0L10wfFztsFdpaGdh4lwm9LRvJWX\nmqqcTPD3skovURNSPPzdGfuAFAnmz90MaBkGm2NFXV7cfvDbBPcexGYKhM2p8HE1+EpJaWigZEy8\n+aKw0qbPEZPPjj1QuRnU7wi/bs0/tyyLprHlapDlJyangDNWSE6BxvfAvoOe35wDjZXq7J374Nml\n8NA3ojGc+jrf7oJONQo2JXQzORraCLemXbVYqD8aAqJgx7PwwEh49/8g/qSw9ro8CplVwa+x0Djt\nMEA7edQTvv9ZlCNMfM33fB+AtYdFdmbZEt7HApzMArNdJFJ5g4PwKnohvDBMmg1g08kmxKXPQpbS\ncMjh0rQqhGfATyE8JWnFpu7H65K0As5lCVpZmoVwaS5atIiePXsycOBAn48phjYyMzPJyMggMrIQ\nKgiFRJES3nvvvcezzz7L0KFDKV++PGlpacyZM4fOnTtTunRp+vTpw4QJE5g1axZTpkyhVatW1KxZ\ns8B5OnToQGJiosYV7hwsXryYH374gUFN6yArX8PxFB21grVVLH49Dg/Eel58njglau2iNAhTDYMR\nLJ6NbyIbi/hTuhsRaskP/EaCeQZY/3BzkoYhsLspbGyE/HF15LUNya7VAFmvE9XLWdmipsLRiK3b\n3fDkw/DcaxBdX8TXQkMgJVXE2RxY+TOcOA3ZZcgKFAGrwOwQeOkFkWn5roZq86XLBS3HiHAoVVLo\nZs7aDgv3QOMpcE7R/vxwA+w4C6M6FDxfuqPtt/MjZFBcybZDqm2B0OJDuPizorDSFWYfhZBwmD1O\nWGaOVj4WCyxZATkupYzucO4CDHsO7u0C3bv4dgyAxQo/HYTuhZAg+0MRyqnvA+Gdx04Q4CmceJ0c\nSrppD6tFeI4YXiAixuqw8Iz4qWJ4Fux2VVKta2G57PixK357rRie7xg0aBA//PADixcvLvSxxXDG\ntGnTsFgst3TxUKRZmqGhoXz88cd5v2/bto158+axcuVKbty4wapVq/j+++8BIUEWGBjInDmi58zv\nv//O3r17efTRRwkODsZqtWpe405GfJbEXRp9TFOzID4Z6nlJYEjPKJhpr4VSFeDAJs9jyncVNWXn\nVkC9Udpj/EeDZanoDhC6EyStiVAvkZsSTtbr4QQth+BOZ2Af8FgZ2JoMuVa4kZlPejMmw4BesHYT\n1KgKg3rD9K9h/PtCHcWcK+TI2rSEbVYylSk1SOcP9qqiDfv3a4VGpyN7Y/8hiO0Co56AD99yvj9Z\nFmbRAw1h8ymxuG/2PtxVSpDdS3fDPbULvq9LZlEMGez8CEllARPYzuJUXRZzv7Dyjs+C1p+JRq6j\nvxFd6Ks2hCFvi3EvvArTZ4lSkmXfaIvBOHD1GnTpI77zuTMK54nbcByuZ8CApr4fsycVKgdASR9q\n/M8iUwUJyYO1lEgOpdH2z6eRRZiL7HS2YuEFKduteYTnj4xFuDSxYrOqLDwtC06nNIyVrS6E56RJ\ndkfhGMnAda/j/vq5bw5btmzh7bffZsCAAcTF+ViH8xdQpITXunVrFixYkNfFvE2bNrRp04aZM2ey\nefNm1q5dy7Fjx8jNzaVGjRo8/fTT1KghJCH69+9PfHw8q1at4rPPPiM8vBCpZv96iAfsarZEMw1r\n/rRi7Fb3VNQEZGeDvw/p79ExsPYMWC0FC84dMIUK0jv5DdQd6aYxtAmClkBaM0i/G4Lmg17lcrX8\nCnIiZL8BcgqYP7NjXHcRHomGUiaoqrzZHWehh2JqSBJ0aA1tWsAnmyDdAq2bCmvw5YmwbRdcvAxV\n74XwZDKTBVEGRpYSFhkVwXpIuDwfUtq6f/GteP1oFrz6vJAiARHvy8oGkwlqRMH/HYUdL8IHv4oP\nfclQ6OemzOFMNlQsOFlLOqExaneJf+qMUGOYkBVrMQ30JtGFfuhEmPOqSCBqN1iQHcCq1bB6rSgk\nv5wATzwKca0hKAjOX4Rlq2DKJ4IQf1uT/5Z8xdztUCMaGvmo4AKwO0VkD/uCM8hU9uIavEYOpdwQ\nXiqZhLpYeJmIrN+APAtPmMEGFwvPZpfQG0UCSwELT0IQ3n8shjeYLYAbd01hsGin+FEjNdvtcIvF\nUiDrvlSpUuhUvvfjx4/Tp08f6tevz6xZs27+Hj2gSAlv6tSpDB8+nDVr1vDyyy9Tp04dQNTjdejQ\ngQ4dNFxDCpo3b87y5cvZuHEj9913H/PmzSvKW/tXIMMqUULjG8lSRD7cJas4UDLCt+YDdduIGq8/\n90LtFu7H1XsBVreHCz9ApV7aY/Q1IWQDZA6EtHpgvB/09YRLz7IEkMBvBJhPgqlxFqywwYMKc9cv\nB62rwDtr4L66zhPNhxvg5e/h0GX4ejC88CRM+1JIfn0zC/qvhKHdyZwjOt4G+UUBCYA/+AULqTIH\nwkJF/72sbFj5fzBMEabcvltsa1IfjNEwfjX8ngCWerC4agHrzQk70yBWO3tDCiG/+6kKMX3gj4mi\nqL9se7HtwXFw7aIgvRY94OmhMGMO9OgqRL7jr0DZMnCf4uXR6QRP+/nBg31F3M5d+Yk7XEmB7/bC\nlL6+z+1mG+xKhfd8lCw7icz9Gm1/1Eggi1i0W0CkkEkJnD9fB+E5LLxchfBMBKgsPAs2G+gdPk0t\nC8/gR15Zgk79Hd+5ZQnzaUctGtz8iQb1hEHOm47tO8Dgxp00h2/fvp0OHTogSRKyLCNJEmfPnqVi\nRbHSunjxIl26dCE8PJzVq1cTFORDCvBNoMi1NOfPn8/mzZsZM2YM8fHx7Ny50ydh34ULF7J06VKu\nXr1Kz549ueuuQuRK3yHItmrPsWbFu2vy8m1FlYKriWJC9JS8UL2x0uvuF8+EVyYOynaE3a9AuXvA\n4IZwDU0g9ACYZ0LuQrCuF3V6GQ+B/lfQbYZwGViksEA9ZSKTJHizO3SeDjO3CfkxgOMJMP5nIATm\n7RR96aa+CR8osjDPLoWoEOSMiqSjEF5ySQThAVEx8O13wpozmaBsFFht0LsrjBoPzWOhbk2YOhPu\nqgxtW4i5rmQQvLkDjsZAkB7ed/M3mJgLBzNgpJtU1yCQNXrblmwI/qWEbJuD8ACemAJ71sC04TD1\nJ5j0huDi7v2gfE84YoD9X8Khw5CRKeJ9rVtAuI/JJq74aL0oNH/MB/FqB3anioSVNj44XnKROYtM\nNS/EcYVsotHw4QPJZFADZx9+lgvhWZSYngETdnKRZAMgY7VK6HXKtfMsPNUDYfAXZFfApXnnWni1\nCCeWW5UM4v6PomHDhqxfv95pm6OwPCkpiS5dumCxWNi0aRNRUV5cWEWAW6K04hCKTktL81nF3mg0\n5rlC/6uwg+aaOEBxO2blauxUoUY1yM0VotE1PWRz6g3CmvjlW3joNc/Pd/Np8H1T+H0ktJnpfpwU\nJAqv/UYJK6ZiTyhZBqz3Ko1h1TCoLnh3DXimLTyzRHRTqBIJ83dDeBAkNAR5E1xNF/5cSRJsvvwP\nCI5BWnqNVCX7LjgzClBUsiu2gd++gHnLhDV3IR5Kl4TJ78DJh6DFvVCxHBw/BYtm5K8OmlaCI8lA\njOiBk2aFUI1HZG4CGCXo7qZBnZsvUtJB6ZYFWwcFhsD/PhHqKid3izKFmtVEf8OoZOg3CBrUET/L\n9kDLWhD+F/XXz12Hj9fD6K4Qps01mlh3XXTtaOSDS/NPpf94LQ+EZ8VOAtmUd0N4SWQQ4WLhZZCB\nSfkPIJdsTAQgISHnuTTBZlMTnvJFqP/IDX6AWXFpqr7fvBhecZvQokJYWBgdOxaslcnKyqJbt25c\nuXKFTZs2UaVKlb/lfm7pNxsa6kMGRTHyoNVZB/LzOW5ouMnUaBorXnft836t+54UqfH7N3geV7I+\ntPoMjn8hasm84cB7sPcN2DgI9LvBtgf8X1V2llEWPwkq5pYkmN5fuC2Ts2HdcejbEI68AjsUgdAS\nqljONzuFPNnpCMx3V+YGgfjhh0kuAWfeFXqdl+zQrweMngBbdohSh5ZNofq7ILWDV56Fpg1h3WIY\n2Dv/3FVKQnAOzKgO316Fjvvz1bodsNhhxiXoVxpKu8neyNQgeQUR9UWnc1e0uA+q1IcFE8XvlSvB\n19Nh3zaI/0U0YZ+9FQZ8AT0/FVmWhYUsw4iFosJibFfv49VYkwhdItXp/u5xVFmE1PYwvSSQjR2Z\n8m76od8gjZI4zx/ppBOsIkEH4QHYyVUawQpJVYPehfDUMPgpWZpWZ5fmHWzh3W548MEH2b17N/36\n9ePIkSMsWLAg78eR2HgrcEu1NItROBh0BedXgGhlVX3Ri+JaiTCoWwt+2QiPeMnsrdcWKteDBe9A\no46en/GawyD1hLDyUo5B0/fAz8WddmIOnF4AViWdPuUYmL8FXV0wOLQdqyrEtT8dqqkYQZJgSAvx\no4bDh5usBMXjU+DFFaKN+/UypJWMId6lLsYAACAASURBVIlsAh2T4BkrNKkIU9bDohfhylWI6yP2\n9ekLSw/AoRtw0CVT04HoUEjKgERFFXtfOnTYD1/VhDrBYkJ87iRcMMNy99ke9mSQ3Kz1wutC9lUw\npzh/hpIkuiK89zBcPg1lq8KAPqJM4ckX4JkXAaW+cvtpkdiakAprj8BL9zhrW7vDWz/A6oPw/QgI\nLkRzics5IkPzf5V8G38AmTJ4bg10QQlyVtAgPDt2ksigJM5pvxmkE6zalksWRifCE+RmtcroXQkv\nj8xQCO+/5dK83XDgwAEkSWLOnDl5mfoOVKpUiV693CQN3CSKbffbCCFG0WjAFaEBUC4cjl7xfo4+\nPeDHNeBF5AZJgmHvifKE31Z5P2+zKdB6ppDJWnoX7HgeTs6DozPg57th6+NwZbOIUQFEx4H8Bxjj\nVPNHBX9oEiJcgr6gYTmoEA5PLIKPNkKLDyDQBKVikWuHYj0vkUo6AYRiRwcHMqBXfSgbBl/vhY3L\nYf1S+GEujH5MnLNsmHvfcFauOH8v5U2MqgDJVmi4Gx46Aq33wsx4mFFD1BhqQLaCfBl0bvgwSAlL\nZcUX3NemjxAE2LAof9vgAfDlNFi0HKqmCLHwuUPBqIcen8LLy2HYN5Cj1bnCcU+yILu3foR3+0BP\nd6LgbrD0ivBC9/QxxLIPO7FeppbzCuFVoqBvNol07NgphbP/NI00QlVWn5ks/BTCtGNGn+fSBEOB\nGJ4CGTCqLDzJ6LJT45hiFDnOnj2LzWbT/HGob90KFH+ztxGCDTIpbiaueuXg4CXv5+jXS7i/fv7F\n+9jm3UVz0c+eh9QbnsdKEtR6Evr9CdUeFfV5mx8V6iHWbMi5Bw7aREbn4OvQfTXYT4DeVdNzRHn4\n+QbscNMHcWY89DwoRKV1Olg/Akx6GLNKlA7sGg2HLeT8Goz/TsgkHX9CsEjBwnI0GeCJ1rBgt0gt\nvLst9OgCRgPI06FmFLSdpi1BdiVNJK7UD4YWoXAkEw40g/ExcCpbyKH90hCGlS14rAL7RcAmkna0\n4Gimm3m54D7/QGhzP2xa4rz9of7w8kh4ZxI8URseaQVT14nuShPvh/k7of6bEDcFhn4NS3aJLgjb\nT8HnG6HlJHjzBzH2le5ub10TsgzfxkO3UiKG53U8Mnt9ILxzZFACE6EaOpqJiAr3yAIuzTRCVNty\nyXJyaUp5Fh7CwnNyZ6qKyt1ZeE4inMW4E1FMeLcFxMNY0g8S3Fhmre+CrSdFsqEn1K0tpMWmuZP8\ncsHzM8CcBRMHKpq6XhBUFlpMhUEX4dEMeCwHem6HPp9D28YQ0RD8IkBytGhxjWU9FCXaBvU/DKdd\nUhmXXYNnTsCP1+EnpUi2ehQceAWyPoT1z0KSAa5ZsCoT3zVSCKYEVn0I7FOCnIMai4at61y00S4l\nw4Y/Yd9F+M5FHsZuh1+OQ1uldcDgaPg1GbJs8Fpl2NkENsRCJ88FbzYlIUXvxooyKvO11U08tmk3\n0Skh+arz9omvQ4umMPIVYcEMaCqsvCW7xd9EZDBEhcJvp2Dgl9D0HWj9Hjy7UIRA142Ccfd6vHVN\n7EqFfWnwhI/1emeRSQSae5laTpNOVbSt5GukABCFs988lVTCVFafmUyVhZcfw7NaZYx6nXvCkwyC\n8Gw5Ln2bii28Ox3F3+xthJJ+MvFuCK9jTUjLhn0+1I6+9Cxs3QG/7/Y+NqoivLEM/tgIHz3lew9V\nAJ2fsBje6A3pmyBlLzR+S1kgK9aA7GqxGnSwoh4E6qH1PvjoIqy+Ds/9KUhwUJToNTftYv4xkpTf\nB2nyeeTyfliJIOVJuEoqwYRh04fA8UzItIlWPrWiYaVLdsh3fwgLsHUVUeOnzgLacwEup+YXwN9f\nCqwy/FA4dQrrTuHO1LmpjTMoYUxLpvb+RkpCm2sykU4HH0+CA4fh89miH+LU/vk1v6M6w9l68PhQ\nSJwG+96AA+MhfTqsGQWd6xTqbeRh2lmoEghdPXTWUGO7krDSwivhpVEV7UDnVTeEl0YqoW4JLzvP\npWm1KkkrmjqZiO2yFayZYFCRbrGFd8ejmPBuI5QOkLngRrSgaQxEBMH37nQrVejZTSSvvPiab80D\nGnaA0V/D2m9gXLeC1oUaVgsc3AJXzgISlCgt2trtnwAV7oWKjt6p/iCVBPtJjZOU84PNjaBjOLx0\nCu47CPMTsI+pgu2N2tCnNOxJL3hcYi4svYatSwVAh7kEZJFKEGHY9KGiHOCTi9BiL5SpCkv2ic7q\nDhy9AvXKwDcPQ1oO9J0tSC85C0Yuh0oR0Eax8Mr6QZ0g2J3m/QNUwbIGDG3d78+bg918LxHRUO4u\nOL6r4L5mjWHoYJg4VcRon70bzr4HzavAqyugRziU84fIEKGgUq88BBai8awr9qbCkiswtopv2ZkA\nm7BTB8ljwgrASdK4y42Fl0AyfhgLSIulkuJk4eWQkUd4NrJVFp6D8FTTm1onM7CEsPCsGWBUxxDv\n3MLzYggUE95tAEmZ/coEyiRZ0IzjGQ1wfyNYvNu7xq1eD59Oge27YJ6PmradH4b31sKZgzC0Nqz4\nWLQRciD1urACX+wAL8TBw1VgyzJ4ZT50jIOMc0KZxbE4liQwtAbrFjcXjPaDhXUgvR2cb4V8oS2p\nU2JIqykhhxghwwa5Lqww9jSYdOQklUFfD9J1kEkKQZTAbg+GZ8rBuDOwKw2Ol4GwAHjtx/zj080i\nA+iuUrB8GOy9CJXfhMrj4cRVWPyY8BM6UC0ATrqXTXKF7TDYD4Oxv/sxdiVfRudBj7JKAzijUboA\nMOY5uJYI3ypxPkmCeUMhIQ1WLINWynm/uADlNsCuFJ9v3/k+ZXjuqEhOHeprE1pkfsFOZy/TSjoW\n4smiposF58AVkihLRAEdzhRSKKEqcs4hgwCFNG1ko5eFhWexgtEguSSkKH9Liy0QGiUIz5KubeHp\nCtmuohj/GhQT3m2EcoHigTvpxt31cEs4kwibTng/V/s2Qnpq1Dg466OEXuzd8OVBkTgx8wXoWxru\nLyl+HigFL3WEa+dFe5voGNi6QhwXvx5MYSIzUw3DPWDdCrZzHi4aoIeK/uQuyJ/cbGmKWbJWVYex\n+Cp8fQX7m9WxrDZiehhyEiGbFAIJQzKDPLUaPFlWJJlctsPTnWDeLvhiG5gtcDQBIhWrIa4anHxD\niEO/2BF2joYWlZ3vLSYALog6C9sJyHjQuQuCK8wzRMsko4caN6sSttR7KAuoXA/OHdHeV6OaEJb+\naEb+wqd6NGx/RXQ26jINssww/k+4YobPlO/+Ri6kecjkdMVbJ2F7MnxWR3ihfcExZC4g09mLpNgx\nxWVZyw3hXSaJMhSMlaaQTJjqGDMZ+ClZnnay0Dvq8KyIwnM1cam7mesMYLeANR0MKgvvDhaPLoZA\nMeH94xA6EQAVgsXrETcJDe2qi/5lH63X3u+Kzz4Q8lMPPAJZGlJXWggvDS9+BYvj4dVF0O9F6PcS\n/G8mTFgP807D/vWQcA66Kpn+2QkQVKHgwtjvUZDCIeddz9eU7WB2lOKYQP9kONxbEoYeg7lXYPQp\nePAIDIrCbI4GI/g9DeYkMOtTCNRFIMkgX9fBzJpk7FAyLGJqwYh28NRiqPQGHL8Kw1rBuWxYclVk\nebzRDV7vJqw+VwTpIFtMgpa1YFkEabGQ+2PBobZjYP4K/F4QotrukKOEBP09qDxFx0DKNTC7MS6H\nPQxHjot4ngN1y8HaUaJW88WlsKghfFob3qkOC+OhyiZo9Buc9eHvYNpZePsUvFsd4tyIyWhhJTaC\ngY5eppWDJKFDoo4bwrvEdcq7yGBZsJBKKpGq7c4WXj7hCQtP56yi4rDwJGW73SosPKPKwitWWrnj\nUVx4fltAPGh+BtF+5ZBG+ArEwnNkJxg+D47EQ51yns9aIgxWfgutusLAx2Hp16KxuC+IiBbduEHp\noKMsuDfMgGVThRRWs25iW/Y1CNDowScFgf9YyH4Z/IaAoZX2tcxTwabErIxdQQqV4Ota0PsQDDkm\n2vC8GgNvVSa3gYSpNxAEqeesZNvSMRjCwQ62g4AdLOsM2AhEvz8DPu4L3evAqoPwaHNoVQXa7oVt\nqdA5AiI85Nr76SBHfDdyIkilRIPXzIEgLQOjkuJvvw6Zg0EXA/4jPX+u2dfEq7+HJJDSSklD4kXt\nzuedO0CpSFi4DBqq+tnViIZPBsGT34q/jREdhXv84QNQJwSybdBoGzxSTiimdSwJLcOFkW2TRTeE\n6edhwWURt3u5quf34orvsNENPf5eYmAHSKIaoQS4mX4ucYMGOFvbSQhrP0IlNp1DOn4EI2PDTi56\nxbLMd2m6af2jM4LdDLZsF8IrLjy/01G8lPmnIUk4guV2ZJqVEK4kdxjcAipHwtjlvp2+QT347hv4\nZRN07etbNwUHklPgjXfhwkV482V49UVYPBliO8H9z+aPMwaDxY1V6vcsGFpCRm+wajQit+6A7DfB\n9IRyrr7KjlIm+K0x3GgL19rAhCrYr0nYD8PRo7BrDFzYJ96MyRSO3V8hPCUL0kaAqJ3T6aBbHfhi\nkCA7gPZKHGjYMbjhwc+XZIVwMSnragrSC/gADO0h415I7wxZz0BaHbCfg6DFIAW4Px1AxlnxGuwh\nzb+EQoapbhJEjUbo3lm0DnLFE3HwRDt4fZXoihCsh2Yl4Hw2NC8hllarE+Gri3D3LghZB6XWQ9Ba\naLkDNifB7HowqUbh5v092PkDmUe8uDMB9nKDxm66JNixc55rxOBc5X4dEVCOJH+lkKOIDtiUPnl6\nWUlasWlYeOpWQDqTIDvIrxOBfFIsjuHdsSgmvNsADpemjFh17051H2/xM8KkPkIiap2bOI8runWG\n9Svh0FFo3B5+3ez9mN9+h4ZtYcL7MOR/MH4s9G4Gp/+fvfMOj6Je3/5ntmRTSa/U0EPvXaRYQAQF\nGyh6BHv36LFx7L3gsXfsBQQBBUGkS5NepARICKGTQnrbOu8fzyy7SbZFPT84vHtfV4zZnZmd3R2+\n9zztvrfD+EdrbxvRBCoOez6OEgIRc0DXBMoHQM1UMUd1HIOad6D8YjD0hLCXvZxInBGMcpla54Kq\nwN7tsHMq5Gp3/eG6OCzJ4ryu09ZDO5GwrlTCmrp4Oh26RsLcQnjmoPcP4ZhZOkrR6nI6sC2DyJ8h\n/GtABesqMF4KjXaDwYt1njtKs+TzMvggxkiNjyt8NJxcPEy+z+Me1HdeHCez+vdMl/rbr71hSBz8\nmAfxRjgwBE4Mh60D4YOO8EALeKUd/NYPcofC5KYND3I+wkYTFEb6WVJsONjGKXp5Ue4/STFmrKR7\nIbxEjfDs2DBTRRiNsGkuCjrttSXC09fWyXTYahOeEx7HEoLL4rmK4Dd7VsB++r8XJEh6abkP5ZOr\nesHQ9nDLl9KoEAgG9oOtKyEtBS64HAZcBB98Cjt3S9ff/mz4/FvoewEktoZBI+HwUWiSBtma0s+K\n6dAswzUr5kRcF6njlXvhDl0CRK2BkIlQPQXKWkJpE6i+H0LGQeQCUGKQbnAvdSvVDjWvQWkziOoJ\niXfCZo3wjPZYahLAvk22jbFD6N5UKLGJqktdHKwWGbIB0fDZCRku94RdFac1P3XxoO8P1oVCBqaJ\nELUUondBxKfe5+7qougPiPUzExem9VFUeUltAwwbLL/XrK//XHwkTL0aZm+BLbnQyAg/9YIvukj5\ncu5JeQ/do+GWZvBYa7gvHQbHBT5+4I5DOPgaO7ejR+8nnbmdImqw0wfPOd0czeKpLuHlIbMyiUju\nvFpTY5EITwjPUCulWWfwvG6E54R7SpNgSvNcR5DwzjRU19SPAxnyzYiE+fned1EU+HwSlFTDrV/5\nH1NwonkzWLMIfvwWIiPhnkegyyBIbgvtesPkuyEyAu6+RfSZQQxIn3pE/n/XWug+vP560PgiEazI\n9aHJqYRDxIcQfRQif4GInyA6F8I/h6NrRfSCKFC9LPLWH8BxEHKihDAqG0MpQmZhhniqYmXmTy0H\ntRhoEg7dImGmhw+yQiO4e5rIoPr7HoQtd1dAZhVc5OoWNI4E61JQ/dg0eYOqQv56SPThQQhi3wTg\n8CECkJwEzZrAJi/OGBP6QJtkeH6B67ErUuDyZJj8B8xxkzPNxsFOb4OBAeAJbMQA9wbQEvAbJwhF\n7zXCy0ZC1lak1no8nzxCCT2tpVmFSNOFE41d0+XUq3Jhno7waqU0bVK7gzqE56bXGRxLOOcRJLyz\nAM45POeSMyZJ0k+enBOcaB4Pn90o/mgvLPC+Xb3XUuCyS2DxHCg+CKsXwtxvYNlPUHhAfj/1CPTs\nJhY1Jblw8w0SbRzLgvZ96h8zJArSLhS3BH/kq0uS9GDIGLBFw6+XwK8jIfNDaYxxeNCVdhRB1X1g\nGAXHjkB0Oxl8r1YkwgvTx1EeiaQYF0JpApR1Ba5OEpmygjoMVal9sF0i4YGmMOUA7KszC/LWUUgw\nSreoBuPFQIVYHv0ZlOwF8ylI8kN4Tns+X4QH8h1t9VAXBRGmeWwk/LgNsjQhAUWBz7rAkHi4Yit8\nr+l5jsFCF/yojXvBIux8g52nMBIVwMD2ck4wgCRMXmp9WRynCQmEUXtiPp88kkg+PZtXrRFeGNGn\nU5p6VQFVj+U04bnrZJpdROcuJ+Zew3N+4MEI75xFkPDOEMaPH8+YMWOYvmkX7k0rIIO+RVb4wY+p\nwBU94dnLpEHhP4sbfg5RUTCovyizFEe42ukz98nA+r23gdPSsFprSonyYm7c6T4xNj0UgPOCE1uf\nhqOL5P9j2kkziOVbcLjVrlQLVE1C/DqfAEupOIfnZEK1UoiOCFQllHJk/0qts9RxANSJjUXm/9U6\nBcYybWFrpIfnW0KzUBi5AzI10vviBHx6HB5vASGufyJ6LRVp96QeEwCO/Czzd6mDfW9n1fjZ6Ecl\nJaMt7Mv2/vz4PjJ7/8Va12OxRpjTA65KgTt3w7Ea+IkQThFKESq3YWEMZpZ7dGasjT04GI+FS9Bx\nawDNKtXYWMEJRtRxMndHJkfIoL6T/ElOkOIW9VVqs3wRxJyO8AzoQDVgtYPRaHBFdCAK53pN2FXn\n1qrsHuH9iTm86dOnM2bMGMaP9+PHFcRZgSDhnSHMmDGDefPmMaF3JxRtcbFphNc2EobHy9Cwv4jp\n8UtFz/LBmfDID4Ebg6oq2LV/3//4DK78AO6bARUVMOoaaJUOt09ybW/TFmGDlxmzxhdAkxFiZmAL\noK5YlgO73gZnz0VkOoQ9C2qFEJz9INi2QsVIkesK/xryD8i28d3hWA6YKURPPFV2MBdD6EPawbSr\n2jzbKBY/7x6FHLfioNODKcogPfnLu0tjTMcN0HgNTMqEm9LE2cENShgoaeDQSGbd3fDz+WAPMDjK\nnQuNLwSDH6dxi3aqIX5GSNq2hmPHodKLUEFYCFzbF75YV1tiTlHg/U7y1i/YAGk2HXEoPImVb7Fz\nBJWLsfAJNmZjZzsOVDfxZTsq32NjKGaaofAtIX5rdwArOEE1dkb5Ibz2Hp6vS3hVGuFJhKelNAFU\nHRa7rn6Xpr3K1Snk3jFkrNO0omvYkjhhwgTmzZvHjBkBShoFcUYRJLwzDh2uCM+Ff6bD+hJY7Ee7\nWFHE9mXqVWIZ0/dF+P2A732KK2HEm5DxhAwqN9eydhEmmPOzKLMs+L72zF6UVsoq8VFb7PcmVJ2A\nlTe4bpa9YcfLcgNuiZYb7+jWoGsKEdPAukwaW8p7giNHmlpCLoWcGZIODE+FqjKw6gvRK4lUOyRV\naBgJoY9D1DYwXgU1r4L6QDPptBy306XZNqcAkkMkwgOJ8Lb2hs8y4IZU+LEzfNTOYweHLgUc2mdw\n4Ds4uQo2PuL7vQIUboX836HNDf63dXZnRnqeyz6NFtpow1EPVkNOXNsXjpfAptzajyeEwNI+ch/w\nkna9NEGhCmiBgg24FStXYqE7ZtKo4QLMXICZZGoYj5Ve6FiOiegAtSe/I4d2RHtVWKnBQhbH6UR9\nb6XjHKOxGxFWIiMpEcRiQwq/BgBVj9Wuw2RU6kR4Va4IT+9GeLX0Nh3B+t05juDg+VkAWV7A6nYX\nfUkinBcLD+2Vzk1f3XOKAg9eDOe3kyaWAS/BRR3hhv7ioxcTDpVmOFwknnpvLIFqK4SGwPDXRVX/\n0ZHifTrgYhh6HrSpM3QcHgUJjeGID1mzmHYw9DtYMhbW3gED3qvdGe5E9new7xMxlE2eITfZzrUp\n5GqplVmXgxIFhsGSaq0pkvRnn6lweC84KsFmLECvJFKpisyYokDYc3Ic021gnQX2XAOG2Z1g+Hbo\nsxmGxooN0XcdaqeuIvRwY2r9k637WceAqln5JQ2AIwtg91uQMhjSx3nfb9cbENkCml/u9yVOz99F\n+1BjAUjVGhlP5InkmCf0awmx4TB/h4hMu6N9JDzWEp4/IM0sD8UYiEbhJe16HI+eNzCSiYPFOMjG\ngYLCXRi4DL1fzzt3lGFhDrk8Sbd6GplO7OIQdhx0qzN0DnCUI7UIr5xCwonGgBE7FegIQafaUVUd\nFrtCiEGpffHZq12htd5LiK06giMJ5ziC3+5ZAAMFgAP3wExR4LUM2FUOUwM0AO7VAjY9Dt/dIuMK\nE6dB12eg+SPQ4UmJ6qbMheEZ8NsUMRLNyoO8MogMhUNHYMNmuOtmz8dP7+xZxd8dzS+DwZ/Bvk9h\n/gA4vsIV7ZmLJRpaeR20ngjtb4VT2yB5YO1jKNEQMhaMF7jqikcWivyhuSnc0QMsoVBjKESvS6Qa\nkexyb/IwDAJCwbYC6BoFq3pIpPdrETzYFCa45ggcRdK1HgiUME6PTkSlQ1RLSL8SVk+WGTtPOLkG\nsr+Fzg96vgGoiyKtdhvjQb3GHclaZ39+gfdtDHoY2Rl+9TKz+e/WIhD9r72gR+EODKwmhCYoHEUl\nARiKnpcwMgsTMwnhGYwNIjuAz8jCgoOJtPa6zSayMKCnMy1qPV5OOaWU1iG8AiK14XUb5eiJBMzg\n0GG1Kxj1au2mFXuVK7LzllN2BAnvXEcwwjsLoMMClLLTzfoERBnjkZbw+H44Pw76eWkYcYdeBxP6\nyk9hOWTni2daeAg0jYMmsbII/nEE3l0KN58HLbRIwqnN2L+352P3uQQ+ehDKi703rwC0vVE6Kdfd\nCQuHgSleTGHLD8qC3+sF6KoNr1vLIcRP6k5VYe+HENsTnpsMGf3g81xQT+ShV/thMYFaCeU5EK1F\nOopJTFhPd1R2iIAVPeod25EHpSkQcj1EfOX7PADUKlC0yKrxhbDnXRj2PRTthF9HwaWrINxtJq+m\nUJzhk/pDxh3+jw8i0B0aAY386FhGaeWnMh/zeiAarN9vkig/ok4jjFEHz7aFy7fA8kIYlgDN0TEd\nI+dj4UGsvIoREwq5lJNGOCEBNKi4owIrL7GD62lNkzqWP+74nUy60bJeh+YhcgFo5pbqLKOARtpM\nno0yjEQjhKdgsYntYS23BFslGLTXdheMdofDHkxpnuMI3s6cBRCllVN4coR5ti30joaxW2GfF/ku\nb0iIgn6t4OJOcF5bITaDHvadhH4vyd9vujWX7c4UselUL0PUg68UJfqV3/t/7eT+soheugo63is+\nef3fhmtyodsUuZF2WCX60/vpRjy5CvLWQqkWHAx9QJNIs+WjJ4kardZY5PYBbn0GThaBzc8IQc1/\n5Lfla3D4iJScUMtB0dbLtGHS6Z63Fi5eIOQ9pwtkfiQjCLlzYf55Irs25KvA19ITOZDc3H+zoE4n\n85T+CG9ga2lQ2uhFGGBMEvSKhufcOj4Hoed1jLyHnQuxkEsl6cxiFEsCexNueJ7tlGDhaXxL0axj\nL/1oV+/xg0iKIx1XTracAqK04XUrZeiJAtUMDjDbVI3w3D5w9xqeN8JTHcGRhHMcwQjvjEPR5vBO\nsZ9WlKLWagIw6uDHnjBkAwxaD/N6iuBvIDhcLX5orSOgm9u40ZM/Sl1n3aO17/jNFhk89/ZvPj4V\nBo6FH16HS24R3z2f70wHKefJjztKCmTMITVdZLZK9no/hqrC9hcgJgOWZ0HvkZB5EMLDaqgqKUVn\nSMaiQFgKFG6T9KKlDLa9DM1rIFEv4s46L/Uw9Tjo2oFjnzgimCb6PhfHATBqdThjJKQOkTpep/tg\n3A5Yd5dEts40btIAuPBHaNQAIeZDe0TRJhCEGMHiZxA+IxVCjbDjiCj01IWiwD9bwHU7YH+FdAkD\n3I+BrihcgIXPMbKQC4nVoq9P2Mc09nEb7bmRNui81OW+5QCvsJOX6UVzvBANcJh8DnCCIXSu91w2\nWUQQQQquO7FS8mhONwBslGoRXiXYJcIzGahTw6tyi/C8RJnncISXyRHw4jD/9xz7fwNBwjvjcBJe\nAQ4U1uPg4jopoyQTrO4nEdP566Xucm8LmamqC5sDCq2wu1y2r7DLKNmOQdKkMHMTzNwMX90E0XVK\nGXq9a1TBG66dAnf2gsVfwsjJDX+3ubvh5k7y/0tVSOgFBT7qgtlfw7El0P8r+PAGqEoDZS+0aJLH\nnhOgKMnYaiC+j9QDAfZ/IcotR4AeKli+h9C7PB9frQFdM3F2sM70Q3iFouKidyONZpfChgfBUi6O\nEcNnSadqaZY4IsQGSFynX0OFgzvhsrsD295gELFkX9DroEOqNCx5w7gUiN8DHx+BqW7nPBQ9T2Dg\nOWx8Txoj0XOYCu5jPU2J4CbW8DZ7+BedSCOcbsQTh4njVPEVWTzBVm6kDQ97IDJ3LGE7OnQMpUu9\n57LZTxva1mp2KSOPaI0AbZRhoBGqWgY2sFgdhBjU2mMJ7hGetzu6c7hLcyJToU7J5O9D6X/puH8/\ngoR3FkBSmuUk4+AH7PUIDyA+BJb1FWPPFw/AKweke7NntLjnnLLKGMPKU2BVIVRzthkYC2uLoUIb\nPXtnuXRwTvSg9hEXC4WnwGaThdQT2vaE4dfBxw9Bv1EQm+x5O0+oLBMTWXc0vgB+vw8qjkBknXnj\n4kxYfz+0HA8VWj3r+1VgN4Ep4yqP/wAAIABJREFUQZMP0SVjroSEntL5qapCNuXIsEdZKhh/8E54\n6AC7uDpUTQLbDjB09bypTXMn0Pd0O/8LJTVbsEHeC8jYRLj/hk+PyD8sXZqtAxCibggyUmF/nvfn\nQ/UwIQ1mnoDX2tfmhCcwsBMHd2DhAkKpwY4VB92JpzNxzCaX63FZ2xtQsKGiR+FeOvAqvb12Zjrx\nA2sZQHviiKr33F4yaYvrLkNFpYSTRGt6m1ZKCaUxcAzF6sBsdXhIaVbWblZpezck1VEAcNjP2aaV\nb/gXGfgRcf2TyGQ3E1nzXzn2340g4Z0FcLolXIGVz9HxCipxHhaIEB281B7uT4cvj8KiQnj/kERx\n0QboEgWvtpfI76G9UGOBQoso4veKgcOnYG02fH6j55vcju0lPZadA+09+LA5cccbsGUJvHgdvPyr\n/9SmE9NfgrJi0e5srM2Qtb5e6m0rr4ORS1z1vPwNsOxKCG8MA9+H+V/IDXuNAljBapGRdYcuFWs1\nxHSF6jyoPAoRqRBhAOxg7wu2n6Q+53RSqPXZx0iaMmQi1DwrP5FerJcs34G+H+hbuB6LbitNN/nr\nXYT3V7BLWzc6evEOrHdOFjD5MJx1omUirPAxUgIwNln88LaUyvXihB6FdwihPTU8iJVPiWYqfXia\nbZRgYQpd6I2OOOI5iZ1CzCQSyjBSice/AWMBpSxhG+9we73nVFQy2c1FuGzkKziFHSuxiCGkpDQ7\ngpqJrdqOw6FqKU23FIi9snYqs9c79U/Ece5GeBk0pYePDtm/hrL/0nH/fpybtzP/Y9BpPfGjqcEB\nvIFvuZRkEzzcCpb3hbwLoPJiOD4cFvURMryhMfRoJPPU6wfA7Vpz27wdYNSLJJkndNFuAL0JEjsR\nkyhu6DtWwNt31lbx8Ibs7TD7DTigg+xsSNX6D0IaSY2rYCP80AF+vx+WjIP5AyVKGrEITLGw+Vcw\nJeNS2uYkoMOhSHEuvL2sb7lzhIAMNjCooA4DTGB+1/N5KeFa56UBwl4A6xywTK+/nf0QWH+BkOvq\n7K+DxN5QsMn/ZxAItq+A5h38z+A5YbZASACE1yJBBtAtPi6twXFys+RJuDwNhf9g5DPsbMTBfXSk\nmIlcTTofs48vWMZmtnI1LbmFNrRHCYjsAD5jCTp0XMnAes+d4ATFFNeKTooQse9YTXnFSolWwyvH\nrKUyQuqOJdgqvc/fOeGwN1hpJYj/LQS/3TMNRXdaPDoKOw9j4CVsrA9Qvb4clY04KHYbWn87F34t\nFPmoGLeb3Kw8aJUoM3eekBAvgsQLAtDl7D4MHvwUFn4Cr94Ilhrv2+YdhqcuhxYd4YM5Ujp3F6FO\nHgBjNkBSXzi2WCK1fm/A6LUQ0RiK82HrUghzv0E1nwBTMlbtjtwMNBst8381hVI/05vA7ADTZDC/\nL8RWF2oxKFoTUMgEMF4jpq42N9JXLVB5nTiem26sf4zYTlCyR/7fagncvaIuHA5Y/7OMfwQCqxWq\nqyE6gF6EFG2bfB834wad+OatLPL8/CT0tEHhRVxmje/QDwM6CsjgdkYB8DCf04W7WYj/u4BSKnmV\n2dzMRSR6qDFtR76Irm4dnkVIMTJWm8uzUoyRWFDLMFdKB0+oEVfTiqpKDc9bs4oT53DTShCCIOGd\nBdBr5GbFwRMY6IOOcZhZ50XA16m5eQqVRtTQFzO9MKOi8uNJeCATHkiHUXUGl3MKJLXlC2NGwoIl\n3vUZ3XHxjfDoN7BqFtzdF7Ytr7/Yb18B9/aXFOozP0JSmPQGZNSpIcZ3FZWWK/fAmLXQ8R5XRmr1\nbNm/NBKMDuhdDvrK42BKxapFfKUF0HYyFO+ErC+kazM0CapOgumfoBZBzZv134Mjv3YHZ/gHoGsD\n5UOg+kWwzBI9T/tGiPzBNZLgjpgMmQG0m+GefvDc1ZD/JxrX9m2C4jzoPzqw7Z3jCIEQXrK2TZ6f\n7NOQeKkFe3Lq0KPwBAZ+wsF27ZpNIoy5DGczhQxgITkU8DbzULDzD/6DFRtV1GDzcC2rqDzO11Rh\n5nGu8Xg+G1lPEkk0w2URX8RRdOiJIQUHNm0OLxYoxaw5YZiMbhGevQZQg4QXRJDwzjx06LTFw4Id\nIwpzCCEdHQM15fqPsDEHO//BSl9qCKGGTtRQgIObtAaXwehQVYUp+2XReqX+OBM2h9au7QM3jIeq\nKvjSQ1rPE4ZfC2//DiFh8NBwmJwBr02CN26DO3pKk0pyc9kmqalEawBJzXwf1x0rv4fOg2FvLtgU\n2BEBdtMJMKVh0a7g4nxocrGkF8sPQmQziOsKBetB3xJMD0p9zt3pQFXFNFbvVsvXxULUMon2ap6F\nyqvBcRQifwKDl7paRGMh8ZpCIfX8I0J8ZV4iJW9Y/CXEpwVevyvQJMgS4nxvBxCrrfUlXgx2negb\nAxaHKPx4wgT0pAKfuqXd+5HESi5hH6W8zn7CCEFFTydacJJiOnAn3bmXfbjaRC1YeZQveJefeY1J\npOF5yn41vzGA82o1vRRyiFgao8eAlVOASogaC5gxa1G8yeBGeDbt7i1IeP/fI0h4ZwF02t2vRfud\ngsJvhPAZRk6icidWrsDC49iIReFtjFQBk7DyMUZUwvicEGaegMwKeLaNpKfqIswIVX5mtlo0g3Gj\n4c0PwR6g3FbrbvD2OnhlMXQaJKMH+zdDk3bw9Bx4ay3EaSNUpxekMO/Hc8fejfDHb9BxBBw5Bs+/\nDpb+gPE4mBpjB0zhUHxSMlij14q0Wa8XpInk5BrJZoU9BbrGUDHa5blnWwTqSTCcL39bK6HisGh4\nRnwEMacguhAaZYr5qzeYtLW65hQ0ioMD2+DUcXjz9sDTm9WVsOwbGHmTywDWH05oXZcpAXTKRmlp\n7HIfqWeQxie9Alu9RIIGFG7AwDfYqXZLo/cniZfpxfvs427u5A4u4Uv+ySiewY4DCzY6cCcjeJJJ\nvEkGd/A6c5nKZO7Gc0hbSSUbWc8Qarf2FpBDMjLYaNac0EOQC8rpNBFqUDm9vNmDhBeEINilecah\nYNBqIidwFZkMKEzCwCQM5GNGh5EYFAzane4WbYShEk43cr9/CC5KgIFe7vgTomCTF7UNdzxyH/Qe\nBp99A7f8I7B3odNBzwvlxxeMWoOFuVoEqf1h9hvQuDVsPC4L+4ZKMHRWsW06DrGpUCGjEYWaabnO\nCG01WyOdARwWyFsn5Bf5K1RcAqVpEHIbWL8HwwgwXCTbb/63mNhOOCr1PyVCfvzBuY7aKsUo12qB\n/mMk1bvoYiExf1j4CdRUBbatE8c0l4TUAAgvQvvcK/1YGYXpoW0E7PSh3jIJPa9gYzEOLnMbobmX\nDqwnn085QTY3E4ZCLnn0pz1z+Ddfs5wfWc8uDjGULtzDpXR1U0+pi2UswYaN4dS+qE6wj5aI/p2T\n8EyqtPeaNcIz6WyuEYNghBeEhmCEdxYgnFNAEe+TVct3DGApx2jODF5g0+n5phew8gV2XnJzma60\nSe1ljA/B4U5pkHnC/6Byr+5w/TUw5TkoLvG9bSA4VQT3PwZlZRL1gTge+EPWVvhtJoy9D35eDNeM\nBbMdQsMsUuwKlaaFuDQX4bkjJkM0PPM0A1R9a4haByE3gm2lRG0R30l90GGHgzMlLXloXgPfoPaV\nKTpRo+nQX1Kcl9wC794DBzxpxrmhvBi+eU5qosn1nXG8IveINBpFehcwOQ2jto5bA4ja20ZAlo8a\nbjt0tEdhfp26nILCVPpQiZWX+YMQjHzCPSxmGy8xi8lcyCKeZRNvMI17fZIdwHS+oTNdaI3LCsKB\nnePspTEdADAj4bpJFUav0e4ZQ3XWYEoziHoIEt6ZhqLDiArsZjslDOBnbmMtXyDFphtYRQ123mQ3\neynhMWw8iY0pGLjT7e56Y6kMnA/1ITjctSmYbbDHh3+aEy8/JTNe9zz8197elu2Q0Are+hDWrIdm\n2lBztp/RB4dDyKJ5R0gfLJ5voy4Cix0M1SckV6gRXnwaFHhoElF0Iu3lJDyQBpWIzyA6EyK+lZod\nQEmmKKQYIiD7m4a9R6fTgjOgGDQOti2DSc9D0/bSoeqrnvfxw2KwO+n5hr1udg60bBHYtgbn2h8A\n4bUJh2w/Jr6j0bMAe70btMZE8C868wa7yaeaaxjMc0zkZWZxM2/X2raGmnr7O3GYwyxgHtczqdbj\nBeRipYY0MrRjnMBAI/RI6GrWUrYmnY3TMyxOwtMHCe//dwQJ74xDR4gq0mKv0pFUwtlAAZNYzVR2\ncr82f9SFWEKI4m1sPImBFzDW0i/M01JVzXzUxvq2FNeEX3b5P6u0VHh/Knw7Cz79+s+9M7sdbrnP\n9XfLFhAWCV3Oh+Xf+a5vzXgFdq+Du96CzTskZfrLMVmwy4o0dgsTaZa4NFEo8YSEHnDKT4QFENlc\nCMsUB3mr/RvYusOskVmIRp6Dr5TU2pqfoO0ESXNOGQkVHhSY5r4Nv0yDO9901TkDxZ59kOFDIMAd\nDu2zDmTMrFkYHKnx/f0MRcdJ4IAHwrqPDijAp+wH4HHG8wn38DUrmMM6AKqooheduZxLMFM7z6qi\nMoWHiCWWG6md4z3EdjlHRA7HzHFRWVElFVGjpTTD9HaXukIwwgtCQ5DwzjgUTFqX5nlEMYfhbOdy\n7iaDh9nENaRTyLWsZhSPYicOeNBD6bXICgZFfEy9IdQosmI/bgvszK67Gm79B9zxIPy21v/2dfHJ\nl7DtD+n8NBiglebrecU/4Y9VsHqO5/1WfA9fPA7XPQ7dhsogvCMS3vgeVr8MjlN1CK8xFByV2lld\nxHWFmnwZT/CFkCiI6yKD8ObihqU1K7WI2SknltJCmne+eA0efBEG3g9H98Pt3WHNXGlQyTsMHzwA\n790HV/2rYbU7kAh4zz5RxwkETo1UX0bCTjQJlU7NQh8NTv21263VHuZF4wllPC35gL04NEK8kQsY\nS38m8xY7yeUD3uUwh1jMItrRnHWs5TdWsJ1tPM6jzGYmr/EWUXWkxg6xjWhSiNF0NGs4RiiNUSkB\nVTlNeBLhaQgSXhAagoR3pqHoCNNyYqW4/H8qsRGGgTAMxBOKBSOzsfMERiI9yI7pkFKSv6bA8b1h\nfQ5kBpDWBHjnVRg8AEZdA6saQHo7dsI//y1NLzoddMoAozZX1380DLwcpk6WQWsnLGapZb04AYZd\nCzc8LVHGslUQkoR05wwBk3IYwqKFpYDUNrJW5dYxObVZwaFFTccCGKaP7QzGaBG0zgrAG8+J0r1C\ndka39XTAZVCeC4oqz72/WcYynh4HoyPhuuYw/wO4bSrc+mrgr+VEdo7MSnbtFNj2ToUVkwfB8bpI\n1uTd8nwQXgwK7VHY4kUg4SbacIRK1iNzKAoKn3EfSUTzMJ8TSigObd888hjOIEYwjP704D3eYgpP\ncjXj6x03i3W0wqVaUM1RQmkiCgJqKGZtJj7MiCtEPU14foqdDltgDr1B/M8iSHhnGoqOeKoBG4s0\nVYkvyeJzsniTviRp7dYLseMAxnkx30wMAbsKJVaPT5/G5d0hIRI+WuV7OydCQmDed9C3J1x0BXwT\ngBdeTi6MngDp6TDqeokOz3dTjVIUePhL6DoEHh8Nt3SBRy6Ga1Lh62dhwhR5Xq+HjVtkcdc1g75D\nVLgIzFG5EN8c50eR3FpINWtL7fN45Qa4bSAk9hXJMX8IT4OibFi6WRzWrQH6DxZuhfg6Ys8ZfUVU\net5HcOe/4Iel8PpK+GQnPPIVPDUbZuXBVQ/+OQs2p/xbrwBFpp3jKOEByJDFa6R4ys8IS1d07PBy\nizWAZFIIY7Zm3goQQyQvcgOL2EJT+tCRTqRo8mArWMcf7GM5azlCAU/wTL1j1lDBftbSCZdoaTWH\nCKO5EJ4jnGotOxpqhNO3f7ZK0Jn8R2/2YIR3riNIeGccChGqHYVSNpNNPtXczBquIZ2bcRVoVuOg\nGwopXlTnU7U5q8N+5qxMRrh1MExbDQV+jEOdCA+HhTNh/Di4/na4ZjLkeqmZ/b4Rho4GkwkuuQ0+\nWgYHD9V3UY9oBM/MlZ82PSAsAsbcBdN2weTnXbWmmT9CShLUxMBGO3C+TQp2MU1PE55DgWYdZGbP\nHStmaOffC44uBpufz8YYATUlYivkMEPOTP+fjcMuTgkJvWo/3rqHvIeVC+TvuT8LsaV3gguvh/PG\nyWfwZ7F+M7RuKQ4XgcA5f1fX8dwT4jTCK/Zz89QFhZ04PDae6FC4jGbMq+OVdgUDGUoXnuI71rGF\nmfwIwHGO0Ya29GdAvTSmE9v4GRsWuiBDkXZqMHOSMJoBxeAIo8YirSpGu83VTWSv45TgDcGU5jmP\nIOGdIYwfP54xY8Ywff0WihUTKvGMox/TyUFB4T3611KXOIJKug+LlS5R8g99WwDWVP+8ULZ9bVHg\n52sywefvwXefwMo10KYnjJ0I70+DHxdIve7y62DgCGicCst/gqn/gNe0meImafWPqdNJavPhL2RA\nfdJz0NRNIcbhkGNfdAGgQPMoUCzAkcMQ2wKDtjBXVUtEtXeDa1/3MYWSKLBXw8nffL9HnRFMoZDc\nBdJGwo6XZQ30hYIN0rTSZETtx8MihIQb2aBDexgxXMYz/i6sXCOp5kBRrHVdxgUwVxihZfUq/bz3\nNugoBU55ef4C0simjKO4ZhwUFB5iHNvJYTPZ9KYPIxnFw/yTwxzGhpU3GcevdTo6AVbwCW0ZRIqm\n+l/FQUAlglaiHWcPo9oss4SKA1C1PK6t0n/9DiSlaQgg5+uG6dOnM2bMGMaPr59+DeLsQ5DwzhBm\nzJjBvHnzmNC3G8WK5Jm6kM50criUpvWU5o+jkuaD8CIN0C4CNgVAeAlRQnrvLIfcwsDPWVFgwpWQ\nsw1ef16UPu57TIjv9gdkdODjN2HVQmgqEwMUaKthkh8NT09YuFjSo5dqpNkjTkF3ShHCi25GqNaR\nWlkl2py5u8RJHWDPevmd2ARyjslM3t5P/Lw/vZilfrwD+jwPZVmQM8P3PtnfimZnYp/6z7XrDcf3\nwtpF8OgzMPKqgN+6T5zMg12ZMOw8/9s6UaxxTmwAgU6YTm6IKvwQXmvtevTUqQkwREtX/kbtjqGL\n6E5LUngXKeC+xQcYMTKGi1nJZ2xmLl9zH+uYzgKmUk05q/iSPSznIlzOuOVIu3EkGahqEThMpwkP\nVZGcMgROeHZbgyO8CRMmMG/ePGbM8HOhBHFWIEh4ZxqqA7u2cJgIYRfFDKD+9LgD/7I4Q+PFJSEQ\nOauHRkB8JNzjZzzAEyIi4N7bYP0SqDgK+VlQfgQ2r4Cbb6htHuv0aqvxk070hPc/lRrVzhqINEFC\nCig1xVBeDtHNCdMW7/IK6Yp0OETAGqDoBBhCICVDOjjb3w6HfoIqHyaodovLjy+hBzS/DDY+BGYv\nw/eVR2HfNOh4r+d1snkH6c4M14g5vQFD5b6wcIncfFw0zP+2TjhFo5MDSKMqingvWv2MZjTTrtsj\nXggvgVBaEcUWat9V6dFzA8OYxwYsWGlKU6Yzm33s5Q+NHBUUfuIFpvMQtxLNx9zIYCbRB9ddQylb\nCKUJJpJALUCxhVJt0QjPYBKZHdDczgMlvGDTyrmMIOGdBXCuK5VId2a6hxpGKOBH95dLEiGnCvYG\n4HQQFQrvTICf/4DpG/1v7w0mEyQmSJ3PE+I1mbNTxQ077q49sGgZ3D4JvtsA4/vAQRtQmisbRLcg\nTFvDyspkoL1lF1iqDY2XF4FdDwt+g6I8aD1RSGn/p95f01ICRq2RT1VhwLvSuLLm1vqpTVWFTVOk\n7tfxHs/Ha9wGaiqhrFB6KuJi4OEnG/Y5eMK8X2BAH/ncA8WJUogOg7AAmlZARlxsfm6EYpHr8piP\n3uAexLPVQ9JzLP0po4rl/AFAN7pzNRN4h4/4kDJu4hOOsZuBwASe41GWcjPT0LktWSVsJMbZsake\nAUs4Vc4IzxShuSRQ3+3cGxz2wIVMg/ifRJDwzgI4tDvlEk2BPoX60+OxKBT6GToYngCNDPBdgCMH\nY3sIkdz5DRwsaNg5e0N5DbR/HL7URhiapEnEtycAKTF3THlOBtUHDoMDBdC5DSw/pWIrzZENYloS\nFipdpCVa9HLhDfD7PJHqqigBVQ9WnRBOaBy0mQQ7XweLl7Rv0Q6IbiduBxfqYP9+GPwF5M6GNbeB\nTbvjUB3i0p79NfR9Q2b3PMEpE1Z4TAjyw8/htXdg527P2weC4hL4ZSmMvbRh+x0thrQY/9s5oVNc\nw+reoGhNVCd9XJddiGMX9e92OtOCJiSwBNdQ6BM8w0lOMJ+fqKIUHQpxwGCuoi3da5GdnSqK+Z04\nBqKqZUARmEOpMitCeIrJNY5QfRxCAxAcdTQ8pRnE34Obb74ZnU7HmDFj/quvEyS8swjOUVmTh9GD\nVijk+CG8MD1MSIUvjsqIQiD4YKKMKYx9H6r8CAsHgufmw76T8O4K+Ts8HPr0gBVrAj/GitUwfxE8\nNwXW5sji+2k1JEYAFQcgMgrC4okIgdgYl97nsGslKzX9JcjZAe07wtSXJMoC6P6EkNYOD3NvDquI\nTKcMhsOZ8tjaHyF9HJw3Tcjth/awYiLM7Q7bnoEez0BbH+LaUVp0W1EsaUKn5uVTLwf+WdTF93Ok\ne/7aKxu236FT0MKH7Fxd2NXAhtTjEV9Gb2hHNKcwc4raOW0FhfPoyFoyTz/WmjYMYjDf8CVDuYUI\n4ingGswUsJh4snBprxWwBAc1JDEKVFFEV6oUqi06EV8wRLgIryIHIlsF8KZtoG9Y00oQfx1btmzh\nq6++IiwsQAuVv4Ag4Z1FsGsLh8FDc0prFLJQT2/jDTc1haM18HN+YK8ZEw5z7xI39OumBaa16A3r\nD8Dri6FtMmzOhTItIhp+PixdGVgdr6ICJt8tHYjXjINV+6FpCuwyq1R0NaPPyYHGLTApCiaDtOUX\naQFEfCrc9BLMfE1qeRMeg4hoITyrBSLSoMvD8McrkL++9uueXCvrY+oQiRDBpbzfdhKM3S6dmGVZ\n0gBz6Sro4Sc9GalFVM7jpSbL+c79GZb56Rj1BFWFT7+Bi4dBagNlyA4WQvP/CuEpFPm4Jtsg4W8W\n9f2GBtGBLWRjdnNQv54bWcEySqlkPK+wnu/5lacA2M8zFLOeo3xDJo8QTS8iaAuObNm5tIoqs06r\n4UWBtUzuZKoOQ2R6AG/aFkxpngHce++9/OMf/yApyYfy/d+EIOGdRTBpX4fZgzt0T3RUApl+CK93\nDAyKhVcOBN6M0rkJzLwd5u+Am75wyVA1BDY73Pq1WPh0aw4d0qCRdsN2/TXSWPL2R76P4XDArfdD\nXgF89q6MLWw5JALP3WKgIlpFd2AfNGlFuKJg1Iv5qXu7/9X/gskvwJTvYOBlkCjqY+Qdkt/d/y0z\nc8uvgVLNDFZ1wK7/QKNW0m2ZrqmXdD3fddzYDBj0EVy2AYbNgJQAOiSNWgOMTeudOH+gfD79e8O/\nngjcb9CJ39bC5m1w180N28/hgKx8uREJBKoKZgeEBpDdawT4GudsjoS1R6hfWO5OS2zYyXSb1RvB\nKFRUlrOE85lMdy5lO7moQHPuYgMj2M712CilB9NRUFDVPUA8lOdRVaONVZhiwVIElYdkHi+qtf83\n8yfGEoL4a/jqq6/YvXs3L7zwwv/J6wUJ7yxCqPZ1VLq5STvRS9MuXO9Fyskdj7aC30vgtwbMfY3q\nAt/cDN9ugGs/hmo/Kht18dgc2HUMjmfAz7tgdBfXc21awT23wjOvwv5sz/s7HEIC02fDl++L7mZO\nAew+DvnR0DFB2Nt64CCktcSkyAhBYoJr9AEkdXjtFBg2Qf5uJRrD7N8sv3VGGD4L9OEwry8snwBL\nLofDP0PvV2T/Fh1hiQMObIdMt9m+hsIZLNi0AOb8AVLLnPIA7NgFr7/bsOO98LpIiY304zlYF0eK\n5ftsF2BUaNYuMVMAq0Mkik/CiyGESAwcpr5sTSekyLkDl0ljEkl0oztL+BWAkTzAcQ7QhPlYKUJP\nGMPIZRg5RGjzeDh2g64jStVxqswQrgdMCWAuhPID2okGmNIM1vD+z1BRUcFjjz3Gv//97/+T6A6C\nhHdWIUobPCiifjEtCoUeKCwLgPAuSYSejeDRfQ0bORjfB2bdDvP/gPNfFcIJBNNWwdRfYfxFQARU\nVUGPOi34zz4GzZrA4FGwrg6JHDsOV9wAb34A77wCV10uj8/ZKsowlYkQHa+C1QqHTkBqayE8BRLj\nIc9H+jYmEdJa1VZhiWwKo9dAy/FQvBtK98P5X0L6Fa5tMjfArNfhi7/QVemM7EK0SO+iYSKXduwE\n/PNOuQE4eCiwYy1cLGnhJx9uuBTZLm0Iv2PjwLZ3zt9FBbD2hwE1PrIOCgqphHPSQ49xFOE0JZH9\n1DYzHMhgNiI55w4MpRldWcu3GInGgZUQ4tBrjV2qqqI6NqCoHcBWQWWNKhFeaIqoDRRvk7uc8Gb+\n34zdGqzh/R/imWeeISwsjPvvv///7DWDCeuzCI0wYEAhH8/FrhHo+QAbNlSPdT4nFAVey4BhG2DW\nSbg6NfBzGNsDVj8MV30I3Z6BZy+DO4Z4Fh22O+CNJfDQLLhzKPxnHNx1GAb9DOl1WuajomDVAtHY\nHDhCanQZbeHIMRGHjm4Ec76Gy0e59pm7Fdqnww6DyrvRFjiULXnApFaY7JLybNYEZv3k+z217eWK\n8JwIjYeB73vfZ/4HYhe0ZTEcyxbX9YbC2SwTqo1PJCVKPfPT6RB/oZD1hJth9UKXsLYnVFaKHueF\nQxvenQnwx1EZSWgWF9j2pVpE2iiA1cEE+EsGJBHq9ZpuTSrZnKj1WE968R5vUUIJMcTQmytYwKvc\nwFYO8zG5vEdrHpWNHb+AmotikZRCpVklPBQI19g9f6VEd4FEbudw08peMn2sGH/92A3F/v37efvt\nt/n+++8x+rr4/2YECe+sgkoyYZzAs/vmGPS8gI3fcDDci4i0E0PjYXQSPJgJIxMhqgHfdM8WsP0p\neOQHeGAmvLII/tEfLujLnYX8AAAgAElEQVQgjQ/VFthwED5YCdsOw0MXwytXCtEWa70JjT1oPCYm\niOrI9B9g9nzYsEUcu198AiZPhJho17bHiuH3HLjwItCHqyQaID/7V4lvE1tjyhc1kJYtpGmlpLT2\n/u5o01NcGRyOwPzgAPZtFAfypV/D5l//HOFVaN2jEW7nddlIuOdRcKTBrKkw/lp48HF462XPkZvD\nAZPulrTtsp/+nND0tsNi/hvoviVaRj06gHXIgIIfyU0SCKXQC+G1JKVWShOgK6KIvYs/GMRgejCG\n2TzJUY6RxrUcZhqteAQc23CYx4BuIJRLgbLS7JCUZoQW0Z34FRqPETKrqYAIH7MZdus527QyiYl/\nSzrPPl1+3KH6UHeyWq0UFdWurSQmJnL//fczcOBALr/88r/hrALHufnt/o/BuQ45UGlGJLke6h0A\nvVFoicJ07H4JD+DtDtBxNTy+H97q0LBzahQGH1wP910Aby2FT9cI8Z0+ZwUu7ghrHoGBbVyPl2nr\nWoyXDmO9HiZeIz++MG21KPs3aQlKNdyFgRez9lIdYoTYZpgKRQu/dUvZ/sBB6NnN87HSO0u0lXcI\nUgNo1gOISxWZsqRmcDI3sH3q4tRx17GcOK+/zDcvmwzGFCG6ux+SCO+Vp2ur1Nhs4jj/w08S/bYK\n8NzrYuNBuLJnA85bC9kSAhhSV/BvSRVNCAc8dGkCNCaeX6gdfreiNTp07GcfgxhMUzoRSiQ5bKQv\n13GULyhlM1HWV0BJR2dagVL+BhgbUWkpk5RmeFNofStkfwzJw+CLB+CXd2CWwzvz287dlObnfEOG\n5hL/lzBB+3FD5tZMrus50ePm69atY+jQoaf/VhSFadOmsWjRIubOncuhQ5LTV1UVm81GdXU1hw4d\nIi4ujqgozyLifwVBwjsLoGhLhgMHbWnEHjxrWSkoTEDPu9h4B5UwP0mKFuHwbBt4aC9ckQKDA0xp\nuaN9qhDfu9fBgXw4VgImg3RhxngQr6jQCC9QRQ9PsNnh41UwsR+U6AC9Si5lVO87Cq2ag96ASSfE\n4SS8rAPeCa9lZ/md80fghJfYFI5lQbMM2LPuz72PEzmuYznRMUNGE779GT4rgrcnCOn9cwqs3wQP\n3AXt20Dmfnj9PbEB+uSt2qnehuBkqczg9WkAWTqNX+MDWPsDJbwyL3FgGnGcpAQ7dvTaTZwJEy1I\nZz/7ANChpwU9yWETo3gQE8kcV7+hnX0OivF1FMUIRVsgohWV9m3aHF4o9PlIfgDe0L6EimLXgGRd\nnMMRXnsy6E6P/8qxfX3/3bp1Y+nSpbUey8rKQlEUxo4dW+txRVE4duwYLVu25I033uDee+/928/1\n3Px2/5egKKdTDQ5UOhPLLHKx40DvIQkxSUtrzsDOpAC+vvvTYV4+TNwO2wdB3J8kIr0O2qbIT13M\ny4M1xfBqe4jUNK+rLIFZ0XjC/B1wvASuHwijD6jYmjpYRKZMtLcWy6RQg2SpYqKlNrbPS/cnQHya\nkM6OlTKqEAjiUmDXGrjsbnjpOjh+QJpfGoID20VeLMxNxlGng0H9IHsPbHgbWiRA0nDo0hEefgqu\ndBtk79dbXCcGD6x/7ECxar/8Pq+N7+3ccdIMkXoRJPcHG/4XkXD0VHnoPAZIJBoHDkqoJB6XZE1z\nWnAYV0dPUzqRyUoU9MQzjCI2gtIKHH/A+pvg8ExUdSCVNu2863ZrOYms8LAfwjs3I7wzhejoaIYN\nqy362rZtW+bOnVtv21tuuYUWLVrw+OOP06lTgM7GDUSwS/MsgopKV+KowsYBL83erdAxAh3vYfPo\nQ1YXegW+7iqdd//4w79cVEOxpRQu2wKv5Uhk4LSfORWgeWpdqCo8Ox+GtINdBq2BopmdY+TBvhPQ\nWtIyJj1YtW7C9m0gc5/3YyoK9B4Bm34J/Dxik6E4T+yLwiJdGp0Nwf4t4vVXF+cPFGPbbk0gSVvj\nhwyCDUshd4c09+TugHW//jWyA/htP7RJhtQGyIodN0NqgDcrVlS/hBeGweOoDUC8phtbWCfl2YSm\nHHWbz0ulPSfJwo6NWAZQqmzBYbgG1TYT9dBn0P11arZUoaIRnr1OROlsWinw0RZrswbn8P4P0KRJ\nE8aMGVPvJzw8nOTkZEaPHk16+p/M3/tBkPDOAjgTk3bsdEfkMOoqzLvjHgxsQWVVACMKAM3C4Juu\nsCBf6nl/F6rtQnZOqKpLviorQKWXuljwB2w/Ak+Nht9OqZhiVRqH14jNweFiaCmGeaEGlyqMMwXo\nC70uhiP7RCczEETESN3v3WmQ2EEaVxqC6kppfOnQv/5zvbuL6kzWgdqPKwo0bwbnDZDff6ZBpS6W\n7oFh7Ru2z9EaaBzqfzuQDk1/SQMTOixertU4jfBK6gymp5BKnputUDKtsWGhmONE0wMVK1X6rqBU\nQQxgakrFgR0AktKsqXPHZdVGfU4d9X6iNkswwjuDUBQF5e+46H0gSHhnHAq60zU8lXhCaUkUG30Q\n3kh0dEHhRS93zZ5wSZKkHF86ANMCXPT94b1DcMKs0jzRQYdISDRJNBEVCut8pBi9wWyFB2fC+W3h\n/HawqwqqIxwMpwD2a7NarYTwwo1g1t5+xwzYmyVjet7gVE3ZviKwc3He6D/8JCzcBXt+h+ztgb+X\nnatEzqzXxfWfa6OlRrNyAj/en8HBAtifJ81FDcHhamgeoKxhNRDup5ZsRIfVC+E1QgrBZXU6kxNI\n5JTbv4F4pAZ3isNEImntSkUFQlGTk2DP+1RY5DWijEC5mxqB3Q7F2uhDUe2Zv1qwW8VTKogzgpyc\nHH76yc+M0V9EkPDOIjg04utLIr/jPURSUJiCgcU4+N2DDJk3PJgOdzaD23bCjAAdFbyh3Aav5ag4\nGts5ZFdpq6Uy9ToY0QlmbGq4z96bS8UZ4d3r5O8DVUC4g69YB3u1u/10WewijFCjEVyfHmCxwNYd\n9Y+5Zy8MuRQcBkkvrp8f2Lk4xxcUIN8IcWnw4zuBv5ffZkFKi9oO7k4kJ4mQdLZGeAXlUOp5EuUv\nYf4OMOpheAOb83IbQHhVqB68PWrDgA6bF8KL0vYurzOYnkAClVRSo40zxCGOwkUcxUg8BqKpUg6C\nrjOkpEHZeir1cqwIowJFbhd4Wb7L36mkthltLQRreOc8goR3xqE7HeGp2qIwlFQ2UUiJB8UVJ65C\nT2cUHgmwlgeSInunI0xsDNdtF1eFP4un9kO5TeGV5gq6Yh0j3BzN7xgCe47DsgbMo+44Ak/+BPcN\nh06NYX8lVFkViKwkCSPs3QeJMShRMuDXyOQivJ7dxJT2t7W1j6mqcMnV8vjGLTB0Avw+HyoCcIWv\nrpTPy4GYZ19yE6yaBaX1rd3qoawIVkyHS27xnJZUFEhv5lJZafUYtJri/7gNxeytcGEHl6ZpIKi0\nwQkztArAPg5ER9Ofp6yv+C9MS4hW17nWGyHDi6WUats1woiJMvJRUAijCTUcR1FaoYY5gBoq7EKa\nUSnN4cgu18EqtDmw0Aio9iKEpqpaDS8Y4Z3LCBLeWQDnl2DTorWLaIwDlWV1FChq76PwCkZW42B+\ngLU8EKudz7vAzU1h0h/wTFbDG1kW5sNbufB0G2hSocehKox2k8Ib0k4GnZ/8KTD3hcJyUXbJSIUX\nx8ljUw+C0eSAxAJWMBJ2H4CO6RhsKjrEAb1Ka583GsUQdWUdC6KFi+GQlr7dly36mjYLrJ7t/5yq\ny6VZZeNy2L4KLrsLUOCrp/zv+8s0CShG3uR9mxbNIPcwFFeKh+CpCnhjsf9jB4qTpbA6C65owPwd\nQLYWabYJwCAcoBSVKD8pTV+XV6hGeFV1CC9aI7wyjfAUFCJJoEIzkzWRhpnjoDQHo4zxlGtcFdE8\nA3Ld8s8Vml1FQjOo8UJ4di0/HmxaOacRJLyzADrVVcMDUZjPIIaF+C62jUDHhei4HyvVAUZ5IKT3\nYSd4ri08nQWjNsOJAKx7ADaVwDXb4NIkeLAlbCuD9DBIc2tyUBR491rYkANPz/N9vKIKGPW2pPR+\nuN0lYbamWMWWbAd9ATvZTcJuA3RqS5hdIdIAUSaodFsjh50Hq9fXruMtWwXpzSGjnQymJzSGzoNh\nWQAdlwVHZZyhdw/o2lm6Nsc/Cgs+luYXbyg8Bt++ACMmyz7ekJoM+YVS70zU5msfnh24fqk/fLte\n0pmXe5lN9IZMrdejfWRg2xcDcX4Iz4GK3ss2CgoG9FjrpOYjNJeFSrdmlghiqNIIMIQELBSCkgyc\nAnRUaC8RFZYM2ZtcjSqn7eoV7xJjTuFT45+cpQnifwJBwjuL4HCL1EbTlAUcxe4jelNQeAcjR1F5\nuQENLCCk9HhrWNQbtpZCh1Xw1kGo8RGRzcuD4RuhcxR8201GHjIroIOHxXFQG3hhLLywAJ740XOk\ntzkX+r8kdbuF90FrjSDMdklpqlEqMeQz3vwChfuPQcd2RNt1hOtl3q/SItJbABcMES8997Tm5m1C\nWC2bu9KHY+6UxpX9W/CJkwchReuMPnJUUqJj74XUlvDMlVDjoeZmt8Obt4MpTHz5fCEhHgpPgUEP\nF2RA42TQm2Qk469CVeGztTC2O8QFSFxOZFZAigliAwx0ilDxp2dgQ8XoY6kxYsBa5/qNQELMKrdm\nllCiqNbGF4zEYaEIlHigEjWkEeXatRAV2gQs1bBDC5mdJFdTASFe8rtOwgumNM9pBAnv/7F33uFR\nVd33/9yp6b0nkEDo0osU6Yhgw4IKKJYX3p+iYsNesb1iVyxYsaKgWAAFAanSi4CUUEIPhPQ+Sabd\n+/vj3Ekmk5nJTMAvKFnPkycwt87MzVln77P3WucAHHNOm9Ms9xpSyaWKP8j1emxbNDyKjmnY2OlH\natOBEbGwdyBclwhT9kKzlXB/BvyaCxnlsLMMZp2E4ZtEC8KgKFh6YW1T8kkzNPMwhjx2GUy7VpBe\n1+fgjSXwyw74fC1c+z5c+D8hH7bxcaHf6cDuCpAViZCwamKoFuxnVzBc0IlglfBCA8TAblLHqR5d\nRST38Zfi/1Yr/PmXaAFwpA8BBowWpDX3de+fy7EMSBH1MfznHhh2tTBFnfojnDoET11Ra+wKwiz2\n9QmweRFM+QRC3WiJOiM8TOh/gpgcnMwDcwL88OfpO8+vzRRrqBP7+3/srnK4wEeSlFEoouEIz4Id\nnZehRoum3sQuAJEyqKpDeCFUq7J7esKxUYqE2mBoDKLcBnrAEJkKLbvDsk/FNkf1lLUa9B76LZoI\n77xAE+GdJYwdO5ZRo0Yxe/M2jKrsUrGThmZvYmlJKLNouL7/KXS0RuI2LFj8SG06EGWATzoJ4rsp\nCX7IgSv/FDqcXdbCzX+JxvUfusGCHnUVOMpt3lX1H7sMtjwJ6XHw5M8w6j2Y+KVw4J5xE2x5qjay\nc2DaITAaFQLCykSX1m6x7qLp2IUAGQI1Qv0faqsbJQnunCDcxLNPiYrNykqhXZmSBCfUoj2tFq57\nEFZ/7znKKy8WsmJteopeueWrRPQ48xvhlffyEqGicksreHcyfPggTOwAq+bAo19D3ysb/syNRrCo\n6dcbe4s2i9sSwGIT1aqng7d+h3YJ/ldnAuwog64NVaGoKAbsQHwDhGdGJtCL9quQJ6v73BoQqUWr\nkySZnkCsajWnlmDsmEBSFxt1OsqtECoBOX9C3+th20Ioya1tQlfkMx7hzZ49m1GjRjF27Fi/jmvC\n2UGTtNhZwpw5cwgLC4OZb7GGWYCN49Qu4EhIjCedt9nDu/QlyMtXZUTiKwz0wcwz2HiZxi28twmB\ntzvAW+3heDVkVYm0ZZtgiFbHgSIUvsLO3WjRI1FpVw03vaBHGsyfLAbzwgpRNehJduyQCX7MgYjO\nVqq0JWiohD0VkBSGLTIBwwkJnbaW8EqqUAvW4ZYx8NSLwjW9RSoEBUH3LsJ0trhEEGBQEFz+/+DX\nD+Gdu2D6ekGCzlg2S2TBug2FL35CjMjR8OVcuO8O6DQAPt4J370K25aJ7FnH/jD+6dqosCEY9LXr\njRFBMKYXLN4tKlxfXSxEuxsjzZaRDfN2wMc3++4M4UCJFY5UQRcfCS9XJamGrDursGH0SnhSvWma\nQS1mMTsVsxgIrCla0RKMDRM4miJ0Wsotag/ejg/BUbPy23vQunfNlTyu0VnUtgidfx/6uHHjGDdu\nHGVlZYSHe7DraMI5g6YI7xyABpCo5IhL792ttKIMK9+72Ke4Qw80/A8dr2BjkR+9ee4gSaIPq38U\n9I2sJTuAp7HyAFZmqdcI0NQ6ZDcEg05IXHkbyHPU8a0kXMbEAY6zA+0uE3RMwoYOgxrhOSTMip0E\nOsLDYc5MWLwc3vsEbr5BVHAmqBFkntrHrNPDvTOER95nLu0AFjN8/yoMvVEUuXTrjCgzLICOTmQW\nmwKT34HPMmDWEXjsa9/JDkR052wDdk03OFUK13YXadq3f/f9XM54Zr7wvbuln//H/qmmWHv6OG5n\nqzSV1ECEZ8JGiJdJmChqqTsUOYSknde1teixqxGfFiMKFnCcV6PUEp7WCCFqTnnh23Boq/jSw+OE\nyaE7OAjP6GM/RhP+kWgivHMAGsVBeHXX61oSxkiSeZcMn3rtHkLHFWgYj4XDjVjPawhZyHyEDbDw\nsmr7GawVac0zBYcXW6CuktZUk88RAv6qhi7CFkFrB6MT4RXWVaTi0uHw+89Cj/KDN8VrcaoZrbMz\neqf+cPvrIkr76CFRhGK3wfRJwtZn3ONivwF9RfoRoHe3M/c+zWYwOk0keqaJ3wUVohfxpUVCQNsf\nrM2EH/+E50aJyYW/2FQi0tNtfWxJOKk+k4k+EF6wlwyFHRmNyzk06tBkd5q86TDUEJ4GIwp2FAeB\nSQplZgjTAxHpMHKyeL26AuY+B5FJ3k1gLWqZsqeUZxP+FWgivLMOCQmQMHHUjbrKPXRgG4Wsa6B4\nBURv3lcYiEbiCiyUNGI9zxt+Ukk0EXONNVGCUWgvninMyVbQ6BXsxiwK2c+g4raYjhVDFyEIqVMk\nArTeRaqHDBB6lI6mb1WAgwKXpvHR98OkN+Hnd+CqcBgdK9KZj3wJqer6l8EAfXuJfy//48y9z5JS\nUbjiQGIEpMcK7cunrxAWTI/+4Pv5qq1wx9fQKw1udqPf6QvWF0PvCNG24guOoxALDdpUlWEh1EuE\nZ8OO3oUQJTfn1KBFVglQUvevjQBlSqsg3AAkNIeRdwuHhCG3waWT4donxP9lD7Mzi7oY3BTh/avR\nRHjnAERK00QWhVhcfMNGkkJ7IniFXT6dKxKJXzGQg8I1WKg+Q6RXhsI0rPREQy6h3KUOYN3Ca1Nh\np4v5uTArW0Jub8WiOUURudyws4vY2FUIQmpkMEiinD8qWMhyecPSPdDpJbFOl+UioyhJcN0D8OVB\nuPV5UcwyYytc7OJl2UbVvvz5Vzh2/Ay8UYSDeVxs3dcu7wy/7hRrnG+NgVkbYf5238736A/Cr3Dm\nbf6v3YEQH1hXDAMaqC51xjEUUhsgO4BSrIR7IDwFBSs2DC6E5y6jIVRnHa/XmmqJA2yUVquE1ywd\nIuKhdR+hIDDxXRh+u1ifs3iYnTlSmk0R3r8aTYR3DsCxhiejcJgcl20Sj9GJX8liBz7oWiFaFRZg\nYCMyYxpZuemKj7FRDLREQwgwTl1juSgSsqoh0+T18AZhk+GrTKACdMk2IJ9o9Ly44ynhBdS2FeGA\nXZbQq09tXCjkNUB4fxwANJDSHHZ4mDPEN4cbH4fxT0F6l/rbBzqth833w2LIG7JPQbwL4V3cHk4U\nQ1aRWIO7qiuM/1TIrnnDJ3/AO8vh1eugU4r3fT1hV7lIJw/wwyT4qI+EV4KFcA+eCha1/86V8ByR\nm3OkJ4pbXF9XU56KndJqNaUZpn6wXYaLXjyzU/Rm9vCgmpsivPMBTYR31iEhKaBRWxIyqa/qfCPp\npBPKVHyc7gP90fITBhYjc91pRnq5KLyEjfFoMaHQD02NnNTwGFGlOdezClqDKLWC/jf46QNgHsSa\n7YCVQEzk7jgFnWIJ0oUTh4RNAb061sWHiUIPb6hSq82T02DnnsbfIwhD1t99dFtoCIeOQrqL5Ve3\n5uL31mNw+26473poEw+XvOmZ9D5YCZO+hruHwD3DGn8/ywvE2mgfP3zzDqHQyochpAgz0bivVHJo\naAa6bHes3emciFBEd5LTvxGtBgCylVIzROiBJFWxu/+NIsLboirwB0eAycPCqIMIjT4uYDbhH4km\nwjsHIP6EzYQQwG4nl2cHdGh4nu4s4Dhr8aL27oJL0TIfA8uQuQQLBY0kvQewogVeQc8BFFo7zbqD\ntEJmbFa2aMz2F4oiBneKgQ3AJijONRNDFYUcQNlhhy7JBBFAJGBTQKdevnk0HGsg6M1RfUUjEmBn\nRq0yiz8oLQOdDkaNhJVrG3cOZ9hsQvklPa3u68mREBMC8/YLC6c79sKSB6BZFPSbBs8tENJjFdWw\n5gBc/R7c9Q1MHgrvjDs9/7zfC0U6M6CBFhMHLCgcRyHdhwivkGqicd/wXaUWPwW6RIAOwtM6tTMo\nyE6RnVKzp/hVLVKazoSX2Eq0JGxS3bVDomqFpF1RbRJrfE1amv9qNBHeOQAtgvS6kspaMtzuM5aW\ndCeaKWyu0dz0BSPRsgwDe5G5EDN/+lm9+Qk2ZmPnTfQYgf0odHN5bB5IE5JUs7xYjXnC60fg+1Nw\ndRvgYmC0QnVsJjaOYzYXoOxRoHtzjAQRhYRdEb2BAC1i4Khn20CgNgIMigWTqVZxxR/YZdFC0LG9\nOEdOw/VDXrE/U9gZdXLxqZMk6J4Kp9Tz94mEmFBY+bDoz3tpkXBWCJ0MA1+Fv07AnNth+rjGrds5\nYLLBykLhmegrDqnJxbYNEF4VNiqwEeuB8Eyq/U+wy3aLSoQGJyKUsaNRCVCpKV4RvxVzVW2El+LU\ncd+qF2SpoX14PJR6+PLMJgjwU4etCf84NBHeOQDHkNGTlqxjb51SbAc0SLxNb7ZQwBdk+nX+fmjZ\nipEooC9mXsCK2QfS/BYbd2FlElpuRsc2lWp7uTw2fSLhhkR48gAUezFhdcWPp+DRffBEOvx4oUL6\nozaCbrdC0H5KyEbaVQRWoEdLtAQShYTsRHgtYwSheZPiylUjPK1ajLHL/XzCJ7QSnREe1wJ9xZ+q\nb1+XjvW39UyFPVmgXAZfqeuJoQHw+g2Q/xb8cg/M+i9sfAIOvgRjLjy9ewFYUSh6KS+PbXhfB/ap\nz0/bBoaQPJXQ4j245tUSXt2UplUlPKPT64LwRIpTUdf+JLXIq8oMVlklPIMTeSa2gZyDQug0MlEY\nwboL0asrmtKZ5wGaCO8cgONL6EEapZjY5SatCTCABG4inUfZSgH+9QKkomE9Rh5Cx/PYaI+ZT7FR\n6Yb4SlGYgoXxWLkJLZeQwwFKOYCCBLRzM6t/tR1U2mHsdlGA0hDm5cC4HTA2EZ5vAwdROJRu5ZpW\nuWiQgTLYWiryl53TsaInClFN6Lh6uhqRHPYS5RWoRS1mHUSEwx4/PPockBBjZLs2wq3854X+n8MZ\nK/6ATh3E/biic4og8SI37RZhgXBFF7ipD/RuKcx2zwTm50LrIKG04ysykImgYZWVXFUKLM5DhOcw\nfg2lbrGIw/hVXyfCs6GtITwroEFSBDGWqBOb8Mkf1r1AQishG1Z0EqJTRLOlOxPY6oqmCO88QBPh\nnW1IovEcoCMpGNGz2ksLwhtciIzCfWz0+1IGJF5Cz18Y6YbE7ViJo5orMPMIVp7AyvWYSaaaD7Dz\nGjoep4prWUY35pOrKuPr3BBeaiDM7Saihav+hDIPkZ5Vhucz4dptcHU8fNlFRGyZKvFuZTdJ2AnC\nhrLVAh3DINCIGS3RLtdtrY62BzwsayoKFKnFd2XVQmZswxa/PzZ0OhEgSBJcdSn8srjx63iKAktX\nwoih7re3VlVhMj0b3p9RWGX4OVeIh/uDPSh0ROO2X84Zp1Tx5yTcVz+WqdvDPRBeoFNkaMOCTiVA\nGYvafC4Is0Sd2ES26gSle+H3gVCVC3FpYkP+MSEoDbDPxSkYVAPEUK/vpQn/fDQR3jkAx7K8Dg19\nacdSL9WY8QTyNr35lsP8xNFGXa8DGn7EyCGMPIkOK/ATdr7FTj7wKDoOE8CD6FmoevJVYuMkViK9\nDHDDYmBhT1hTDO3+gHePwrEqsMhCl/PTLCFG/fxBeLoVzOlGTYvBq1gJQ2E/OVSwHTNHUbZK0EPk\n2crR1CO8uDAR9RzwsCxjMgtbotAAKK0Snnmr14uiEX+g0QjCA7hipFBsaWxac8cuOJUDIy92v72l\nmlZ0FON8fwpeOdS4a/mC5YVQZIXrE/w7bicyHX0oWMmmEh0SMR4ivFKV8MJcCK9KJbIAp+OsmNGq\n/XwyZjQYQN2vWCW88NAQWHsd5K+BrB8hupnYUJglIrykNrBref0bqSpvivDOAzSJR591SDWEp6Bw\nFX14lM8pxUQ47tcUxpPOzxzj/7GO3sSS7GG/htACDY+j4XEv+wyidiQMQqemGz3jkljYNQAe2yfs\nhu51WTO7Ig6+7gI91HSeosBz2Xb+iFMI0G/EiEQJWQRXF2Dao8CkJECHFYloRJTlSMJKknBJ3+uh\nJaJMzfomRwjyG3IJPPU/QTo9/ZAJs1iE4grAhd2F1NjSFSJi9Bff/QRRkXV7+5wRHihUVnJKRfT1\n4F7IroZr4v1LOfqKr09C+xDfHRIAqlDYh8K9PsyXT2AiiaB60mEOlGBCh7Ze0Uqlavwa5PRs2zAT\niLhRO9VoCQSlEhQNJRXiuYysXAulGSDpIGcZtL5TOCA4XM8vGAIZq928qTII+veKP59kL35oCvh9\n7n8KzivCy8zM5Mknn2TlypWYTCbatGnDpEmTmDRpks/nWL16NUOGDPG4/YsvvuCWW27x674cw4YN\nG9fSlwf4hF/ZzE24v46ExCdcRBfmMY5VLOdSrwabjcVhyujJAibRlrvpwJdIPtV4pgbC7G7wrkXo\nM+ZbIEoPfSMg1oO8yGcAACAASURBVKUd689SeO4vLbSxU93qIG0I4gAKiduKOGgDeqUSQwgFQDQS\nGuq2P7RPgF0eqkMd1kGJEZCZK0guKAhWrfWP8MyWWt3LwEC44Wr46At45D7/qiMtFvhyDtx4XV3h\naGdIkugvzCmDpQVCti1UB68dERZOZxKlVvg5R0Tb/rQ07FJrJF2rdd3hBJVeJ2TFVBBJSL3UqMPp\nPNjpWCtmQtUiFplqNAQAJlCMlJhEpBcpnYTARGg1Cfa9Kfr0giOgUu2/u2AQ/P4RlOYJMWkHKksh\nPt2Hd//PxAeMb9Cot7Hw0OhxTuK8IbyMjAz69euH2WxmzJgxJCYmsnDhQu666y727t3L9OnT/Trf\n4MGDGTx4cL3Xu3bt6uedSTVreDJ2mhNHb9oyl3UeCQ8gmgDmMJjB/MYjbOEtenvct7F4V525VWGn\nI5GEY6XUj5aIGANc3kBVQ5tgiOtTSV74YWAjA+nFASyw0QaBEnRuQXOiawhPK1GHdLunwjebhJZk\ngAuJOCK8xHDYeaJWF3PlGnjoHp/fBuUVEBoq1u1+2gYTboavv4P1m6C/H7qV3/8sWhom/cf7flHB\nUFIJSerkINkIv+aJYiDdGZzXfHUSrArc6qc6y1ZkdEAnH1Kax6gg1QvhFVJGFPXXzkyqEEMItWGt\nlSqMaurTTiVaggATyAaKq2wYjRoC5RwIagZxA2DXVCjbJ0xfHZJiLdSZTtae+oQX7EfX/T8MdzKL\njjTCINEH7GYvvzG+4R3PAZw3hHfnnXdSXl7Ob7/9xiWXXALACy+8wLBhw3jvvfe48cYb6d3bd9IY\nPHgwzzzzzBm5N8cYZldLrW9kEA8yk1yKifeSiOhPAm/Rm3vZSEcimYgf/jQNoAwLMzkAUONllopE\nPmBCIdiHwc4XnNDL5EdJSBTxCvfzBTPQkE/+JqBHIEZ9NAnqZxCFKNq0OXFu33Sw2mH7cfHvOu9B\nlUdMCINKVXHlihHw6LNCvNldlaQ7FBRCZDj8uA1u+BC++A80TxFRnq+EZ7fDy2/DyGFwQQPjTlig\nuPdu4cKqZ1e5aBv4+iT8p5lv12sIigIfHBeFQ0keTMA9YQsynZEI8JHw+uC536GQcqLdEF455ejQ\n1WlLMFOJXi1isWMShKdUgKylqNBKlFYLlcchqDlE9RQHFW8XDeUOE9j4dNGAvmMJdHSaUJpK/tWE\nl0x7WtD9bzl38d9y1r8H50XRSmZmJmvWrGHo0KE1ZAeg0+l44YUXUBSFTz755Kzdn+NLcLg7j2cI\nOrR8TsPW15Npzx20ZRLrWMyJM3ZP08nAgowENTqIjp6rXWfQheEjbMSjoHCMLErJ4ARacjFtAql3\nFArBNWuZUQgdTatTiNclBYIMwhrHFaUOwgsXEmOKAtdfJVKLC/zQxNx7QLQj7FI/3oxT8Oh98M1c\n2Lvft3N8/AXs2QfPP9HgrgQbhCceiHSjWYZIPcw4Q8LVAL/lC7GAyan+H7sBmd4+DB02ZLIwkeaG\n0BzIo4QY6i8gllFGGGF1Up1mTDURns1BeJSDXUNxBURq7VBxGELSQB8KulCoOqUu/MoiytPpofc1\nsHle3QuaiiHo30t4TRA4Lwhv1apVAAwfPrzetv79+xMcHMzq1W4Wsr3gwIEDTJ8+nZdffplZs2aR\nnV1fA9MnOLUlOKxPoghlDAP4mMVum9DrHi7xHn25lBRGs4I1fkiPeUIeVbzKTq4jDQVqZuhdkQgE\n1pymwawzNiAjk0sKAVyg6ipGnyrAdgyUvnFYkDASiAYIAwwaUfXpgF4H/dJVkWgXFJnEWBenjrdm\nGyQnQb8LYe68+vu7g6LA9p3CCLZIlVs8VQoTb4aUJFEEozTA/8eOwxMvwH9ugl4+TLK1GtFvCDAi\nRvyRdg8TbYm7GxDL9hXTDgndzIF+LuwUoLAfhYt8GDqOUYEdhVZeCa+UeOoTTRmlhFE3BDdjIkBN\ncdoxoSMUlDKwKhSVQ5QRqDgCoaq0mDEaLEVgs8LSD+HGQNi3HrqOhOz9olUBwGoW0mKh0b59CE34\nx+K8ILzMzEwkSaJ169b1tmk0Glq0aMHRo0eR/Wiumj17NlOmTOHJJ5/k1ltvJS0tjQcffBClodHP\nDRx5ZauTNdBkruAIufzMBh+O1/AdQ+hNLJexlNWchpIz8BCb0aFhNGL630YdeAxI9EXDyjNkLntM\nkfkTmTyyeJ++rGcHEuXEbFA/h96iOUzCSARCbcYg1XdYH9gG1mSC1aXdYMtRaJcAQWpWzCEkPXa0\ncEXP9uFjOnocikuge2eoUBVdCspFpearz8FPv8BXczwfbzLBmInC++7N/zV8PRCFMI5H0aiFVsHQ\nIghaBsFUN8TuL1YWwtpieDzdf/3N9ep37wvhHUR0g6e7ieAcyKXELeGVqxGeM8xUYFSjfTsVaAlG\nUcrBbKOoAiIDARQIcyU8i2g7AHhxhFjHkyTYrSqBl6s9ICFO7J+X57myqAn/WJwXhFdaKgQVw8Pd\nL9qEhYUhyzLl5Q1Pn2NjY3nllVfYvXs3FRUV5ObmMm/ePFq3bs1bb73FI4884ufdSehUjjQ7qaf0\npDVD6cw05vrkdh6Ijl+4mD7EMZKlje7R+40svuYQb9GbA5QRgo52TjPtUWhZjkzxaaY1px2EtN80\nyIrMYMxcRjKL2YaGQszrdGiaayDFMeM2EKWmtgK0UO1CeKO6ivTlEhc3hBX7hOVOoDpuVas8eutY\nUW05Y2bD97l6nRgb+14IaertpKkO6mNHwy1j4e6HYbmbBEFxCVx2g0hl/vCl72uGZisYncbaIVGw\nqhAeaQnzcuFopW/ncQdZgYf3woXhcKUf2pkOrMJOKhJpPgwdByjDiJbmHopWZGRyKK5Zo3VGMcVE\nOL1ux4aZSgLVZ9FKGTrCgDIkKxSaIMbBjxGdxW99GFjLoFr9u+4zWiiqZO+H2FQ4qKoQlOWL344i\nluPHYc4cuOmmBt9jE/5Z+NcQ3rPPPstzzz1X56esrOyMX6dDhw48/PDDtG/fnsDAQGJiYrjyyitZ\nsWIFsbGxvPPOOxQUNKBo7IJoRXwR+9lX5/UnuIFtHGIhvsmDBKPnV4YziuaMZgUvsMMvoenDlDGe\nPxhJMrfSivXk0ZtYdE6PyVi0KMCn+Nm97QRFgScckUplMZ/Rhw3sJY8ytGSTv9aGclEAqAUKMvqa\noS9QA1UuhNc5BTomw9dOwfDRAuEsMLS9WOMDqFIJLywMJtwEH34uIjBvWLlGaF5GRUIbtSUx3inw\n+OAN6N9HENsjz8DO3XDgIHwwEzr2E5ZES37wrw2i0lJL0iDSjgcrRQ9jjAEe93Hd0B2+zYY/y+C1\n9o1zV1iFzGAfh439lNKKULQe9i+kHBt2ktwUzJdQTLhT5FelRou1fXjltSlNm0RhJUSHA7ZIMKgz\nC30YWMpEuhIgrasoTDm8DS4aB2tmCR+8UlXWxkF4r70mHpK77/bpfTbhn4N/DeE9//zz9X5KSkTv\njSOyc0R6rigrK0OSJEJDGy8tFB8fz1VXXYXNZmPTpk1+HClhUCAUyKBuiDKULgyiI4/zZYNreQ4Y\n0TKbwTxLN6ayjWH8xmEaJv5cqriK5URi4FsGIyGxiyK6E1Nnv3gkbkbLGx50OH1FglEcG6UroAWh\nLGYbemTCK4sp3QZcFEo4MURgoBIN4WqEF6SFKpePQpLgtn4wbwfkqW91tUoKA1s7EZ6l9pj774QK\nE0x7y/M9FhbBj7/AlSPF/9PVYkOHbx2Ivr4F38Jj98P7M6HLAGjbC+55VKwV7loH/fzsGCmpFA3o\nDjia9HeVw7S2MOcUbG+Ey3yBBR7YK1RV/F27A8hDYTsKQ3wcNvZSQjs36UoHslVD4yTqr50VUki0\n0+uViDfsIDznCA+7ThBeKBCUXHsSbTBUO9UQKjK0HwDbFsHA8VBZBvvXw4m9oDdCZJLYLyMDhg2D\nkCbllX8b/jWEJ8sydru9zk/z5mJkat26NYqikJlZv5RPlmWOHDlCixYt0JyOxwoQEyPIwdRQ2KDe\nU0JCAj2ee5lpN0DFKPhj9to6+0hIvMJ/2M0xvsSNHJIHaJCYSjeWcylHqaADP/MoW2p0DV2xlhwu\n4lcKqeYXhhOJkWpsHKWCttTPwz2FjmLgxcZGeZLCiCFWpMtMdDOKAelXNmInh+abQLEBA2IIJ5Y0\nQihDqVnNCdJChZvL3tpPVDfe861Yy/tsnYj8okJqCa/SifDSmsPD98Br7wq7Hnd4/1PRTjD5/4n/\n924JyqciheoMgwGeexzyDsAfC2HlL5C9F+Z+ASnJ9U7bIPIrhGyaA22CIcEo1t5uSYZ2wXDnHt9E\nuh1QFLh7j2jaf/eChvd3h9/VSdclTh513pBBCR28EN4JlfBS3BJeATFO7QyViMlrsBrr2yhFTzgo\nZdhsBoqqIDYMiHGajWgDwOw0M6gohn43wIENQkYsLAb2roHMTWJdT+/kyedlLJg9ezajRo1i1KhR\n9OjRg4SEBLf1AU0493Be9OE5GsSXLl1ab41tzZo1mEwmt03k/mLjRiHonJaW1uC+mZmZhIWFwefv\nM/+6ybwYCkfIRUZG4zQP6U1bbmQQj/El19CPSHyfdQ4hkV1cw2vs4g128ya7GUwifYkjjgAKqGYF\np1hDLn2JYxYDaalSSxYmFKClmwq7Fmh4Ch3PYeNSNAzwcQB0YAUyX2rsGNlGL8I4Si47OY5BySNi\nHWjDwd4hDh2hpBJCPpCgRnghWqhwE+zGhMIH42Hsx6JYJasYlj4gtjkIr8LFRujxB2DufLjqJtj4\ne901tv2Z8Ob7MHE8xDm1kVltcN2H8MgIuMhljAsOhgEeJMN8hc0O+eW1laUgItjBUbC6SDSef9YZ\nLtoA7x2D+1t4PpczZhwTupzfdYN49+bjDWIxMl2QSPSh/64IMzlUNUB4BWjRuO01LaSAaKfsgoPw\ngohAxqZWaYYDZRQVif1iog2iFcEBbSDY1UleWAzYzNBzlPj/7hVCZmz112CpggE3NvieHBg3bhzj\nxo2r81pZWZnHGoEmnDv410R43tC6dWsGDhzIypUrWbx4cc3rVquVp59+GkmSmDhxYp1jCgsL2b9/\nP4WFdS21t23b5vYa77zzDqtWraJNmzb06tXL95uTxJcQjpBTOu7GGug1JlCNhcf5wvfzqghBz3N0\n5wRjmE4fdEh8wn4eYgsz2EcIer5lEGu4jJaE8RXLmcb3lKsVo+G4r1R7HB390XA1Fvb4UbWpoDAd\nGxGYCSWLx+jMHP5Ah0SkVETmajD0l0AXRDV6WhBKBUoN7YbpoNxDYDnmQvhyglBf+eQWGNJO/QzU\nxmqTC+EFBcEvs4UYdP+RsHW7iIS2bIPLx0BiArz4VN1jft4OC3bAswt8fst+4WSJMJxNq5tJ5qJI\n2FYK1XboGyn65x7bL6TZGsL8XKFpel+a8C1sDOwoLMLOFT5ObnaqglOdvAgnZFFAEtHoXM5ZRRXl\nlBPnZD5UoZ4vhChsanpTpwQDFvJzRUYlNj0FApxmJxp9rZdUWQFEpUBQmFirKzgO414UVkElOTCg\nqUDlfMB5EeEBzJgxg/79+3P11VfXkRbLyMjgnnvuoU+fPnX2f/fdd3n++ed59tln6yiqjB49Gr1e\nT8+ePUlJScFkMrFx40a2b99OVFQUs2bNQvKzGkBSqEkc7mInadSdticRzTRuZTIfMoaBDKGz3+8/\nAiN30Z67GpAXuhWxqNWPAYAohHEHHRLzMDAIMwMx8y0GRvgwGP6MzC/IRPEX15JKOAa+Zy3xyARb\nDBxaX4XuWbGAVYidNEIwQY2yS5heRHjOzufOuKWf+HFGiBrRlFXX3791OqxbDNfdBr2cLHs6tof5\n39avrPzkD/E7uxFraL4gU3V+SHcRJ+kTIWTA/iqH3hHCf3BDibBiWtoLOnhYfp6dDbfthGsT4I3T\nUJZah0wR+Ex4f1GEEa3blLgDx8ijmcsaMUA+omrSOaVpUgkviHCq1ApkvTp8FeQIwosJKAWjC+E5\nT+lj1S77mOaiBy+pDdz+Iez8vVZyrAn/apw3hNehQwc2b97Mk08+yaJFi2rEo2fMmMEdd9xRb39J\nkmp+nHHXXXexZMkS1qxZQ2FhIRqNhtTUVKZMmcKUKVNISkry886EIHIAEEMMW9jElVxVb687uYy5\nrOU/vM0O3iHCj9SmL1BQmMB0YglHRqkRo7Z5id4ikFiJkRuxMBIL16DhLnT0Q0MQEtUo7EJhLTLH\nkXkMPb9jJ4IqZLJ4hFEcJoftHMLITsK3looM1OAQwIgZmVRCqECpKWwPV5/Ycpvqbu0Dgo2C9E56\n0EDq0A7+WgPLVgkZseBgGHWp8MFzRWaeSDfuOyWKYAIN9fc5HezIEvfb0oXw2qlf9wETSBEySVqJ\n+T0kRm6BfhvgrfZwS0rtJOBEFTx9AL44CeOTYGZn9xMEX/EDdpKBC32UlNtOIZ2IrFPh64qj5NKC\n+Hqv56riCfFOTh3lFBJMJBq0WFUxK70ivqC8fBHyxxkL6xatSFqQnK7fQl18TesKBzeLfw++Rfw0\n4bzAeUN4AK1ateK7777zad+pU6cyderUeq8//PDDPPzww2f0viTVxXsAF/E7i3mel+rto0HDl0yh\nC/dwB+8zh0caNN/0B0vZxhcsIxAjR/hUnWNTk9r0hCgkFmHgG+y8gI3hWJDAIesLCDLXAW9jJxQw\ncZLRBJFOGI/zE4HokDhFwGrQhoLSLZxoYilEGIeKCE8gUiW5YqvvhCdJIkV4rNDzPno9XFpfiKcO\nFEXY9tzQS7RA7D4JvXxcQ/MV245B12b13cxDdJAcAHtNCrdgJh7ICQhkTR9RjDJhFzx5ALqEQZFF\ntB6EauHTTjAhpXEtCA7IKPyInevRerT5qfc+KKRvA37oR8hlEPUtINwRXgWFhKjFLVZ1PU+v3kt+\nEej1OsKDbEI4ugYSdaTGk9UQt20/WDETTKUQ3LTudj7hvFjDO9fhkBYbyAB2sJ0cD/JgqcTxKffw\nPWuYzpldRJrJ7wBUYeYEhcSp/mTZHio7naFB4mZ07MfIdozMRM+L6JmJnvUYKCGAp9W5VQAWtOzi\nXjqjoPANq4mlmgQUyldC0EVg1EUQj1hsSiAQExCkDm7OhOcPUqPhqBfC8wWVFiFP9rWaGvVkPHs6\n2HAYeqa539YqSER4AI5Lh+thVlfY3A/GJYk+xbYh8P4FcHwoTGx2emQHsAaZbOB6H9OZJqxkUEJ3\nN9WXDlRjIZsiWnqI8DRoiHVKaZZTQKia/qyN8MSibH4RxESGivcZnFZ7IkkCFOg0TKQxHZWXbfuK\n2YsjymvCeYPzKsI7N1Ebpw2gPxISv7OYm7nN7d7X0Z8HuYaHmElHUrkYf+2I6qOAUn7jT0IJREah\nM2no0BKOgf34vlglIdEVia5u5lGb1Jl2FYWMJpH+tGIdGWSRTxh7uMBsZMvaKsJfAJkIoohFAiIJ\nRMFSE+FFq4RXYKl3Ca9oEQOrTqNhG6DcsQYYAJJe4UTxmYuwAY4Xiob5QR5ML9KDYGe5RCUB/ICd\nz7HxH/VPuFeE+Pk78BV2Wqiycr5gO4XYUejtxSXhMDkoKLSm/hLAKbKJIx6tE8FWUECoej4rRYAG\nrSIUVPKKNcRHB4NUDiFOIbcii7TmM7/XFTxNbCMa0A9uhi4NhPVN+FehKcI725BAq/4tRhJOD3rx\nC/O9HvIytzGcbozmJXZy5LRvYRpz0aKhA83pSzv06JCQaEc4u8+A+UcOCktVwqugkv8itA5nsJAk\nwjFzAs16M7YqYBiYMRBEOLEEYFUf0UB1WuAoqc8x17uMV6RFw5GChoWevaGmylMHSoCoqDyTWKkK\n7fT30NKVHgSHK8VncQtWJjSQbj4TMKEwFzu3+JHO3EQ+gWi5wEuFZiZCbL2VG8LL4RSJ1C0nrRvh\nFaEnAknJB7uRvFIdcSEyhKaLQhUHFBmQRKTn3Fen0QibIId4dBPOGzQR3llHXQPYMdzIYhZSgGd5\nMh1avudR0knkEp7mAB4sv31AIWV8zBImcwX5lNKNljXbLiKONeT6pOXpDS9gpQKIppxmZDOEREqo\n4Cc2kAbEK2GUrpAJjIHqzkHYAC3BpBCM6vCjmsJAoBYidHDKT8JrESMIq6Ci8e/D7lgOkiAwBPaf\nvjFFHczbITz9Yj1UXCYHQJFVtCb8X+E77FQA//Gj13IdeVxIbE3hkzvs5wQhBLrV0czmJMnUdaUt\nI48wdU3QQhEGokHJBYuO3HwL8Zo8CHdZD1RsdQnQGVHJUNT4v5sm/DPRRHjnAFwJT0Hhe2Z7PSaU\nIJbwPFGEMpjHyaBxZmn38BF6tNzFZRwjjxZOhQKDSCQLE0dovCeNohY8ABRzgvtJQoPEN6zCgo2T\nrCeKcoqXQdJQsGhEOaIFPckEUaWSrZPSFskBcNJNi4E3tFCza4fzve/n/b3Uon1LiTWZQuj5TKCi\nGhbvhmu92AclOkW3FgI4hpFfzqBVkysUFD7Axgg0pPo4VCgorCePixooWNnPSdqQ5Lbw6iQnSKKu\nRI0gPPElWsjDQKwgvCo7uWUQF2qDQJcmQ9kmUpruEJ0ChWfOP7IJjcOyZcsYNmwYERERhIWF0bNn\nT+bOnfu3Xa+J8M46JLRq5CBjJ5ZYLuUKvuDTBiOrWMJZyUvEEEZ/HmEVO/268jJ2MJvVvMl/KaUS\nOzLtnWbWg0kgAC3fn2batI/6mOkxMYHWyMhMZwH9SCOXo8SUKGRvBv3FoBBCCAHkY6EZwTX+EYFO\nA2NKAJzwgfDsCuSrkWBLtd3rdAjPqnLL+otgxiDRlvBXVuPP54x524Wbw3U9PO8TrbZAFFtFheKz\n2LgaCwfPkF2TKzYgsxWFyX4s9R+gjFyq6O+mGMUZ+zhBe9zbt58gq06EZ6aSaioIU89pJhcjCShK\nDlIV5JZDQoQEOpdWHdkCGg99I3EtIPfw6eW4m3Ba+PzzzxkxYgQGg4Fp06bx+uuvM2jQILKyztAf\nlRs0Ed45AMdQ7jCAvZPJ7GInK3xwPI8nkj94me6kM5yneYOfkH0YAI+TxzheZSidCaaIbQhByU6k\n1ewThoHrSeNTDvjluuCMr7EzH5kw5nE3RiIwspAtZJKNxEFakox9mUEst1wCgcSSrkaWzoTnrIbV\nPBCOVbm5mAuez4S45UJ7MzwIokPg0GkQnkOYOjZEtA4YdLDp9JdQAfh0jShWcVVYcUaoGqyU26EC\nhe+xIwOvn4ZzhTe8iY02SFzqxzCxmlNokLjIC+EpKOwlyy3hVVBBEUU0d3oOS9Wa1PAawsvBSDwo\nOVSWKJRbICESISXmDNkCGg86asnthFVQUSONm5twWjh27BiTJ0/mvvvu47fffuPOO+/k9ttv5403\n3mDKlCl/23WbCO8cQG1KUwxcgxlKV7rxJq/6dHwEIfzGc9zPVTzEZwziMbZzyOP+e8liMI8TTACf\ncy996EsGx4kngmgX081JtOMQ5SykcbOuwyhEYsGMnQe4AAWF1/iJHqTzJ0tojZHq35OIaRuInBpF\nCPGkkEAxFlIIxqwSrfOwlRoIR30gvIWq68tate7mgqTTi8gcfXzJkcKvrksKbD3a+PM5sOM4rD4A\ndw72vl+QSniVdlEIZAK6IDELu6p8euaQgcxPyDyIzudiFYCVnKIH0YThuSM/h2KKqaCDG8I7pqqo\nNFfNhwGK1TXqSLXARUR48aDkcipb3FtCpCLsgJwhm0HrifBUk9iT+9xvb8Lfig8++ABZlnnuuecA\n3wT3zwSaCO9sQ6JOSlO8JPEgj7GCZaxnnU+n0aPjNSawkpfIp4zu3MflPMtsVnOUXEqoYAeHeYwv\n6Ma9BGJkFdNoTgLNaEYeZTRzU0bej3gGksDjbPWquuIJDwMafmU08SQRyCp2sYY9jKAFMjJ65QT7\nlmTRbISOQioxo6vpwWtGMI7aFOdhq2WQKN4obWD9rFgNfBxWOhe2EMLSjcXBPGgWVauu0iMV1h08\n/azY60ugeRSM9pLOhNp+OkWBdCQ6IREAmIEPz3CU9yI2UpC4zY9iFRmFZZxiuJvKS2fsUkmts4uE\nHsBRNX3uLK9XS3jJKNgxk4dRiQMKOZUrilKSY4Agl+vaq+tHfQ7EtQCdXpjBNuH/HMuXL6ddu3Ys\nXLiQZs2aERoaSnR0NM888wzK35hmbiK8sw6pZkixUdtcdi3X0ZkuPM1jflVJDqYzu3mfz7mfPEq5\nkddowUQiGUs37mUGC3mQa9jMm6Q5pZ2yKXJrxAnwJheSQQnvsdfvd/cx+ynBzLd8wjTm8gyz6EEr\n9rOSVqRRlWGh+Lid8JEVVGChBAthasNyCsE1n4hzvNBSLdk85KUnvtQqSvhB6E+CILxjhZDbSB3M\nzLy6Gpeje4gU6bbTqG7PyIbZm+GhEaDzw3RCUsloCwrD0fAaNuxnKMr7C5k52HkCHQY/orsdFFJA\nNcPx7on0F0cIJsCtrNhRjmDESIJT8VQRJzESRBDhmMkHZIxq3e4ptVI2MQIIdCW8KmER5A5anWhN\naIrwzgoyMzM5fvw4EyZM4L///S8//vgjl112GS+++CJPPfVUwydoJJoI76xDIkydnOdzuOZVDRpe\n4GXWs5Z5/OTXGXVouY2L2cJbZPMVv/Ec3/Eof/Ay+XzL/7iFYAL4g1VcyjCsWKnCQhDu0z89iOFu\n2vMYW9nmpV3CFVXYeJm/6ABAJXmUsJYMHmIUS1hEBDkoi1pjCJQIGKygEIyMQohqKZNIUE2nmd5p\n4G2jdqEf8JIF2aduuyCktsCltxo0bDzs/piGkJENHZzG1MFtISoYfnJvoOETHvlBqMDcPrDhfR3G\nt4EqMV6NFhlRFJQLrDwDxSsKCg9ipQ0SE/20ffqNE4Sgo18DFZp/cYTOpNWxwXLgMIdIo0WdbUWc\nIIpmSEiYOQWAURHP6skT5QQF6AgPAkJa1j2ZvcpzhAcQ3xLyj/r03ppwZlFRUUFJSQnPP/88U6dO\n5ZprruHreAFMkwAAIABJREFUr79m5MiRTJ8+/W9LcTYprZxtSGCUheP5UbYzyGnTJYzkMq7gYe5n\nOCMIaYRgdCJRJLqJ3BQUrmMU5ZSzkuXYsKP3MsC9Ri82kMe1rGAtl5NSo33iGTM5QD7V5LGUwXRi\nIVsZQXdK2YeMnfbEs3dhLEnDsmgR2BuFAwDoCSYMPUHosKlpXuduqkg9xBtgj5eeuv3qtkFRsFjl\n6GZRkBQBGw7BVX6K41ttQkrs7iG1r+m0cGUXQXgvXuO/hNdPf8LCnTB3klgTbAgOH8AQ9WtqjoQe\noWfaHYmnsTIMzWlprP6MzHJkFmCoM8nwBYs4wXCSMTRAlDs4zEA6ut12hEO0JL3Oa4LwRNVmtdqw\nblTENbLzITkuBElvg4CEuiezVYIuCI8IjYGcg17v9d+Ccvb6oZnk/7k9wWq1UlRUVOe12NhYAgMD\nqaysZOzYsXW2jRs3jiVLlrB9+3b69+9/xu+1ifDOAUgKRALH2FFv2xu8Q3cu4Gke5y3ePWPXXMwi\nytX+OitWDOgwe1kHCkDHzwxjAIsYzCIWcolX65dKbDzDVhSO04/mrGIXAAuZyq1cSTMC6VV6NZ+t\n/ZDu79gx0BIjxcQQRRky8WrnneOOXB/U7uHeveBOVEOMQSEiEEqtYuCWJOiXDn94cDj3hr2nRFtC\nR5ds3U294cv1sHwvXNzB9/PllsJd3wjCbGjtzoFCNb/rEM3Wqet4G5C5mlKeIYx1yPT3MzJzoASF\nyVi4Eg1X+nmOXKrYQB4z8T5IVVLNXk5wH6Pcbj/EQS5mRJ3XisgiEWFuKCI8CaMi2D87H5Ki9BDW\nqv6Mw2YCrRfCC4sRbufnAbYz/jS6aWuxejb84dIibPLyd7h+/XqGDBmCJEkoioIkSRw5coSkpCQO\nHjxIfHzdtHZcXByKolBcfPoKT+7QRHhnHRKSLAhvP3/VczxPowUv8DIPcR+juJohDDvtK8rITOUJ\nAEIJZQjD+IoMCinzelwzQljFpVzKUi5kAe/Qh1to5TaieIc9FGPhAor5jEdoxyTe507yOMRf7KA/\nEllLLNjtdpIuh7/YSzjNaUczcqgiUV2jsanrUq4P6oXhwvFbUdxHVvkWkA3wksZKsKzH0fxxWSeY\n+KUgnHg/hPI3HxHX6eJSWHhxB1G88r+FvhOezS6c2QE+utn3yNAhp5bolHkeiZb3sfAti4jiap5A\nwyo0flVWOnA3ViqB9z14IHrDAo4jIXElzb3ut4MjyMj0oFW9bXbsHOEwrairrVbIcTpxCQDVnMJI\nHJKShyJrOVGspXmcFaLcdOzbTLD8S9gpwYTp9beHxUFZnu9v8h+MbsyiawNemL5gwDigrtk7O7bt\nZXCP8W7379q1K8uW1W2vio+Pp0ePHhw8eJCTJ0+SlpZWs+3kyZNIkkRsrGcd1tNB0xreWYdUE+FV\nU0EO9cOPO5nMYIYygZvJ5fQl+lewjF1qk/p4biOIIGIJI8cH3cw0QtnElVxJc25jDQNZxBbqNrfl\nU8ULbAeOkMlXtCGZQmZzF5czk49JozlxKGybf4jUrrFEp8awkY1oCaMlCZyikgQ1wnPoiLjGG30i\nodAKmR5S/dvLwBokgySMUx24oougvgV/Nfw5OWPeDrioFYS5LAlJEjx5uRCmXlA/QK8HWYYJX8Da\ngyKVmeiH4PPJauH4HuzE/kPRUIoGCCGePaxBZm4j1FdmYuNb7MxAT7NGDAs/cZQBxBODhyIRFZs5\nQACGOv2eDhzjKFastKZWPduGhRJOEa0SqZlTGEkE5ShYAjiRbyc5tAzC3aRI7ZVQXgaL3oHclbB+\nPMhOn014HFQUg9VPJfJ/IEJpTzjd/5afUC9EGh4eztChQ+v8GI1GxowZg6IozJw5s2ZfRVH4/PPP\niYqKokcPH9MefqKJ8M42pNqUJsBR/qy3iwYNnzELBZmbGYP1NEWDf+R7mpOKBg0dVT+yNiRzkFPY\nfRgswzAwi0EsYQSlWOjNLzzGlppq0mfYjgUbXaimnDwkJKIIJZdc5vEjHYgk2hrDqkUriL6qjLZc\njgIUUk0rEjlFFYkq4TnKMFwf1H4R4rU/3HB0vhnWFMEr8RqmyXqCNLXRTmwoDGoLP9b/mD2ipBKW\n7oHrPfwNXt1NpCYnfuHZZBaEMsv4T+GbjTBrIgzw4IrgCQcrhUWQM9rXfDJhTCCcy9HwIFaK/KjY\nXIOdO7FyB1pubETSp4BqlpHN9W5IzBUb2UcPWtW4lTtjn7oW1NZpAC3iBAoKMWpfXjXZBJCEohxF\nLrFwsshOSqQMBjdC1Yqt9gHa9Swc/Ub8OBChrvmdJ1HeuYSrrrqKYcOGMW3aNCZNmsQHH3zAiBEj\nWL9+PS+//DJ6vf9ZBl/QRHhnHSKlaQSSaMMu1ZfOFYkkMou5bGQ993FXowWdD3GQb/iKi7kEGZkU\ntfm3Pc0wY+WQBy8+d7iEZLZxFf+jB6+wi6WcZDP5fMw+bOxmCpdhcGoo+JgZ6NARySnK/ijAVAJx\nV5ppTn/AgAkzrUgim8qalKbjXbom6ML0Yh3vdzdFo7/mieNGx0lY7FJNVaMDY3rB7xnCiscXzNsu\n1u88rbVJEnx6KwToYcArsNeNeMfmw9B3Gvy8Hb67A8Zc6Nu1nZFpglYutUKJiIKnVxjKQ3TiA/RU\nAndg8ekZ2YLMlVjoj4Z3G5HKBPiBoyjA9W766lyxgX30Ud0yXLGPvYQQQoqTrFgBoufDEeFVcwIj\nSSAfpfCEFYsdUqIAnZsiKtlW+wBVqc/1zqfF6wAR6vpRcQ7sa2pP+L/G/Pnzuffee/nll1+YMmUK\neXl5fPPNN0ycOPFvu2YT4Z0ljB07llGjRjF7wyYkdRbahUvYzi/YPRSP9GcAM/iEz/mUZ2lcr8ob\nvEIYYXRU10k60hmgZk1lI/794evQcK/aeJBLFbezjjCspGPiJgbX7GfFypd8RicSkKjm1DwNYSnQ\nsnsMRVSiU2PcVBIpxUISXooNVFyfAAtyocQl4F1VBN3CIM4IZhmMLk/5+D4QEQTTG1ZuQ5bh7WVw\ncXuhsOLAsSrhLO5AXBisewyMOuj0LIz9CF5bDFPnCxLs/ZIg7fWPw3U9G76uKxQFdpZDR5dCXQmJ\n9khkqCN7MzR8goEfkJmC1SvpzcfOEMx0QMO8RlRlOvA1B7mEZOLw0gIAnKCA4+TTz0MKbC97aEeH\nOmvCeRxGQqqJ8Co5QhAtQDlGltr/2CwaMLjpIVXs0PVSmPwmlB+Atg9A5XEozRDbw1XCW70E2reH\n5cv9et8As2fPZtSoUfWqDZvQMIKCgnjzzTc5efIkVVVV7Nix42//HJsI7yxhzpw5LFiwgHH9+iCp\nY1JXLqaCQg54UVcZz628xGu8yks8y1N+RXqb2MhXfE4ShXzEI6TQjCRVFSOKUDqSykq1mtIfFKl6\nKJ+TyS6KKGENT3B9HQPPOXzDSU4QwiHGyq+x++dYWl8bSUdpJPvYSzQt0aIhSK389IXwbk4W63Nz\nnCKqfDPMz4XhqialVQG9yzgebIS7hsAnaxpuQv9pm5Ajm+pUVCgrkLYSLttad9/m0bB9KrwyWohU\nv/ArfLgKwgPh+0mw5Sno5r2mwyOyqoW6TNew+ts6omG3Uw/eaLS8h563sXMdFrJdnpEsZP6Lhaux\nMBINv2MgrJFkl0kp68njFjdFKK5YhyCaizwQXgZ76MAFdV7L5SBRNEOPEStlWCkiUEkAijimEl5q\nDBDgpshBsUPXkRBnEdWabe8Vr1eojZjhar9gltqacEQVRvVD6WPcuHEsWLCAOXPm+HxME84emgjv\nHIAjwmvOBUSQyFZ+9rr/AzzES7zGK/yPSUzETMPmcNVUM4kJdKYLrQAT1Ot3upILmc9GzH6uEZZh\nJQANq8ihGaW0I4RbnKpJFRTe5nU604IUYpC2xJJ9MpfIa4vpyHD+ZCvBJNKaJApVbRXHGl6tsHZ9\nJAbA5bHwxhEoV4PiVw+LfR9Se5BtMmjdjOX3DYNAPdzrxYWp2AQPzYURF9Q1Zd2mkuR2N0WtAXp4\ncARsfgrK3oPct+DXe+H6nv4pqbhig7o22NNNZWl7JPahoKDwJwX8SQF3o+NnDKxApgXVDMPMTVi4\nCDMtMPMjdj5Ez/cYCD6Nvr1POEAkBq5uoDoTYDW7aUMy8W488GRk9pFBezeEF6+SaZUqSRaoNp0f\nz4Igg0RMKPVVVhRZaGlqjFC4BWL6QnCqID4H4en0EBIFFqcvsqQEtm+H1FSa8O9DE+H9f/buO0yq\nwv4a+OfObF96b9JRpAqIXey9a2KwRmM0dhNjXjWJaSYmMZaoscZeAnZj74qCDUE6AtKbdFjK1pn7\n/jF3l91ldlkQIv7c8zw8u9w+szP33G8751tHUBHhBUJ7O80ojytRu//NL1zlAY8a7gkH29e0WlKR\nCQnnOtMcs93rIZd4XDO9Kup35TjTQVZZ5xWjt+gVHOw1RZKO08Jc7/uzs2RUiu5e96opJmtliQOd\n767nTpHfknb7ZetqiHHGCjXUV2eLpPTAyiO88qPUpCFyY89Uu/4Z47htNnfM5fJOtMjauF86wmvR\nkNtP46nPuXfEputLyjjrAQoKuffsquvejGp/nWpvSNymeG8FPfNTJF8d3cSsxyJJu3vR7l5UKulE\ncXPkuFGmxlgktJPAXTLNl+NnWygMXR3FEh403bl6yKlDs8u7JjhI37TrZptlgw0VTVTl+NoMbaOu\nzQ2RzmZeNHQ+ZyGd2zUU5LUlq1q7a8nqFOllN6d4ObltUsXWBp1ZX0kLrnErSipNqN1+O0VFXHHF\nZl9PPb57qCe8bx2BIGqMDJU5xIXWWeFTT212z9Od5V2jFCgwWD9X+XmF+G45ZpjuWId70fMeNVxf\n/ezrDKut38RVupeOBunufm9s0StYGpHzLO/bWw8n26diXSh0vd/prZumShwQnuXDp0I9TqJLfIAP\njJSUtFKpXe1ksUI54hpHzS7lH9Caekd3acCj/VOE8POpnNGO31bKriXDTRteyjF0Dy49mAsf45dP\nproo4cvFHHFrqrHlifNT0l+VUd4os+R/1M0ehry9goObp1/fNXqFr1UaK/mowlIncIUMz8n2nmzD\nZblAhgbfgOjK8aRZVih2QTQUXhsWWWGaBQ6KasbVUT4m07sS4YXCKMJLhdcbzBaTIytMzaLM/ZpO\nLeM0SjMAWRSN7+S0pmgp2VGOO68T6+ds3K5Ry42Et2EDt97Kz35G22pmsvX4P4F6wvu2ERCLwpdQ\nmTZ66OMwb7qjTvW5QXb3qXGudZ0nPGJXXQ3Qy/GOtKfd9LOLGaZ72ZuOc0LFfiut0Nym5ms/d4LX\njDFG3SSX1igx0jH+pq3JprvZeVWaDt7wmi+M1U+uvg73n9G9LZ1D6x9l6O9on3lJINNSa/TQzhKF\n2sitOEZ5I0VtXgAntWHlYcw9iAf6kRPnRqXOV1LrUHcQcNtQbvohd7xLk8tpfxW7XpdyRnjrSo6q\nFpCUJfloNQMbUVBG0fYzHK/AtPUpoeyja5CobB29Rw01rFg2QA3suI0QCt1skqN1qFVxpxxvRypC\nB+ufdv04Y7XRRlsbiWaVRYqtr4jwCs2Rp4sgXEIiz+xlMV2aF9N88KYHLIq6MnPasGE+eVE2I79j\n6v/laNSSnOg2OGVKKrq7+urNvp56fDdRT3jfOoKKGl4Y1c6OcZXZPjehjpFWnjzXus5XFnjEMEMc\nKFee3e3hAY+aZEYVhZZSpdZZp2maWspQQ+ysvd97YpN16dDX8y72kVs94TQH2LtSQ0JCwm/8P3vZ\nS4lJdtHJyKdDDVvRbEiZVRb62FNEGqHdtbVEoZaVhpfLG+U3V1XMjKWMYctxtTL3S0gIa5VUjsVS\nNbep16eI77z9GH4BX93AkDRzcouKKUkyJGoK/F9EeS8sITdWc4RX3p9YKO5RQ9xsD6O3QOR7a/C2\nRSZY5Zc1aGJWx1vG2U1XLWsgxy+MsZuqaimLpax72lRKaaY6NBcIi+JmLwt0abaBFnttesDClMi0\neDZl61JER4r4qhBeCxSzfj1PPsmFF9ZHd/+HUU943zo2pjTLDWD7OEwPe3vO77eoCzNfvlMNdZu7\nPOk5d7rP6c6SI0dCmU88qUShkqgxJCuNO0KGuD85wytGe9lnmz3nI4boa6UChf7unCrrhnncFJMd\nZ4Asufok9zPyKbqfTI+MPezmGKF2WkbzWz20s1RRhY4mG33wtpZXEgGJOryF3Vpx2SH86cTUjFxN\nYs6zI8uhwdF9e/l2Jrww5LGFnNDaJvOE5cgSyJJqRDpLd8PMcqjXK7pnt/k1CV1vnEGaO8jmySEh\n4TVjHCX9IGMo9IUxBlRbv9g0cRkVn48NZsvVSZj80oo5RdYVJlIO8Q17bHrQwsVkNGRDykuvYpu8\nDqmaXiJ6bxo0Y91Kli1LNawcdVSd3oN6fDdRT3jfNgKVIryyaFHgh/5ips98rJY2wi3Ahx7xL0P9\n118qtDprItNT7e8IA13sbgVqNp37oy8sstyTXvQbp1YxkC1Q4DrXONkPzPe6PZ3qy1EFls2jw+lZ\nejlYP0dZoEhnu2kVua0vU6RVpQivnPCKtnLQPreatNg3RbnH3uCoR2LZdia8z9cwZR3ndKh9u2wb\n36PpkS7+43VMS28p3rXYh5b4gwF1cmb4zHQrFDhO+mn7+eZbZplBqqYmF5mqte4yZAqFNpglT1eS\nk83+MhXzd2uNjDQuIhsWpgxh10wiiNEoqjOWd3OWR4C5jSiq1LSypZYX9fhOoZ7wvnUEYhURXmHF\n0l4OMtjJhvmVwm2gc/6ef4NpRsqMEoUlNUQAgcDdLrbaOpe6O+02odBHlviLl3TWylVOrrL+r65X\noMAJBltmtiF+5F//uUirnfI03LdETwcY5wsrrRTXVK+oY3SpwioDzOXUV2jrkB9LpSC3FWZuoH0O\nHaIL296E9+/5tMvm0E3LrVWQKZX2DYVKoyTuDSYo2OrYOD2SQr/2ud21cEy1Lt+a8JLPtNDIHtJr\nqY2JuoIHqjqRv8AkHaKUaZFFEtbLDztgqVkRl3dpicw0w4mFi8hpy6pxNNx5oxFsbtuN6yGnAYXb\nwkegHt8F1BPet40gkLuBWEiBSVVWneEWG6wx3P/7RqdYZ6VZ0U2lvV1lyNBEE8trqfN00cZdLvaY\n9zyiqgLFasWGeNUhYqb6yMUOkF1Jlmq8ce5wq1+62ifutYcfyi5dYNQz9B6aq1GshV4ONllKwXmB\nggox4SXVUprlM2K1mJunxbFi+gs0iAcVxqnbAjM30C0vlV7Mi2+07NkeWFrMowu5pFP60YrKSEg5\nSgQCh2uvg3yrFLtrK1zqa8Mws3xmuZsMrrPv3vM+dqw9qggRVManPtbBTlUaVkKheSbYKeraXBe9\njgbJVMz/1Sxa5NGkYR6ZaeqChQtS9boVo2lWKXLMidRVyrs4cxtSWkyitraoevxfQT3hfetIRXiN\nkqxW1ZurhU5O8w/vuMd4r231GcZ4oaJ1o5OU82lLrSzZjG7mmQ5yjkNd5C6zKm37qgVGWuKPPhaz\n2K+d5b2IFEuUuMh5dtXLntpbapamnvPQaxcoWE7LMzfYww9M8Y7n3a2NDmb6Wl+drFdqg7IqTSvl\neivrtjCl+ZJs4+TIi7N+GxLerIjwoEXm9o3w/jU3RXQX1kGdpUzKHw9O1cUC6x2pg5tNVrYNnNBh\nrVLX+NxJOjmgDrU7mGyuLy1wsr1r3OZjo+xt3yrLVvvaOisqIrx1porJkhOmnH2/mkuPdtmpubp0\nacgNC8lrn+rWzK80RF4+r1eyOvUzJ0qHlmwfh+167FioJ7xvHQFJGidZnaZJ5BAX6u9odzvTcvO2\n+OhJSS/7u+ZSyvDtI93LLrqabeZm9/+XCzXX0J8q1RIP0saxKDJVRvTk3SmK0H7rGpNMdKf7vOTP\n+thDUwmfPEznAWT2K9TPUXo7VFJL3fWXlNRTh4p5vtaVCK9c8mpLkk5XK/VQVA9tmEFRktJtlNac\nVbiR8FpmbT/CW17CP+ekyK5ZVu3bJoTWUzGUMCT6W/fV1HJF3rd4m1zTb42xUrFbaqjFpcOTPtRY\nvsOl8atDoUJfGGOfasax86O5vI7RGMM6X8q3s1g4j2QD0xexS+f89D54pDozMxtFPyvV+GKZKbWV\n0khdJTsSnS7Z2qR5Pb5LqCe8bxsBkjRJssFMJdXSjIHARR6To6FbnbDF9bwxXrDYdB2iCK1hNHu3\ni11NrpZCTYd8OS51rCd9aJV1XjVfO0961atixogptIe9dNXNEx51h1vd4B8KTbHcHB18Zu1KPniF\nfmcRl6m3g8VlGGO0NtFQcQ/tLY0qdZVTmuXVmYI6RnjLhW5U5idKJYUaRQIga7dBxqqgNEVEXaLL\na5W9/QjvhqhGdW232reDcjnQxtHDQXt5msiSI26g5q4zdqvdNcox0tfuMMX1Bupcad6vNoRCT/rQ\nifaqkvKujNE+Vap0E8KbZ4IcDSo6NNf5UgM9Sc4RFuWZviRm5+ar048kQKIoVbcr20C8mpNCZiNK\no3ctJ1pXXB/hfR9QT3jfOmIVER6sTiPr1UAzv/SSpWa5zclK6tjCUabU036rvWYVMVNT7cFge5pt\nlkXSeNlUw752VaTEQsvliOtglUCho+2in/4GGOhVL7vQec5xnotc6g236aSZJvhgGIkEbYayqyFy\nNDDFZCutlKOVhnK11qQiwquc0swRyKEO1rQpvF8pfbdQqElEeCu/mYUgUgPg0C26R7bOYvF26Pyf\nui6Vzvx/XTdKpNWGcnHoyN1NIDBIc59a5noDfWKZj22959sqxc4wwj5auUIdbd0x2nTTLXSaITVu\nM9IHGmusd7V5vnnG66BPRUdxOeGF4WzL55dYtS5p5zbJlEZmWoSUrk3paWZXc1LIalyJ8MpTmvUR\n3vcB9YT3bSMISJAXkh22tlx6z5qd9HWlF003yi11jPRec4vFpjnfM/L9WBs95EZP5wc6GIzw7maP\ns0Sq3tFWMzOMt8B7coz3Z9dZbrl73eVUJzracW53t9GeNc8EQxwhUzMfP9jOoGNY34a9nBad9z2Z\nMm0Q11tHgcBSRQI2cc1uRp0NTT+qJEI2S6hNNNfw9TYgpndXkB9PWQ9Bn4ZMXJtSX9lWCEMunETn\nXK7avL0cmB29N10qfZ0P1NYHvjbbBDtr5GqfS25FlJeQdIYR1ir1hAPFt+CW8bB3tNfcoXarcZsR\n3rOfIZs0tMz2uS7RXF6pAsUWydeT5ATTxqY+jz3bZ9AkvXKLeC4Fkb5sfueq6zIapsiQSinNLW2L\nqsd3EfWE920jSA2eB2jjWIs8XaM2yK4OcJVXzfSp6+1nsek1Hnaitzzl145ype4OsthcHSvdeFpq\nqb/dvOn1zV7iOLPkyzHdQpe6R6a5elrofbdoHClnXOIKT3hKXNwLrtfPkXoaYsbElcaPXWS3czMI\n6OsIpFJZuxlomkV2rTSS0Ey2jGofyxYCy+t4s/5M6JBo/6XYKUo/zt0GD/BvL08prGRFl7dHEzYk\nmLzumx+7HP+aywcrubtPSiKtLvhKKIcqbSR7aqlAqUs96kcaGGmJ4WZt0bWEQr/wmTcsNNxBOkkz\n71YDChUbZoSzHVxjd+YGG3ziIwdWUgFKLS+w2DRdojGFtVHqvUHYCstMn0osoHvXjsRqepMC1s5I\n/dqg2pNDZkPKIsKrT2l+r1BPeDsCIn5r63hF5m/SrVkZvRzod0YpUei3BnjBn6tEe6HQJ57yTyfp\n63BD/Q0p5+hWulY51tGO87pXKpRX0l9a0kPelivLwX6juZiG5virh/zQXzzvFVPM9Hc3y5DhE8Mt\nMMkJrjXXfUbc30bjloHWR3fW3V6aR4LVU0zSW1+TzdMvqtMsVVQlnVmOVgJf14HwQqHpkhU+E/0F\nGmak0oKzvuEDfHGCkas4tHmqSSQUGtSYjGCjdc83xYQCfvUll3XikM3M3VXZT1IfQRXng3J9y1fc\n5I+OcKKOfuFTS+qYDg+FrjPWHaa4094Oj1LhdcVTRlptvZ84rMZtRvpAiRKHOrzK8tlSRoPdouaY\nAl8IZGqYTIXpU2fQtRnZDdJ44JGK3oqXpRpWspql9DQrI12EV7p9VGnqsWOhnvB2BERZuGbhANna\nWug/tW6+kz7+7AsHu9ALrnepNv7uSHc63TX6+JcfGeBYl3taTDxyI1igebVB4VOcarXVXvNKjeea\nbJ6FVliuwGAdrfaiv/mHw5yjje466axLRKRlSjzttwY5QZ6ZlhV+4c1HVzvoJ6G5WXPsJeVmXKrU\nNF9qqYsiJfpGbtbLaiC8DgIL6kB4nwstk3p+aI4eEQF0y+Orb0h4n6xOdXvu1zyUocjtEvLi9G+Y\nEpP+plhZwsljUxZAN27efKAKxkvqV+2r3EG+PBmmWSMQuCdq+z/d+4pqleKmRMKlPvYX4/3DYBfW\nwQ2hOu70siMM1F27Grd525va62CXasef6TM5GmhrF7DGOA31FiSnkMwxeTa92yBrUy1YpNzNIVFI\nk76bji1kNNgY4WVHLbflKc2i2m256vHdRj3h7QiI7j+BpJ38xHwPK1W7FXeOfGe42c1mOsF1MmVb\nZaEuBrnaGy4xTE6UgipRKKFUvqrF+976GGSwh92f9hylytzied20dZA+FnnJPvb2Uz9Lu/3b7rbc\nXCf7tRluMPm53RSsLjL4vKYSygyO1Fg+9bFixRpFBNw7IrwVNRBeV4FZdSC8pyS0kiK7gWIVg9E9\n81PyXN8ETy1OKZ4UNUqF4/+M/mj7NUulILfAJHsTFCVSZLeqlOcG1T2VCeuFJgjtUe2rHBPooZHp\nUu33reV60kE+ttSx3rKshkhvopX294p/m+5e+7iqBv+62vCxqUab4VLH1rrdm15zmCM2GWCf6VNd\n7SEWpUILjNPYAJJTKWlm0oKYPj0b0KQG4eo1KWd1pWvTOylk5FMWpTAzslIK4g1y6d6dBx7Yotda\nj+8HIUWKAAAgAElEQVQW6glvR0BFn0Wpzi6RVGxeJAW2OTTXwfGucaX/+q0RLvSovg6PmkBes8xb\nSiKdkuyKMe6N+Inzvel189LM+L1itIe9o69Omptqg1Ue8kRahY11VnreHx3op1b6l2Jfe/2euN0O\nypHZo612empuJ5O87Tn/0UILpbI1kqe11DDwCsWapRG07i6wDGtqIb1Q6FkJJ4qbIbRrpWvs25DJ\na1PeeFuDwgRPLErpWb4XCZ+uFEoIHdsqVR/8cCvTmiVJho7js9W8tDtdN/0T1YpPJSWwb5qv8s4a\nmRY9OCUlDdHaaw433ip9veBvxhttmclWec4cQ71ngP8qUOpDR9fJ5y4dbvK8Hto5uppUWGXM9JVp\nvnRUNVIMhb7ysW72jK67zFoTNdRfGE6zagGLViX1bbuOVgemP/iaySn9zJKVNE8ztpDRYCPhBQFZ\nuZQWcd11/Pe/jB27NS+7Ht8B1BPejoCKDFOJHG21d4ZZbpXYYkGtqvjM0T51eHRLJEjz5z7VafLl\ne0TVJ9tipd70BZhnlpe96N8e0UmnTY4Bw/w/SQn76Gehx2RMuMbHI8c44uIicyypaFbpYpCJptrP\nAaZZqKcOFQS6UrGmaQhv5+i6p9ZCeHOEZgsdI26hUMdKhNe/EYVJpm9lX8LzX7OmjJ90YHp0DQVY\nIWXZs0t+ym19S7GujBPH8NoynhnIPjVk6GrD65JaoVeah5BuGpkV1XePcJ1z/dMB2prgREfp4A/G\n2cNL+njeKd413kq32dN4J9pTDeZ7m8FU8z3vY79ycsVIQTq87EXZsh3s0CrLl5hpjSV2ieby1psm\nqVijsB/JaSZ+lppT7dMxoOV+mxwXrJ5ILJrnaJqmi7NyhEeK8Io3cPrp5Ofzzjub7vMdR5icKkyO\n3U7/tq183fZExrd9AfVQJcKDHq6z0BNmuVUPv9mqQ4aV2vOzosgu3fxeAw380FCPesiv/a6io+5G\nz7jbq/7sJDe4yK9c6xjHpT3XJO8Y4QFn+qs5rtHeme676xUt22bpdUJTb1piTz8EeZqYbKLLXelZ\n8yrqd7BKieZpCK+3QFyqVrVXDTfRByXkY28x69CsEgHs3jjVBTtqFT3r3miIVFR40+wUsXXLr/qF\naSzVLfiLLlw0iXEF7JZGxzgdZm/glLHMWM/Lgzishv6LzeG/Eo4Tr9KwUo728iy2wYcmeTvSLb3a\nD/TS0UP2d4e9fGmNEgkdNdBB/ibH2FLc4CntNHN2tc7L6njJCw51uAbVOj+/NEIgZueo5rhGKtpq\nFDbBShPHkZUR2KVn39Q8XTqsGk+z3Vk2kjBNx3NGXqq+V46s3NQcXkYGWVnfLD+9gyJZfKbkdipP\nJr9D/T71hLcjoHwoOkx9cvJ11dmlvvI3HZwtt46q9JUxww0Vv5enMotqmN0720886N9G+dAQB4KX\nowH4m9xtL3v6nT+l3Xe91f7tXLs6UAtjrZSr/YofeOzxE514JWsyO2gs0N3eNiiwxHKrrNJHf9d7\n2FD7I6XCv0qxpjadtM4R2FVgbA3jGiVCdynzU/EKmq9MeE0y2bMJLy/lvC18K5//mi8KGBFlxsqv\nLhfZ0TnOac/dcxn6BaP3TcmZ1YQw5KEFXDmVZpmM2pt+dSTJ6pgiabrQTTW0/beVp0TSnV5DMZJu\n91/3uAw0kGn3NK73W4sp5vmPEW53QY3KKvC1r31slLvSpO2/NEJH/eVFXaarfCLfLjKSU4SYMJle\nrUMZjbtusi8oXUfhQtofGxFeGiHVeF5KgaUc5YT3fxix7MfFcnbd/IZbdeypOHO7HHtbo57wviUM\nHTpURkaG07p0MbTiu7vxUWlnv7PIkya60GAv11mZHgqMN93vQFs/EJehkZbW1CAWPdge8uX73OgK\nwrvemX7lBgst9IjPZKT5qIRCD7tYoQInO91MFxiQ/KfH7j9JSUng8ItC462wm2Ostcwl2mjphzJk\naG9nGxRXjCQUKBGStoZHKnL7sAbCe0XSSvxEhpnRNl2rvV8/aMNvprOmlMY134uroDDBr6enRhHK\nHc7LRbU6VTp+dpzhA9jjI4Z8wtMD6F4tWEqEvLKU679Kedyd1Z7be6XIeGvxuITGOLyGqLdhRDr7\nG+hJI8QUmbcdndCv9YhOWjo/Sl/XhOc8LS7uOCdWWR4KTTXCYKdULFvlY03tTfJzSpoaN2uV/juh\nQQ2aa7Hoc1pu/5PbZtNtMnJTEV4Ypmp4mTmUbV2YMmzYMMOGDVNWtmO7LQSxXQWxGnRHv/Gxt8th\ntwu+Q5f6fwvDhw/34osvOm2//VJiiCFhOK1ifaYm+rrbUq/WuYGlHDP8WZ6u4vI0jtQqmupghflp\nt4+J6WFnX1UaZJ/jU9M9a1dfe9DpFXXAyvjAwz42zNlus9hftXSUlutHuvu+0IGnhFq0GWyJOQY6\nzlvuBG972z72Myu68ZbbAq2KZgGbpInw4GhxU4WmViO9UqGrlTpQTF+BaUKBVKNLZfyobapB5Nna\nDSKq4I8zmFPI7b03Liu3K6pOqD0bMHIvVpfS8wOOGc1vpnHddE7/gvbvcMKY1ND6+3vyaP9vRnZl\nQo8oc4Z4RaRZHXlR5Le//jpoISnHa8ZIbiP3hMp413gv+tQNzpZVS3QHTxnmMEdoVq1reJnZVphn\n1+ihq8x6a03Q1N7C5Gila1qauCgwaJcYDWqI8GLZKYHo1RNS83aZTTbdJp6LkGQ0f5qZs9UR3mmn\nnebFF180fPjwrdq/Hv9b1BPeDoCgCGtiJEZVWd7G8Tq50GSXWx0N424OZdZZ4mVt/UDCBvnRLFMr\nXS2pxQE7KVnRZDDSB650mV7ydMRiX1LtpjrbWI+4xAHO08J0RRbqlfy5V157zsxZHPkLVuksU47e\nDpWjoRALrHWAg0w2T3ONKjo0V1cQXvoI70gxLXBXtRmyeyV8JXS7TIHA9KhhJbfa9XbI5eiW3DAz\nNUS+Oby4hBtn8Yfu7BqVmYqEnoiIv1MakunXiMlDuG3XFLk+tpCHFzC3iLM7MHqfVArzgOabP//m\n8IKkRTi/liRNeV0vLu7lKOKHT0yraZetQolSl7nXvnr5US26mTDLTJ/62A8jibnKmOANcRkVhLfG\nGKGEJuGeJCeY9MlKJWWhQZ2TNbskBEHK8279XBr3Tm8dVG4Gm4iKWpnZ9YPn3xPUE96OgCTBirgw\nOWqTVb3cqpHdjHasDTbfCjjD9aBJpFKRK2Wm1l4vC01Ju0+qFXyGHnYx0QQ/cLxOmhooS4AD/bRK\nx91y89zqBB30cYorzPQP3Vwjv/Aet96etNs+9B3c0Jxgqd4OkSPf4S5zsn8qUmaAQaaar5edKlK1\nqzcT4eUIXCzDgxKmRxHKSAm/VOpn4vpG1zdN0i41RDx/7xlFbHNrfw8/WMnp4zixNVdXypy9KVmh\nW7lTTVFVnEs689aezDuY+QenSO7GnuyeJtjYGoRCtygzRMxutXyFS6L3KUtMf13lRg8Tj9q2XYh/\n94xpFrjThZtNvT/mYY00cny1dCZM8Loe9pUXeWSs8om4fA3DfKz1+SfLxWOB3XZpTfNaLIrK052t\n9k+/PlZPeN9X1BPejoCEVI97OEMYVlW1j8sx2IviGvrYgdbVop+5wRyz3Kq7X1fYweRFXZDt9bLa\nYmut2GS/8cbZYIPmmjvFcdpqrY/lDnEB6O/oim1XWOCvDhGX4eeeN8NVcrTXLXm2z7943oejOOrn\ntHaB6Ubp7yiQJUeJVGgz0O4VhFeONRHhNa4lHXalDB0F9lfsRMUOVmJPMbdV2meGsEJhpTp6N+Ty\nTvx6Gs+lSW2GIQ/O54jP2KsJj/VPdWGW4w2JiiRcly2oqW5rvCvpY0lXb6YEvyGKhnPEIzG0UFzM\n/d70VR1cMuqC8Wb5syf9ysn6qyHNGKFMmcc87IeGyqs2E1qq2GTv6Fep/rfSiKh+9xH4fAK9O2bJ\n63xkzYWjdbNZOiL1e01jC/Eoi1DetphRT3jfF9QT3o6AJEE5DyVGbrI6Wyt7e19cnlH2siSNFFiZ\ndT53spywtU5Fr1iXfE+mZjIjkil3Op9j06Haf7tbW+085H7FiuyDVtproq24TF2jAeKFpviTfZUp\nca13FRphmTf18S+xsnvdfBsdu7DnSSwPOkgoM8iJ5hrnTIH/etpuBmimuanm61NpJKEgIrxGNUR4\npPze3pftWHFr8EcZXpcVxaGpyGeOcJP6WmXc2JPT2qVGAi6exMiVTFrL4wvZ7xPOm8jp7Xh5d/Kr\n8cnbkg6OvjLVU6b/K6Q0LsvsIXDUZr6+yyrZLQUCB+hjT7toqZEbPPWNr2WDIqf5h13t5PdO3+z2\nb3jNQgv8JHqQqoxpPlRsfcUDUlKpFT7QwsEk3qewmdHT2LNLouaGFZj1yMbfW9WQXo1FhJeISC4j\ni7LtaF1fjx0G9YS3IyBBUJQk6ClMPJ92k1zt7eMjTe1rtGONdoIlXrbONIs9Z6TB1pthUNlQGclP\nrQ9fkW/nihRTGz3kaWJmNWHqpKThnhAT85GR9pEnZp1rvW2+SZrrqFCBl/3D7wyWq6HfGaWJhib7\nhbZ+qFU4yKyvbvPMc/zwypiW8b1M9KFu9tRMe6+5VYj3vOdwR/nKYiXKKiTFoECpLDHZNbTYl6O1\nwAOyvCfbtTLlVSKetViP9rWQUUaMB/tyc0+GL2b/T+j7IWeNT1UpXx/MA/02lfdaKDRd6JDNXN/2\nxjNRdPeXqGZZG5Yo1FiWnCgSPEAf48xUarJHvWu+ZVt9HaHQz9xpjqX+41dyanlQKce97jTQ7gZG\njVSVMcZ/NbdThcP5GmMkrNPcQcLkCOvmhCYtYo+uZZv621XGik9SP1vuS1YNOeTyofTyAbLM7K3u\n0qzHdwv1hLcjIIEgIYifIUw8JwzTCz9maWqwFw3whPVmGO047+tpjFNkaGI/n2gcpAwxi4OEnErC\nvTExnQ00N1JPqbz8Cr+00AK9NNfUetd4Wzs97e5ES810iTae9mv7+bE/+FRzHUxyuVCp3m4Xlt7s\nlttKNGnKXucktQ9+aor39HOkBSYrU+JQ1ymw1hAHGh/Z1PSLOjRhndKKNvqtRbmjQuvNEEFGjCu7\nsvQQxu6b6q5ccggj9+aIGgbAy+uGPaNjf7Mr3TqsF7pKqWPFHFoH4v1Kga6V3MkH6maDEi94VEO5\n3yjK+5unPe49D7pcr6hOXBummuItb7jUFZusC4XGeMEgJ1aQ+Arvi2ugUdiFcJZPPyiQDNlnZyky\nS4dkGcs2rYNvgoqUZjQAm5FF2TZwCK7HDo/6ObwdAeXi0bEfCV0nTDwryPhx2k0DgfZO185p1vtK\nkYXydJIXzbOF8R5iuYuVOkpetaHijvob68VNjnmdPwpNMdNLfuUj7aUGVAc41nU+VGBpRbQGX3vB\nIsPs5jHZyRKLFtzuwUf42bVx+fm5Enpbb5VeDnKDgxRYZqDfCwQG29NfPaeDFprbOHG9Xpn8b/hx\nXFJHwitHRowBNYh1VMc4ocxKx07fS7p98Ttllgn9sw7RFHxpjV0qvceDdAfzrXSdoX7lIZc6tkqk\nXRc84E2/9qjfO81QB9Rpnzvcqo22TnHqJutm+dxKC+weiYvDcu9qZj+x5DhJfPRZQrNGmXr2aFuz\n6euqL1KWQEuQXXNH8sYIL0pj1qc0vzeoj/B2BERt8kGyFbFDhWV3CDcjbxQINNBDCwduJLvEx5JF\nvREoCwplVJNtaqWrFZFI9BSTveE18JZ/meFZP3FXhct0OXaxn8FOriC7YktNcIHWjtfeGcLSP7rt\nzlKZmRx0eb52wamm+ECWXN3sqSBKm400ym4GaKSRSeZWqd+RarDI3QrC+9xyT0YRY3m7T6vtUF97\nWsKRYhUTbJt6OmxfjJRwqzJ/kKFbHb62SaEJVuljo0BnC4111trnZrjEsXpo5ww3KVT3dN6/vOSn\nbneRo+tUt4P55nvcIy5xhaw0ZP2pJzXSskI/s8x6K32gpSOEibcoa2DUpMA+O8fFdjox/agBlEYO\nIyFqi4BjUXxeQXiZJOojvO8D6glvR0D5aFmyWCzzapJjSG7eibw6kqW/I/xKWHa/lCtc1S99llwJ\npVEzSR8nOtr7HvOYn+untW6bSZOFQhNdLJTUz30kJ1m+9CF338ePfxbIaFqgk4uM86reDpEhyzXe\ncrpbfWKsI6Juz8nm6V0tDVYkIXcL62Oh0GAvGup9X9tgmVAcW6HBXCsWCH0s6QfiFeJsDf+HTSur\nhM5Qah8xV9bxoWCaNdYosaeqOdo97Gy0GbJlesrVplnoXP9UlkZYoDJKlLrCvS5zr184wZ0uqrP6\nzy1u1FBDP3PxJuuSEj42zJ5+JB69tuXekVSslWOEideUzeejaaEhPYpo2q/mEzWNZvPaYKf0uq+o\nRHjRFy9eT3jfF9QT3o6AcsJLFBI7hNjekqW/F6YTvq0BYXImybeRK0y8VjGWUBlJCYHAahu9bP7u\nHH0N0NMSE9PckCpjoSd87Vl93SUrbCVZ8ku33dlQMhk69qq2GhsoT28zjNLPkW51gn/7iRb2tspK\nhzvKekXmWLoJ4RVLbrZhpTpmVtIGfd1Cy4Wa2zhwva3wsoQMFJlnffS+bqEG9VYjKXS2EgVCT8iU\nUcfXNsLX4gKDqxHe7roba6ZQqJ8unnCVZ4xyun9YI72dxAgTDfYLd3nVv1zoFufXmezmmutB97nc\nlRpWqieWY4r3rbLIPpWixaVelae7/GQu4RRjR6yzoZT9d0FeLWKo2c02jiu0O7rm7YLooaG8hhfP\nqK/hfU9QT3g7Asq/a2WFgiAQy/wbydHCxEN1PkSYHBP9ViiI7S8uV1JVefSZPrWTvppr6U/+qL9c\nQxzqPHeKoUGkypIO68ww0UXaO0s7p5J8zYplb7njrg3OO5+y1ot1crH5Jkko00JnX3jZCvN94D35\n8u1usMnmCoUVkmLlKJOUuYUfxy6VaGcfraxG0+0QeT0pobV1fuZ9E6TszWuS89rWuE6ZVyT9R5ZO\nW/D+vGie/bXWuFoKsbPW1iuywhrnO0dbPOlqrxujpwv9wRPeMMZbvnCrF+zjKge6VpZMn7nFJZsx\nda2OP7lOU01dkqZZBUZ6VGvddZdS5w6FlnpFK0cLkx+Cdz6kUTa7d82kZQ3D5FC0lJ2iGmHrg2ve\nrpzwyoWl45kk6yC/U4/vPOqbVnYElNfLE6kn7CA+RBA/U1hytTB+tCBou9lDhImNHXdBxmni3q3i\np1dkvS+8ZE8/stAU89xnd00crJ2P7WUfIzWSPl1Uao0xTpGtjb7uFIaFkiW/dMstTSSTa/zg/3VS\nGBRo7zQjDRcIfO65iv3f87a97StTponmCgRVhs5JaUPGt5BELvSR/bTSXr6dNbZaiTr2oNQZkyS9\nLynDOPCCeej5P+nSvF+ZG5S5UYajtiD6XavUOxb5u03dvttEUm7DPedxj3jfu2aYZ3c9/MWTbvK8\n9dGDUo4sB+rreb9xgr22SMAcxvjcMI+7zV2b2ACRctr4zNNO8NuKY6/xuSILtHEiiccoaeGdiasc\n0D9PRtfjUsLPNeGDk1j+EUeNJ7OWGLxcYDqsFOHVpzS/F6gnvB0B5YRXsrpiUZB1i7DoHcnis8Sy\n3xAENd/wwuR8yuf3YvsJYv3E5UtU8r8b4QHrrAS/t6dGGthXoTVR40pcvow0KaekUmOcosh8+xgp\nHjYQlpxp2dLZ7rw/dOEFocK2K+3kfHF5suQJhUZ4EORo6mMf+Y0/gAlm21l7eWnaPrbEhWy2te6P\nVGdCPwGFVJnL2xZ4QJlWKLHEajSKqG57O6YNU+YCpS4Wd9UWfk2fNUeJpJPTdF82i/7GJdErKI0+\nfJ20cp/L3O1i86JGo/aab1YIuiYkJFzuIn30da6fpt1mlMeVKTHEORXLFntWlhaahvsIE6faMDtu\n1LSkm05bS8eUi0J5Q1dQuXmlrDBFdrBuZu21vvLvUnnJIBavj/C+J6hPae4IWI1kBss/qVgUBC3F\nsh4n+Z6w9Fe17h6W3Y08YgcStaHH5UlENZkypYb7u1fFPe0ufextv/Br7ZMdlFhiX59pbLdNjys0\n0UVW+MCg8Fn5ZeMki/cSJv7jb9dkisUSzvrVTkqDtTq6EHSsFCW200WOfgoVOjpKhU0wp4rpazky\nBBJboOJ/RyVd0HJZshLhNh0XWC50v4RzZfhBlII9PopMi7cj5Q1T5iylzhJ3Rx0GzKvj36Y5RFsd\n00RVDaUipJ31do7z3Ktq2jwuros2umiz1WQH97rLWJ+7zd01Wku9426DnKBpNC8aCi32rNZOFEt+\nhuU+fGmJ0rLQYX3RNPUZDctukixsJUxWEkVd/NrG3xdW+j0dKggvIrlYRj3hfU9QT3g7AhIobMqS\nd6ssDuIHCzJvE5bdKln6x7SjCmFyqrDsZkHGJYKgFVJD64FMYVQcLFXka0utV2KVUFeztdBW35KU\nYkVRGtugpBLjnG2+B/QLb9e0+E/CkjORY9HUq9zz7Dq/uDxhXZtcLRyqgR6gjZ2118u++lpsjhUy\ndbCTnnaNCHTuJvU7UgLHxXUkvFkK3GGKNtHNuzDq+knYth/oW5QJkWeG5YoknatXRCLprXS/Oe5Q\n5gylzhD3oMwtbsD53HIfWepi6c0+ywWkE7jb/Z7wqN+4+ptedhXMMtN1rnGBi+xtn7TbTPKWhaY4\nzKUVy9YYa4OvtHWKMPEKicZeGUnnJvTskE9eqtEpLLsLy4WJYRsPuHZm6kWtxvoFtV/gJoQXJ7Fj\n+9nVY9ugnvB2BCSwrlEqJZOo2mgSy7xUkPkXYekfhCXnCsONt9owXCZZfAZBZ0Hm74XJLwSx1FBu\nUqFYRAi5GrrU35yMEzSWo0C/4CUlOf8AedVEf0us9KkjLfaUAeHj2hU/TnKcWPb74gvO9Ptf3qRR\n40znXdbWqmC6jpVSVnEZ/m6yZo6RrYEvLXSIwwQCS6y2QkHaCK+BTGvVrY7yB2MlFWsmYR+ttImE\niLMFWzBRVjsWCt2hzPkCN/rMC+YZ4WvtIgJatI0jvDKhK5S4XKkrZXhI5hbXNOHvJuiukRNqUD8p\nHz/IEJeU9LThbnGjDZXqvd8EpUr92Olaa+Mvbqxxu1fdrJMBFVZAsMAjsrXRPDwkJbG3It8r47Mc\nu3euoNs5xDKEyVmEc6I9KqXFOxyfmsJpgu7pRRs2Inpfyx8gY7H6CO97gnrC2xGQxJq8FNkt+2iT\n1bHMXwuyHhEmnpEs7CZZcoVkyW8liwYRLhTLHo4ywhlErsalVsuw0XZ7iOMcoaXdNLafTzUxSHHk\ngF4ajSkklZrvYSP0VmCcPcI3tS39lORHYtmvCIq7m/zyrzzyIb+9ptTa5n1kaqZ1NauXr33lFf+w\nu7N9aaqDHQYmS6Wg0il7NJJZkZqsDbOt9YRZkr40RYH9tK5Yl4sN24iIrlQqH30ttl4Spe4zVdvo\nZjl7GxLeQqFDlbhLwl0y3bQVkR18YYVnzHG1vuI1fLVLomg4Q8xCCyuWn+OMrbv4aviNq40z1iOG\npW1UgTm+MNGbjvbLinRtUolFhmnvDLFwIuF0k99aZO7SEsf2K6RHSnA6LHtURetBsFFFRqNKHcYd\nNrUeqoIKp4X6Gt63iTFjxjj22GO1bdtWw4YN9e/f3x133CGZ3PYGxeWoJ7wdAQmsjZHblvnPpd0k\nlnG2WM4kQcZQYeIVYdl9gtg+YjkfC2IDUmSHINhVQrECX8iwi3VWKrTAZ+GRdgrz7Be+Ly9KKbZ0\nmGb2N9pxRtnPW1ob71xN7WuIiZonVgvL7hBk3iGI78tH5/vVw2t0ac955za2IDZee2eKV6ucfWK4\nLLlidhUTc6jDwURz5cjSTZtNXl97+ZYqUrqZtOavfa65bBQhxymV0qOtBbbA0LxGvCThKQn/kGmI\ncrfWTPtpI0dgL4FXNjOoXReEQk8q00+RGZLekeWirewjC4Wu8pmeGvtxlF5Oh2VSaiQtNdZOO001\n1VxzL3nBSB9u1bnL8aiH3OFWf3eLwWr2q3veH7XW3V5+VLFsiZeVWK6DHwvLniPZwH/fokFepgMH\ndahoQgkT/4lq1QRB+40HHXkqu/yC05IbtTJrRLUIL4jZ/m1I9aiMsWPH2nfffc2bN88111zjlltu\n0a1bN1dccYVf/vKX2+289YS3IyCBkkK6nsucxyhLPwAcxDqLZd0unvuVeN5SsezhglgqHRkmI+3A\nWA8Fxkoq8XfX+blORhosVGBw0Vw5JX+qOF5cnj28oqsr5eqkiysMMdHunpETtpQsvowlgWBmKcs/\n89Y7r3ltPH/9K6sbnagkWKqj8ze5zk89ZaDjveMde9pbs8hFbqI5etlJPE2LfUf5kkILaxh+hhEW\nG262vxnsSCcZrIU9Kg1WtxdYKJT8BjevxUI/UeJ4MWeK20m+llHq7OyISH4o7g1Ja77BeWZJOlGJ\noUodLGa8HEO+gRPDs+Z412I32aPWecavo2i+jabi4gYYJNsKjfEHv97q87/pdZe4wHkucFGlulx1\nzDbWGP91ousqlFVgnns1tbeGYR9h4jlBQQfPjs5w7B5NZLeJZvTCrwlnCGI7p3YKorRt8UrmPc20\nWymrQ3W1ujRZEGM7RhX12BT33HOPIAh8+OGHrrjiCueff77nnnvOkCFDPPzww9vtvPWEtyOgDMUb\n6HY+pWuZ858tP0Y4G40FQTOz3CLHTg50tu7I0d6+pefIDQnDmVV2y9DQLv5koCfs7Pca6ZM6XOmf\nsEBsUihY/LqyL+9y5ePsO4CTjsm2IL5QE3tVbF+OhaaYb6IBTvKutxxZyTx2Ug0NK9Azmg8bH41O\nVMcyhc4wwv5aO0knb1nkJ3ausk0PgVLM3Eoi2iB0vGJZ+LcsgUBnT+mvqaRzNYi6FofKEOImW97o\n8LXQz5XYVbExkp6R5WnZWnyDcYqVil3mEyfo6Bi1KJHgSwvkydY6er976WM1emKUkd7bCjf0N0aU\nFvYAACAASURBVL3uR05yuCP90501dpWGQsNcpZ2eVZRV1plhmTd1ciHJzwinmvH2XOPnlPnhbstp\nm0qJh2XDkUkQpcSDzqmf62dvPEnhki248ko1vC1QNarHN8fatWvl5ORo3Ljq5GybNm3k5tYya/kN\nUU94OwLKULSWBp1TxfcpN26UPdocln9K4deEiwnaW+8riz0j1066+NDAMMvA4u6yyh5HllhGesWL\nygjLXhCW/UWQ+RfBsQn6Xe/+Bx81aQE330pR9nmWBe+kje4+8aQ8ja2VZ511jnQMUr57k83bRDS6\nHB3lay/PKEs3WVcq6UfeVyJpuIO8b7GE0BHaV9lucPRx/mQLxhvKUSx0ihJThV6SrZXAl1b7WqG3\nLa4SNbYTuFaGPyvzZB1ILxQaK+kCJTor8pCE38owTY5TvqG/Xih0oVGKJdxVQ0dkZXxmukG6V0TZ\nBzvUBtzoffsZ4jIXWie9PVU6DPcfP3C8QxzmCU+nHUEoxxdeNsV7TvOPKtHdXHfK1FxbpwrLHqCs\nmSdfKtQgi6MG5tBpaOq1lt0viJ9EuJygoyCIboxlG+dN5dTg75QWwcafmxFrr8e2xYEHHqigoMAF\nF1zgyy+/NG/ePPfcc48XXnjBtddeu93OW094OwJKUbg2lVbp+6fU4OzM+ze/X7KMN/di1I+E4RyC\n9taaDFb5SH6ygcFFxXISb2G5IONyQcbJtR4yTIyQLDmN+A8EmdcQxKwcfaPfPB06+3h2H5hrQU6e\nDA21q1SDIUVqozxhkJO85S3ttNc3msubY6n1imokvEDgIG09aZb1lbo1SyWd4wMjLfGMg7WT5xUL\n7KyRLtUG5ZsJ7C7wxBbW19YIHa/Ee5JekGWgmKTQT210n19caYgffifD6eKGKjVUibckrBYKhUqF\nZkv6r4RfKtVTsUGKvSrh9zLMleM6mfK3wZD8v03ztDnusY92UbdqTQiFRpliz0oScvs7QEzMJNPd\n6T5LLXGGHyrdTMdsoUJXuty5zvAjp/uPZ+TU4iFRotDjfq63Q+wWPQSllq8yzwM6uVAsTAgTw5mf\n7T8fcGI/clsMJLNR1J05WRAfKkyOEMT23njwWCWSzazUyFLjG1GN3IJAfQ3vf4vzzz/fJZdc4pFH\nHtGrVy+dO3d2+eWXu/3221122WXb7bz1hPctYejQoY4//njDRo5MKa2ESTasSRXnu5zFhOtS2oC1\nYU1q+DpcO53kZxKxfootsbPr7ZX4p0FFEzV2tFj280gIYrXoECJMzpUsPoXY3mJZj6WULJa85/e3\nPqc0wQ03E2ZfaX7whPbOqNIFCl/6wFIzHeBcr3nZUY6pSG99Gc367VpLyu33BliqyLXGSArNttYR\n3vC0OR43xBBtlEp63twqzSqVcaUMb0gaU8cob4qkfRT7VNKrsiqMVZ831yhL7STfrppoX41MYgKP\nyXS/TKMlHa5EU0UyFMlSpKtiJyrxpDL7iXlVltlyXCtTk22kBvOJpS71iYv0dGq10ZJ0GGeWRVY6\nqpIFVAMN7KKnCcbZ2S6Ge8573nGyY61Mk15OSnreswbp40H3udnt7vNQWtufynje9VZa4MfVUp5z\n3S1UqovLhGWPEa43+pXFpi3l7EPR++cgTLyILGJ7kvyc+CEbD16yhuxWdDy1UgdmbajcrCJFeFsZ\n4Q0bNszxxx9v6NChW7X/9xWxWEy3bt0ceeT/Z++u46yusz+OP793ku5GpEQBlZCwFVRsjBVX7Fh1\nFdtVWXvVn+3a3bqK3ahIqaCIEtLdXUPDxJ37+f1xLzD0YOzi7rx84J37jc837p0533M+57zPUV5/\n/XXvvPOO448/3mWXXeaTTzbv2flbUSIt9h/irbfeUr58ed59lzcfSy5cuZiylWj1AHM/56dLOfDd\nrff/mvpK8rX6roTBZqTNN8FD9o/fr0L+P8hJFw0fInR6jag2aUdu9XxCYrZE3nFE5cSy3hVF2eQM\nNeyV4z3VO+Heq6hZq7SFGU3lmbfFcOa3XlJdIzE1TDHZvR5av26cWUrLsssmTWmL0lh5d2ntb37y\nhimWylNXGV850qGSeqL9zZMjb73yyaacKs3t4v4qXx9ZKmzFuKwWPJzSqmwg8oMsexR5/rvbCIep\nZaxljrPLFuelYiIXSHe+NKMFYyQsk2wOW1ukmUhd0Q4rpRSHaVY6UV9tVfWI9sXa52M/KKeUAzXb\naPleWhhpBJIhzk986XSnaKahrs7SQktBMM5YPX1iqikO18lHPtdkG4LjG851qJ7ud5Lb1C6yfdwq\n0zxsF+clu2/EH2flrl7tNVPdKmk6tq1N3ZMgWZcX60gYjoQo1iE5SO4ivj6K6gdz4NvFug8b5uuK\nfC6/0OB17dpV165drVixYrP5qJ2K5eNsZXr8txl7KxQUFMjJ2fjA1apVc//993v88cdNmjRJ6dLJ\nh8lTTjlFx44ddevWzXHHHScW++39sRKDtzOwrlp60Uxq7UZ2ddo+zcAuTHiEPa7efJ8F/ZNZaQj1\n81Bdrdh1yhdWVzr/etJOEFtYQ1QrWyJMItZeFG05XTskxkrkHYF0sawvRFEVVkyQ6N3RZa8UarZL\n5PKbI1HG1eZE7yuvlQpabTTGSosN9o6T/cNnPlFKKR0dvn79eLPtoa7YdoIK19rLvqr7wmwNlXOq\nBuuTRUh6Xg2U1Wp9ucDGpIn0kKmTPM3lek6mw8VkihQKRgjeU+h5cctwpXT/kL5ReHGkHMMs8Td7\n6mueo9Xd5jlHInuJ7PVvCpjMt0YnvZSV7kOHySzGPGBcoRf1dqqDNpMMq6W2YYYIgom+c4gOhhrj\nUQ/51Eee8QTYVX0dHOYFr21VQWVTcq32lDPU08Lxum+0brrHxa3Q2N9J9COMtXZ4OW8OTnNZpyBt\nt/OJpQmJ6SS+FWW+JhR+j5pEjZKDLE+G8K2YUKzzSZIyeOu9wWjrD5X/LXx/JvN+/TA9vqfHoI2X\nLd+GZsH333+vQ4cOoigSQhBFkWnTpnn66ad17NhxvbFbR+fOnV177bWmT5+uYcPtRy12lBKDtzOw\nEmWrMKove6dCNfVOoenfGP63ZA+weqds2D4Eht9AFBNCQqgwXZT+Z6ULnlUq/kxSZizjcVHr1C9x\nXme2klwRCntL5HUlqi02vo3Iy8l5xB/O89w3WQaNX6HfS+kysrMUZJxjgeaaemCzcb5JaTIe6gIP\n6exwRypdJAw4wRx7bMdwrOMANRxQpKB8HQnBR2Y4XcNtek2txQyR5UwFjpUvW7Ip7BLJ6HFFnJkS\nZd5Sy50bDdVYebkK1VTKwVs4l/8UC611hF7WihvgWNUVL6PtE4PNtli3IvNn66iggpVWGOwdTzjN\nRV52sHPd60H3elBcXBBk7KC2ZhC86jI5ZrvTUOlF9s+XY4r77eJCpdRTWHARBbt68/0ZVq6JXHhI\noF6X5DiFXyJdlNZZIv4saftuEI5elco6zt6BzyhsavD+B9j/X7TYstzcjtD1KLpusmzYiHH26Xjm\nFrdv2bKlPn36rH8fRZEaNWpYsGCBwsLN59oLCpJzx/H47yP1VmLwdhb2PIzhX3DG3RuWtbiXNXP5\n7jRyH2W3S5NPoosGkvMT1Q5g2XBiq4T4s4TSomn1RQ1vEGVuMAhR1FCIvyYkfhbFUgK8iUlCwW1J\nPcLY4WLjGovGPZPcYcVEC6YN0/1fkfM7cnCXNFH65eZHXwsK1bHxfEWhuD6e1N6frVHoRz94NtUt\nYR0TzHGYFr/qFg2zxHxrnbCVxJei1BczQKZhgoESlgkqi7QQaS+21X52gy3U0yxvOsQthjnRrltV\nLfl3M9MqnfSyXL7+jt4saWdrJCTc410HaqaVRputz5ItV67lkin9zztfI+3VSelxbivzclt85XED\nvOJir24UyoRJ7pAQt5ubhcRwEr2Y3MjTX5d17L6l1W9Smwp7gFD4NrGDsYbE96LMIt+tWCpqUbAD\n6qbrNDTXG7z/gYSVCk2p3Pp3GnsbqypU0LHj5r0JmzRponfv3pYuXapSpUogkUh4++23lStXTqNG\nm39PfwtKDN7Owl5H8MM7LJlDlVS6fSyN/V4jqypDLkvW59U8jElPUaU9aaWo2ZaMrqLCkaKvPhCt\nmsac8ziyyFNVxk1C4QCJ3P2I7U9YRhiGmqLMF0XzKojGFfEg53zq8hery4gWuef/ahNbLsq4xlx/\nVlUHWZt4PMN8YrEZjnSFr1Ltho4sUn+3whoLLbNbShW/uMQVOstDTtDeaQ7Ry2zlZNhP9WLtH4ns\nI7JPMQ1WQnCVwfZWyX6qm2Kl+3fwnH8vRspxjK9kihngWI0VIxsxxbsGGmKS/u7e4voC+bJkaeFo\nr7tSELzuSjfo9YvnH4f51L9c7RjXOsjZG61baazpnrS7O2WrqbDgEhJ1DPh4ip+ncO8pq9ntLhAS\nU0h8Lcp8XYh/hJgorXNyoBUTGXRWsn618UXFP7n1Bm9d5/PEf39Icyeje/fuzjrrLO3atXPRRRcp\nVaqUN9980/Dhw/3f//2ftLRfV66zNXaOR9cSkh5eLMaQTzdeHkujzaMc+gWxzGS5QpX2dPiClZOE\napFYQYbY4NmilfOZjCV9Wb2hdUoUVRPLHiDKuI2ooijWUpT5mlipqWJp54qGXk2dzutTuj/+JMu7\nPy3w2HkJVfZaLkrvJi8qtMTXam8W0OALD2viQA3so6dPtdFO9SJGabK5oLHtN7JdR6FCZ/unt3zr\nPI+CL81xmFo73Bm9uLxqkh8s8ph9fZ0SKTtoJwhnfmC6A3ymulK+c9wOGbtV1uruVcdq69CtNPhd\nY40s2WraTXWNVFDTaL1Nsrmua3EYo5/HnaqNE53mvo3WBQmjXKqU+hq4WkgMpfAj0YwaHvyitD0b\nV9epZWYy41LKu1NGlHayUPgBsQ6iKKncY04qm69gGVXaFP8EE6lw2TqDJ/A7JBaVsHVOP/10X375\npV122cWDDz7ouuuus2bNGs8884zu3btvf4BfSImHt7NQtjKtj+PLJ+h08eZPnLWPSv4rSoNzxH6+\nTxg7jsK1hI5k9iOjJqU2ni+LotLJurqiFKzgp4tZM4v936BJN0t7veqSLz5wTKsMp3ZrRDRDlHGN\nBT4UiSU7URdhih9NNNBVPrTWWn30coObNtpmtiWgXjE9M3hZHz18Ay5whJUK/GChx+xb7DF2hPnW\nuNaPztTIIWr5pz72V121Ys6R/R4USLjREA8a7RT1veygjRJ4ikN3r1homT7u2uo2M0xXJzW/2sZJ\nBnhFJXX09IDd7L9DXt5wn3nMKfZwqEu8IbZJQs1Mz8nxjX31EQuZEvndSTQwpucwPYfw6mVpokbn\nk5mMk4X4e6K0Y5PF5ol+osynNwyWlSoyL7WDXvi6Tuex1L0MIfmwWcK/lSOOOMIRRxzxbz1myae8\nM3H8Ncwaw4jexdu+2fVk1xCVqc9xEznlbepn0vzapGe4LdbO5+vjmPMx7V+k+kEU1Hb17W9ak5fr\n2YsT1J4tSr9UFNUwz/uq6CBTFYXWmuB2eRb63EOqa6S14/XTx2qrHb+JUZxjiXRpqm8r2F+EXPn+\n7hVRKo/6CK18a7644PDfIcRYKOFC30kX84j2VivQy5wtdgz/dzHBcgfp6RFjPKSdd3TYYWP3paGe\n1NO9ztVoG971aCM1T0nEtdfFSovt4wRDfWyID4t1rCD4yhP+6QR7O9o1Ppa5SSH6GtONdZ16LlTV\nYSS+JNFHbGp1d31SRv26VXRtu5I9rkmOmZhCGC5K65JqclxOlJaSJCsqBVZ2B+d71qkYrStYD4n/\nrQSW/2FKPuWdiWYH03Af3rujeHVBaaVJ78auD1KqBnkLSeRTbb9t7xdfTf8jWTmRQ3rS6Hzw6YAf\nvTqDR06ndsdmRAWijL9JyJdjoOqOsdIYPzvfLs61VI4fvecY14pJ84kPNbG7PTZpPrrYclWU225J\nwjoGGW+xlcopp7QMB9vTEItVlb1D4bzi8jc/+dxsLztIFdlGyJGn0GH/gfm7Agn3G6mljyyRZ6Bj\nXWPPHZ5Lm2q+0z3gaPtsMTNzHQssMMZo+6bKDBpqK0tp1TTQynFe9lcLTNnq/rDUPI84yWsu18nl\nrvSejE06aCTkG+bPMlXV1ANCyJPIv5J4SyM/H+yd71a76YRIRoOTKdcYhMJ3UIa0w4X4S6L0s0VR\nquXQhMcZ/Bc6T2P3HVTmWG/wUsXyicLtPyCW8F9BicHbmYgizryX8d8x6N0tb7N4MD9cyOj+PHYW\nr9zAQ6eyetmGjLXCbbRBLcxl0Nksn8CaY5OZnlj00RMuuvbvjtm/vrOPShdqzxSlXySKalphhIRc\nFbTxs7PN85aFPveVp5VRyUHOERfX0yc6O2mzQy63RsWt9EbblAFGO8n/gdWyXO1klZT1syVaqvyb\nF3E/a7xHjPGY9uuFl0daKk2kaUpg+d/FQPO18bG/G6qbpkY4UfsdCAOvY5lVjvMPVZTzhuu2+aDR\ny+ci0foko0ikhsYWmuIiLyutonscZrLBm+272lKfus8NmppkkKt86CyPbBbGhLH+ZoWf7eNdGSoI\n8X8SpokNW+umDytqVK+6c9otpvmGcHgo/JS0I4X421gkSv9rckWikImPEeJMfmaH749Equ9iUYNX\n4uH9T1Ayh/efpkqqgPrnnznkEPY+nH2O47XraH0s2RvLd5nfj/Ef81lKa7P1sQzrybSfadIyOS+x\nZDA1N08FtnIKA/7EinF8n8+8lzj6DmHsN/76wAviuau9cPpC9u1E1F+Ufj0oSPVQG62blUaBRYb6\nxtuOcrUspQ30rSWWbBbOhDXylNqO9BQ870uXelprjYwwzX72cL0/gXGWO2oTsehfy6smudQgl2mq\nWxH1kUmWa6icrF8p7FxcxlrqZsN8aIa2qvrJ8VpvQ5FmW6y0xrH+Yb6lfvCQStt50Hjbm/a1v2pF\n2ixV08Ai05VTVXe9Pe5Ut9vXHg7RUBsJCbONNsG3Egp1cJE/uUO5rYgBzPCM6R63p6dU1EZIjBcK\n7hAt30//3gP0/JG3/1Yt6d2lUudDmE/iB1HGU0L8TlFaV1Es9RktHsSqqcmkk6UjdvwmrTd4qRBx\niYf3P0PJY81/mkMPpUUL7tjQp855j7BiIW/ftvn2303ny6Vc+QaPT6LarlSswe77k1mRRhcx7gHy\nlmzYJwRmvM2XbZLhzCN/5Iax3NqHr57x8tVn+OD7EZ6+qrGauzYQqo4UpZ0tiiUTGarqqJL95Zmn\nvmT4aIYKChU4QjfwqY/VVFMbbTc75WwZcrfTzXy4Kbp5xnkOXy8w/ZIrlU8Vry+wVq3tiCPvCM8Y\n71wDnKeRYT70iI/Xr8uRv74H3u/JeMuc6Rt7+tBwS7zuYD/8BsZutBl6uUOT7TwgDDNUP31cnPoM\n11FRbctSshxV7eoWA13kFdnKGupjI30hTYZT3eNRs5zrya0au/k+MUo39V2hvkuEEJfIP4dQS+G3\ng131TlX7tWqgS8tFScGDFCH+PtIIEwnzkxnG61iXnRniNDx3h++Twtzkayz1GScKSSt59v9foORT\n/k8Ti3HLLZxyCqNGsdde1GxEl9vpcSOd/kqt5JyGHz6g93NMKs9Bp7N0Pn2f58TuZKQ8qD1vYsab\nSeO2y5+S8xUL+rF8dFK5ot1zScNYCVmlTex+pMt/5oJ9SjmlyQiJ9pfg2Y0yOiMx7fUSFBrpQmXs\nqZd3HOBMFdUUBJ/52LE6bzF8Vka2FbauP/SFIf7iMc3Vc5R9/Mndnne5BqnO6HEJy+Sr+hsYoQIJ\ntxjqPqNcqZnWVnvRWN8b66+Oli3Tcvk7nCBSXBKCvuZ6wjifmqm20p6wnws0+VUe5XxLdXaHCebo\n5Q5tN+kVuCXucYdGGjvFqRstr6CG5UV6x6dJd7BzHOycHTqnhb40zGlqOlFz/wSh4HYSQ8RGt/ZY\nr8VGT1liyD25osYXULH5+n1D4QeIC/EnROnXb2j6ClNTheeV2ya/4ztKIhXyX9cZvcTD+5+hxMPb\nGWiRUiBZUsQrO+YKsssy4I3k++kjeeqCpB7eyBXJZXPGES/g4CKyPqVq0WkwVfdl9sfM/4pKLdjv\nfSbVIid1jB8/kve3NroOKlS3NI/8lbDrqULZr0g7WRRrvNEppitrrVnmec9y+1hqjqMkNT7HGmOq\nKVsMZ8LeGpgrxxyLN1oeBPd5zzFu10w9PVznb150uJYu0Gn9dmkipaVbsR0vcXtMt9JBenrIaPdr\n62Ht1S7imWSljFxTFQy3RPgNFTjmWuNeI+zufZ30MtVKzznAFF1cqumvMnYjTNXeNWZbor+77WuP\n7e7zqY995hO3unOzDvQF8mSmyjFmetG39l4f1i4uc7zlJ51Vc7hW3hBJE+LvJ/ssLj/R9EFD3PJW\nvktP2VPrBhEt7tlo/yj9jOQPsfaijFs3Hnxd9OKANzduDVRc1nl4aev66RWQ9vs84JSwc1Fi8HYm\nimZmZpWi/ckMfDP5C/nPU4mV5cci2y9KFZdXrbfxOOV344AedJ7EceOSOnofv0/Px7j5QL5+lUdO\nd92kckatiPQ4N0PZcjGhxUGEKWKb1ushzyJDnKC0xgb5SUvH2iWVyv6pj5RV1qG2MG+IjvaWLdNj\nPk11jAt+MtEp7tHdK27T1Vfu9Jp+5srxlEs2Sk6JRGorbc42vMRtUSDhKePs7SMLrDXQsa6zl/d9\n5wg3u9vZ5nh1/TE7qm2RXN9voRntjjDTKk8b53BfqOst//Cz9qr5xjFGOtFf7P6r5wl7+Mb+rlNZ\nOYM9pLXG290nR44rXeoox+iySU9DWC1HaZUEhSa63UqjjXC+RLGa3SZMdo/huqrtNPt4X5psITFe\nIv88UXSC0P8rFz5BlcxC9xw5ir3v2Kxxayz9fLFSS6VlD0h27ljHhCdoeR9HDV2fzbnDFKZ6G64z\neIk46SUG73+BkpDmzkDNmpQvT8+edOiwYXml2snsy7duYcEUhldKakBnp/4ArCtOL9zOH6JxA5OG\n89Tbeed2njjXR5p4fNBET+5H633jtHxISO+BDqLYPpsNMcFNCuSo6GFznOdcT61f19OnOjlali13\nY6iivO5Ocbs3vaaffHE5Vqqjiqf8xSVONNtiD/vYdU622xbmnlqr4hMz3aW17GJ+beMSepjqDj+b\nbIULNPGQdvKs0c8Ic1IF8WvkbeTpHaiGlirrrI+XHeT4rbQHKkoQzLLaDxb61gL9zDPOMukih6jp\neQf6k11V3Mo92lGWW+1yz3hdf6c7xHMuV6YYId+4uLP8WZ5cj3lmi9c1x1jVNRAUyrdE+bCn+T4w\n2Z2aRP/Y6thrTDPCBZbobzc3a+IfIjEhMVMirxPqiL6f59EvcvWdwldXJZTb9WB2v2KL40XRFrJk\n0zIpXP3rdCHjqQenoh7eL/EUS/jDUfIp7wyULcuVV/Lgg1x3HTVSclZjvk6GNT++nwadee9TunXj\nxReT6+um5jzmjKPx5skiQqDHzXxwN/VbcsL17H24STPnOufkc5xch0surESF2kLDlhRcIZb5UZHd\n84WC2yxMb2hm7HnNPeF1L2hsX3s4GCy00FA/udil27zE25zuQM18bZRM6fbT1EQDXeMk9X3mHZOU\nke06W56TuVVL+/jE9YZ4VPttGqAF1nrDFI8ba7pVOqvnPR20UEVcoaPdZZDxXnet1d5bH8pcR5Y0\n/Rztz/o7QR+7Ke9wtTVRQSWZYiKrxS2Sa5ZVJlphtKWWpPo8NVZeBzX9QytHqP2bGbl1fGWYv3jc\nMqu86mpn6Visco0g+JsrfaO/z3xlly0048212hSDdfWAmEzVHCm/8BsNA5PS71LePmrqvNE+BZaZ\n5lGT3SdLNfvqq2rK2w9hiUTekUgTG7W7YUP66P5O5Opjazmi3RLaPrtjJQE7opm5NeKrkxmeaal5\n73g+6dvPIi7hj0+JwdtZuPpqHn2U++/noVTj1IXTWDqPXfbkzZ84/XQyMymTKlXYpVkyFDPs880N\n3orFPP0XfvqYM+6h899IS7emXiunnHqJmpmFXr6koShrKu0+ExJPETUm7fgNYyQGK4jfa1RGGdUd\nJ8/eJrrMNT5Z/we2r96C4HBbby67jsO0dJhUtwbBzc4Dj3nDl1Z4Rrf1WZmb0lwl92vjSoP1M9eF\ndtdcRWVlWC1uhlVGyDHQAsMskSGmi/o+dJiWRby3jwwyyHh1VHG7N52pwxaPV0mWXo7U3zxvmepb\n871ikrWSwsMxkaqy1FUmZeBqaaWKdqqq+RtmkxZlhoWu85J3DXSYFl50pV2LWaeXvN/dPespT3pu\nq+HnQd5UqEArx4GqOhib9pG2a1kVMST9BFUdobIDBHHLDbdYXyTUd6UmbpGe6uKQ9OyOJiwRm3Kc\nnJ9fdsoT1ey1Rx33dJlI68fXd0T4txJfTXqRzyieXxLS/B+hxODtLFSqxFVX8cADXH990su76Bme\nvoCqRzDvUS6+mCOPTG4HWaU59mrev4s9O9LsoKRX99PHPHcJhQVc/yHtkskkIQQXX3yxyRPH+6Fj\nXPndllL3LKFqU2HtB6KMW0RFn7ZjB5pa6loFnrSXJz3hErU11bKIcsc3+mluTzVTGZXF4QqXmGyS\ny13tYheYqYx91XKRo7a53+WaaaKC50xwvZ/k2yAvFUl6Vvuq5krNHGOXjbI68xU4x8M+85M0MfMt\ndZ9zt3m8SKSj2joWUVzJVyghyJL2u3Qy3xLLrXaf9zzsY5WU9ZprnKlDsY9fqNA1Lvecp93vYedv\noVs9xOX7xN3a6aK6ZPPNLLWFiEK0zk+YF7vD7Fh/MzwLympqd3eq40zZRb4DITE65dllii3oJj78\ndl0eLm/l2oSvrwqyau1Pk25bOIutXUTehqzKX0t8FelFWisV5JL+23rhJeykhBL+rSxfvjwgLF++\nfPOVOTkhlC8fws03J9/PmBFCu7YhlCoVwplnhnDrrSGULRvC4sUb9inID+Hmg0LokhZCDa6/WgAA\nIABJREFU9/YhXFI/hD8J4f+ODSFn7kbDP/DAAwHhzf0yQnhtnxDeKh3C6tmhMP/hEF+dERKJeRuf\naxgReobMMD7cHKaGoeGMIHwX3thomyZh13BtuLJY174kLAnfhP4hOwjZQXg/vBueCJ8G4djQP4wo\n1hjryA3xMDksD6NCTpgSloc1oWCr2xaGwnBReDxkhBPCjeHVIBwbdg8Xh9yQv0PH/HezLKwK94R3\nQpXQNZQKJ4ebw2thZVizg2MsC13CiaF0iIWXwvPb3PbTcF84M8TCzDBq/bIlYUD4NAhL1wjx1UI8\n98TtHjNR8G6Ir64U4mv2DokJt4XEG2nh/NZCRiR8c9ceIfTICGHJ0OJfxMqpIbwhhHEPF3+fbTH0\nmhA+3X3D+we7hHD7YcmfK1UK4b77dnjIbf5e/wcZOnRoQBg6dAfu9054jN+KEg9vZ6JSpWSJwsyZ\nyfd33sm06dxwA5demnzda68N6iwkQzG3fEXfF5nyE43b0f4kmh+6UceFPn366N69uxs6NtW16SLS\nR9L8VkrXEXLfJ+1oUVRTKPyasJz0zsa4UmkNNXazp52jmgbaF6nZWmihmWbY34HbvbQJxttPaxe4\neP2ymmq7yvPO1nGrrWu2RpY0jYqhq/mdsbq41zw5Hk55NjExH7hxs7m7nYXZFnvMJ571pVz5zneE\nm/1ZnR0sSB9umLP82SILvetjx6TClFtikkHedZNjXLs++xbyU4k9mRmPk385hR9JxN8RSz91szFC\nWCiR343C90g7SWxiQ9Gof/h7z+ZeGjbGa0dzcIPx7P9e8ZNO1sxl0jM0OPeXZ2VuSsEKMooImRfk\nkvmf64pRwr+PEoO3szJtGq+8wr33cu212942M5ujU+GhRIIPPqDBmvVzfePHj9elSxdHtNzNXRXG\n0bE90Uz2uFoIi0gMJHasROFAIS85pzUr7TFLoq+11dN8Uw32jnM9La3IV2aUpKxTi9S83La4xPly\nrfWcJ73rY1VVM0yOWRa5dgv6m7+WXPk+MsjFntRCA2+73mxLnOkhf3W0Zuptf5B/I0EwwBjP+MK7\nBioj2yWOcYXjN8ogLQ5xcY97xG1utKe9fOJLDbfQ6Xwdi830iJM00l6XlI7pOlb4WYZKstP+LLgS\nCSH/PCGqK0pLCk6HsFCIvyEU3Ik0UcabonHjRKPvdMfT3DtwjH9ee5Kz9vkk2ay13g4Ui//0V+Z8\nSvObqbN1g71DFCzf2ODl51K6eJ08SvhjU2Lw/kOcdtpp0tPTde3aVdeuRZqq1qrFDz8kvbvKlbnk\nkg3ratfm/fdZtoyKWxE2/ugjunTh73/n7rvl5OQ4/vjj1ale1Vv1pkg/4TRy32Lfl0kvQyLlTSZ6\nCnnJLMO1EWPdYFeXqOEYz7tARbUdvMmc12yzQH0Ntnqdo4w0yURjjZUuOZdWUUXt7etMFzndIfbe\nxv6/hGEm6+oBE81xmBY+dJNcBY5zhy4O8JjfINPvN2Kyud7wtdf0M9V8jdXyoPOd7wjlfkHyyw8G\nucqlRhrhcle7w91bLReB+Sa51xEylXalD6QX8XoLrTXTC6o7RiyqpjBqIYo1E8JEibwDiHZHIWEy\n0kRp54hyzxd9c4WQM8yNPWq5Z+A8/9eKq9t+Se0TaPNE8S9mxYSksSOpD/tbkb9sE4O3NinP9wvo\n0aOHHj16iMe3X6NYwk7Afzqm+r/GdmP9P/0UQjL1JISHHtp43bx5IWRnh3DbbVved/78EPbeO4TM\nzBDKlg1rR4wIhxxySKhcuXKYcl6TEK5qFkLvjiF81jyEwvj63RLz3w2FI4T48vQQj/cJ3ycODl+F\n2qEgrAiLw8xwdsgIn4b7Nzvcv8KrITsIeSFvs3V5IS/8JZyzfr7u8nBJyA5Cs9AwJEIiDA9TgnBs\n+DIMKe6t2y4FIR4eCO+HjHBCaBYuCi+Gt9avuzQ8FSqEU8OisOw3O94vZXpYEB4M74e24aogHBvK\nhVPCeeHh8HUYGRIh8YvGnB1mh/PDWSE7CPuF1uHHMHi7+0wOP4ZLQrVwXdgjLA6zNls/KdwbPgvp\nYWWYGEIIIb62TSjMuzgk8peGwrxXQ2HeFaEw76pQWPBaSCQWhTCvTwjvVAgFr1QMf9kjCggPdqge\nwpu1Q/ioQQj5K4t/QYlECN+cmJy7e0MIi3/c8maFU0Ki4MOQSOzA3NkXbUL44cIN769rHcIzFyd/\nLpnD2ymP8VtRorSys9GmDccfn8zS/OtfN15Xs2bS43vkkaSXV5R7702uHzmSt96SCMF5LVoY/N13\nPrn8OA3XzuCcy1jYjxZ3J7UDQ4I1s0WjXhPNQHrcDK9bEg3QyuvSlfO5h5RSzuEusSmlUh7IMENB\ngQIf+1Anh6qmnLe96WkvaKqZaaYYaYKvfCsS+cyPyimloxa/+pbNk+Nmr6vrHNd72eWOM8XzujnN\nMstMt8DTPtfdKaoWswntb8laeXob7jov2Us39Z3vJq+rq6q33WCBf3nJVQ6x1w5nfs400zWusKfG\nvvKFJzxrgB+11W6r+wRBb0+5y8FqaOwWA1RJdTxfR47vTHS7+ropa7fUjiuRIfruTLGe3cUWHyUW\n/5vYjHzRl0fS73BL4w0dc8Myr0wIXjm+gWuvyKZUGgd/QEbxWkTJXcTCb5mdqglt9BeqbF5nmoj3\nkMhtJJF/klBwf/HGhvwcMitteJ+3ZvOuJCX8V1IS0twZeestli+n9BZCWtdfz9NPJ43e7bcnl+Xk\ncPfdnHNOsmShZUs3H3qot3r29O6l5zlg/KvJovOF/6Lq/tRJ1dqNuFmY9IBEx+asZE1hzITYu3Z1\nqao6WmOFb73sCJfJ3kKbmWMcp7U2OjpAM83NMdsyy7TTRidHqqeB3noZZ6zLXW23IoLGkUgpWTJ+\nxVdwvFn+6SOv6SdDunMd5gKdtNRQZ40stFAFFfQzSBCc47BffKwdYa08P5roW6P1N8r3xslToJbK\nOmnlFqc52j6/KGS5jjFGe8SD3vKG8sq7zt91c6UK2zHoS8z2gguM8pXDXep0D67XzVzHUj/60bEq\namcP94JQ+CNhgih2N3NTYcmvj9mwU24tP886wJ9emmHpspheByZ0PLsSBVM55mfKFLN7/Np5fNaM\nmodRpT2rp2+ms5k8n5+E/PNEaacKiVGE6cUbH/IWbyxllrsqKfBQwn89JQZvZ6R06S0bOzZ4eQ8+\nyKBByWXz5xOPJ4vWy5XzULt27vnpJw/Wru2U0iOpWJP92/DdXRzyWTJ7c81cxtxPlUJKjRBKMSq7\nnsyIpqk/cv08o0Du+hZAm5ItWx/fetubhhmitjr21tCbztDMYd7TR65cN7vdOc7faN9qKlhomdkW\nq1vM7MO4Qj+bqr+RehmmrxFqquQ2XV3imI2azB5SpKB8ojmg+u/g3a2VZ4yZRppmuKmGmGSoKQrE\nVVDGwZq717kO10Jzu/6q2r1cuT7ziVe8oK/e6qjrLve5wEXKbqfvXYE8fT3jfbfKVtZ1vtBiC3WP\n6zoclNNcW58mdTBDnkTB1UR7UrBfcsNmDzEvhwYNJXo844nPR7l+2HeaVc7U+/uBGq64j7kfc+B7\nxTd2MPIWErnMep9Dv6D25ucYwiKJ/JOItRJlvirknyWEBcUbvzA/maWZVeQ7V2Lw/mcoMXh/RG66\niZUrN4Q1y5fnxhupXl2Ps8923U8/6d60qWuvOZEv7+HuQUz9B5XbUDv1VB7LICoU6iNe2pyyN8mJ\n3WRf/aQrKwi+9qJ9/VmlIoXXm1JKKee6wNnOFZNmppHge7NMMNkAP2ptc23Oo7RWRxWNXehOZzpe\nO43Vli5NEKyy1gwLTTDHCNMMNsEPJlhhjdKyHKCZV1ztNAdvt7ygnSYikQ5udJezHKjZNruAb0qu\nfLMsMs0CU803yVwTzDHebFPNFwSRSBN1tNbI6Q51kOb2sutmnQh2lISE7w3Uw7984F3LLNPefl7y\nL6c4VcZ2rr1Q3ECv+9A/LDHLoS5wmvuV2aSbe6G1xuluusdUc7TW3pKhvBBWSuSdRGKYWFYv0Y9/\nJ708bzzDtEmmrebCofRdxBV7lnPf/lVkl/k52aT4gLeLn5G5cCBDL6d80yL96jaX+wohSOSdR8gX\ny3o/KSwd1lJc+bbcZJ8/2TXXDcjalWSX2/o+/w3MHsdW8tx+k7H/IJQYvD8iVarw/PObLf74nXec\n/frrzm7c2P/1+Zgb9qHj+dSuyZBetH8+qRTf/yih1sHCkX8RSr0gN3ad8bEH1XWuqinPaIrB5pvo\nHNvOqguCF1xonP5u8706mtvdre52hxvctEVjB/VUN9Qj7vaOm73uei+nwpyZChQqKKLMX0NFbezm\nBqc4xJ7a2k2+PBc5z4MucZBDPOJJmVvpqt5RC33c5VJPO0R3FZSxl13VU01FZWVJF4kUKLRarhXW\nyLHSQsvNt9RiK9aPlSamgRqaqOME7TVXz5521dyuxRJvLg5xcT/50Ufe9753zDFbPbu6yKXOcLYm\ndt/uGAXyDPaOj9xpvkna+pPrfKGOppttu9RgI5xnjWmae1R9l6VEn+dK5HcmMUks8wvR5J+Z9ioF\nneTP+No/S53szk8/VbV0ut4dg8ObVObyexl+TlLzctfNa/W2fMFr+OFcVk0hloWIuidQc3P5sxB/\nkkRPsazPRLHUg1iYLEo7unjHWjM7+Vo6pSOauzrZD6/Mf3lZwqNnJntg/h4s/Z3G/R0oMXj/JfTv\n39+pp5/uRLzw2Wdir11LuSqc+zBLv0WgUiuWjWLRAKH+MKHUGlHaWcZkDpGmjGYeWj/eUJ+ooKbm\nW9BcDILJftBQW3lW+0ZSzHqkXkZY6m53uNGtbnb7Ns+5hkoedbE7neVHE023wGq50qWprJy6qthd\nXdVTj6ZLLPGD76XbQx9f+9B7YLJJLnCxfbTZ6rE6amGspwwy3jdGG22GOZYYY6Y8BSBDutKylFda\nNRU0U08tldVWWT3V1FdDPdWk/0qvbUtMN00/ffTxlf76WGaZ6qo7ySm66Gp/BxQrHDrXBF973gCv\nWmmxVo53mbfV12qzbZcZaqLbLfSZ8lo5yFDlNBPCGomCe4X4Qygvtvwfoh/PY/V0ofGlPrqph+t/\nzjRt8QeuwB0X76VsRpxb+/DzBZRtwD6PFu/CC1aw+IeksStdL1l+cMJMymwubB0Ss4SCG0Tp3URp\nSXm7EBYlyyJizTfbfousTpXhlE4l6axJ9fn7b6/Du/Jf7Ln5w85vwuhx9Dtz+9vtBJQYvP8CBg4c\n6Pjjj3doWpo3zjhD+ooJDPmUq9+idHmyDk+GcCY9TfvnJU58SnCpKPMlC9LLW+gU+3hPpsrrx1xu\nvqp2Fdvkj3u+tV52iQFedYy/Od0DrvWpFRapZV9/tq/zXegWW28jsynllXb4NorXg+BFz7lFd8ss\nc4gOnveqNtoZ4kfnOH+rnmRRYmIO0MwBmhX73H4v5pjjW18b4Gv99TXdNDExbbTTzZUOd6S22hUr\nJJprlcHe9Y0XTfSdsqo40Nk6uHCLHt0KI0xwqwU+UUYTrbyhtj8nm7QW9pLI/ythnijtStH4NaIx\nVwtrqvuqb1W3jfjS4HFLdarOh1ccYc92xzHsRZodTIVqLB/DLieTth1vtzA/WVQ+/V+UaUS1g1g0\ngMZ/3aKxg1BwPcqJMu7esCz+JmKitC03H96MVVPIqkJmysCtykm+lq289X3+G6jblIa/oqXStli2\n/U12FkoM3h+cgQMHOrJjR+3icR9Gkcyb/s4/O9H6GPZPhZRiWVQ/hGmvSbTcT9BNlPZn8bQTjdRY\nTX9S08kbjZtrpRmGe9ctFplqF3s7wmWedqahPrKnI3zhIR1dvF5Zv429VFLZbe76VdeUJ8+PfpAv\nX1nlPOBuPX3qHOc72nGudImTHGOIURZbrOoOSm79OwmCOeYYZYQRhhtumOGGmiXpaTTT3NGOc6iO\nDnaoisWcaFlilp99boTPjdFHnjX2dLhuetjHiTI3Ca8WWGae98zxpiX6K62Rll5TW1dRWCHEn5Qo\n7EHiBwpaiq29VTTmdfF5X/vwi4ru/yrHkMVx+1ZerM9z9zmsesTHD/Bh7+QBWh6ZDA2unk52ra3c\njJAsCUgvx+g7mfoyTa9j3APJ8GfbJ7ea4BIK+wqFb4kyXxVF5VPDJYT4C6QdJ4qK+R1YNYUyDTe8\nX5nqnv7fbvBKQInB+0MzaNAgxx59tLYFBT4/+2ylzj+f2YNYPIu/90xmY66ayvdnsfh7oeXZQuGV\norSuoszXTIluVGiNPT2+WbjsODdYJcc3XlReJYO9a6iPdHSxoT4ywQA17KZykfqtuea4xg2qF7Nl\nTVGCYIzR3vam171sgQ1Zd5VV9oJXneFsiy2WIVNTyRDWzmTsVlhhnLHGGWO0UUYbabSRlqT0KCuq\nqIVW/uRUbbV3kENUU207oyYpkGeCgUb60khfmm20mDSN7ecEt9hfV1VtbCyCQov0Ntsr5vtIQoGq\nOmrp1aShS8wS4ldIxF9BAXktxcZWZMbPFi4/38vfV/B0/2pmzlmoQzV6HcgR7fYWnXZBMlx+/LV8\n81qyW0e7k5K1nTWPZPxDyWSVosZr1fSkRzevF+ll2fvO5PJxDyQfyHY5mYp7bfX6EwUPEbUSpZ21\n4frizxJGi6U/V6x7CJaPp3yRlkQrFiVfyxfvcyjhj02JwfuD0rdvXyeeeKJWpUv7tEwZpZ59lowM\nLj+Xff/Ernsxql+yZmrVROGwlyXK30S0uyjzWaujSab6p93cKtvmT+QNtXGjvpb60XfaW6aKXgbb\n3+lu1N97bknVcG3wJEoro5fPnemcrbYLKlRonnlmmG6qyWaYbqEF+utrskkqqeQkJ2uitGN0s8JK\nTeyunHI+9L7znamccm7/lV7kL6FQoQUWmG2W2WaZZaYZpptkgnHGmiOZEBGJNNLYnvZ2qSvspYW9\ntVBvB8oSVskx3TBTDTHBAON9Lc8aFdS0t6Oc6BZ7OUKZTTIR8uXIMdASX5vrbXnmKqe53d2pdjhN\ndmKekBhE4myJwndRWZR+nWjoMPkTP/PFN+le7ctns0nPzHXaaSe5/OLztC78KplJWbkao69NJpXs\nchIdzuXgM7nvRDpdzL4v8tUB9DmUeqckMzpXTmTm22RVp/0LTHmJcQ9y5BBmvUvNTlTaugBBSIwn\n8YUo8yVRShA9JCYLBd1FaReK0vYr3gcYAivGskuR8OfyhUkB9jK/VwpjCTsTJQbvD0j//v117tzZ\nQfvs4/2BA5V59FGys5MZZ4tnJovMITOP5b2FBmdIVHiSUCqZ3RaVtdDnIhkauW6bx1qbCr2lWSJd\nthxzdHK5Ww3YbNujHetlL2iglqqqqq6GUkoLgjVWWyrHIoskivSxq6yCmuo62KHu97CODrfSAhXV\nkme13YpkJPbTW65cp+oq/Tf66gbBcsstsdgii1L/X2iB+an/5plnrrnmmG+eeJHs0TLK2EU9u9nd\n6c6yh6aaam4PTZVSfPX95RaYbpjphqdeh1pkOshWTiPtnOhWeztKPXtvZDTjVskxwGJ9LdbXCiMQ\nZKujphPVDWepkFhK/F2hsLWExSTSyK8oip8tL+tmfb8a4r2H7/Lx0Jhlq+NaV+SfLWLOeOIplTOG\nMb1zUnC54l4URCwbyoy3OHZ0soNB3hqG9WTtChq9w2F9GXIFsz4ivoJSddjrDppcliw1mPsFS38m\nuzot7y3GhzQZRFG9ZBiz8DUh/yqiaqLM+4p9n62enkySqVDEk8yZk6xTjX55fWQJfxxKDN4fjA8/\n/FDXrl0dfPDBPqxWTamaNbkw1dAzuwwNWjP+O+rHGXO3kFVZ2HMtieFiWd+LoqTntdZMWWpIS3lo\n+ZYY53qLfKWC1vbxnpgMNZ2sokd95T6VlXaiW7Z6bo97xk1u950BJplgkUVyrU2VG5RWSSXV1VBH\nXRWV8qGrzDXKXtq52mPrvcWsVCeD9E3ms+73sAoqesIjXvOymmpqoJGaaqmoolJKy5QpJiYI4uLy\n5cuXZ7XV1lhtpZVWWmG55ZZbZqmlClNdzNcRiVRVVQ011VTL7vbQwWFqq6OOuuraRV27qKzyDhWS\n51plkelmG22mEWYaYbrhlpsPSqtgV620cbIG9tFAGzU03qhmsMByK42xRD+L9LbUIEGBLLVVdZgG\nrlQ57KdUIofCHkK8s2ARGokWNxCNzTF9fJreI1f7fOTLeo9+2Zo8dq9X3mWd1uh6ZHvN4rOoETH9\ngmSy026XJssMytZPnkR8NZ/twZDL6fBFMjHq6RnJMpi/t+PuH8g7hh69+evzHHIWa+cz+g6mvUbu\nQg56b6vJKZsR60DsEIm8U4jKEWalwvJPiaId8MwWp4QaisqULZxG9YZb3r6E/zpKDN4fiNdff905\n55yjS5cuXnv+eVmVK3PPPUnvbvVyJv1AqXKsHsTQN6h/Jnu3F8Llycn+tA36inkWWmu6ye7RSHdT\nPGCWl0Cu2Rbrp7ojjfCFZ1yptj1cr5ds29YcrKmmP+kiLl9/z1tqriNdoYKN1egfcEzK2DFKb994\nyREu3ebYpZRyl3td70Zf6+dnw0w3zQLzzTTDWmsUKJCQEBOTJk2GDFmylVZaGWVUV0Njuymvgkoq\nqaiSSiqrqqqqqqX+Vd1hDzIIVlpsiVkWm2GJmanXGRaZbrEZVqXm8qCyuupp4VAX2FUr9bVSTYP1\nBjTfYiuNMVNvK42x0lirjJNvIUhXXpVwoKbhQlXjhUonxosK+xL1xHJBIVEtUfrZZs/raMC/HvdN\n3y/1GxkzZUm+tIj9di3v1jMq6rzHTE1bt6XaASzoR25pqrRj19Oo1SkpUlCUeb2T9Wy5iyjIIyOL\nfi8mU/zTs3j0DMZ8ndz21WvY/2T6H8WKcUnDudslVCh+pmwUlRHL+kAouA0ZorRTRWn77tDnA+b3\nTRa2F5UVmz+ZeimPLyeH1auTv08l/FdSYvD+AIQQPPbYY6666ioXXHCB5557TmztWgoL2WWXZD+v\nOzsx+Ueq4pBs6p0m7PuCRF4Log5i6WdvNOaenpSluvFuVM7eGrpWviVme0UlB6iaqr/bTXJ+pJ6W\nym6lL1sQLDXXXOPNNMIUg43Vz6qwRIY0PaMHNNLO7g7W3GH2cJDWOhvhC7nayjZOa52LfT/KK6+z\nE3VWzFT0X0mhuBUWyjHHMnPlmGOpOf/f3p3HR1GkDRz/Vc+dm5AA4QgJiMglCIgISAiCuu7iK7sq\nqK8gpyKIQmC93gUED1wXT/B80V105VwXXhEhgoAQUJF7OeQKEEISCEjuZK56/+iZISEDJDAJianv\n59PMTHVP9zOTYZ6pruoqznKCs6R5bk9gp8j3HBNW6hNLFM2JozM380eiiCOaOGK4gVDPe+mkgHz2\nkss69jKbPHaTx38o8dT6BCZCaE0IbakvbyVYSoJdmYS49qG5VwEucAZDtgORYyc318T2tNZsPRDL\nT3ut/PDTItLS9Osrb2hi4M7OGre3aEHfFi4iWtqh5LjeYaTzmxAcC5e6nMTtgC1j4fDHEHMXFHWF\nYVHwwjfQLhEWT4eb7tInI/79U/D12/DHP8PmhyHvINz18yU7plyKEJEI87tX9Fw9diek/x+0HHG+\nzOWCtD3QyzM915tvgtEIgwdf+XGUGk0lvCuwfPlykpOT2bZtGzt27KCwsJBp06YxZcqUgB/L7Xbz\n5JNP8t577zFp0iRee+01tOPH4ZHzvdX49Gk4vgvGT4P0l6FBT+j2MdL1Ichf0CyLyuzTVRSHQbSg\nrXUNuexmH5NJYA8d+Zgb+RD9pJ5e0wghksf4B5/yOGP5PxpyHQZMCDRcOCkih19Jx4E+l54JK3F0\npis9sYpl2KSTXNmDHNGI9czlK14lnEZ0435a0I2D/MQIPi43Wn8gSCR2iiihwLcUk+9Z8igmjyLy\nKCKXInI9Y6zkUEgOReRQyDlyyCKX08hS7Y4GjETQmEiaUo8mNOcm6tOM+sT6liCslJBZasmihL0U\nsY79nMZONsWkU+Rpq0MKgmhIKPE0k3cQSjyhMoYgaURzH0a614P7S8AJNMIle3NwRyz7vl7C7oMF\n7NoLO9PhUI4D2EuQZS+d42Dw3fdy651v06tXL6JDXLB5KGQmg8EGMfdBm4lQz3MNpHRD3iEIbeW/\nTeunxyH179DtYwi/A8ZfDy4nvD4QZh+Bpm0h45B+itNghsVuWHsHZKTow4xdYbILiFPf64NGNy11\n+U3WYX0uvNgOes3u7bdh7FhoUPlexkrtoBLeFZg1axbff/89YWFhNGnShEOHDlXJcex2O6NGjeKz\nzz7jo48+YpS3rW7qVDhwACZOhIh8WPIhjJwNOe9AdA9I+BqO/RMRHYQ0gnR9jdBu9O1Xv3DXgUAQ\nxzi28kcKOUIwLRF+xpi8jSG05Ca+500y2YULOzbisRJDEBHUozHRxNOI62nEdWgYyOJrtrAMBHST\nPWnLX5FIjrKd9cxlK//mrKdX41xGsZBnCKIeNsKwEIQRCwZMaBhKXfwucePGjRM3LlyeQcgclOCk\nBAclOCjGThF2CnFQjERe8j02YMRGGDbCsRHquQ0jkqY0pT3hNCScRtSjMeFEE4wZE04cnPIksUxK\nyKCEFEr4F0fJ4BcycFFY5jiaNGMhCjNBmKWRIOkgQtoJcdkIdRcRLCVGMoFMQG9rcrshPQOOHK3P\n4SPNOXT4dg4dlvxy4CQHDizFbrcDEBmicWOIm99Hw03dg+j8p260sa7DaADu+h+ILHVRft9Vek1N\nGM8nNSkhfTns+h84t0sfc7XNJGg6UE9cXuFt9aSYsRKs8fqkqaePQ6NWYLHBQy/DXwfq+/3mHfiv\nSXB6E3SYCk0HXPLvUKWkhD0vQXh7qF9qNJ59G0HToGVXyM7Wx6ft1+/axalUOZXwrsBLL71Eo0aN\naNmyJQsXLiw7Y3mApKenc99997F161a++OILBg8eDMeOwc6d8Pnn8MbrIH+G/31zrnVlAAAgAElE\nQVRDv8D8Oiv8dAB6fA4H58D2JERYG0T/SUjHi0jDQIR2A1K60YwP+Y5Tn95YaMiP9CeWxzAQDLhx\nkkcJmRRxnAIOkM8BQnDTjsYIBMXsxkoTormLKG4kgjbYiPMlpwbcjZko7GRznXgG0OuN8XQmns4M\nZTZnSSeD/ZzhODmcopBfKSKPEgpwUoILB25cpXp1CoyY0LBhwIgBE0bMnlsLJiyYsWHCihkbRoyY\nMGHCiMmzlf5YYELDhEDgQlKCmxLc2HFTgoOzlHAaO5nY2U0JpzjFKdL9DBpooj5WGmEhBpuMI4Kb\nsEgNiyzA4s7BLE9jcaVjlKkITnqeFYwsrkdeupP0fXZ+OQpphwVpGZK0QjieDcdOw7HTArtDAmeA\nMzRr2ojrW7ejd+/ejB49mjZt2tA2OoeYIxMQRWmAAAoh5ARc/yZc9xgY/fQWLd0ml7MPVvfWaz+W\nNrBVQK9iSPGc1rv1c4h/WL/fJgks0bB7KqT1g9sbQHAfMFth23iI/2+9h/Cyv+pte6v/F5CgXeM2\nsYxkyFoLvf8PRKkfdLvX6J28QurBGc94qaq35m+aSnhXoGfPnlW6/7S0NBITEykpKWHDhg3ccsst\n+s/9e+6BQ4f0X6W3tYNXkuDhmTBgImwcCIYg/df5Fs90Prn7EI4FSMNC3MVtgEiQ50B0QpgGI7Rb\nMGkd6Cn0wYMPMxMXReiJJQQLDbESSxT9acEkIulJMK0ByRnWkcVXnGYVaZ6xNAUGLDTCTBRGIgin\nGwaC2MMENMwIjJ5Fw3vaVAD1kdRHek4bSiQWJEYkTtw4kDhK3Rbjxo70JCc3Jbh8CavYd+vEjhMo\nrsT7LiRoCExS0zu7SBtWrIRJG2ZisMh4zFiwSDMWtwEzoFHsmRj1F1zOjfz6azHZZyAtW5Cd3YDT\nZ+pzOjuSU6djyMqSZGYVk3HyNBnpRyksKX10SUMLNAuC5u3bMOCmhsRFFBAfmkGLkBPENwCbORMi\noqHV/RD38PkJVTv8F2R+C/mp+mnD6F4V/+I++Y2e7AAyQ+CEhHNh5ycfODjnfMIDaDFEP/bpjXBy\nOZzdBgYDnFyh98BMXKHX7uzFsPYTuKMJpC+D1k+WTTbVJfsHPXk36ANN/nC+/OxJ+OnfMPA5/fGW\nLfqtOp35m6YSXg2TnJzMI488gs1mY8OGDcTFxekrli7VZzMXQv+CMXpO8/UcpF84e/04OPk1/PKW\nfv+HoQCIkBvRXLsh/2Pk2YWQ9TOy0T5k9BSk0NOBhSi6aXEgEhEiBkRDoD6ISE+373AQESDqAQWA\nkfrcRn0SgDewi2xy2UEhRyjmJHaycXAOF/k4OYedLD0RSSfgQuLyJTfA17FfeP4VpZKhQEOT+n0N\nPOlSoknpuQXNM9uBJg0YMKNJC5osQaMIAw40CQbP8w1Sv9UkGJxmNDtoRQ4MRRJXIeTnS3ILXOSV\nuMgpKCa72ExeoZGcAgPn8gTncgU5eYJfz8GvOZJfz0nO/uri7Dkn587Zkb4zqBLIQtNOExUVRcOG\nDWnYsCHNm8fSvXsCMXIHjUvW0KTjn2harwWNU+ZjKcyFP70I/caXTViFJ2Hd32DlO9DXCj8/ATue\nhVaPQeunwBYDjSs4W8CFbpign+bbMxP4BgZaQf4EsYOhxXBoWH7wcDQDNEzQFy9nAazqDjufgDtH\nw1fvQOZhaDALjiTB/jf1GmJ1kRKOLYQfh+s/AnsvLfueLpkBZhvcPV7/MTl9un46s+PFL4BXaj+V\n8GqQb7/9ljvvvJNbb72VpUuX0qD0r825c6FzZz3ZbdkCds+1Y/96Ge58Apr2gevHw7aJevuMZvF0\nHAhHOPNBuhHSCHuB5sXIUAnRjZHR0RBqBFsJ0vQfpPFHMBSAlq/Pl1eBuI1ApBREelJUWVJfREX2\ndHFSgt0OxYVGiovNFBUYKC4yUFRooKhQUJivUVTgpqhQUpjvoihfUphvoCDXSUGBpKAQCguhoAgK\nigR5RUbyC93kFzrJK4I8OxQ5/R3ZDtjRBIQFaUQECyKCICLIRWQwNAuDyBiIDIH6IVA/FKJDISrc\nRFS4mfphJjSDBHEKxBlgn/5+uO1QIoElUAK+iR5OPw25/fX2MrdbHwlk1xr4+ztQLGHhbkj6DNgC\nB+bA3tf0sSkt9cEUDqZQfegug00fwNlg0S/2FibPHIgG0Iz6LZpe6xIaRN2izyCQs1fvxGKNhtMp\nek1Ous4vbodnKdHnrXMWgDMP7Ocg5z/6a+g2FlZa9NOaX/4T7n8Stk+CvTP1aXnMkWAKA2OwHqNm\n0WPTjJ62Rc3zOfJ+lqTedoj7ghjs4CrRp7xyFoAzX79A3n5Wv9bPbYfmD0GX9yE3BzK3w7GdsPNb\n/UL5obP0aYH+9S/YvRvee++qPqNKzacSXg3irc2NGzeubLIDSEiAZ/S2MDQNVv0EQ/4Gi1+ENf+r\nl4fWg6YNIUgDo9C/L9yAPQh+LYK0HNx/nIJr1Ryc4cW4mrpxWjJwCjtO6cApnTjdTlzShd0FDglO\nAU5Nv3UIsLvB4QKH99apL3anxOGUOH2PPbcO/b7dcX4psZ8vK7Gfvy2xQ4kDikvf9zwuduCpPTk9\ny6WZjWAzCoLNgmCjRrBBEizchGgQrEkaGB2EREQQclM7QlveSFj9xoTMeImwbt0I3b6d0Dv6Ez5y\nEOEndhB+YB0hJ3YgHBecIDUCwRawWcBmBIsBjBqYBNgFnBX6XGEa52sXwvOPtIBsrP8eMNrB4ND/\nWPlGmNwPSor0kUvcnvZLZygk58HvBcz0nGKMiICmDSDICBY7mLLBcBo0t16VFVK/j1u/L7w/Prxt\nop7Hvvsep7ZT9oeLJ/lI7612fnELcGn6h6SkMeS54JskPdk9PBMW/gVm7YTWDSDcBNYsMGWCwa3H\nJryLPB/nhfGcf+P0Y3pjKR2DW/PEgf7el9SHXBesXA6FX5T6m5mh1S0w6n3oN0p/f198Ua/d9ep1\n2c+VUruphOfHtGnTfGP2eU2YMIGwsLAqPW6rVq146KGHePjhh5k8eTI2mw2DwaDH4vnik4AMDsb9\nP1OQQUHoX2cWXNKNW+bhktKzUOpWv++U6NdK+RQE/DWYNX0xafr3v6nUY7OnzKKBWRP6Yw1CDPo6\nqyb09cECSyhYDQKLAJsmsGhgNWjYDAKrJrAZBDaD5lkENoOBIM/jIIMBo2ZEP5FpQP+YGwEzeuOU\nDQjxPAaOn4KNP+vXYH35JXz0kf4l6GtzagI0Rm8RLEKv9TnA6YQcJ+R4kopvkaVuL/YF7iUAq+fW\nW7MxAPUBk77OboWv1sIf/wj//hL+q7deCz9XAufs6N/yLs9S+jiy1H5lqUUrtR4/90vHduF9Qdna\nl/e+fsJZj9lzSvyfW4BE4BTsKfS8b95YS+/XG1+pGt1lY7kwBi8DZf/uJvS/uRUIAmcI7NNg32r4\neLXeM1PV7uoMlfD8mD59ermEN2zYsIAmvMGDB2M0ln37H3zwQT788ENuv/12jh8/TnFxMS6XC7cn\n2YmcHJASYbOh7dmDOHYMgxAYAOG5NQiBJoReLgRGoXcR8d73lpsu2Ma7mDS9n6VJ086Xecq9973b\necvN3uddyx5ukopW/jzsnsUjMlKfRT4qCp58Eg4ehIwMP88zw0VmVq9SEybAzJn67eHDUImxOq+d\nfPRk1PByG1ajspeLIARMm1ap2t38+fOZP39+mTKns8IfPOUaUgnPD2+CqUoLFiy4aAIdPnx4lR9f\nuYTQUPj002sdhX9z5lzrCOq8Bx98sNylSLm5uYSH/8ZnTf8NuAb9hBVFUZS6LDMzk2effZa+ffsS\nFhaGpml8//33F91+06ZN9OrVi+DgYGJiYnjqqacoKKh8k4xKeIqiKEq1+uWXX3j99dc5efIkN954\nY7kmpNJ27NhBv379KC4u5s0332TUqFF89NFHPPDAA5U+rkp4V2DZsmUMGzaMYcOG8f777wP6tD3e\nstdeq8QcXVCuPaC2qc3x1+bYoXbHr2Kvu7p27cqZM2fYv38/EyZMuOS2zz//PJGRkaxfv57Ro0cz\nffp0Zs+ezcqVK1m9enWljqsS3hXYsWMH8+bNY968eWzYsAEhBLt27fKVrVq1qlL7q+3/eWpz/LU5\ndqjd8avY667g4GAiIi4/l2FeXh6rV6/mkUceITj4/NRkQ4YMITg4mEWLFl3i2eWphHcFpk6disvl\nuujy3XffXesQFUVRar3du3fjdDrp0qVLmXKTyUSnTp3Yvn17pfanEl4tVNlfl1W9fWVVZv+1Ofbq\n2L4q912TYr+S/Vfl50ypHhkZGQghiImJKbcuJiaGkydP+nnWxamEVwvVpS+u2hx7dWxflfuuSbFf\nyf5Vwqv9ior0SZUtFku5dVar1be+otR1eNVMekYXzs3N9ZU5nc4yjy+nLm1fk2Kp7dvXpFhq2vZX\nu2/vfSkvNqLOtbVvxQrYt69q9p2aetF1DoeDs2fPlimLjo5G0ypW17LZ9AEWSkpKyq0rLi72ra8o\nlfCqWV5eHgDNmjUrU17Zi1br0vY1KZbavn1NiqWmbR+Ifefl5dWoC9CjoqIICgriv//ylyo9jtls\nJioqqlz5pk2bSExMRAiBlBIhBKmpqcTGxlZovzExMUgpyfAz6lFGRgaNGzeuVJwq4VWzxo0bk5aW\nRmho6CWvPVEUpfaQUpKXl1fpL+CqFhsby759+8jOzq7S40RFRflNYp06dSp36UCjRo0qvN/27dtj\nNBr5+eefue+++3zlDoeDHTt2MGjQoErFqRJeNdM0jaZNm17rMBRFCbCaVLMrLTY2tsI1qkALDw+n\nb18/cypWUFhYGP369ePzzz/nL3/5i+/ShHnz5lFQUFDpi8+FrKknnRVFUZTfrJdeegkhBHv27GHB\nggUMHz6c+Ph4AF544QXfdtu3b6dnz560adOG0aNHc+LECWbNmkWfPn1YsWJFpY6pEp6iKIpS7TRN\n89usI4QoN/vEpk2beOaZZ9i2bRuhoaEMGjSIV155pczF6BWhEp6iKIpSJ6jr8GqA5cuXM378eHr1\n6kVISAiapjF9+vTLP7EaHDx4kAceeIDo6GiCgoLo1KkTH3zwQaX3k5OTw5QpU+jYsSNhYWFER0fT\nrVs35syZ47fLcSAEKnaA/Px8pk6dSocOHQgODqZevXp06dKlSv9OgYzfy+Fw0LFjRzRNo23btgGK\ntLxAxJ6SkkJSUhJdu3YlKioKm81GmzZtePbZZ8nJyamiyC9uy5Yt3H333dSrV4+QkBBuvfVWFi9e\nXO1xKFdBKtdcnz59pKZpMiIiQl5//fVS0zT54osvXuuw5J49e2R4eLi0Wq1y6NCh8tlnn5UdOnSQ\nQgg5fvz4Cu/n3LlzskWLFlLTNNm7d285efJkOX78eNmqVSsphJD9+vWrsbFLKeXx48dly5YtpcFg\nkHfeead89tln5YQJE+SAAQNkx44dAx57oOMv7fnnn5ehoaFS0zTZpk2bAEZ8XqBib9SokTSZTDIx\nMVFOnDhRJiUlyS5dukghhLzuuuvkqVOnqiR+f7777jtpNptleHi4fOyxx+SkSZNkfHy8FELIN954\no9riUK6OSng1wMaNG+WhQ4eklFIuWLBACiFqRMLr3bu31DRNrlq1ylfmcDh85T/88EOF9vPaa69J\nIYRMSkoqU+5wOOTNN98sNU2TGzZsqJGxO51O2bVrVxkcHCzXr19fbr3L5QpYzKUFKv7SfvzxR2k0\nGuV7770nhRBVlvACFftf//pXmZmZWa78iSeekJqmyXHjxgUs5ktxOp2yZcuW0mazyV27dvnKc3Nz\nZevWraXVapXHjx+vlliUq6MSXg1TUxLegQMHLlr7Wr9+vRRCyBEjRlRoX48//rjUNE2uXr263LoX\nXnhBapomv/zyy6uO2SuQsc+fP18KIeS0adMCFt/lBDJ+r+LiYnnDDTfIxMREKaWssoRXFbFfKCMj\nQwohZIcOHa5qPxWVnJwshRBy5MiR5db94x//kEIIOWPGjGqJRbk6qg1P8WvdunUA9O/fv9w678zD\n69evr9C+2rdvj5SyXBdih8NBcnIyNpuN7t27X3XMXoGMfeHChQghuO+++zhx4gQffPABr732GkuW\nLLmiGZcrIpDxez333HOcOHGCTz75JBAhXlRVxH4hk8kEgNFYPZcRr1u3DiGE39d05513Alz1a1Kq\nh7rwXPHr4MGDCCFo1apVuXWaphEfH8++fftwu92XHRdvxIgRfPHFF7z11lv8/PPP3HLLLZSUlLBi\nxQoKCgpYtGiR39HQa0Ls27ZtA/QvtKSkJOx2O6CPrBEdHc2iRYtISEgIWOyBjh9gw4YNvPPOO7z1\n1lvExcUFNNYLBTp2f+bOnQucTzZV7eDBgwB+X1PDhg0JCQnxbaPUbKqGp/jl7QV3sdEjwsLCcLvd\nvrFBL8VqtbJmzRqGDBnCxo0bmTVrFrNnz+bYsWM8+OCDAa3dBTr2U6dOAfD0008zceJE0tLSOH36\nNO+++y45OTkMHDiQrKyswAVPYOMvLCzk0UcfpWfPnowbNy6gcfoTyNj92bFjB9OnT6dRo0ZMnjz5\niuOsjIq8pmvRa1SpPFXDqwbTpk0rd4HlhAkTCAsLu0YR6aorruzsbO655x7OnDnDN998Q48ePSgs\nLGTZsmVMnDiR5cuXs3XrVkJCQmpc7G63G4ABAwbw8ssv+8rHjh1LWloar7/+OnPnzuX555+v1H6r\nK/6kpCQyMzNJTk4O2D6v1ef5yJEj/P73v8ftdrNgwQIiIyOr9HjKb9C1bkSsC4QQUtO0MsuxY8f8\nbludnVYuFdfkyZMv2ZmkQ4cO0mAwVKiX4sMPPyw1TZP/+c9/yq17++23pRBCvvLKKzUy9ujoaKlp\nmvz000/LrUtJSZFCCDlw4MBKxV5d8a9du1YKIeSsWbP8Hv9KO61U13tf2pEjR2RsbKy0Wq1yxYoV\nVxT3lbr//vulpmly27ZtfteHhobK5s2bV2tMypVRpzSrgdvtxuVylVmu1WCuFY2rVatWSCn9tk24\n3W5SU1OJj4+vUDvMypUriYyMpF27duXWJSYmAvp4eTUx9tatWwMQERFRbp23rLKTUFZX/Dt37gRg\n0qRJaJpWZhFCsH//fjRNq3RNqbree68jR47Qp08fsrKyWLx4Mb/73e8qFe/V8rbd+XtNWVlZ5Ofn\n+23fU2oelfAUv/r06QPg91TYhg0bKCgo8G1zOXa7ndzc3HLj48H5NjJ/MxpfqUDG3rdvX6SU7N27\nt9y6PXv2AAS8I0ig4m/fvj0jR470u0gpiYiIYOTIkQwdOrTGxe6VmppKYmIiWVlZLFq0iD/84Q8B\nirTiEhISkFL6fU0rV64EqNRrUq6ha1i7VPyoKdfhSSllQkKC1DRNfvPNN74yu90ub7vtNqlpmty8\neXOZ7bOzs+X+/ftldnZ2mfK77rpLapomp0yZUqa8uLjYN8rMJ598UiNjT01NlVarVTZq1Eimp6f7\nynNzc2WnTp2kpmnyu+++C2jsgYz/YqrywvNAxe49jWk2m+XSpUurJNaKKH3h+Y4dO3zl586dk9df\nf720Wq0XbaJQahaV8GqApUuXykcffVQ++uijMiEhQQohZKdOnXxlM2fOvCZx7dmzR9arV09aLBY5\nZMgQ+cwzz8j27dtLTdPkU089VW77qVOn+k3W27dv9w1n1b17dzlx4kQ5ZswYGRcXJzVNk7169ZIO\nh6NGxi6llO+++67UNE1GRUXJUaNGyXHjxsn4+HipaZocM2ZMQOOuivj9qcqEF6jYmzdvLoUQskeP\nHnLatGl+l+qydu1aabFYZFhYmBw9erRMSkryfX7ffPPNaotDuToq4dUA06ZNK9cJoPTiHR3jWjh4\n8KB84IEHZFRUlLTZbLJjx47ygw8+8Lut93VMnz7d736GDRsm4+LipMVikcHBwbJTp07ylVdekcXF\nxTU6dimlXL58uUxISJBhYWEyKChI3nzzzXLu3LlVErdXIOO/kBBCtm3bNpDhlhGI2C/1f0LTNGkw\nGKosfn+2bNki7777bhkRESGDg4Nl9+7d5eLFi6s1BuXqqOmBFEVRlDpBdVpRFEVR6gSV8BRFUZQ6\nQSU8RVEUpU5QCU9RFEWpE1TCUxRFUeoElfAURVGUOkElPEVRFKVOUAlPURRFqRNUwlOUUm677TZ6\n9+5N3759efXVV691OFXCOxfhTTfdxKZNmy663VdffUViYiKJiYm0atWKkydPVmOUihJ4agJYRSnl\nxIkTfP/99zRr1uxahxJwx44dY9SoUYSHh2M2m9m1a5ffGSy8BgwYwIABAwBo0aLFJbdVlNpA1fAU\n5QK/1dH2mjdvTnJyMosXL+aOO+6o1HN/q++JUreohKcoiqLUCSrhKYqiKHWCSnhKrTB27FiaNWuG\nyWRC07QyS1RUFHPmzCmz/bfffktYWFi5bevXrx+Q2amnTJlChw4diImJKbP/999/v9L7OnToEPXq\n1fPtIyIigrZt23L77bdfdZyKopynEp5SK8yZM4e0tDTS09OJi4tDCIEQgnfeeYfs7GzGjh1bZvv+\n/fuTnZ1NTEwMQgjuvfdetmzZwpkzZ1i3bt1VxzN9+nR2795NRkYGDRo0oHXr1ggh2LdvX6X39dFH\nH2E0GhFCMGjQIM6dO8fevXtZs2bNVcepKMp5KuEptUqDBg0YMWKErxPF2bNnL7ptZmYmZ86c4d13\n3+XLL7+kS5cuAY8nOzsbp9PJ3XffjZSSo0ePVur5y5Yt44YbbuDMmTMADBo0KOAxKoqiUwlPqXUe\nffRRNE3/6P7973/3u01hYSEDBw7krbfe4oknnqiyWFJSUujRowdxcXEApKamVvi5xcXF/PTTT5hM\nJl9Zjx49Ah2ioige6jo8pdZp0qQJ/fr1Izk5mWPHjrF27VoSExN966WUDB48mD59+vD4449XaSyb\nNm2iZ8+evoRXmRreu+++y9ixY5kxYwagX+vWoEGDi26fkZFBQkJCpa6HS0xMZO7cuRXeXlF+y1TC\nU2ql4cOHk5ycDMAnn3xSJuE9/fTTCCGYNWtWlceRkpLCzJkziYiIAPSaZXZ2NlFRUZd8XmpqKlar\nlcaNG5OSkoIQgp49e17yOTExMRw4cCBgsStKXaNOaSq10r333ku9evWQUvLvf/+bvLw8AGbPns2G\nDRuYP39+lcdgt9vZvXs3N998s6+GBxU7rTlnzhzGjBlDbm4ue/fuBbhswlMU5eqohKfUSmazmYce\negiAoqIi5s+fz4oVK/jb3/7G119/TVBQUJXHsHXrVtq1a4fFYiEkJITIyEjg8qc1V6xYwR133IHR\naGTz5s243W5AJTxFqWoq4Sm11rBhw3z3Z82axciRI1m6dCkxMTHVcvyUlJQySSo+Ph64dA3Pbrez\nbt0639BeKSkpAISHh9O2bdsqjLasrKwspJRkZ2dX2zEV5VpTCU+ptTp37syNN96IlJJDhw4xY8YM\nOnXqVG3H93ZY8apIxxVvR5XS+wC49dZbqyTG0oqLi+nVqxetWrXiueee81331759e+65554qP76i\nXGuq04pSqw0bNowJEyYA+ogl1WnTpk18+OGHvsdxcXFIKS9awzt+/Dhut5vmzZsD4Ha7+fHHHyvU\nYSUQrFYrGzdurPLjKEpNpWp4Sq22fft2hBBIKZk3b56vPayqHT58mLCwMKKjo31ll6vhvf3224wf\nP973eOfOnRQUFACq/U5RqoNKeEqtNWPGDI4ePcrAgQMBfWSVFStWVMuxU1JS6NWrV5kybxvesWPH\nym3/7bffkpCQgMViKbMPAKPRSLdu3aowWkVRQCU8pZZauHAh//znP1m6dCmPPfaYr7y6LrK+sP0O\nztfwSkpKyMzM9JU7HA6+/vrrcu1k3oTXsWNHbDZb1QasKIpKeErts3nzZpKSkli+fDkRERH069eP\n2NhYpJSsWLGCU6dOVXkMF/bQBC56Ld7s2bPLDW4NetKsrvY7RVFUwlNqmdTUVB544AHmz5/Pdddd\nB4AQgqFDhwLgdDqZN29elcaQk5NDVlYWN9xwQ5nyoKAgX5uetx0vPT2dwsJCWrVqVWbb9PR00tLS\nANV+pyjVRSU8pdbIyclhwIABvPzyy9x2221l1g0bNgwhBACffvpplcaxefNmunfv7nfdhYNIv/HG\nG75epKV5T2eCGjBaUaqLSnhKreByubj//vu59957GTJkSLn1cXFx9OnTBykl+/fv54cffqiyWPy1\n35WOA/Qa3rp16+jWrZvfUV+8CS82NpbGjRtXWayKopynEp5SK4wZM4aIiAheeumli24zfPhw3/2q\n7Lzir/3OKz4+HiklBw4cYMmSJRed366iA0YrihI4KuEpNZrb7WbEiBGsWbOGzz///JLb/ulPfyI8\nPBwpJYsWLaKwsDDg8WRnZ7N58+aLTibrreFt3ryZMWPG+N2msLCQXbt2Aep0pqJUJ5XwlBrJ7Xaz\natUqunXrxqeffkpcXBxms/mSzykoKPCdHszPz2fWrFm+mdED4ejRozz44IOUlJSwZs0av9t4E94T\nTzxBu3bt/G6zePFi35x2HTp0CFh8iqJcmpCB/EZQlKt06tQp+vbty/Hjx32jkHhFR0ezZcsWmjVr\nVqbcbrfTtWtX9u/fj8vlKrMuLCyMZs2a8dlnn9GxY8fLHr93796AfjF4//79ee6553j11Vf54IMP\nSE9PL5NAmzRpwrhx4/jzn//sK0tNTaV///5s27aNsLAwX/mLL77IkiVLOHPmDFlZWb7ykJAQmjZt\nSmRkJBs2bKjAO1R9vvrqK9544w1A71W6bt061d6o1Goq4SmKoih1gjqlqSiKotQJKuEpiqIodYJK\neIqiKEqdoBKeoiiKUieohKcoiqLUCSrhKYqiKHWCSniKoihKnaASnqIoilInqISnKIqi1Akq4SmK\noih1gkp4iqIoSp2gEp6iKIpSJ6iEpyiKotQJKuEpiqIodYJKeIqiKEqd8AXwSJ8AAAAFSURBVP+p\n4ql0NEB+gQAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "S1TSXy = c1Xy+ergXy\n", "show(S1TSXy)" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false }, "outputs": [], "source": [ "c2Xy = contour_plot_precisXy(S2EX, (-1,0), (-1,1), \n", " plot_points=200, \n", " fill=False, cmap='hsv', \n", " linewidths=1, \n", " contours=(-10,-9,-8,-7,-6,-5,-4,-3,-2,\n", " -1,0,1,2,3,4,5,6,7,8,9,10), \n", " colorbar=True, \n", " colorbar_spacing='uniform', \n", " colorbar_format='%1.f', \n", " axes_labels=(r\"$X\\,\\left[M^{-1}\\right]$\", \n", " r\"$y\\,\\left[M\\right]$\"), \n", " fontsize=14)" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAJHCAYAAAD8L3NRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXd4FFX3xz+zu8mmNxIIgdC7CioCIiAIKs2GWFHBV1B8\n7dgFUVFQRLAiYntVugWRYq8gIkVQem8JgYT0nq3f3x+zCQkJISAi+tvP89xnd2bu3HvunXLmnHvm\njiFJ+PHjx48fP/8SLH+3AH78+PHjx8+JxK/Y/Pjx48fPvwq/YvPjx48fP/8q/IrNjx8/fvz8q/Ar\nNj9+/Pjx86/Cr9j8+PHjx8+/Cr9i8+PHjx8//yr8is2PHz9+/PyrsP3dAvx/w+v1sn//fsLDwzEM\n4+8Wx48fP38BksjPzychIQGL5dSyH5KSksjIyPhL64iNjaVBgwZ/aR3V4VdsJ5n9+/eTmJj4d4vh\nx4+fk0BycjL169f/u8UoIykpidbNmlHkcv2l9YSEhLB58+a/Tbn5FdtxMHPmTH7++WdWr17N+vXr\ncTqdvP/++wwePPio+4aHhwPmCR8REQHAddddx5w5c2pc/7HmPxl1+PP78/vzH8qfl5dHYmJi2fV+\nqpCRkUGRy8WMZ56ldeMmf0kdm3fv4sbRI8nIyPArtn8Sjz/+OElJScTGxpKQkMDevXtrvG+p+zEi\nIqJMsdlstrL/NeFY85+MOvz5/fn9+SvnP1WHG1r3683ZZ5/91xS+Zg2MHvnXlF1DTi3n7z+Ed999\nlz179pCWlsbw4cNPev3XX3/9X77P8dTxV5bvl//E4pf/xOb3c2rht9iOg549e/6t9fsV24nPf6z4\n5T+x+Y+Vf7r8fv5a/BabHz9+/Pj5V+FXbKcA/4anw396G/zy/7345fdzIvErtlOAf8NF8U9vg1/+\nvxe//H5OJP4xtlMQl8tFSkoKxcXFuN1uvF5v6QaMJUswnE4Mw8BiGFgsFiyGgbWKX6vFgsViweb7\nb7VYsFmtZXlO1Yitv5XgYLj0UrDZwOGABQvgL37nx8/fgGFA//4QGAgLF1Y8xn36QEzM3yebnz+N\nX7H9TTRv3hzDMKhXty71UlOhQQOuv+8+0tPTefDBB3GdhJupDbAavl/AZvgSEOD7tRkQcNhv6fYA\nKqbA0l8vBAgCPeb/wHLbA60QaAO7BQJ9yW74kgXslFs2IMiAIMxfuwGBMu9JyJco91+At9xvafKU\nSzXhiSdgzBh44AF4/fWj5zd8HWjF9IGUJqOKRBW/pRzenvLyuwFXuTylBGF2WulBLC9DaZ2Hy0IV\n/6uT62jLf4bD26Nqfo+USo+5h4rHu7TPnFR97Pv3h/r14c03K67v3h1++qnGTZg9ezazZ88GICUl\nhZSUFKTDG+bnZOJXbH8T27dvN997kcwLqbgYXXstDRo2pE+fPtx1112EhoZis9nMKXlycuCyy9DV\nV6OhQ/F6PHhTtqGMfXgsAXgbno7XEoBn4Wt4Ny3DU1KExwaeQPBYDyW3YcGNgccANwZur+8eIHB7\nzeTygtsrPKX/PeDymOtcntJl4XILtweKPZDny+N0m78uDzi94LIG4rDacTqdOJ0OnF5wOs36jgcD\nCLKaKbh8svh+bRBiOSxZIdQKoTYIDQ4mNDyCsOhYQuvUI6xJG8Lb9yKsQQvCw8IIGz+egJdfhquu\ngrffhmeeMRVcdir8/h3sXAMHdkBWKuSlQ0EOuBxVC1qqZKxUrWDKK4jS/ih/ky69OfsMdmwB0PRs\nGPEeLJkDn74IJQXmU0MwpoILpNyThxUCLObTi9XwyWMckqNKeeRTjKqYp3S5dF1ZO32C12RQo7Qd\nMg61uSwZhxSTAK9hpqoeWDyAV76T1nfiOj3gkqnIHL5U4us/gNAoqN8SWnWGXjfB8g0wZIi57dln\n4b77zP9ffgkDB5qKrUePGjTKdEMe7orMy8sjMjKyRvv7OfH4FdvfjWHAo49C//5snD2bffv2cd55\n53HRRRdVdBVOnAhuN7z4IsTGwn3nwpYVh7bbg00lKS8Muxo8P4DjQPmKIDAcAsLAGgy2ILAEgMVm\n3vQiCiCoBKxusHrBKLsL+crFvJl4BR6vmdxe04XjdPo0GuaNxAm4DAhIgFwLpBZAaBjUCwMjB5yZ\neL1eU8l5wOEFh9sswuGCEhc4nL5ft5lK3FDsNH9LXId+i0uTE4p8v8UuyPItFzotFBUZFDmh0CEK\nHcVAMZAGbAS+AV6ucEiCgPAz2xJhNYiY+hIRbzxPpKeACDtERYcRFRNOVFQwUeFRRDWMITpMxIS4\niQkuIcZeSKi1AIMTbHG3ehkKLPDhc/DqMPPYX9wTwjdBSUrFvBYbBIRDQOihY20NBmsgWO2+4+5L\nEWlQ/5cTK+uJQgbIAl4r5NeDjIZQHAweB3hKwF0MnmJwFYIzD1z55vlfnqAEqP8Q5JTAnvWweBbM\nfxkenX0oz913my5ogAED4Kyz4MknYfHik9dWPycUv2I7FVi1CoKCaNalC7fffjtTp07F6/UyY8YM\n7Ha7madNG1OxrV0LvXpB16sqKrbzBsDST+DGAZAxCxIvgtMmQ1RzCIkFIxk8O8CbD7ZECOprKlXn\nWki/Ety7wAgCSy0wwsAIxHzEB/Ai3HhxIJwIB8IF3mLw3cANzId3o/TB3isMTzYUCvKLIcAGEYWm\nL9ESgAUXQYaXoGo7xm7KYokBa12wtoTAXmA7H/CAxwXujeBaBZ5U8OaCtwi8TvC6zOT2JZcDXCXI\nUURRTiGFOfkUFHgpKISCQsgvgIJcK3npHvILId8JeS6RZ+SQ5xa5JbCnGHIzC8hJLiCnCPJLjiB1\noI2YyEjiYiKJjYkiLjaa2rExxMXWok5cLHVqxxJfJ85McbWw//E07P28XAmBmE8HPsLqw5k9YdtM\nuLY/TH8HukRDwLcQeyG0mQQRjSEkHoJqgS3E56+tAe4USO0Knj01yw9g7wohV0NAKw75PfHVWVW9\nPqtOpWZXOdNLZSYYyOc7lBtwg1wgJ3gOgP19iP4JgvtBxBgI6lpFNTKVW3E6FB6A/L2wYhTkToer\nlplK3eWEu9vDikWH9gsLO/TfMOCpp+Dyy4/JavNzamHI7ww+Zt59912WLl0KwPr161mzZg1dunSh\nWbNmAHTt2pWhQ4dWuW+piyI3N9d0RRYWQr16cMstpjUGzJs3j0GDBtGzZ08+/PBDwsLCzIu2Uyew\n22HJEvMC3LUOctLgmSvh8nuhtRV+exrOfgzOHWve7NMvBddmULFPAt8AVdCFsL8HxM0x70uxsyGg\nDW4jlyzeoJjfcbIbFwfwkIU4wl28GgzZsMqGxWvW67WU+rEsGL4BIQsBGLJjwY5FQVgJweYNwaYw\nArxh2D0hBLrA5s7CcK4B924I+y+EXg15r0DxfLNMa20wIk3lbPgUsnz+PDlBPv+UtxhUBEezqMRR\nx5I8HsjJg+xcM2XlQGaOhcycUDJyQsjMDSUjO4iDmV7SMx2kHcwjMzP7UDCQj9gwSKgdQ72QcOrn\n7CUxCBKDoOGY2TRs0ZBEthLw2yhwF4G7xLRWbCHQfQq0HFxzJVZT9n4JX1xhPiC0ux/OGwuudeBY\nDiU/Qcl3oAKwd4PQG8DWFHCaish+PlijT6w8YB7Dwg8hbwK4NoD9Aqg1FQJaVL9f+hr45Fxoew90\nmWium3qfqdje3+kr+7BboATnnGMqvOO02ipd56cIa9asoX379qxevfovm1LrZNRxNPwW23GwdOlS\npk2bVrZsGAbLli1j2bJlZctHUmyVCA2Fr7+GRo3KVg0YMIAFCxZw5ZVX0rFjR+bPn0/z5s3NJ8n+\n/eH77+HCC6FJW3OHhObmuE/obohuA+eOg/w9kDUHjDVAIMT/CgGngSUcihZAxiCIWQ+eNIj+GEdg\nIFmMJIu38OIglM4EcxYBNKaE34nlPmzEYRCMgc2nmCyUPn0LL8JVZtG5KMBt5OEycvBaCs1+wY4V\nGxasWLAALp/1V4KXQjzk4yEHBxm4WY+bg2V9YiGCIJ1GsCuR0Nx3sGe9gcsWjCP+OtyBdfEY+Xgp\nQngwCMRGHCF0JJJrMMppKDeZZPEmxVqDm/14yEcqoXRQy7Q4LRiyYSEACyG+FOpLYVhl/rcqlECC\nSfAGkahArB6wyoXhyQFPCrh3mA8Vnv1l9Xu8djLyGpGalcCBjFocWL+W/Vu2s/9gFikZuax2wGcZ\nkF4CDDTHbSwG1K8VSJPW59CkaVOaxThp0a4rLVxn09zhICionN27ewHsmgcYcM4oiGxas/OwPKnL\nTKUGcGAJWILB3slMEfeaDwfFCyH/Dci6k4qRGRYzX/DlEHo92E7QJLhGIITdZCrS4gWQ/QAc7Ad1\nfwNL1JH3izvbfND7YyJ0Gmu6ZRu0gc9egQ7nwPoNVdTls9ouu8xvtf1D8VtsJ5ljeZLbsmULV1xx\nBVlZWXzzzTec2a6dabUFBsJnn5ljbSnbYWgLGPkRNIqEhb2h9VDYPR9KMuGyYeB9G+oshqDzy8r2\nOpZQkn0ZBZEdyA3OpZhVWIgkhpuJ41ECiCefr9nNJYCbOB6iLhMqyOeimG3M5yBrSWcTueyhkDRK\nyMZT3pV2BCwEEEAIAYQQSBgBhGEnnEAiCCKSQMIwHaJOrORj4SBedmKQgo3SYMAQAkjASjQWQjCw\nIZy4OICTHURxE4n8DwMbxaxnD/3wkE0wHQigHlYiMAgEDIQXcPsUtAMvxXgpwkshXgrKkodcvORX\n065IbMRgJQYrtbApCqvXhtXrxeZxYHXnY3VlYnUdwOpKxeb1DWu6giDHCQ4vJZYgknJD2ZtuZW+q\nhV3JYleSl517vWzfXURurmmBG4ZB48aNOa1NK04P3UPb4E20bRBLi1rF2ALdcM4TcPbD5rhbTXCn\ngCcPfhsH+fvg3KchrCnY6lWd31sI7lT44VbY/yP0uhdCkqH4S1AJBF8CEY+AvSMYATWToSa4dkFq\ne7B3gbgFYFQTvZK5AeacAZd8CQ37wLcfwKSbYZHTDMipilKrLTz8mCIkS/FbbH6Lzc8RaNWqFUuX\nLqVPnz707NmTOXPmcPGYMdCvH8TFwcsvQ4sQM3Pz9lC3CZzzOGz+H7gjzEH1dQfgzOaQO950Hfnc\nVsn2yeTG52KwlHD6EscDRHAZFoLL6k9nIuAmhE5k8DrxjMcoF/72JcNZz3QAEulGIl0JJZ4gon2K\nKth0NWJBPsvOixsPLjw4cVOMm2KcFOKiAKcvOcgllyQc5FJCNiVk46Sgih4yiKAWMTQkhhbE0po4\nTiOOMwgljmymk8xg3KQRTDsyeQsbMbRgC4H8uW9kCS9en4Vppmw8ZOEmC89hyWUcpMSaiduaiScg\nE1E5itKiIOyeKALdVuxOYVc89ZVAU088ViPEdMV5c8C9Czl+Iz0TtiU3Z8veRmzeFcbGVeuZtnQH\nKTkAGQRZoF0DODtxFB0v3kqngY/SsmXLih+9lNdMpUrPnQIpvn4p7Z7c7pALxLwJIZeBpU5F16cl\nFPZtgJ0/msuLF8LgneAtgMI5kP8ipHUFLKbHILgPhN4EgWf8qf4noAnEzoSD/aFwNoTdcOS8MadB\nWANI/tZUbBafq9rjPrJiMwx4/HG48krYuBFOO+3PyevnpOJXbKc4sbGxfPfdd1x//fX069eP999/\nnxtXrDDH455+Gv5YCdHx8NJQGP89dHoGQhMg+SfY8ynUuwCib4f0S2BfLASeBbFziLYOJpePqcsL\nxHJXlXXH8xz7SKWIFdRlYgWlBtCVERTzHXvJIZIG9KEG73wdJx5clJBNMVmUkI2DPPJJIZsdZLGN\nZJawlnfLLMVQ4onnLGK4CjtLCGYdYVxEPI8QQEXrI5vZ5DCNRizAoOobnRc3xWThIBcXRXh9ceQG\nFiwEYKMeNpoR4rM+rQQesS1einGT6VN8OXjIwGHsxGnbjsO2jcKgrbhZA6wBwEYCdlr60vXYPSOI\njNtNl4Yb6XrOT6bbExs4EsjacJC1v7tZuwvWpNj4KSmYqU9MR6OnERUVRefOnenWrRs9Op7GOQce\nJyB3PdTuABfPMQNQYt4xx9A8qeBJBk8G2BpBzmjIGm4G8wS0gcB2Zgo4ExLOgaA4KEmHM+4wG2kJ\ng/BhEHYLFH8P+z+EYCcUvA95L5hjZFHPQFCX4z8pgvuBvTsUflC9YjMMiD0Tsjeby4W5pkILrD50\niRa+8bv8I1vnfo6P1atXM2rUKH799Vck0blzZyZMmEC7du1OSPl+xfYPICoqioULF3LbbbcxePBg\nnO+8wy0vvADNmsGMj+DRWfBIT/jyLeh/O6ybDNmbIKQunDbcDPuOnQ2uTZA/BVK7EZGwgQjjCtJ4\nimDOJpTzKtV7kDx+pwFFWChkMsWMIYBg6tOVtgwhSJ/S2jhAuOL43ZhJZx6lNqfXqE372cValrCX\nLWRygCLy8eDyWXZgxUYgQQQRShiRhBFFBLWIJJZoahNDA5pxLqFElI2heXGTzU4Osp40/iCVNWzg\nB4rJ8tX6CfAJIcTSnMs5nUEk0oFkBgGQxQfUYliZjEJ8zV2s5g2f1VnTN7zBih07EdiJJIgogokh\nhDjCqU8EiUTQgEgaEsWZhFHZVeUhDwdby6UtFLGMbN5H1hIIBUItBKgBgepIkNtOaEkJ4SF5XNC+\ngAsA892LfPLyYdWGaH7d0Jalqwp49tlnGVlQQJgdLqgDF3f6nX6bmtLkjt8hbiiEHzY+nPcyZI+A\nwI6+SEiBY6WppEqDcC6uD9auYFsOJb8cUliGBX7/Bv54Fxr0hktSoOgzyB1nWnLBl5oRliFXmOO/\nx0roIMj6r6mIrfFHzhfV3Df2CORnQngtU+F9+wG8cbc5Tj36U6jT8Nhl8HNMrFmzhm7dutGgQQPG\njBmDx+NhypQp9OjRg5UrV5rxBH8Sv2L7h2Cz2XjnnXcIDAxk6NChpI4bx2NDh2JMnAh37YG+t8Kb\nI+C0rhDewHy/55o1plIDCL3OHDdwroaSxYCLeJ5hr7c/u4wLaGh8QgSXVqhzBS+xgy84g5toRD2C\niaWEHLYzn4+5nHAiaA1sJ4dgYrD6rB0nBSzkZjoygkQqPpEns52J3Mbv/ISBQR0aEkc9QojARgBW\nLD6HpYsi8ilmN4XkUUAOeWTiPiyaMYgQ4qhPHRpQh4bE04gEmlCPSzmLEYQTRSZbKSYTLy5KyOEA\nq9jMx6zlXaJpSkMiqUUuW1mNlzTqcCZNuBgrAezia0B05xliaU0Q0dgILmurFw9en2vVRRFuinzu\n1DxfOuROzWUvyfxCPil4y7UjiGiiaEI0TYimGdE0I4ZmxNCCKM6pEPwivLjYh4PtONmB09iF09hD\nfuAfZAZugwgIVENCvW0JpTuh6ki4W/SqO5te582CW/NwWzqzet4Wfvgxm29+h/s/dXP3x9B61pVc\nMfA6Bg4cyNlt22Bs/QBSfoIOvcHWDJy/g3Ml2FpB5GMQei24toBzHbg2mhGrrk2mwgoZCOH3g72z\nGcUJ5ntn2MyI1pCBUDgd8idD5mDIioCIe8zxOEu58PujEXQh4AXnegiuRrGFJkCxLxgp5yBExkF+\nNrzzoOnxSN0FHzwOD0+ved1+jovRo0cTEhLC8uXLiYoyA39uuOEGWrRowciRI/n444//dB1+xfYP\nwmKx8MYbb5CQkMCoUaNw3ncfTxUUwOjRMOwu2PiLOSg++i34+BzYMg3a3WPu7M2F7JFQ/AXEzgIj\niKCSLJqnJZMUZ2dv8HU0N34jiNZmdtwks4TujKUroyrI0YNn2M9vfGncxkp+J8KIYzBLiMaMwPuJ\nUWxhLmn8wa2sJ8A3bpfKXgbThnga8iRz6Ew/Qqj5U7oQheSRzUEyOUAmB8gghYMkk0YSO1nLUj4j\nl8yyfcKJJpEWJNKSBrQkkZa05Fa6M44UlrGK1/gD80IyeItAwnGQy7k8RC8mMIjveJ3G1KIlLbni\neA/dYe3wUkAauewhlz3ksJtsdpHDLlJYTh77KH33y04EMbQghhbUohWxtKI27YihJwa9KpTrIpVC\nllBoLKHQuphsFgJgs8UTEtSZkOgHCHYUEZr3G50uz6HTpQE8VhRGfnEE365LYOGPdt566y2ee+45\nmsQHM+jMYm7qEECLtJUwYDGExUHJj5D/JmQOMUP/oydCWDn3kTymazD3OUjrArYWcNql0HYaBF18\naHzOsEDYEDO5kyH/NcibCAXvQcxUCO5fs9cYSq00T1r1+QLCzDFnCTL3Q60E+HgCOEtgwmJYvgAm\n/xeufhga/8nxPz/VsnTpUvr27Vum1ADi4+Pp3r07ixYtoqioiJCQkD9Vh1+x/cMwDIMnnniCwMBA\nHnvsMUo6dOC5V17BeO01mPcBTL0ZvpwHbYbCqieh2TUQGg/5r0PBFIh+0QzDBsh7GQuiQUYJ2+rX\nZ79xD3WZRBBnUEIODvJwU1ylHAmcw038zCpe5XQGEYnpwhFe1vIeANnsZB+/0JgLAVjCp3hw04Or\n6cW1x952DJ9bMpJEjuyuKCSPFHaSwg72sZ1ktpHMVn5hAQXkABBLAm3pxln05FJuxkoeTemDnQi+\n4wFW+mYjKbWW8tlHMdkEEIIN+zHLXrEdFsKpSzh1qU/nStvdlJDNTrLYThbbyGQrmWxlF19T7FPa\nQURTj3Opz3nU5zwS6EQg8URxDVFc4ysniyKWUcgvFLGCg5aJeIPzsQRHEum9mqjiUMKKSwj35nNl\nvRSu7PUr7rFN+Gl5P+a8Op3XFsPYr1x0abKbW7cN55pRcwkO7gtBfaBwBmTeAoXvm0FJ4XebVphh\nNcfVQm+Gku/NwI7iWeCZBMXnQOxHENC4YoNtiRA9AcLvhMzbzHcvA06HyCcg5KrqFZwRDASYgTXV\nYQsBZFqPhTmmxbb5V2jfG2rVhd63wIwn4ceZ0Hh8jY+ln2PH4XAQHBxcaX1ISAhOp5MNGzbQsWPH\nP1WHX7H9Q3n00UcJCgpixIgROG+5hUmLF2O8NxduGgPTn4Bx88EyH36+B/p8ZN6MGAW2cgoh8mEo\nnodFEGs8wH5GsJ12xDKCukziPB7jV56nLTcTQ7NKMgQSShceK1v24MFJCRfxCp9zC43oRSMOfW38\nSu4im4PMZDzNaEcvrvtL+iaUCFpwFi04q8J6IbI5yFZ+Yy0/s5bFvMydePBQhwa05xs6cBFnMgIb\nwaxhCk4K6M5YzmI479AOO5HcxJI/rdyqw0aQL7qzciReERmksoYUlrOPX1nORBzkYmAlnrNIpCuJ\ndKU+XQmjDhFcQgSX+NrvpYSN5PIROZY5ZIfuwBpaiwiuIJLhhDlrYcuZwIXnTufCTrG8tr6ABV+W\n8O7yWG4e9yUPTE3ktsvacnfzxdStGw+950J4BhRMh4yrIagnxH4I1ljTIgu+yEwSOJdD+iA4cBpE\nPATh94C11mENbwi1vzIVYt4kyLjGLDPmncrKsBRvBuACW8JRerWccoytD0mbYe8GGDLWV3cAtL0A\n1v1Uo2Pk5/hp2bIly5cvR1LZtIEul4sVK8yZlFJSUqrbvWbIz0klNzdXgHJzc09IeZMnTxagkZde\nKi9Iv62S7u8qDWksrXtHmoy050sz8/6zpLRLKhbgTpXcWfLKpUKt1EFN1FqhDL0tpwr1iuprunrI\npZIjyrBCX+saNVY3oW5C58vQZaqtG9RKz2uYNmp5WV6vvBqpAbpGjeWWW+lKOSH9cLwUKk/LtEiv\n6j4N1mllbRis0zVd43RA2yRJ27RQY4XGCv2k0X+rzOXxyqM0rddqTdVnulGvqVGZnG+opb7VA0rW\nL/LKc9h+XhXqN+3XI9qs5lortE527dFAFTinSQevl/YESnuQ9li0fcVVuve2gQqzo8AAi4ZfGKs9\n4yOk4iyzwKKvpKQ4KbmBlPOC5MmuLKwnX8p6SNobLO2xS1mjJK/3yI0r+sosb2+olP1k1WUWfWvK\n6Pi9+o7aMt28FlzF0rQnpN6YacuKQ3k+f1Pqa5UK88zlDRskkBYvrr7sKjjR1/mJYvXq1QK0evXq\nv62OqVOnymKx6Oabb9amTZu0fv16XXvttbLb7bJYLJo5c+aflsH/gvZJ5q94cXPixIk89NBDjIyO\nZuz552NMmQR3nQUd+0Org5C3E67bAM6PTfdR3T/MUO1yuDhAHp/jIZtUHiaRD4jkanaxiE+4iVYM\n5HJmVAhkMPdzMpD6NKAVvbmJIEIpoZAsUskhnV9YQCp7OYMuDOEJDpLE24wilvp4cbOHjUxlJS2p\n2YucqaSxmW3sI4Uc8iihBCHfq97BRBJBDNHUIY4E6hJLrUoyV0cGB/idH/mVz1nCXAAu5AZ6cyUr\neIACUhnIJzSiF/tYRj3OxVI2p+Yh9rCZ9SxlH9vJIg0HRXjxYsVGECGEEkkktYiiNrEkEEs94mlI\nBDHHJG9V5LGPZJayhx/YzkIKSSWUeFoygFYMpCHdsZRz1gjhYCv5fE4Wb+NgKyGcS6z3diIc8Vic\n6yDvWZCFnDUGb7yXyUs/QE6JwW23DeeJ/kHUdm2Aro+akwEUfQaWCIiZAqFXVRbQk25Oh5Y3DkJv\nhFpvm1OhlQnkhQ1vQJMrITgUcsaYbnTsEPEAhN9lTtslN6R2NMf16q45NJVaVWz6H/w4FO7wwPqf\n4eEe5vrPXWD19cWeDXD7GTDhJ2jbHUpKoHFj8/ts7713bMfgVH9Be8ZCzm5dswjmY65j8wba33hp\ntS9ojx49mhdeeAGn79uS55xzDr1792bcuHHMmzePyy677E/J4FdsJ5m/6oSfNGkSDz74IBOAh557\nDhoGwgcPwMNTYPsDcMbd0Hks7G8FAe2g9qdl+7pIYyddcbIDgFrcRR3GsZPOONgGvMRC7qYXE+nE\n/RVuvIv5lNEMZBobaUSbSnJ58bKMRbzHk2znDwC6M5AD7Cabg4QSgZ1gprICaxUKAiCPPJ7jJT5m\nPjvZXbbejp1ggjAwcOGmyKc8ymPHTkMSaUJDmtOUVjTnLNpyJmcQTGU/f3lyyGARbzOPKaSzjzPo\nwkXcQD9uYReLmMtVlYJr9rCZ57iZzazEgoV4GhFDPMGEYcGCGxclFJVFeeaSUUHmUCJIoCmJtKAB\nLWnCGbRhWvBQAAAgAElEQVSgPXVpdFwKT3jZx69sYS5bmEseSQRTixZcwekMoiEXVIq6zOdz0nmR\nQn7CRh2iGUwtz/UEZr9kRjJ64yjIbsRrCzvw/Isf4HUW8ngfG/ddaCPwmmUQXQey74aieRD1PETc\nV/WsI4UfQsYQc9qtWu8cmhlnwxuw+A7zHczLvzfH2Dyp5iQD+VNNN6f9fPAkgWsrxC8He4fqO2L9\n67D0fhiWD08PgO2r4eKb4ZZy42keN1wZAYPHwsD7zXWvvGJ+tmjLFvP1mhpyyis2LuFsah19h6Mw\nm13MLndNAuTiYglpR515JDc3l40bNxIREcHpp5/OqFGjGD9+PBs3bqRVq1Z/Si6/YjvJ/JUn/OMj\nRzLuueeYbBjc2SARBreFzcvgrqGw6SW4ejUErYHM/0D8arCbJ13pDB3NWIFwEUJnilnFDs4FoD7v\nsYrV/MZkuvA4PXimrM73GMNHvMjnZPvmf6waDx62sIp4GhFJLAOIp4h8OtCblXzFp6SwjqUEEEhn\n+lfYdyh3M5u5DOZaetGdtpxGIvUIoWLklBAFFJBJNqmksZ9UkklhD0nsYg/b2cUOduHChQ0bZ3IG\nXehEV87lfM6jNnFVyu7Gxc98xkLe5nd+IIGm9KELSbxHSwZwFYceEsZzCz/xCSP5gA5cTDCh1R4z\nDx6yOUg6+0hjL/vZRQo7SGIrSWwh2zdfZhRxtKETp9GZM+hKazpgP4piPhwhDrCarcxlM5+QzQ5q\n0Yr23ElbhmA/LEK1hA1k8hY5zMCLg9o8TJyjJ5aC2WZ0rSeVrL3n8dQTPzLlZ2geB2+PHUbXiwZC\ndCvwvG5GOlobQex7ENSjslCuzZA5zHyVoM4SsJ8DX10FO01rmZtTISAYAn3XiifVjJx0LDcDR8Lv\ngaDK72BWYs0EWPMcnPc53N8FImrBRxmV8913LtRvBQ++by4XF0NEBLz0EtxV9UQGVXHKK7a/2WKr\nio4dO5KWlsbevXv/vBB/2pnp55j4K33vXq9XI0aMEKCZIL32onRtbWnsQGlmG2luF8njlPa1lFL7\nlO1XrE1aK5SnryqUl67XlaZx8sopr7z6Wc9orAzt0ndledboR3UT2qLfjknWfdqhwTpd3YTm600l\naZt6yq7eCleGDpSTrVjhStQYPX+cvVIRhxz6Tb9rit7RTRquxmonFCUUpdN0ru7Vo1qkr1Sggir3\n36UNGq5O6i6LXtPdOqDtFbaP0SDdowtOiKySlKEDWqZFekejNUIXqY8i1E2opwJ1p7rqHY3WGv0o\nRzVjoFXhlVd79KM+0VUaJ6smKFxf6S6la3OlvG7lKEUPap0CtVHxStdkeTxZUsYd5vjW+tpa9ww6\nt01tAbq3Byp6NUja+K7kWCcd6C7tMaT8d6sWxlMk7e8kJUVLxUulzI3S+4nSmonSvAukaU0kR/5x\n9F45lj1ilvP+4+bY2mUhkttVOd9z10sPnl9xXXCw9Morx1Sdf4zt2OqYM2eODMPQSy+9dEJk8Cu2\nk8xRT/hHH5WuuabqbQsWSEFBKv30Z1nq3l1yuyWZym3IkCEKtFj0be3a0jfTzAv5yzHm4Pnm96WC\nj8wbUrE5KO6VVxtVVym6v1rZvfJohnpqkmppqxZIklxyqo8i9JZGHnNfFChXK/WNJGmsBqunrDpf\nht7QI2V5FmupUJR+KReAcqJJ1j7N0Ie6RXepgU4XipJddTRQg/WZPpdTzgr5XXLpA41VD9nUQ1Z9\nqtfLtj2jGzVILY5Z0dQUt9zapt/1iV7VaF2lS1RL3YQuUoge10B9q1kq0LHdTHOVrB81Si+ptsYK\nfaTLdVAbKuVzaJeSNFhrZdEmNVC+vpcKF0jJDaU9yL2/v178TwMFBRg6rUGY1o8ypOzt0sE1Usbt\npnLLekDyVPHQ4Mn2KUC7VLLKXHfgV/OcnYy0evyxd1Z5vr9F+riTGVg1IMK8Jnatq5zvvZHSjYkV\n1/kV2wmtY8mSJbrwwgs1YcIEvfvuuxo2bJhsNpv69esnj8dT5T7Hil+xnWSqPeF37pRsNlNZ/fhj\nxW1ut9SypdS1q/TWW4fS+PFm/tmzy7I6HA717dZNoaDfRo2SxlwhXRUjLbhCeidWKsowIyQPdCmL\nStunu7VRdeRVFU+x5ShQmuaov56VTQdkRqK9rHvUT9EqVN5x98tifVoWkbhWP5etz1aOaqmJhuu+\n4y77WPDKqy3aphf0qs7S+UJRilMz3a9R2qQtFfJmKU2TdIe6CU3Rw0pTsjboV3WXRZ/pjZMir0ce\nbdPvmq7ndKs6qJtQL9k1UgP0vT5UsQprXJZLJVqr932RlYbma7CytbtSvhJt1Q710FqhfbpLbm+6\nlD9D2hsu7UzUhqfR6XVRiN2iGY92NxXT3m+knPHS3iBp/9mSO6uyAN5ic9u+VmYEZXHWIcWW9puU\nu+v4O2r+xdIXA6SXhplKbUCEVFxF3yyaakZGlrfm/IrthNaxc+dO9enTR7Vr11ZwcLDatGmjCRMm\nyOWq/t5zLPgV20mm2hN+2DCpdm2pbVvTCivPzJmmAlu5svJ+fftKDRtKd90l3XuvtG2bCgsL1TEm\nRvEWi5JuvVm6Ll56spc0NVRacq9U9KVptRUukiQVarXPHfnlUdvglkNv6Qy9pXa+cPNkXaAAzVDN\nnqqzlaP3NUv3a5Qe1ON6U+9pi7Zphb7WGv1YKf9TGq9wJSpHOTUq/0SyThs0QiMVq6ZCUTpf/TRf\nn8sr84HAK6/e0WhdpBBdptrKVrpG6gpdqfpK1/6TLm+q9mqOJpUpuYsVpnEaonX6pUzmo+GWQ6s0\nWS+pjp5VgL7WPSo+rO+98ihdL2udgrVJ9ZWrLyTHH1JyI2lPqAo3DtLgK3sK0CMXIM+bdSRnoRmW\nn1RL2n+O5E6rXLlzk6kgU/tKXo9UmCrl75NWTzAV3PaPjq9jZraRltwjrfrSVGwPH8FdvOJzc/vB\n5EPr/IrtlKvjaPgV20mm2hO+dWvpzjulzz6raLWVWmv9+lVd6Pr10nnnSe3aSTExplXn9Spt+XI1\ntNvVxjCUdVUP84Kdfrn0ukU6+Id0oJuUcqbk9fgslTbao6rdoOYY21j9oJFK0SrN0/WapFpK0zp5\n5NYk3aG+ilS20qtt/2r9obpqJUPRaq72aqqzZFUtoSidrs56WW8o9zBX2h7tVZQaqqN6yXUUi/Kv\nokQlmqO56qo+QlHqqF76QUvKtqcqSZcoVsPVSZP0X3WXRQ+pTzUl/vUka7ve0xhdp6bqJjRM7fW1\npsspR432d6hASzVOExSml5WgLfqsijy7tEt9tFaG0vS8vJ4cKfNuaQ/ybuuhiQOQYaBr21tU8m4T\nac0LkmON7523eMlR2eWpoi/Mh6789w+t+3qQqdh+ukNyVj3+eUS8XvOBbs1EyeWUkjZLWalV5925\n1rxONv16aJ1fsZ1ydRwNv2I7yRxVsY0YYV6IZ54pnX++tGvXIWttxYrK+xzO55+beWfNknJztWXL\nFsWEhOgiw5DrmUHS5cHSB82kT7tLRUvMG0jBHElSul7WWtnkLBe8UcpqTdVYoRcVp3GyaKzQIg3T\nWKFvdJ+ydVB9FKGXdNcRRTugVEWqgTqop/YqqWx9gQo0X5/rKg2RTbGKUKLu1yit1h+SpCl6WHdq\noFCU3tYHR++Dv5jvtVgd1FMoSv10tTb6Ai7WaaluUht1E7ra51bdpqO8OHwS8MijX/WFHlBvdRMa\noATN0HjlqYoXnqsgV0mao/4aKzRX1yhfFZWCVx4d0CitFdqtAXIr2wwU2WNIa2pp7nBkD7Cod2tU\n+KIhZayT3AeklLZSUh3Jub1ypek3SEkx5gQCklSULu1eaCq3eT2PrQMK08z9dsw9et7sg6ZiW/rp\noXV+xXbK1XE0/IrtJFN6wvft21eXXnqpZs2adWhjqWKTzECR8gEiF15Yswq8XqlzZ3OfunWlvDx9\nv2iRrKA7W7eUrq8rje1kXujbZpsun32tJK9bLmVpnexKq8KlOFFRWqD/yCO3lmmCFmqoJim2bJaL\nfB3QTD2vHrJpp9ZXKdpTGq8IJSpTVYyv+EjWPj2iJ1VLTYSidKvuVhefkrhSgxSuRK09QvknE6+8\n+lCfqonOVIDi9KwmyS23XHKph6waInSR0Au69e8WtQK7tVHjNVQ9Fai+itIMja/ROJxXXq3XTL2o\nOL2oWO3St5Xy5Gie1itSW9RaTqVIBZ9Ie6Okfc30/f3BCg1APVugoheRVj5tuiL3tZCSEytbbu50\nKSlWyijXf7+OPDTmlre35o0uDULZ8rk0ZoBUVE2Epccj9bNJCw4FBB2LYps1a5YuvfRS9e3b16/Y\n/Irt/w81sthKWbVMuv56U0ldf33VBbqc5nhAXjllUVAgffmlFBgoPfusJGnqwIEC9Pqt15lPpNM6\nSv+rKxX8VMHtk6TB2qzGlaZgell19ZOeqLBupV4pe4pP1xYlaYVuUCsNVye55a4k6u0aoTPVrQa9\nZEYeTtE7silWZ6mTPtRk5ShHZ6qbGqmtMpRZo3IOledWirK0Sfu0QcnapTTlqLDG405HokQlekxj\nZChaF+hSpWi/XtB/1EPoEtn1pK79U+X/VaRrv17UneohmwYoQYv0bpXH7HAKdFCzdLHGytASPV3p\nPCnRVm1SfW1WY5Voh+TcISXVlrbEa/H9KDgA9W2DnK8gJX0rufaZlltyguRKqlhZzrNmlGSp1Za2\nylRQM1pK+3+peWO3zjT3m3qnee4v/rD6/IMSpGlPHlr2W2ynXB1H48hv1Pr5e/nqXXj8PLjEN5Hv\nL79U3O4ohkn/gYFRcFMiXB0DNzeB6U+BXOY0QLfeCs89B5ddxvDRo7knOJh7357D0pIE+H4POHPh\nj0UQciXkjgG5iOG/ONlNPl9VqC6CRPJIrrDuHO7mUZz0YQpv0oppdOI+XmQTK/iaaZWalEc+ETX8\nTI0NG/9lKN8yj92kcivP8yBPMJdpZJPDbdxHPtV/2diJm1f5mo48SRi3Uo97aMOjnM5jNOEBohhO\nBLfRjpHcwBRe4WtWsxvPYbOXVIcdO8/yBN8zn63soB3daMt1hBFLLg52sf6I+yaRzGOMoTMXU4cW\n2KlDAHFE0IDGtKMLvbmZO3iBV/mBJUdt77EQS11GMJkZbKEt3XieodxKezayvNr9QonjWr6gG0+w\nhCf5kEtwlJPLTgua8gsQwA46UxxQBLUXQXAh598ayvw74LutMOx/oG9uAWuCOfExAXCwr/nF7lLC\nhoNhMz+OC1D7HLjDCzlb4dMukHnkvq1A7k4IioU03+S66xZXnz+qDuQc5TM4fk5p/LP7n6ps+Nn8\nnfYwPDEMet54aJvXC6P7wdaVcP0oaHoWFOSYM5N/MgG+mAr/fQ2efBJcLli4EJ56iolz5/LHTTdx\n5eL9rLbZSSxsCetehuYfgnseFLxHSPitBHM2mbxOBP3KqoylNQdZW0FEAwMrAdg4NM9ffeJpSSKv\nci9n05N4Dn2ROJwwcsg9pm7oQVfWsJj3mMk4JuHFixfxKQsxMPiED6rcL4kMruBl1rOPyzmbGzmP\nJtQmmlAMoAgnGeSTQjbbSWMdSczlNxy4iCKEizidSzmLSziL6KPMHgJwAd1Yy89cxRCu4Gb+x2tk\nsJK6VD0r/TtM4w4eJJww+tCLvlxILaKxYKGIYjLJIpkUNrONj5lPEUVYsHAWbenF+VxMT7rRmUAC\nj6k/D6ceTXmKOVzNfbzC3dzBeVzFvQxj7BFnTbFg5Xyeoh6dmcc1TKc71/EFYZjfRgukAc34hV1c\nxG5609S+FHv8ckjrzkV31+eDvK0Meg9azk9mZN0B0OMtqPMlpPaAtAsgfpn5NW1rDIRcA0WfQNQY\ns3LDMOeQ3PUp/DYOLpwO1iqm6ypP3k6IbAppvr4KOcpMIJFxkJt+DL3o55Tjb7MV/59SY1fk5Dul\n4adLL50nXRVYcRby5YtMl8qqryqXkb7PHEfojTmLQn629P77pjtzzRqlp6ergd2uTmGBcvRGeivB\nHIw/eJ2UXF/ylihT/9NaGSopN6vGar2pcbLKcYQZObzyyCOPpquLnhTqqxCNUUX36ct6Q3bVqZHL\nqyqe1aSyWULO1UVCUVqiyi6pYjnUXqPVQPdqdRXvYR2JEjn1s7boSc1VBz0hdKMCNET9NVFz9KtK\nDntRuyqKVKT+ukaBqq0F+qLKPHO1QIaidZvuVb6OPqOGW25t0Ca9pfd1o25TvFoKRSlcibpW/9En\nmq9iFde4nUfCJZdm6QX1UpCuU1P9US7q80ikaq1eVl1NVmNl+r6EUIpTqdqs5tqsJnJqn1T8o7TH\nKq2I1VOXhQrQ/DvDpC8HmmPDjo1mqP/BK81Qf8kcp9uD5DzsHbYPO5juxe+GVP+FAEn68Gzpu5ul\nlV9IV0ZKezZWn3/8IOnB7oeW/a7IU66Oo+F3RZ4q5OVBSgpERprLFitYHBCwDNpHmBbaTnMSYVZ/\nBbUbQvuLK5cTWw9Gz4VHZsKqL+CBrtC3JzRtCk8/TWxsLJ/ccQdrCpw8kNkQVudByg+Q1xk8+6Hg\nXaK4DisxZDK5rNhEuiA87GNZleIbWPDiZC/LCABaYeM7ZvM9H5blOZ3WOHCwhW3H1UWPMoINLKOt\n7ztlNmx8z5JK+eayitXsZh73cTaNaly+nQC60pKnuJKVjCGFV5nEIDIp4DpepyEjGMtnZFFwxDKC\nCeZTptOfi7mGW1jBb5XyPM8rXEgP3uBFwgg7qlxWrJxGa25lCNN5k/1sZg2LeYi72coOrmIICbTm\nHh5hI5tr3N7DsWHjeh7kPdYSQzz30oPpPFtpYuny1KEtN/MrVuxMpztZvom0AQKoQxO+RbjYw2V4\ngzpBzJtQJ4PR90Zy+ZkBDP7Aza4Vc+H3iRDYBmKnmZMnZ95szt4ffJFZmGNpxYqDfF9f3vIBJFV0\nm1fAXQyZ66B2B+jQF+bmQMPKk3VXILwW5GdWn8fPKY1fsZ0qvPaa+ZmMYcPM5fRkiGoENx+ArsOg\nWQTcfx7MexkSW0NmCrgcVZdlGHDBIHh5ORTmwmMXwv13wGefwW+/0WHRIl5t25bJv+1l1uYQKKoF\nP0+A4GshdxwWL8RwK1m8j5dCAGJpQxgJ7OLrIzbBRhCn+z4eOoAH6M5AJjOCEooA6EwHAgmsUhnV\nBAOD02jNSzzLclYRRSQJxNOTyygu96Xv39lLE2ofk1KrigSiuZuL+ZUn2cR4BtCecSygAffxMLNJ\nJ6/K/QIJZBZvczZtuZwbSCo3NinEFrbRi/OrnTS6OgwMzqIto3mI31nCFlZyG0P4iM84nfO4gEv5\njM/x4Dmu8hNpwass5iZG8Q6P8xiXkU/2EfNH0pAb+YlAwplJL3JJKtsWSEMasYASNpPMf1D4LRB+\nF5amGXzwSF1igpzc8F4A7l8eh8L9EHIFxM42v7yddTsY4WBEgOewMa9m1wEGhCXC8pHmp26qIn0N\neN3gioa5k2rWASERUFT1sfXzz8Cv2E4F3G6YNMkM9qhXz1x3YCfUaWwOlK8dD/V2wwUXwJsjzIFt\njxuSt1RfbmIr89tSLgcseR5aJcL558P27Qz/3/+44YYbuH11Adu+yYTCVNgX75s9/R1qcTte8slm\nBmDeTJtwEbv5ptoqezOFe0nlXB7kv0wglwxmMQGAEELoRHt+Ymm1ZRyNnpzP/5jMNN5gOCP4kZ/5\nkHll2/eRRYMT8EmO8rSmHm/wH/byEvfSmzf4gSY8wPMswom7Uv4ggpjHDIIJ4gpuxIULgAwyySOf\n5jQ9YbK1pDnjeYok1jOHd3HiZAA30oZzmcGHx6XgrFgZytOMZxEbWMZtdCSZ7UfMH0YdbuB7LFiZ\nxYUUcSgIJJgzacB0cvmQdJ6H6Elg70Rkl2JmDYNVSS7GLnLCr76vsYdeC7XehYJ34WB/8ztr3sMs\nqObXQkCYOXaW8Qds/5AqSV0OtmB4Ywy8/SCk1WDm+NBI84HQzz8Wv2I7FXA4IDsbunY1lzP3w+51\ncFoXsJYLDojbBWe2gZlPQ4PWUK/F0ctOaAqvroKo2nCmG+6/Ez75BKN9e6ZMmULdevW5dl0Yjv2R\nsHIKBF4Bec8R6K1NBJeRwWv8H3v3HSZVef0B/DMz25dd2KUsvYoUaQqIBayI2FBRI/ZYosb2i4ka\nS+yxx6ixxBoLRqxRsSAKVohKUUAUBaT3urTtu/P7484u21mwYZ798swzzL3v+947szP33HPO93xP\nVNDZqKOhVvmqCjuyPJI00kCWeCla6miEyzznditjd/GHOsh7PpSvBm+zjjjTKQ5xoE4xckY3Wz+L\nJtKs3E6SSl3RTEO3OMF8f3e2/V3jJXv4i8/KheC2jm3qZU+bbqb7PAxlPedKP9MfEwkSnGi4icb6\nzHu62MVpztfLQK97e4eOubfDPWaKiDgX2Mc3JtU4Nl1rJxsnT7aXDVdU7m/c0HGausoK18oJfUXT\nl1Bkr9+0cvXB3DKO6eOfYfaoYEKD02n6GgVTCSWSekrFg8WnsusprP+OtkOZ8tfqvbbVU2i6B6ti\n39mkbROBpKSTuymoIK3HrxL1hm1nxMRXg66+A44iawDJWbTcj7gk2n7LkAHcMJqkiv3I5Kzi44t5\n9QBeO5CPL2H5f2nUlJvHEA6x7j2GHATS09O9+OKLvlmf78pR64gmMLuE4lVsfkRjF8n3tS2x0GFH\nhwqJmGtMtaddosSTbnSqrq50lCnGOdVVUjX0hOvAMIfZbLMPfFKnjyIqaozp/uIllxvlIeMsjHkD\nceJ84zMFVlkvu8wz6aqluVYq2sFQXF3QRJp7nWqqm6RItK+b/NnzCit5b331cbFzXe92yyzXSEMR\nEav8tKy7AfoZbZRJxmshyzFOcaCjTK+l/KAmtNTRQyZqY1d/cKBJtXjtGTo6wWuW+dwY51cwpllu\nkKy3RU5WHEml0V1kLvaXs+J0a9fI2a9kKn7/d0FIElKOptUCWs4moZreYV1PJ2c5rQ5i/Td8/5+q\nY1ZOpmlfHpvFHR/QsMm233BKWsA8zs/Z9th67JSoN2w7A/4bI2S0bBk8f/Bv9hhCWkbQLbjdYeRv\n4IQp7HY+iZ+z4tWKaxTmBLU9c0aR2oLkZsx/Ldg2+lDiNnPLWFYt4s5TKApCY71793bHnXe6dz5j\n3osy8zVCh7DxTg1K9paoi7UeBMkytLGvOUZX+zamGOdJN+iqv/VW+ZMh3vWs4S423igbrdNDd510\n8HINa5THZnkOcpvD/c2TPvGaqf7gWe1d6kh3m2q+BAly5RpqsAIFoJc2ChWb5kdoWLgN9NbOf13n\nFif4u3cc5LYq3uKNrpQk0U3uFBaWpZkVsQaiPzX628N7XvW2F62yRl8H+rPrK+Qk64J0mf7uPbs7\n0NWG1WrcWtvHER43w1Omebxse1iCtp5TaLGVrqXBmSQdLGGvDI8cl23qnHUe+2+YD3+/1VsKJwfU\n/+rQbE9SmrN5MW2GMOk6SsrdzKydGVD9Ww+mWVt6H1C3N5scO17Oj1c3WI+fF/WG7ZdGNMqNNzJg\nAIMGBXmzWZ9yyG+3jglFiCQGTMmBN3LA3ky9gml/5/vpvP9vloxjw1yOfp8hozj0BU5fwGH/YeM8\nXujD+ne4ahRfjuOu0ykOLgKXXHKJw/bf1xlvbbY6uyHTV1K8Smjzoxq7yAb/USi4i97V0eYbp6Aa\nZuB0H8vU3DWe8U+fGu5i97hQWFiyBq5zgmJFTnSs/3ijzBBVh2IlfuN+U8z3jsstcZ85/matf3rS\n73xvlf6ud7bHygJeybGO0nvbRUMp3jLtx/gLbRNxIq50lI9cba6V+rveV+XCtQ01dI0/edxIs83V\nWktLYp/nz4GQkMMcYpqP3exq93lEb4NM3EYxdmUkSXGzV/Q12NWO9qUPaxzb02l2d653XWKVmWXb\nE+0qy43W+Iec0BQyHyC83t7HdXT2/g1cPbrEuq9Hs+DNbZ9QOELXM5g9koR9WT+L71/eun/O8yQ2\nom017OHs2eTVQIgpNWx5NbNf67Fzo96w/dKYNi1QFbn22oDN+N7TNMhgr6O2jinYEOQUYN3FNPiU\n/Tow8U+MGsKdp7J8QuClNem1dV4oTMdjGTGDHhfy38tZ8SBXPM1Hz/Puv0A4HPbkC68oSU5z3iMb\nRBd+SfFANt4pI/obYUnWxe68d3WMYvm+V5Vivdw8bewqJCQs7GL3GOI0j7lGe9194X2fe8dvHGO9\nbO/5oMaP5U1fGmOGl13sUL2EhECaZL+1n6/c6gGne9VUu7nSFxaUzY0XZ6ie/mPKT5LLqgn72NVk\nN2msgUH+WiHvdqFzpEvzmKe10cr8n8GbrIwECa7yR9N8rLFMgxzuOrduF7kkQaKbvKyXQa50lNm+\nrHHsIe6VYRevGVEh39bUpZL1scS5ovGdSb+UFkvdMrxQYUGBv05ow6d/DtiM20LX35KfzajryckM\nfhMFG4MbxjnPB8XckcSKc+aP5t9deHnPINJRGcmxEox6j+1Xi3rD9ksjOzt47tYt+DF+9Dz7/YaE\nmJpHcQFLxpO1V/A6PlaDkzSfg88kYxXX3UTzfchdVb3MUFwyA+/miLcCz279Eww5jcf+VMYSy8rK\n8tjtN3l1MU9/ksZnsyheJbLpeY2cYp1HRRXJ0FEzPc32ejVvJlRmgCAs7GpPGeEyM2JMyE+9JUOC\n7rr6t5dq/FjGmKGLFg7Vq9r9cSIuMNi37tBBUwe61YexGq67PWCBT82w2Ixy1POfA61l+sg1empt\nqLvKDG6iRL9zukc8ravOPjNFnryf9dxK0dWuJhjjRle5xd0OcayV2xEaTZTkFq9qq4srHWmVJdWO\ni5fsGM9Za7YJbi7bHhKnlYfkmW6dJ2l4LeE0WUO6+/PgEg+8s9yCubP45oltn0yjLjRoy1HHcNQL\ngZH7+GK+vDMIQ3Y5reL4Lct453gyurJxPp9eUXXNUoJJ3pa6fiT12MlQb9h2JsyezMoF7H/i1m2L\n381RvA4AACAASURBVCV/PZ2D+rAK7LDkJxnUn2nXbQ3BTL2NghruNNsfzlHvsGoyLWYExeC3nEBh\nAR8+79jXLnV6S/7w6iZLvl9FQV823q5x9GyFltoYy4vt6hhzvak4RmEvOx2p8lS8GISE/N6d/m22\nQ5xitEfc5rdGGG60d+SoPkE/zkyDY4XYtaGZhsa50p46OtSdnvOxy1zrc2M0lOTZGgrKf0qkS/aW\ny3TR3GHuMj9mNP7oQoUKTfCZXLk+8enPfm6liIi41uXGe93XvtXXgaZuR+g2WarbvCEs4mpHy68h\nZ9dMTwNd679ut6Lc+ikGaORUK12jOBwNjFvydJcOT5eRGuevn3Ziyk1BgXVtCIVoM5jCuXQdzKD7\nmPMcn17J7pfT6gD+fFDwgO+eDUL7x33GHlcGLMySSh5rqcdWH4r81aLesO1M+OiFgJbfY7+t22Y+\nTOPeNO4ZvI7vSOLAQLi40W00nMqQLix4Ldg/Z1SQfK8JLffj2E/YsoghrZj3Bc/eUFbsfW/fhlLD\nnPsU0U9nUrxS8uYpUuxtrUcQ5NnyZFtUqdC6oSayq2H7hYS00VlxjDH4tc+U+N4WW7xVDQmhUJHv\nrdK3Bp3FykiLGZIj9PE7TyMNUYO09ayJVZiKPwdKjVuaJMPcY4s8WZr5kwtNiOW2llr+s59XZRxg\noC99pJUW9nOEN6sJMdeEJlq4zWgLzXKPC2sct48rNdHVWBdVCA03d6tiG6xxH2nnEWktdd+Orjw4\n31PvzTdv0XK+fWrbJ9L6YNbNDGoxu5/NSV+z/z/Z67Zg/wl/5uRrg3KArx8NwpOJDQODmL8uYFSW\nR73H9qtHvWHbmfDpa+w7nEhQ6yR7DgvfptclwZ1pKRL3Jf8z0v9Ms/eIX8Axw4hPJhezn2NTLSG4\nJr0Y+jLrp3BsX164jcQUGjaVsft+HunOmHk8824uW3Zlw60aR8+22bvyzdXcHtK19Z2K9Oos7ayy\nWFElT64U/+cfkjUQEfGxJ+2uZ7XhyLUxYkqTOshNlSJBnJHOs6sWMh3qjy5zk9OssMHYHaC4/xho\nIs3rLjXPKhcbCY4zrCynlSqltuk/G1pq4QOjDXGgo53iidi51gWd9fFH//S2J42pQZA6It4Q91ti\nopn+XbY9QRuZzrPG3xWHcmn4ZxK+dN6RjWSmJfjb5E5BBKJ4GzWPrQ8Onpe+Hzw32pUe5wfkEuh3\nKL0PZNnHQXiyZ8wIN9sz8N6WV/LqE2N/l7z/Ybr/rI18sf6necz65VVb6tX9dxasX87yeew+eOu2\n6feS1JhdT644Nn63QNcxuonkg2gykjUn0TeJcQhFWTyO7mfVfLzWBwWq6h+czQG78dBFgVH9+AVH\nnnSaU1aM9MeXo4YOmCNrWImGm3MtS8u01iNauktXw33jBYe6Xyh2f9RCByVKrLJYSx2rHDJDM70M\n8pUx8hXbTVMveM9qazS1tb5oQyys1agOqvrlkSrJW/5koJt9INcd2uihted86ki713mdAsXWKxQV\nlSFBYqyoekewm9YedIYzPeYYfR2hd9m+8u+5OqyQbaE1ChRLk6SdJnXqNLAjSJHiZU+72BXOcYkc\nuS52bp3mHuYM033kHhfoaV+t7VJlTHsH6up4H7hSV8eJjzFYm7nKOo9a435ZqZeRfZOUvdq6ZNCX\nbnlvkRv2LdBs9nN0O7OWk88ivUOgQFL5t1JYQFx8cGO49EMSM2lemq9OoUkfVn5Kj/O2zolPJBwm\n/3/YYzt1Mn4qPcx5P9G6dUe9YdtZMHdy8NxjUPCcu4ZvnwzyAHFJFccWfkekeaCjh2jq8YrCheKj\nZ7Efvsqg03EV5xR8TfES4toS1zX4oXc/i3Vf89X9JCbwxbtB+5vBZ7hnzEhjJ3LJs0leGJQqHPmb\njAZnWB96QnM36uo4k9xriU+1sS9opytYaFa1hg1OdoX/ixV4p8e0Fp/1oktdUDYmEjOUtYnv1oSW\nMrzoIgPc4F7vOMnebvG6LfKkSqpxXo4ij5rn3xaaboPC2LFDaC/VAJkOkeUoLTWtZZ3qcIZBXvS5\nizzjILf7u1t87dsKRJtS5CrwkHEe9r65qvYEay3Tvjoboqej7K6pbbRg2Q5ERDzob1KluMSfhYVc\n6Hd1mnuJf/jSh253pvt8WKawUh4HutUjupvqQXu5DMRrLtOZ1rhf0/DlwmkXUXKLCw4Ou+29qIem\nd3JDxwcC9mOo6udVhkZdAhWS8ohGOSqR3/yZs24PDFur/QO2cCma9WNFJY8tFAq8tvztq/X7VeHZ\n/nTrve1xO4JZjTl128N+StSHIncWzJ0caDs2aha8/vrR4IfZ44KqYwsmkdCv7Ie+xn1mJZ8iu/kF\ntMTQ7sSX61G14TaW92DVUJZ1Dx45rwbr731bcNe6byqr5gfjp47V9L0i9z4x0ouTthj771UUL9Q4\nJ0uxbNlGaW0fqZpXCEc200ayBub7usa3ubsDHCQgx3xlnCMM9oSRFXIvCbGLYv4O5sb66ehiQ1zn\nP/bSSY4Co2uhpc+0QU9jXWGGdlLdo7fRBhptoMf0c6xW5tviHFO09IZjTPDxdiiHhIQ84AyrbPR3\nY1zqAsutcIAjbSlHtllmvYFudpUX7aOzl1xsmr/61p0+c71RLnCyvS2wxjme0MLFjnS3t0zboZuA\nms71Tjf5owtd5ApPea5O81I0cJUnzTDBq7GC/srI1FlvZ/mv2yvUQTZxqWJrrDeStPMRlTmwhzP2\nSfbI+PUKln8RkKhqQ6MuZFfSTl0U63Tw1sMU5bHyM1oeUHFMk96s+6ZqaUFC8v92jq1bOntk/DSP\nbj/ezdaOot6w7SyYO3mrt1ZcyMyHAi285ErhqqJF5L1P8mFlmwoEBima1Mea5mfLi/uCVYdQtCAY\nkPsOSUNptZBmbxPXjtXDg/BlKDdo1liygWEDgvHpjYlEnHzKKQ466CDnP5MkZ0myxPWPS4sebo37\nEdLFMb7zaplRCoSSe9TaNRr+YqSOAjLMmU7xtW8rMPLSY2GqDTUwJuuCvzpeplQPGW+QLh6roWZu\nvQLDTJAqztcO9bJ9XKizo7R0lJbO1tHd+vjMYCsNc68+5tpsfx84wAcm1TGc01Ezv3eQu42xzmYz\nY6UJpQSSEiVO9IAVNpjkRk87z/H21Fs7XbQwwC5G2NsdRvjMDVa43z+cZrlsR7pbD1d51sTt6v5d\nE0JC/uZm5zrDOS7xjnF1mtfH/o7xe4/7izU1FKDv6xr5NvgiRkSCRJ2lO8paD4pGGgciyE1WuGCv\njVasXue1eW22Tf1v2ImNCyrqRabHfjv9DmP5xCBX1+qAivPS2hMtZkslIk9iMgX/wx7b/zjqDdvO\ngAiWz6HbPsHref9hy1J6/1/VsRvvIZxO6tb6nBbu0sU8y11lWeIT5rdoqKhkESv2C3paiRDOCMKQ\nyYeR9U7QGiR3DMv706CEvtdQMpULbuboS0AoFPLII49Yll3strvyKJ6rcV53eabL8ZkujpVtvpXl\nOmt31MvcSp22KyNOvKfMMMYGKTZroblnPF+2v6EUcSLW2PEC2QaS3OFEr5hsN618YJZvq7nYXuJL\n2Qq9bl+d1SDdFENTSS7U2VcO9bp9rVNggPHOMsnaOog6X+koRYr9w7tlfdjWWgeeMcEEs410nj7l\nuo7XhGYausBgU9xkgmt10sxpHtbL1d7+ERRXQkIe9DeHGewEZ5pRTj2kNvzOrRIleygWaqyMhtrq\n6XSfu7tC0XZjv5dnulyTSPs9lukxqKOBnZI9/OYa5r9e1fiUR1o7SgrIWRG8nv4hF/Ti1vcCtZ3l\nE4L8WuNKmpMN2gbPmyuRrRKS/7dDkf/jqDdsOwNKhRGyYhe0bx6jxcCtFP9SFC1n8yOkXVxBPy8s\nQZ4vFVmmnZeVhPIszdpNtHgx6/6PwumBYSuP1BG0mEoogRUH0OMY0trgk63F4dhll11cfvkV7nw7\nZPaUiLQ1r0mIdrTWA9o5QJJGvvXK1vF6W2iW/DoUH+fYJFMzIwz3vP8oioUeQ0KaSrPiByr0n2Rv\nu2tnknlaaOQqL1bYv16BURa5QXcdtoOBGRIyTCtfOsTD+nrVUr2864NtFDlnaeh0Az1WLgdV+nyH\ntxyvv4PqULtX+Vz2tas3/MkkN8qS7gh3O8Y9lsaM5o4iTpxRHtdZR8c41bpaerKVIk0j57ndOKPM\nrKFOb29X2Gy5r40q29bAEPHaW+tREgYEBKmOqc7dO9cH83LNXxvim8erXQ+kxto9bVnG7Cn8ZSjr\nVzIuxtTM/pbM3Srm14h95wV6k+VR77H9qlFv2HYGlKbD0hoH4ZQl4+l2dtVxG24mlBRIEFVCYoy4\nEdZIS/fZEBlnfsv2SrY8RKQjua+RfW2l4+5C1gdEGrP2CAZeE+QylozfOmbjQtcMWqFl8+YuvTUs\nVDJH48JBNnhJVLbOhvmunGHrop9iRb43Y5tvu6lW9nCgkx1vtTUV+rS1lmnJD7wwh4XdaYQvLNBZ\nY6+bana52rH3rFQsarjWO7R+RNh5OvnaUN2kGewjd5hVq4zX+Q6yzHr/5wYz/Vd/e1gu27eWOd6e\nO3Qepeivo/Gu8qKLfO573V3pKR//IFmxBhp41UgbbXKqc+uUyxvqDJ318U+XV3vsxrro5DCT/aNc\nGDss05k2eEFJKIfU00mcbfiAiAaJYSPH5jPrmZpbySTE8jqFm3ntPpq2CRjGpQ1Ds+cEZQDVzYtv\nwOallbYnU/DLKMPU44ej3rD9QhgxYoRhw4YZNX58OcOWERSkxqexywkVJxTOZfNjpF9FuFGV9RJ1\nFZFpi09kOF1H79oSt8q81t0VZfwlKA/Y8NeqJxJpGtTCiZBwF027BmUGpZg9UvLcJ9x96DJvf1Ho\nrdfIWP0p0bB1ntTNCdaYZXWMMNJJLxFxZpta58+irz46am9UOQPZRqbFP9CwwWA97KG9j30qKt/D\n3i/b964VdpOu9Q+sJ2sp2Vj7uUpXV/rKOaYoqsEA9NbOPjp72Zd2001IyCcCNt/+sZuTH4KQkBMM\n8I07HKOvMz1mhAdt3E41//Jop61nPeId493pvm2ODws7z+2+MtFn3q52TH+XWOlLS8t5dY2cqsQW\nG7xO6qkolNp/Dyf0jHp6GtGNc1k1pfqDxpfqO65lwsscejZpmVvVQzbMpWHVMgSQ2jII/ZfHDnps\no0aNMmzYMCNGjNjuufX48VBv2H4hPP/880aPHu2kgw/eWnSR2oi5LwXCxfGV6pWyryWSRdpFNa5Z\nIk8klidq4CDtQu9YEV5sYdK9opkP0OBCsm+uOjGuFVnvBsavXwYL32LJB4GYbNP+dD3Tsb05uGu8\nP94ZUZIzW6Pi/az1sPYOkijdLIGkV6IkHfU0q5aGlCVKPO8Vf3O/DTYICTnFCV70WhlLsL2mFpTr\nwvxD8HsHo5mOmptgdtn2OTbrpepNwo4gIuyvenrGnp6xwMk+KysZqIzj9PehWfJi3Q1mWqKlDM1/\npHOBDKmedp6XXOwdM+zp+mpzjHXFUINd6Q+udasvtpFDhf6G6GWQJ91QrdfW0RANtTPNv8q2Jeoo\nxV6yjSKuJYn7kVXi1L2j5m1m8rJGzKyecSkak8XKzQk8rU67B/J0TVoHLZ8KNpDevvq5KS225uZK\nEZ9UpsazPTjppJOMHj3a888/v+3B9fjJUG/YdgaUGra8pYG8T8djK+4vmEbO8zS8IehPVQ0KzBWV\nI6lcjuYDj/rIJt+FPrYo7QMlmx9kw3UULa26QHxnGj9K5FN6dGHsCTzWkDeH0mKgUIi/Dy82d3mx\nhx6l8er5Ci2Q6yOdHVUhHNndgFoN28nOcZJzXO1mnfXzla986FabbfZSTFy5g6YWWvOj0NjPMFBH\nzcyz3mTzLI4xGZfI0Ur1n+eO4jTtvWQfr1rqtyYpqeaiPthu8hSWGdlZluqqxY96HqU43p4mu1FY\nyAA3ePcHqLDc4Eo9dXeq87Yp4BwScoZrfWuKyd6rZn9YL2ea5YUK1P9GTrLZWEXWkzKM0Ez790iR\n1SjJCwt7BIr9udWUWhTFGLSFMQOX3IAFM+nQa2v+rJQoUhmpLYKGpeWRkFQfivwVo96w7QyICApC\nF4wOlPjbVOoflf0X4jrT4Lc1LrHGA8IaSjGwbFuplmOxw2z0psVNIsFlNlqD5E3qCFJOpsMKFVQJ\nJvwfjXvqtffRfjeAm/5J7qq5kkp2sc6jujjOKl9ZZw7oZk8LzbJF1ePkyPGS193mOvNN01QTRzlF\ngRxtNfS4Z0AnzRQoqlOeLSpqpAX6ek+GV3X3jitMtzJ28Y0X5z8uKRu/Osa23KxIQ/HVrvlDcIxW\nnrOXURb5SzWGpKc2WmjkWR9I0dIsS3XS7Ec/j1LsqoXP3GCgXR3hbv82cYfWSZBgpIfNNc+t/r7N\n8f0M1lV/o9xZ7f7efqvAZt95rWxbQ8eLKrTJ2yQPQ75Ir/6O75/spY/nixblV+y5Voq82Pc1VNoV\noyjogN241Vajldqy+hNNaV7VY6s3bL9q1Bu2nQFhQbJ6wejAqMWXy/nkTyL3LRrdSKh6oZgCC6zz\nsGauECnH7tvNSSBee4lutCG12Oq2N4rG15LLybw/uDgccmDQsbvv1UFCftD9DLzTjUeHFRZxy9/J\n3JRooze01UucZN8Junp3N0BU1LcmV1l+pllKlBjsAK209LYXbJEjywh/c6+JPjfDTLvIAnOqUd8o\nj6ioP5jmdJO0lOTPuhqkiUfMs4u3PRNrG9NbO9cYprPmdo/R6cNCP1m/thO0cYdebvOtl1Vk3IWE\nHGV3r/tCrlyLrNJSRg0r/ThIl+x1lzrVPk71sIeN3/akarCbbq5yqdvd6xvf1jo2JOREfzLV+GpL\nQBpqp7V9fOOFsm3xWkrW10ZvEt+J+J5klTi+23qLlyw1Jac/Xz1YlUSyKdbfLjVGBIpLCJ7zc7Ya\nvaTG1Z9ochY5lRit8Yk7FIqsx86BesO2MyCChERWTgra2JfHhhsDCayU39Q4fZk/imiscTmvBA50\nm+O8bKoHveRK6x1pTuh6q9xUy7lkknEH0Q9Iy2bAzZwyJ5AiarSLrP2vcOUhPPAc2V99LRRNsMlz\nOjq0jPbfVlep0n3j8yrLfxMjSuwWI0q009YT/mG0MdZap7ksTxmlvSYiwuZYUWWN8njSfP8wxz/t\n4Q2DXKmbR/Qz3+GGa+UMk9wcI7b81Qlmu6tMyioipPgnbER6mS5O1MaZJltQqZ1PPx1kK0TIJoWa\na/iTnUcp4kT8y+9cYojfe8o/61h4XRlX+6P22rrYn7d5Y7C/4zTV2ivur3Z/dyeaZ6zccqUEaY60\nyRhRRSQfReRrAzuRmcjrXyQGMnDLJ1RcaMP3JGawIhZmj08MwpEb1wRtn0KRrQSTykhuFqj8F5cT\n745PrPfYfsWoN2w7A8JoiJJCsgZs3V4wjdy3aXRt8MOsBhu8aqNXtfSPCt4awR1zE93LXn/gTR9K\ntsgNVrhGtHht9fTp1NOCDgLZlyNEo3Jssj1v9IcDaZzC9XfFaZTfxjqP6eY4y0ySbYGwsO72MrOa\nXmgbbJQc+1eKYQ53mhNd73Z76ecjE8WLs6vmvlZNPjCGYiVu9a3jtXZ+JeHdTImeNsDNerjO1x4u\n1826FI3EW19DJ4IfAyEhj+onU4KzTK6Qb2uviUCJsgFC0rZTf/KHnNO9TnWJIS7wtGd3ICyZKNE9\nbvG+j42O6X7WhDhxhjnPeKNsrqYusYvhShSa662ybekOU2KDHJ+RdDDRdeI67uawvVp66+0JQQ3n\nvFcrLrT2KzJ7MPZftO7CNxPZZQ9mfRoojkQSa9aaTG4aPOeVC7/Xe2y/atQbtp0BEaQXEU4IWsqU\nYsNdRNrX6K0Vy7bUhdIcpaHjqx3TRDddBGSUz6UZK9c8e1jlVltWNwlq4wQhvWKxbt6hMA1vouDL\nwLBC7liieUQSpJ462Y0ndfbc6CJLJ8xVaLEsceIkmRVrQ9PLQF+ZWIX8kStXcjUX8Vv8xUabTDXN\nF6ZbZLEeWvuqUhivPF6x1Pc2u7IWmvw1urnILi72pQmV9B2bSLS6DoohPwTp4j2hvw+s8qyFZds7\naw6OEIhVJ0n4Sc+jPEJC7nGKM+3nTI8ZW4eaw8o43BCHONAVrle4jZuDI5ylUL5x1ehOpmutpT0r\ndGRP1k9Ehk3GkbRPEBrv1MlRHVeYtonF0/ODYu28cgXja6eT3pVp41nyHf+8JGAZf/Vx0IU+XEsu\ntVS2Lq/c96OyYSv5cbQ46/HzoN6w7QwIo0FBIEYcicmQFC0k5wXS/1hjbm2ZPymxRSsPVasUX4qB\nrhXFlhhpYo5psqMdLGuapSQhYFFu8KKvZVrgWAUWkXRgQLfecD2FcwIB5dUnEC2gWT9nnnCQTk25\n9Q6Si1rY5CmdHF5m2HrYx2bZFqmouB4VrfZc22jtEudaHPPQllmhh9a1emwvWGQvjfWVWeOYkJC/\n62NvjZ3qc1vKCSu3kGTZD6jvqisGy3KC1q7ylc0xI9BGYykStBHcyDT6mXuzhYU96ixD9fQbD/im\nls+5OgRiyTeaba6nyymIVIcmWtrTUGNjxKDK2MWR5nu3rCN7SESq/W3xUWDUEvclfZNDu5WIhHh7\nWkLAgpwTO+7amaz/lhb7VuyG/cW7AQmkstpIZSTEyizyy3mUcQkUBeUYevfmlVdqLg6vx06HesO2\nMyCElNyKYchNDxNqQIPqe6pt9r71/qWFuyRsQzmjqd1ExPmru7xuqc4OMyG00MLIGgtSHlZopS0+\nEdFYrqnm2MOW0KdBzVzBVPJidO3ct1lzKtFi8Qfc7+Z7nvXGuBLfv7fOZmPtYl/LTbbBQt3sKSxc\nJRyZKFF+rH6rMv7P+WX/z5RhN62tscmqakJYUVEfW2NwHdiE8cKetKeV8l1vpqiof5uotaQqua+f\nCnfoZY18D8RCohFhvbT1VoxU0eonJo9UhzgRz7lAW40N83frytHu64I+ejrBMf7qbwpq+JuWYojT\nfO0zi2PM2fLoZKh8Gy0rl5NNtZ8cnymRH9xkFU/RKD3FgCzeW5dI26EBiaQoj5n/DAggXU9i6DnB\nAsf+IciRHXBScLNYUsv5laqWFJRj8Zb32K69lgkTeP/9qnPrsVOi3rDtDIhHYj5NY80wo/lsfoIG\nZxCu2liyRJ4lzpNqkEznbHP5kLAEaYqtk6GlE7xuV8eYLOp7k8zW1Vr/VGydTj6WpLsFjpSX3C64\nY86+kVBDmr5EziusO58wJw470G5t4t19W75ISQMZ5opI9K1XpEjTUU8zK+VwkiXJlVst6aClFo50\nKPivSboL6NnVeW1zbLZGvkGabvP9QycN/EU3/zDX55b5u3cU22yxXAWKt73AD0QHDfxWe/eYLS92\nvD7aWmytOBFtavE6f0qkSTbapdbLcbpHtrtu8HpXWGixkeWYjdVhoGFSpBlfjXfXQl/JGvve2LJt\nqQaJypNrSuCxRTfRtrshB3Xx/rIcxZH9gm7YY4YH2qq7nUskgT88xjtRTr6Ovody2LmBYSvKq0WO\nK0bcKSh3A1XesB12GN278+yz2/XZ1OOXQ71h2xlQml4ppSPnvErJ6lhvqqpY5XaFFmrl0bLu1bVh\nttHyrNc1locLizjCU1boYIKokD1RghIbva69N8RrbUF4hKL0syhZRcbdpAyn8RNsfopVw4QbNHPD\n3SON+4Q574Vsjo7SwUFltP9eBpnukwrn0khDxYrl1NCS5nlPOMfpznShdZaIEzGrGsWMmTEvrvd2\nqHX8wa4yxHvMMlPd7ChdlIia/zN5bZfrYo2CshKEHjFP+1h9a22C+lOjg2aedb63THOPd7Zr7m66\nOcYR7vSPWo1iomT7OMrH5fr3lSIkrJ0DLPJh2bZkvYWkyPEpCXsgROs2Dm612Potub686c/sfRdL\nxtHucHr/oeKiaRnc8g6td415ZFEKa/g7x6cG6xeW6yYRn0BRLHcYCtG0KYU/HdGoHj8u6g3bzoBS\nwxYXYwpufobEfYjvVmVovu+tdrumLpdUB23BEkU+dYc2Bmphj7Ltj7nWNN+bJs9/LVGEsAbWeEhE\nQ+2NVmyjxQ3niDZ9bWtItMFvafYWee+yKN7wfqfo3aOJ+2/ZpNgGrWVZbKLNVuptP0vNrdCbKyNm\niNaXElUqIVVqWa+y8T6KMSOXVBn3jY0yJWhW1hph20gV5yrdPGWBxXLsEmORztnOENyOYhdpjtDC\n47H+eaXakJc74mc5fm04TG+XOdxVXvRlzPDWFVe4xGxzvbkNo7if4eaabqnvq+xra3/LTFIYy3mG\nxEvRT45JQZumuC5kROzZKkdqHOPXQg/O3cLhr5FUg8e7+FtKYjnqghq6RYRCQSlAQTnDFpdQz4r8\nFaPesO0MKOWGxKVQvCowGqnV91Zf7k/iNNPMNXVaerwrLDfVAW6tsL2hgAmWpp31FpkmU7HN0gSq\nJwnaa+MZm0LvyU7ZUpEqnTyEjL8hUTgcdc2Fxd7/hNkfN9DIV8IiZnlJL0Hj1BnlVPubCLzS1bU0\n6GwaG9NBW3209WU5NmEp5tuikwa1kmaqw1k6SBXxiO+lB+/AvJ/JsMHp2plsndk26aGNYk/rr+PP\ndvzacIsTdNfKGR5VsB3dy/e2pwH6+YdHax23p0MlSDTRG1X2tbavYgVW+KJsW7Ld5Zb2lkvsS2SJ\nhIREg1rw4Xo0yCASYzvm5VQNNebl8LtuvHB38Dq/FhWbhLRAiKAUcQkBEaWeDfmrRL1h2xlQatgi\nSWx5ESFSTqgybJNxNnpdC3cJ14FFN91TJrnHIe7RNmZkSjHchfob4lBnGuBvVsi2xKFallNvT3e4\nho633B+VVA7XpV9K2420+t5xh27RfdcEj968SbGp2tnbN57XWHOtdPJVuTxbs5hBXaUavb8Y/uUB\nM0zwoMc1l2SaRYoq5cGWyNFmB3Qe08U7UweP+F4jv5es6GcLRcKRWkoX798xYx2u5Sf4hfXOP71b\nSAAAIABJREFUM0VPYzXxmtbesL8PXG2GKdb96KopCeI85VyzLHOr0ds192K/M95Hvi0nMl0ZKRrY\n3YE+K1ezVoosvcRLqaD2n6S3AnOD717CHkFfwUa7GNSOiespLoh5VFs2ckwqL9xecdFPYyUE0z8L\nnvNqvpkSn1YxFBkXM5jFdTfw9dh5UG/YdgaUGbbEoG9a0sFEmlQYElViucul2EdDNauQlGKB973t\nXH2co5+qHQHSZLjbWIc4xS4OcZA7TTPWHG9WGNfCXYqstcYDVQ8SSiCuvXCjP7rq98XeG8/cL+O1\nkWKJiTZaoqeBZsQ0K6FZjOyxvBaprCYaW2GVz0211Cy5CnxXro9aMD9Pix0UML7ILtYoQJaN1llS\nB8p/iagpSjynyEhFPlIsZwcMS5KIY7Xyai30+iIlLjNNP+95xwqDNPFHuzpTe1kSPW6+/sbZw3te\nsKhaoeUdRR/tXOlIt3ljm6ov5XG8ozWW6XEjax23p6Gm+1h+pc88LE4L/Swtx4xM0hNReb4hYXei\nuWS1Mmj/TjYVM+PiweRsYsaHwYQJL5O7hun3BY9lMQZmKSEyt5ZuEfENKnpskdiPsrg+r/ZrRL1h\n2xlQKioSLibvE5Kr5lyyPSfPNC3KSULVhLW+84rjtHOAoduocWuunZY62qylBVp73Zk2lAv9JWiv\nsfOtcpuijbdTMN1aj5jvKLmlhb0NrzLi6EztW/PUzYXSop8Li/etV+zuAHNNtzEmZpwkSaYMy7dx\n0TzAQOvMd48roUqhdrZCmTtY1NxZmu7SnW64E/SutZYtKmqUIh3l6y/fKQqdrtABCmTIc5ICU7aT\nSXiQZmbaYF01xeFRURf70r3muEtv8xzuIX1drbub9fSifSx3lDEGaSrRCJ8ZYJypP0LvulJcbZiW\nGrnYM3X2ChMlOtVvjPRCrQXbfR2sUEEFL74UzfWtEIosbZ6bb1YgAg6Nm+rXcr34EBOXbubc7tx4\nNH94gvs+Z9xp/PdyJvyBXQO90UC5LEJebYYttSK5JFLvsf2aUW/YdgaUemwlX6CA5KEVdkcVWul6\n6YZJtU+tS+XJ9qJhGmhhuBdF6qBe/7FX3eRk31lijmIvOKJCK5FmrlES3WhD4VW2ZB9pqfPlmmSu\nfrb4hHC6uMZ/ccV5vPU6y+Zna6OXb72sjwNERU0v57W11NzSSh5YZcSLl6GRRlK0kmFGJcO2QaF0\n1Reu1wVDZBlvtd4yfWVDtV5PVNRlipys0B5CPpRgsyS5ksyQ6K/iTFWiv3ynKbC2jkZgP01FMaGa\nfnMjLfSw7z2irz/pIlLNTzQibKgW3rW/Dx2gUNSexrvOzBobnG4PkiW416nG+spbpTmuOuAsp1hl\ntXdq0aDsYDcZmvlC1Zqw5naXbZ78WFeIiAbitQ08tkhLJJKeJDm6Tr9GTCxMZ82SgMH4/khWT2XR\nOwweSbN+LHuJf87gmYUkNSF3VZVjlqEmj63of9Nji84qEf3iJ3rM+uXzkvWGbWdAqcdW9AlxHYir\nqHu43jMKzJOlmiah5RBV4jWnyLHKCUZLqiMVvoMeQkIyNTdPnmXme9NZcnxhvWfEa66h4VZntlac\neT3o6CMp9rbQbxRaQYPfOePEVjIb8dxdNC/ZYLGJ0qVopk0F2n87bSysRSqrFAUKpGgpZEuVUGSO\nIqk/wLCdpK2lcq2Vb5Mis6ppsXOfYn9X5H7x/iPR/iJShSQJ6SnscvFmSfS4eG8p1kuez+tgWNpJ\n0UqyiZUMW55ifzHTCVo7u46Ekv01M9lgN+juVrMc4iOrt9ErrS4YZg8H6uYKz1fJb9aEXnrYTVcv\neLXGMSEhve1nRqUyEGgS6yW4JsaKhUS7KDAvUA+Ja01ScPOwdxaf5iTz21vJaEGrzsy4j4adg+7z\nfS5jyXjSQzRrG+hB1pZji0ulqJzHVppjK/npaxx/CZScmq+kb95P8zj1l2eT1hu2nQGlf4XCiSQN\nqcBAjCqyyi0aOl6yXtXPj2GiW31vjGOMkllJFLg2tNHZQMeIiGispTmyfO0l4wy02BkKLNIs9BcF\noSXWxQWityU2aBsryl3sNNFwopTmN7j4DP7zNNG1c4WEzDZaL4MqXMjaa2uBRds8r5difbqW+Nb0\ncuOLlCgSlax6Yei6oL9M3aVbLFdYqIqRWajENQpdLOKiWgxoRMjZ4syUpJ2w/eV7fRuGICRkX02q\neGyPmWeZXDfrsV3vJV7YtXbzgQN8Y6M9jfdtNYZ6exBIZo0wyzIjt0Mo+UTDvW6M3FrCuz0N9K3J\nCiqFYhvrAtb4pmxbvA6BYYNIKyI5CNuzJQuXr7SqfX9WLWSf4UFNW+cTAyPY8Zgg/Lg8du7JTapv\nUFp2oJRKocjSHNv/Zigy/Gyi8NSkn+bxbN1LcH6y9/dLn0A9BB5bBMVzSOhfYVe2lxSYr5mra11i\nkY997HoDXauTobWOrQ5DnGq1pS52r8Xmi3OAWQrlIKpAsj4y/NbGWIFtVJF4zbXxrM3GW+1OUke4\n4NRk0RLeeJisaDOzvKCP/c3xhZyYVmUH7cyzcJv5m41KWWobfG+VtbHXBTGvKOEHfH1DQg7UzHTZ\nGkuwqtJF9iZFGuKWOjYibSnkAwmOFHacAm9sw7jtJdMXsit8Bv+20DAtdZG+3e8HBmlqssFSRQz0\nvi/LtYLZEfTT0XH6u9lrCutI//+NY2y22bs+qHHMbvZSIN+8Sk1YE6RK19a6cszKeK0VltZBRpoT\nXU1yM/1jKnJT3ouRnXbZNTBcTfvFxiaS0Y01XwavEzO37bGVN2zh/+1QZKhbWGiPn+jR7Zc3K7/8\nGdQj+CukQZSEPmWbo6JWu1MDh0q2e43Tc63zmlO0Mcgg1+3QKTSPNd9sqrUhTjXGh5ZItcBhEnQC\njV1QNj4u1gg0zcGausJK18kNf69JpxucPpwXHiQzb5UF3tdFD8WKy/JsnXSQI6dWyj+c5kRwXKxU\nYVLszr0oZgzifuDXd4BM39lktfwKRJTNol5Q7PfipG1HnVyikOclOErYiQpMqiUs2V6qPMXWxAzq\nSnkmWedorXb8DaGtVB87UAepDvLhDzZu1znGfKv9u5oWRNWhi8662rXWdjad9BIR8Z0pVfZl6GR9\nuQLuOM0UWS2qhHAjSrJJytShCZlpqabMmhPIX22OeXWZW9s0ydqTlTGWZWKjmgu0idWQlvMySz22\n/9FQ5P866g3bzoAIwU16hJjaPmzxkTzTNHVZrdPHukihzY42UngHw3O5sVquzbJd4xm/cakZNplg\njKn+CZLLKZfExdquQJYbJepqsTNE087zh7MbWbWSr14qERKywRTNtDE1RhjoGDOi38cUOGpCAw1E\nrfeShzTWwOSYYSttDvpDv7x72dpROaucpNUbim3BqTvwWcYJeU6C3kKOq4VQ0ipWqlBaavBmzCs5\nvNznuqPIlGic/XWW5lAfm2PTtifVgF7aGmYPd3irzjqSRznUm8bWOD5RsvZ2852pVfY10tH60tCj\nwLBRFLRUCjekZAPxKUIpyfq1b27KzO8CBf8Nc4LQY3qHrYtl7RX0aSvYHCj451evdhMcqHIoMva3\n/x8NRf6vo96w7QwICwxbfJdAdDiGtR6QqJsGDq5x6iwv+9ooQz0kXZsdOvx3prrO8TrqqZeBQkJ+\n7y6DneRrEW+63FqzhUS09ZJM55jvsLIwWlii1p6SZ6bV4Qd163edIYN4+R9xmkbTzPaaPvYvq2fr\nJLj4bMuwlSIkpJuWVQgk26s6UhmdAzcZFQ3KaCV2F9JhB38eyUJelCBX1DkKqg25ltbgrYwRPV6z\n1CBNNf2RNCMbSjDGII0lONwnZZ7hjuByh/vWMmPq2LdtqMFWWW26mTWO2UXvKqHI4Lzb2lSuxi8S\nC8uW2CRogxENQoqJGfomFZv6zfeBhmPe2kBWK1wuH9pyP6LFPHEa0z+pSA6pjLhkisp5bOF6j+3X\njHrDtjMgJGbYepdtKrDEBq9p7KIaL+C51hnrQl0cq7sR233YfHn+5Xrn20tz7d3nA/GxkFxExHwN\nTZHuO2EvO1ahHI0cb53H5ZigoFxX6hR7aOoyK90gJ32Ai8/b21dTi6z/PNsiH+mqj9m+sMVGqVI1\nl2VOuTvz8vjSAru5Ug9X+txcl7vWGot8V6n27cdQ3pjqECMN8HC58NeHig39AcQUaCPsEQleU+KV\najyXrJjG5YqYYZsm20BNqoz7IWgs0VsG2aDQ8f6rcAdLAfa1q/46uq+c+n7t4wdIkWKs8TWO6ain\n+WZW8erStLbFSsWxqupw7OYjMGxRhMhZSWpLeyTkWFbMyi0FgTeWUIkF3GjXQFj8m9eYOTko0K5J\n4b+mUGR9gfavEvWG7RfCiBEjDBs2zKjx47fm2BK2sh6zjRSSIEP1mpEwzmWK5DvUg9vtvXxjkrP1\n8azbnOoqD5qgYbnQHMwxT56wJTaba643nVXBmFSW9cpykyQ9LQld4NAR43Xq0MT790cQlSZPiZIy\nduQuOphbg2F70DjzrLJFvt94wNGOdqgB5lihREnZl7aul+moqLlKLKpmxh4yXGmGP5pupTzrRK1A\nrx/oDcJwYUcL+z8FVVRKEkSki7dGvhxFlsgtE2X+MdFRA6/Yx0RrXLUDnbIJPOOLHeI9M82tRTGm\nFIkS7W8fH9bCpmxvN7m2WF1J4DpVFqK2xPKvodiNVlRhkF8LpQdNRtvuoXcoqEubsaEoMECRSgX7\noRCprUhCDorzaq5lK/XYSg1fuDQUuX0e26hRowwbNsyIEdt/o1mPHw/1hu0XwvPPP2/06NFOOvjg\n4IcXL6hhE1yI13taQ8PLQjGVsdhEMzzpIHdI06LOx42Kes6dLrSPFOn+ZZqz3VTmqZXHJ8bIt8oe\nDjRbmuleMNVDulmhm+XitRIVNcWDJntAvs1aeVS+WZZFfuv8C6/w/stRCauTrfdfWdqaEive7axT\ntR5bvkKvmOxPDvOha2yQ6w1zHWkvG+X6zvIy0khxHTy2jxTrKF9n+drJ10eeqeUMXKESS2N5rrFW\n+C62r9uP8NMICblbvFV4oBpWYYZ46xWWdRfoWi40+mNikKbu1MvdZnurmhZAdcHx9pSpgUerKayu\nDvvZx0SfK6qBTdk6Vo6ypJzXD8mxvnR51ZFeipcSjjWW7TlYx9YtpESYsRklUUqqOVZqKw48mrtj\nheYbawh/l3bWKI6FbEtzbNsZijzppJOMHj3a888/v13z6vHjot6w7QwoTQuEAuOSa5J838lwRrXD\nSxR7x4Va2tPuflfnw+TLdYMRHvZnI1zuIRO1173WOWFhV3tKgUIrdPSJGxQICQlb7W+W+dRYF3nX\nxR63u0JNtPW8DV409LdzhUIR05/IscA4fQwyNRae2lUn35lbJZz4ue9ly3Gc/tpp4hR7e9oEvbSJ\n1ZvNERfzprYVWvtIsYMVaCdkjIT/Z++u4+Qqz7eBf8/MumUjGw9xIiQQwaEQ3EoIUgheoMgLFKnA\njwrQUqyF4m0pUKAtVoq2tDQQ3CWQEOIuxDfJus/7x5xdVmY3u0toA+zFJ5+QM0eemTlzrue+n+u+\nbk+FBQJ7KDc1lOOvqldvNVuBBeF4hm6FiA0Gizhb1I2qFDZ6r7lSbFJhVlhzNrydMv/W4BLbO0Iv\nZ3i/XQXc6VKcai8PeqNVBdvfsociRc2us/U0QCDwWaMWNrWmAuV1bY1qrxWlainRvnGRyOy7RY84\nxqgsZhRiw+p4RNYYWf0oXEr2gPi/C5ckHnA0XNusCvsERr7edWxfd3QQ27aAuvXuOLFt8jdJesqy\nf8LdP3aftaY7xJ2tajQKhTb5gYO85R+u8YRzXS+plTVaPWznIrebZZHPlJvqR1a6yCo/tsA9olKc\nZ66IqIccKMUEvd2ppusfHTm5v6l3U1lToZtUi81UIN9IwxQq9FkjQcgcn4kIjAxl7z9wmPUK3WOq\nQbp407y6+rWKFogtX8zJKuwt4kUpDhU1SdQ7Uu0X1potVKNfvXTqPvIsF9MVGVuJ2OAKSTbhr40I\nIUNUqWof2ai/DJ3b6X3ZGgQC99lFTehF2R6cZm9rFXihBVFILcbZSbJk7yaQ9EOyFN30traRA01S\nKKqpCsm3OmwoG42lUTmXtHF86zY2zaf0EaOzmVmE9esSy/lzh8b3TcmJO/gXNe3tF7/w1onYOrBt\noIPYtgXURWzJYmIKPC3HUYIEAoZyBV7zc6OdqrddmryeCAXyXWJ/S812m5ft65g2D/FQp9nTkWYL\nfOwRqz0mUsNnseflGa2r7Z3kRaU2eNpJujhPVxc66pw1Vi1h09TuaswOfSNft4N4E9VPzWlwncXW\n6aer1JB0B+sRys3/ZoEPvWWeQCBZRHkLkUM8QuKvUuoiPEgReFyKTgI/UCkQmBSS6L7yrBDTbyuS\nGnEhySQRd6lqEKGmiypRbZqNxuq8Va+ZCD2kucM4j1nu2Ra6CzSHsfoboXernEjSpdvJKO8mkPTX\nort+1jRyoKklttqGo7XEFqlciyqSRzH6Ag57gop8o/ulmlVE9YpllG9uSkS5w+JqyOKVZPWlqBkr\nt9qIrTbqi3QQ21cZHcS2LaAesZWZqcIinUxKuOu7fqtcQZPGoc2hRKEfOdRay9zmFSPt1q4hBgI/\n8Ds1AnNF6tz8ImpUh7PrzgY52qMW+Y/33CrP5Xbag0EjeeePa230nh62M81UA2wnTZrZjfp3bVaq\ni8wG2w42SrEUOxkvI1QTpok0G7EVi/mjKudK0jcBSeUI3CTZs2o8r9pT9hJzvAxJ1ojpuZWJDc6T\n5FMxb9cbc5JAhRrvybebZjpAb2VM1s+herrIR0ra0EyU+D1wkj08a5qyul4wzWNnY0wzvdnXu+hl\nYyMxSmMRVKUVAumiFfMRkBIqh/PGkzPYDsPTlNWwcGURYk2biXYN7ck2fEJmb0qa6SoRDW2gaiO2\nDmL7SqOD2LYF1AVmyQo8IyJbpv2a7FZsrXfdbGffl6PvFk9bqcLPHGO5uW72gsFGf6FhdtfXBX5r\nuQozURYhJ+gs34K4MwQGOdiuLvaqnylUokfwf447h3efpmhdtaGGet8UUVHDDDHb3AbXKFImq1Et\n19HiNknTbah7LU1UWTPE9hfVCnBBC5L940TsLnBLo4f7enT7EojtABG98HijKHOWAoWq7NFIkfpl\nIRC43VirlLmxUbTcGhxrF8XKTWlFOnIno8wxX3kzNXSddbdRQ5Vi7X1Um2KvtFSK/oKKD+PCkY1X\nsPk6VDDkeDsMitemzV4dyvJLGqkes/vHU5AbZpDRs3liS6pdY+uI2L4O6CC2bQG1z98gSZEXZTlA\nRFMj0Xf8BoE9XL7FU8bE/Nb5pnvNdZ6xfQuWXG3BYb5ruPFmYgFyZKlWblO9YusJrpWph5dcLsUQ\nh59MJAjMe4jM2BrLzLXOSiNsb1YjYitRIa3R2l8PnRwQOr+/YZ75VksTbTbieFy1g0X0b+H2DgTO\nkeQFNRbUI8h8sS8lKRgRmCjqn/WuVS1mQaiIHKXTl3DVxBgq2yWGusncBuKZ1mCEPobp5dl6fdOa\nw2gjVaky1/yEr3fSTYGG/o219Wu17ZZKfSzVMESoWUPR79h0JfkX0XsfPXOr5CQxuyC8ZxrL+YMI\n3XZk/QzSe8Rr4BKhLmLrILavAzqIbVtA7W9ITIl3ZdqnyS7F1vnQ7+ziIhmtmN0/4Q7Puc+P3WOs\nCVttqBEROzrdbGlekSwWrqGs82ndPskyTHCdeZ620F917saEIyM+vJ+KWHymP8PrRhjWJBVZI5bQ\nA/Lken3o/mV6nfCiMQrEvKbGt1tRYD1ZVGf8rh5BFqDTlxCxwRGiFoiZH5Jbseq6koXcVgp5thau\nMEKaqF/Wc9JvLb5tjOd8vEWLreG2B3MbSfprkSG7zhi7FuXhmlqqTmoUK/FW3Hmn00/JOove88i9\njqL76dxNEDA8l7lB2FQ0kYN/Vr94pJbWtXkj5Lo1tkapyDbWsXVg20AHsW0LCH9DpZF5Yspkhqa/\n9fGeWxHY1SVbPN0n3nSXHzreDxzqtK061Pd86PuutEya6aotE2+bsqbRWsoOJuthjGmhvP+os6ot\nmcH6j+mup+leM8L21ttgXb32LfEC7Ka35a71+pO9bq4MUcUJiO0lNapweCtu7XSBE+pFUcWhJH/r\nl0nHsb+IFPw7vF5h2Gk6TTRhQ9EvE7lS/J/h7rXIEi1YTSXAEcZYbXODVkKJ0FUXXXUxp5mILRGx\nlYUy/1Q5irwqpkKWA4n2oOu9JA8l+zyCdKqfJLWzYbvsZE5lRjzqSlSAnZJL+cY4sZXnJ3YfabzG\n1qGK/Eqjg9i2BYTfQnEwQ0SmdGMavFyhyDS/M9Y5MrZgu7TZBlebbAd7OM8NW32oI8OeWVAg6mWB\n7oaY7x8N9gtE7OUn1ipR4zT77J+paw8+fTDQS5b3/MeOYXpxRr1oLyqSMBIYppeuIeXkypAjuY4Y\n6uMl1Qa1wefxAFHzxfzZalmeVCK2VaX+9ZEpMF7Ee2rExCxShAJlqltUeH5ZON8QuVLavNa2p6HS\npZha73trDoMNtNjShK8lS1GlsoFStCAkyxz9FHhaisFSDW94YCSHzBMpeYweuxnWtcS8Tz8hKaep\neARSsuPdsZPSidUkLuRuTGxBeP/E/vfdoL+umDZtmokTJ+ratausrCyjR4925513bpVzdxDbtoBw\nclgc+UiGPQSNGltOd79yhVuM1mJifu1s5Upc6eFW16m1BVmyXOOncnUyS6b3RS01zyrvN1hng+GO\n1cMYH5uvd8qvHX4y0x9JEalc4jOLpKqSIcPH9cxwoyKqEhBbRMTeYWproDw5km1OQGxvqLFvG27r\n/UQEeCCMWsoFoeD8y8FYgY/UWKNMqRpCh40vYlLcXmRKcqmh7rfY6jastaVKtrftTW1FGnOA7Zol\nttpOFPUnMpsslqGbZBkKPCvHpMR2cemHUrWIPjvYPmO5/KIS6z8rSJxqTM6msvBzy62aBIrOWmKr\nfa1uja2D2L4MTJkyxZ577mn9+vWuvPJKt912myOPPNKKFc3UGbYRHcS2LaA2FRnMkmHXBi/F1Hjf\n7UY4TifbtXia//iL1z3lMvfq3grVZHtxkXNsDt0ySkTqWRM3fAAFIg7wGyu9bUOkj3NO+61N68qt\ne75KIGKG1402skHEliJJRTOikD0NBWP01ykBsVWKmSlmXBtu6y4Cu4tYKqtu/F9emTSjRcwTCx/W\nMWSHVqENJyHFYh5W5ScqXa7S71XVrc1tTZxviCQRv2/kALIlTDDCm+ap3sKYttPHimZsvBKZWK8z\nUxfDVFmryhqZ9rLRQz5zidL66e60CYiQF7V9l7jgY/6q6sRF2und4oQXCb/ZWneR+qh9rW6NLbyH\nOlKRWx2FhYVOP/10Rx55pLfeesvFF1/srLPOct1117nhhq2TZeogtm0BEaoDqoI1UsPC5Vos8ZKN\nFtjZhS2eYp2VbneRQ5xqH0d/4SEVKPChj031qne8b3099VqOHIeGrXQ6GWA5UmTJNaDeuGcpU2KA\nA2xnH6/5hT12utDo0aPNeThdD3k+8abRRvqk3sw/XYrSZmqkLnaIvzjPYXaUK9mmRsQ2N26Va6c2\nphIPE7FaltqfQ1LLu38hDBeowkYpRshGF+PlygmJLSbmAVX6KHOySg+p9oRqF6m0vXL7Kff6Vkxb\n5kpxhgF+b6GyNpx3L0MVKjNTMwXPIXrpaVUzxsmVykUlidYT+qzygd52URkWkC9zouVOsdFD5hur\nwHPxHSO5pIwjeYEhefFN81fVUJxAzp/Vj5pKYuGEqTwB+dVGc9WNIraOVORWx0MPPWTt2rWuvfZa\nUFJSItZc14V2ooPYtgUElIcT9tQw3VaLaf4gzw762qvFU9zqQinSXeS2dg8j30Y3ucPO9pNrgJ3t\n50CT7OFgeYbYyd5udqcCBf7mfpf4fz6w1nwpjvBM3XmWmes0OzjBQDO8YX83WmuGaX7vxBNPNOvZ\nShlFFaZ71SgjzDK3ziw3XbKSZogtVbLv2NXRblOuxMZG+30SRg+j2nhbDxIoEbEydGT5Yg1rWsb2\n4djmiTkw7AF3ZL2u2T9V5QyVJolaLNVSaRZIs1GaRyUrFLOPCmerULwV2vbAhYZYp9wTWp8G2tVg\nSaLebkbxWIueuitWrCgsa6iPMiVS6tUsFltro4V62Vmsrm1NusFeM9Iq2Q63wvdU154rbT8q35aZ\nSq8MFqyuYdO8JteRFWY6ah+eidxHgtrUYzhZCjoiti8LU6dOlZOTY/ny5YYPHy4rK0tOTo7zzz9f\nefnWScl3ENu2gAjlYZhQn9iKrTPPM8Y6p8W2NK972uuedok7ZLejCqtEiavdYDuj/cy1BurvPnd4\n30sWmOZjr3nIH+1guCv80jC7eslrJjkC8Vq2e1ynJHzg1Bod5+nrMofZLGKE7/jAnSafeILykiqr\nn9lotaXyZCpXXtd0NEuaohZMep8xzbOmmWmxjY0ittlieqJzGyO2wXVkEyfG6BaOr4mxoDTuKl/c\nxudeT/FU51Ix+4iHGrV/36fK9arcJMkDUgyo9/PMEjhBkvek+qNkD6u2u3JLt0J6cpgc+8pzXysb\nvxKPrHfQxzRLWtyvc2hqvEnTKKlQfoNWSYvDzg8DHCDTHrY3y3DLZfqWQJI+7lRtg3z3xA9I3Yua\nVeTkGdSJxfkoWvp51FWL2q7atY1ECxOs+QVB3Pi4NqrrWGP70jB//nyVlZWOOuoohx12mCeffNJZ\nZ53lD3/4gzPPPHOrXKOD2LYFRKlIJhrrKurzZomzPAZ2cFKzh5YpcbuL7e5w+zq2zZd+0ztG28v1\nbnG+My3zicc94Awn29lYgw20k9FO8h0Pu9dC0+xirKOcbKZZYja629/N8q7LHKZMieles4M93OE1\ng+zoZ4420hnyzbd+wBN22ovFj5AsWUHYuqZ2na2TDJtbEDL82RvhZ7NEsSoV9dJnc8RuvhzvAAAg\nAElEQVQMb8ctXevkPzeMgJqjtaoYNy1nu3cZ+j47TSPnTb49k3cKWnetiMB2AkvFHKuvjxxkX92t\nFfMjlc4Q9cMWRD8RgbMleV+qYvFOBXO2ArmdZaCXrQ2Vmq3DOAN8uAViyw0LzxMR2ybr5dQjtkX+\no7vRssJINs0I0XrFFykGyHG0fPfG1+eSw/6FvfsYlBexMNY9njps7OCfkk1at3iklt4jMbFBkPR5\nY9GONbYvDUVFRUpLS333u991yy23mDRpkltvvdW5557r0UcftXBh29Z7E6GD2LYFhBFbqsENNn/q\nYYMc0qLE/2E3yrfaRW5rU7PRuDPJXfb1bT11N9Nbfu2XuofRQ3Pop6+nPeRS57vQZf7qMePs52ZT\nzDPN1SaLiUmWIl2mqz2mTLHHPGiww8z1nEOOZ+EUcjalWOYjvfWq8xTMlWGzkmaLf2sl/1lhwjC/\nXjpyvhrbt0Oq31WgBz4Kr5loja2kmoNmcPlijujCf0bx1hjuGMKycvb8mCsWx6O5LaGXwOpQQDIm\njLAvVymCG1upZB0p4m2pugjsp9yiL0hux+orS5KHt1CbVh876meWlS0KSDJCjWlJgsnKWsvlhSKn\nCsXmesrQMAvQHDo7XblZynxCUv9449FumQYO6mRxYfjhFyxpemCnwWxeQHa/uCFyIkSSiYVE9jWX\n+xfNpmDal/OnaHbL105Pj98TjZuxnnTSSWKxmLfffvsLv78vc528A61FQEUjYttkiZXedpSHmj1s\nrRUe8RvfcWld48bWoEqVC/3Y3R7wIxe63lWS2nArRETc7Fc2yHeOS+1srFH28At/c7lv66Rb3dpJ\nD/1c7A7XOs1A51jlIRccu9ivLx5o3TPFqk9/w3gH+TAkti4y1YgpUCq3kRkyfM8Ef/aGEbpZiQ0q\n9JQe1oXFnNjOGrRxYX0ZTX8UNTG+M5v3C3l5R/b5PKi2Rw7n9uKmFXFiW1bGn4cTbWEYeVhXb31s\nnZiHVLtRsrw2jL+HwFSp9lbuMBXekqprO99/hiRH6e1Ry/xsCz36arGDPspUWmydIXok3Cc1tIZL\n5Be5yiK7OQzM8XcVCqW5QaVLJDdzviwHisq12d+kBzvGu85nVxmYtdHqNZRWkF6UgJw7DY0TW0bv\nFogt+nmNW13E9vUktk9O0Y6ufE3xske84pEG24oSROf10bt3b7NmzdKjR8PvuHv3eBPZjRsTNJlt\nIzqIbVtAKB7Jjg2sy4PN84yoFEMd2exhf3KVNJlOcUWrL1Wp0mnO87hn3OcOZzqlnUMO/MFvvepN\nl7nKsx6xhyMc4SzPuU/PegrJg53iab/3by8aoVhpn4/ttfdeVjz6psjpG4zVy0OeEROri8jWK0pI\nbHvbXpk/WajYDqbU1X8VhH/6fwFiuzYUsDQ+wz2r+Fc+/x7VkNRqEQ24vB+D0pg8m96p/GZQ0/1q\nkRNGbHXnVyWC09ohW+kRNlHdXblTVHhOSliZ13acYDsPWWaWzUa2wrtyRCh6mW1ls8SWHEaglY1K\nOCpV+MwifcIJ2Sf+rJsUGSqUm9sssUWkyHa4Qv/R069IGUPFcwaGGc0lJd2MKEwgDuk0hOUv0HU0\na95L/IaCpHrikfAz/JqmIkf/lTEjtrzflrC7E13hxAbbPp49zb6njG/2mPHjx3vxxRetXLnS0KFD\n67Z/9lm8LCQvr+WsUWvQkYrcBlCTTHU0voZQiwX+qb8JUmUnPGapOZ73gNP9XFYrDXSrVTvd//N3\nz/qb+9tNarVIl+4m1/iH5z0fLvx/3y3Od5PVlvibW/F5y5uVFis1xLtudsLxJ1j+IjYlC2yyQb7V\n1sgLu0ivk3jRKhBIlaxHmOLaEKYiPwuJok87H+q71Psp1I8t1lXE049n9uDQLXSW+U4evx0cj96e\nSGBZWIsodR6R1WLuVOU00XZHW0NEPCzFf9S4vo2taOrjID1kSfJUK3u19ZYrXYqFEthYhaipE+Q0\nJO0lZqlSaagx1pppiZfs5iYp/uAfrnOrnp5wXAMP0lpk2k+pafFebSnjiC0xoGdcrr/0s0pKE5QX\nZPWJ222l5SW23SIUj9Qjskgksf3W1wBZI8gZ9+X8ydoCYR5//PFisZj77ruvwfZ7771XcnKyCRMm\nfOH310Fs2wBi4W8+CLs5lyuw1KuGbCFay9PXROe27hpiLnGFxzzlEfc6poVztwXHmmgX49zhjyBf\ngZv9Q6mIKf5St99QY0xwnNkKLPWG3ScNUFNFzXOp1octUKabqXsdsRU2vVg9dA4jk9qIrZbYerWT\nHA4XcUT4c3iz3prR3auoiHFjCxFYfVzUm0ldOX8B+U2NURAntiI1bjLHdDGrcPIXLDI4WNRPJLlK\nlQ/aud6WJupQPf2jmYLqxoiIGCSvRWKrDsU9jaPIuT4UCAy2o4/8UZZeNljuCecpt9mOvmuNj/3F\nPjY1EqhkmYAaxV4nZSxi+gzvJRqwZMnmxK1pMnoiFrfVKl2bmLCCaENiCyJf2zW2/yXGjBnjzDPP\n9PDDD5s8ebLf//73jj/+eI8++qjLLrtMz549v/A1OohtG0As/BaCIJ62WeIlNSoNcXjC/ZeY5WV/\nc6qfSknQ3iYRbne3O93jd25ynKO2yriJR1DnO8u/vOBTs71nmg9Ml+5A/+f+Bvue4Rc22iBfd+/2\nu8jQXbta+WSRz0yXJdN0M3WVJRBYs4U8fUSgi5Q6YlsTEluPdhJbssBdYdpseXiuqhh/WMXJ3enW\nSneyIOB3Qyir4RfNiO9iWK3Uj83wJyVysMdW+CleJclOAmeqUNnOGrfD9PSefBtaafHVT1crJPBn\nDFEs7vKR2Sit/IEXDLOzDNk2mKPEeu/4jX39yunesr8bnOF9KbL90xkNXEpSDJakV5zYkuKpzKSc\nJH2zWbpR4gLsWmeRlE7xdGNlgolTY2L7Gkds/2vcfffdrr76au+9955LL73U9OnT3Xrrra655pqt\ncv4OYtsWUK/RKCz1slwDdZY4THjIDfL0dZjvtur0L3rFD/zUj1zoXGd88fE2wkmO01dvl7rYNc4T\nEfG695xpkuvqjXGAEfZxtDWyZcgz4tgyK/5NeUmFEYb4wMeSRHWTtUVie9L7sgXWhQ/gtcgQr/dq\nL2rn5rU/in9uYGUFF/Ru23l6pfKjvvFob2UCfigXkx8u3T+u0uGiUraC8XKywD1SfCrm1namJA/W\nUwwvNuMW0hi95Vqp+cX+wrB8ILuebL9atfdNsZtDwWIvqFFpqIn2ckWdujddZ4e4y1KvWOyFuuMD\ngUzfUuwNIllE8kgp178TSzehpJnWNJAaLpIm8pSsLx4Jr9QRsX05iEajfv7zn1u0aJGysjJz5871\n/e9/f6udv4PY/keYPHmyiRMnemTq1HqpyPj/LPeG7RL0ZIM1lnvRw07wQ8mtcDVcYaXJznKgCW5w\n9dYafgOkSHGqE7xpunwbZMsy0WFmq5ajh+X1eq4d52IrLJRuP4MmFasqpeBF8qT6wEegp1yrt0Bs\nk4zXTbqC8AG+TqxNisJEaDw3f3YDO2Qwph19bC7uQ3qUmxOYeVTVxR8Z1kpzzFb0Ohkn4vuifqmq\nLoptC/rKMEKOqS2kF+ujp9wWJyEbwmiuc736zA+9qNBGe4bp8B2caFeXOM4TdZ2zazHE4XrbzVuN\nOlVk2E2pj8RUkzSYjBr9cllRgOoEXpC18v2keLpfRSsjtjaqIh955BETJ05sImXvwH8XHcT2P8Kj\njz7q2WefdeIBB3y+MUhWocga05u10HrSndJl+bbvbfEaVaqc5Gzp0jzsniYL+FsTkx2jRIX9nGmz\nApe72CYl7vVXJxumKnQJ2dHexprgbe/ZYfuxug2j6FnKLLXEMhvk66nTFoktIiJFtE6EsUFsCw19\nWo9APAP1n40c0s522jlJnN2TB9dQ3ujZmCQiTYRQ9LPfVv4ZXilZEn6ZoPtBa7CvPK9rQf1SD11k\n2thCP7fPrJYqVVefK29e8LDtDNNPfzDJww5yi0gCkXYgsIuLLPWyjfWMmtONEVOq3PywR1ugbzdW\nFKJyU9OB1HpB1s59ahJ8NkG0oQoyiGg63WkZJ554omeffdajjz7apuM6sHXRQWzbAD6P2CJW+UBM\ntT72aLJfmRL/dI8jfE9GK9ph3uBWb3rXw+5p8GD5MjDaDnYw3EdmgLXWO8XxZitSg0WhQAQOcooZ\nXjPGZUYcxepn2Vwdj+qmma6nTlZp+nAqVeUBi+vMepMFKsIE4gaxLaoKYzH+sYFJn3LMp0xtlEGL\n1ft7VgmfVXBwO4kNvtuD/Cqea7QEVY1xcl1uF51pRT/0tqGLwE8luVu1he0QknxLN3MUtqqVThdZ\nCpU1kfPXYoWVeutZl14sUeh1T9ndgeZ6Unkz6tf6GGaSFFlmerhuW1rYs7DURyRtT3JBnNhKompK\nNlDW6EOv7ZBdS1zNEVsD8Ujwta1j+7qjg9i2BdR9C1GfeU+KLN001cy+5DFFNjna+Vs85cc+8Qs3\n+j+X+JY9t+54EyAQON2J5pivl84e8jf/5xLVkgx2gsF2rNv3AJNl62yq5404irJ1VL4TkybFTLP1\naiYVebv5zvC+o7yhTLXses1G87XsERmLcclCJn7K6gqWlnPgJ/y2Xqqw/iNsykZSA/ZpXSVFQozM\nZKdMHmsU/KwT00PEuwJ7i7TJMaa1uECSbrixHWttu4VU+34LopBaZIbipdJmosM55tu+nnnAc/6k\nXKnvuNw450gNVbAtIVmGIb5trqfqtiXpIlk/ZaaTvD1BoT5dqayqtr4YmxvZMqWHtVF1jUgTRGKR\naMM1tSDoEI98RdFBbNsAYuFzLRCx2jQ9jK1rwlgf/3SvnR2kdzOiklpUqnSmC400zFUu/zKGnBBD\nDFKhQmC1f/i3x3ziACd4yluWhc7xMTHpMk1yvqn+ptduZHRl078CvXStI7ZVNjVQwpWpdrN5Jsgz\nxRqPWNagJ9tGsRbtn3+3its/484hvD2G98dyaZ94jdq0RsstMbxZwO458XWyL4Lj83huAxX1npdr\nxOQIvKXGAV9Sejhd4AeSPKDaijam0wbJ1EWK91pBbBnhOm9JM9HdbPOMCI29q1V7yl3G2sXrLmmy\nntYShjvGGh81aGabZielPiY53mG7TyjyWblJ3GWkwUB7xf8uDUUjrZX7f00LtL/u6CC2bQH1Irb1\n5uiWwNJouXlmesvhrVA13uYPppvpPndI+QJtM0tV+Lv3fM+9dnGlgS410uUm+q3b/Mf6RrVmuxkv\nKmKDZCmSXeZwd/iJdF383LWqVRtpdz91jYOdqkyp/Gi6oYdS/K9UGSp84CO9dVaqwiafiwBes846\n5W431li5plqjh1SrQnXhJuQ2E/msruDyRZzfK65wDAIiATcMZFQGFzWa3Mcwu4RRTY1P2oz9cymu\n4eN63sLLxMxSo0K8F9yXhf8nSQZ+18aoLRAYr7OPE6SDGyM5JOZEXc8LFFhgkZ2MAlP8xQrzTXKu\nUU411WN+5FDn2s1dfmS9Vc1eZ6CDBSJ1HQAg3U6hZ+RQBPoMjgtUVhZnNjU6TkqLKyIrwvdUlcBo\nO0gQsW2l1kAd+O+ig9i2AcTqnseBjebr2qgnG/Hu2Fk62XsLNWgrrHS1G13ge3Y2tl3jKVbmGk/r\n52LfcYd3LDBKX5Pt7mCjlahwmUf1c7GrPak8jJp66+UExygXca6zJEm2p2utNdpDnnSd35pjnuv8\n1jNetqdv22yw04+4zIaPy5SsXOYTs3QOyXh5veam78nXRYpROjlML/+xRh/plisRE1Mg1qz/yi+W\nkhLhVwMabk+JxK2w3ixgfunnuoLqGuaVMjKjXR9fA4zLiqc03wyXkvLFbMQCMcMEdf3ZvgxkC5wh\n6h5Vytr4gN5RJ9NbQWwt4X0fiYnZzXhVKt3r5/ZzvIH2cLvf+IXJKpTZznDPuc/3jLXQJwnPlaaT\nXna21Mv1to1S5TNVkTKiPfQYkCcS4bOy3MQ91zJ6f95huzxBNNqkILsjFflVRYdX5LaA8NlWLF+l\nEp0NbfByTMzL/mYfx0gNraSaw+WulinDL/2kXUP5t+nOdp/1ipxjggsdZHu9muy3ToHf+rfr/cPz\nZnjKJXrJdYVLTTPDQNt52xwbwjqmAQ5zpeukSjXZMa5wjb+7zbWONfqQgYII1f+qEjs7ZkPofLHE\nejuKN4lcpsQgmQKBI/RyndkWK1auxhplCsQ9GBtjbQX3rubaAXROUGR9VFc6RXlgNWeFbbsKyuLF\n2SO2ArGlRNg5m3fD4HZxSDAbccx/YV55viS3qva4aqe24ec+Sic3m6dYlcwWjqt19k/kT/mat+Tq\nZJih7vFT6620j2Nc6Fsy5Ljdq8aEZS0brfUjh7rMYf5slswEa2/97WeGB8XCzggp4QSwwjxJ0V6S\ncumZE7FyfQ1FCeosMntTuj7uPpLICDmINBWPdBDbVxIdEdu2gPCZUBAWxeYa2ODlpWZbbt4W+629\nb5qH/d21flbXB6u1qFTlRx52uJuM0tdsN7jdaQlJDfLkuN4J3vBzy+Xbz3XW2myUkZ7xkAv82D1+\nJ02yYXpZgt0caKqn3eZ6ObLd7Sk9bKemSyf9dqfs+XiX7CXmh39/rrpYq0z3sGPAHroaLKsuVTZH\nsUoSumr+eU28/v17zbj0pEeZ3J2H1qprGFNQEv9CdtgKxAZjs5heVPs+4g/KLFohm/jiGCpigoj7\ntW2taGj4aW6pP1utaCQjQcr7X15wiP3N9p6H3CAm5hcmy5Dj996qIzXorLvrPK3QRvc3U2/Zz7cU\nW21T2MMvNZwAlptPtDdJxXpn11i1aFViW63M3pSsikduRc0QW/3ItoPYvrLoILZtCAXiP8ZOYX1P\nLV73tHRZxjkg0WGIR3WXucoOhjvDyW26bqFSR/qt20xxi5P9248N1L1Vx+5ikFf91GYlJrpFpSr/\n8DyYZ569bW+w7obrLc0Yu9tVJ51c70pP+adudjTPLKcdcrlNUyO6VaWa7hP9dbW4AbGVywsVeIHA\nDnLqooRZYR1VZqOoIRaLR2vHdqNLC5ZY++fGVZKbKuLHFxQHuiSR10obrS1hp8x4arO0mvXhgzMN\nqV+CGjIRvivqZTWWtUH6PzQsJ5m/BWIrDkUj6Y2IbZXVPvCRIxzsSXfWbf+eX/mj9+Qm6PvXw3a+\n6ypPuL1BUX8t+tkLgWVeB1HZkvQMia0vkUK9c1hZgEQO/5lhy5qsPq2M2Dq8Ir+q6CC2bQCxulTk\nBimymzj6v+05uzhYahixJMJLXvOKN1zvyjYVYm9S7EA3eNsCz/uxSxzaZvn5ED0841IfWuKnHrdd\n2DyyWrUB8qxT6E6nedUcD3sLnOhYQw32kc3mmWbYIdup2Fyt/N21ZvjUQHmWWF93jQKVcus14ewh\nTbEqSQIbwwd248q+j4qYW8rpiTug1GHHUCSyOKwzDkoiRmV+3rnki2L79HgpwdJyRoU/ufXY9b/0\n8ztGVBr+1oaoLU+qdFHLJHDxqIcNCmVIkdqoQepjnpIixREO0SvMQAww0vEuld2CfvVYF8nWpQEZ\n1iJNrq62t8oHddtSDVVhPkn9iBbolcOqIlQmGHdmH4o/ixsilySyDGsUoW2tG6AD/3V0ENs2hBL5\nsvRstK3QbO/axUHNHhcTc7Ub7Gysb4f+e61BoVIH+7X51njJFQ6wQ7vHvqvBfuU4N/u3QUa72a/c\n706ZUpUo11lvOQ7xCy+qUSNZsmv8xLs+kWOIqeOvl9aZmheqzInN01fnBsRWpEpWvbWezpJtVCkq\nqOvN3Dhz+Fw+2VH2S9BDrT6GpMcFHotLAh9LlVQSbJX1tVr0Cn2qV1cwRmCYQK54R4H/BrIFDhfx\nWBuILRDoJ8PyLRDbOoV1HRnq42F/d7iDzPSKf7rXPo52jSekNfmWGiJVmonO9S/3K05QvN3TeKt9\nWPfvFEPDiK0fkWI9c1ldgpqKJsfK7B0vzE7OSdzaRgIVZEcq8iuJDmLbhlBqk/RGxlAzvaVatTEm\nNHvc697yhndc5bJWR1sVqhztNnOtMtX/Gd9oXa89uNShBunuxx5zqfONMlKaZGUqPWWFAikWqvJP\nH4NjHKmXnioNtjBphUEHUjWlRk0QE1HeYI2tRLWMepFoPxkWKlKupi5CTW/03p/fyEGdSd7CXZ4U\nxIupPylmJxEbq4Ktlobk85Tm2so4Ydws2e2Sm6QiK2riY3i7gPXtc8NqFseK+kDMyjaoI3tL85kE\nsvh6+MxGPTWcOcw0y/umOclxPvCCfKud7Ar9DW/VdY9ynnIlXvJYk9d6GW+N6WpCkk41VLl5Ykn9\nQI9urC2lpjoBseWGoqwgSByxBUFHgfbXBB3Etg2hQkkTJ4aZ3paji+0Ma/a4m9xpB8Md4ZBWXScm\n5gIPes0cz7jU2HoNTr8IUiS53aleNttLZuHzOfA5BrvLOCPkuM0UxLsr/9AFXvKhaqlyDqDwPZIL\nAgXW2KREYfhgrVAjud7tul+9NcDB4WdWf5VnUxXvFrTe63FUBp+GqciCqrhScmshOzxXYVhOdoRo\nA4ViZdjipvc77Pghe35M3tvsN72p7Vd7caioCP7VxnTkegkIoh4WWWdQo/Wy37lPTz0c5XCXusur\naoywSxuu28cYE7zs8Sav9TBGlVL55iNObDUKVEfj6fseeVTHyC+ubro+lh7mpIOkuNy/8etB4zY1\nHXVsX1V0ENs2hEqlkhv1rZrlHSPt3mwkNt9C//C8H7ig1dHa7011r1f80ZkmJLDu+iI41I5G6uOO\nkLwiIqrV6CfDbrqYbYCXMCeU9J/jdFFR3U0QOyAqVk3Gq1VWhsq3ZWEtW2UjYhtZbwLQN/zM6gdZ\nL2+KezK21utxVCYzS6iJUVgdNzHeWogGZEQoqOZalabUI5fNVUyYwa+WcWoPXt+J6eN4YPt4T7cD\nP+F785oaKbcVXQT2EGkTsXWTukW/yIXWGliP2PJt9GePOcfpUqQIwv/aiv18x0deslnD9jI9Qo/I\nNWEniJTQrqs8qRQR3cP5zppCTdfZ0uq5csZqKG9cpxdoYKzWEbF9ZdFBbNsUYk1shhaYbnvjmj3i\nD+7XVRcnOa5VV/jAIpd6yIUO8t1mWuN8EQQCP3a4Z0wz3VKZUuuUcwNCAsrAH8NC22zZTnC0dy2S\nNLhabv8MVVNLLDUHLK23zhY0us4p+huvc91nVp+L3i6gXyoDmtfbNMCIDIqq42KTGnTeyhWeKRGK\nYjE/U+WQMAqqqOHYWXHD5dd24pbB7N2JHbM4vSdvjeHeofx1DQd/Eh/fF8HBIl5WU9cRYUvIlqSw\nBdeSdQp8ZqPR+tVtu80fVKl0aliaEhMz30JPe87r3lIWOsVsCXs5SrVq7/hXg+3pusjW1xrTQXJY\n51gZrCLaR4/e8enNukJNi7Qj0bi7SK3Tf3njcDiBeKSD2L6S+EYR2/vvv+/www/XuXNnWVlZ9thj\nD48/3jTd0RwefPBBkUgk4Z9oNOq1115r17iC8LcTiIjVmzEWyJdvtYGhJVFjVKjwZ4863YnSWlBM\n1qJYmZP83mj93OTEdo21NTjFXrrK8oQPdJJuc+gO0lWqmONdoL8/mup0F4KLnWeVdfKDZH0OKFE5\ntcYKi6VKMr+Fhpd/sZsPHFQXg9TnoncL2TVRYVsz6Bk+6+aGk/ytTWxJAfPqPSSLxNy6klc28fRI\n9khQ1BYEnNWLl3aMKzwnzmzoOdlW7C9iMz5uJbFlSlLcArF9JG5bNS5MZW+0yS3u0k2BO5znac8Z\nZU/b29nRTrGPIww0xl8TrJ01Rje9DLdzE2KDPKOsD1PdUbkiMlVaTlJ/3beLT57WFqFgYZNjBUG8\nQJumxNZYBdmhivzK4hvjPPLyyy879NBDpaenmzx5suzsbE888YQTTjjBihUrXHrppa0+16RJk4wZ\nM6bJ9gEDBrRvcOGTOVmqinpKsFWWQLOmx//ygvU2OMNJrbrM5R6zQr6P/aqJPHtrIknU4XbyV2+6\n3vEqVctXpGtYxnCeA9zkX6rE1zzG2ckYo63ysaH7Var4U4z11fp2yzUv9A+MCJqNNBp3vq6OMa2I\nn2/X+jF3CX8J80ob/rsx3lvG05+yqoDt8zhtPH1aUQvfeOI/v5Srl3JhH/bdgmpzz048N4oDZ8Q7\nFPxuaMv7N4ddRKTiTTXGt2JOmyqivIXat3cskCvD4HC982o3qFKtr3LvWOp2pzjUAW50lfHGWGWN\nG93mVOcpUuw8Z7Z4/fEO9G/31zmN1KKbERb4J+KRe7J+cWKL5MnpliolKbCmKErB4qYnjcU+bzaa\nMBXZ+B7riNi+ivhGEFt1dbWzzz5bNBr1+uuvGz16NLjyyivtsssufvKTnzjuuOP069dvC2ciCAKT\nJk1y2mmnbbXxBeGkOEOuz3zuSl5rLZWnT8LjHvK4MUYblcA0uTFeN9ddXnSbU5p1E9mauNBB/uJN\ns8P3sMCaOmIbpLuJxnnbcusV6ibbsSa61hxl+8a9p5JeI+OYGvPCovVkEVVbILZo+PCbVxpP2+3S\nhoitW8jzs8KIrUcjI42ySr73OA99RK8c+nXi759w9RSuPZQf7tvyBL8ixuhIfId9RNy5LF4Efu2A\n1o3vW53inQnOmR9vpTO5dfXzDZAqME7Eu60s1I4IGnRYaIzXzLW37UVEzDDTne5xvSsVK/JLN7nc\nxa5zpUhIor309Kj79NTdBX5shGH2baahLoy1n4fcYKnZBtS7x7sa5n23q1YhKkWyfiosJ9pVkBrV\nPTuwriKbwmUNTxiLxQuwU8LwuLJRW4cmqcevb8S2ZjYJTMe22rn/1/hGENtLL71k0aJFzjrrrDpS\ng+zsbD/5yU9897vf9eCDD/rZz372PxlfJJR2Z8ZyFQTLxNQIROSHabjOmlYYlyr1nCmu9OMtnr9S\nlXP9yR6GuKCFeritiV0NtrshnjENcfXcbvX6ct3sJLv7hSv8zT3OcrQj/Ny1ivDEIwAAACAASURB\nVPslSxtUKfpKtZJj1pkbPlxSROqaijZG7aOo9jH0Qfi8GrflXqx1yImSEjAjVEbWl/uXV3HYfbyz\nlAdO4JRxRCNxT8lrXuTHz7GumBuPaP78ZTVkBIGYdJ+VM2gtV/Unsw3qy7N78eImLlgQd0vp3o7G\nDbsJ/KMNDiTN0VqJcm+Z75eOERPzsL9LkWK+Re71Z1e53FUubyIcCQR+61ozfOpU55rjPRnN1LaN\ntpeoJB95pQmxxVTbaJFuhod92T4hsj3JMXmZNdYVJ1PUiNhqm4u+FaY3KxI1Of1mrLE9dIoET5Wt\ng+YXD/57+EYQ2yuvvCIIAgcd1PShfsghcYn8q6++2ipii8Vipk2bZv369aqqqgwYMMCBBx6oS5f2\nd6gOwvX0bnopV2CDeboZrlypFKkJnURe9aZSpSY6bIvnv9ML5lplmmtC0Xf7UK3GmzZ41VrzFClR\npZtU43V2pN56NTJo/rYxbvG8dCnWNiq2naLQEBM84SXXO94ORtjVeBss0GnfpfJfLbHaAsWiSlVI\nE6nrnL0lTCticBqd2nB3BwF9U+NrWd2T42KPWlz2HG8tYeq57F2v3C8njd98m17Z/PCfjO/L8Ts1\nPXd5DZWxz5WWv1kRJ7QLerd+fLW4czAjPuCyxTzQfAVIsxgr4lbVCsVkbyEiKVcjrRkXmyk+UarC\nROP80M88b6oyZe71Z7e70fed0+x5o6LudbvhdnWne1zm4oT7pcs0zHgzvN6guW6XsPQlP/ydJOun\n0L+J5mGzvCzWFQcUN2qDUxOmRt6fwriAqsZClm/OGtvJf2X01hVE1+GT2XHi/F/iG0Fs8+fHa16G\nDm26ONGjRw9ZWVl1+7QGd9xxR93/x2Ix6enprrrqKpdddlm7xhctiQtIcmPlBIHl3tDNcJXKJYf+\niI3xLy/or58RLdS3Ebc8+oWnnWt/OzXyoGwtylT7nQVuMc8KpTpLMVKOLEkWynefxS4wzan6u9GO\n8kIhyxA9bFAkS1oDYnvMMueHkVyuTo5xm9f8zM7GeNAHxu7LG/fHVOavpcswi6yVJqo0AbEtVexZ\n+ehWN9eeU8IO7eiltl0qi8riBFeLVxdy+xvcMakhqdXHpfvw3nLO+TsHDKFro2sXhM/TnGi8nOCJ\n9ZzSvX0lBXkpXDOA8xfw/d6Mb0O6lXgBOsxQY68tWK+VqpbWzEToKR8aqY9cSe7wR1WqXOp8Fzrb\noFbURQ420NlOc4NbnecMOc1YQo+yl9c82WBblp5SZNlgLkjRT5XVaiKdRZTIy2b5xvK44XF91EZs\nMXEfu+pExeffDOeRHiPo27zY+gth7Zdz2jbhG6GK3Lw53oOpU6fEq/w5OTl1+7SEgQMHuvPOO82b\nN09JSYkVK1b4y1/+omvXrq644gp33XVXu8ZXnRHvyZZhsAH2N919IFmKymbqiF72ugNN2GKN0K89\np1qNXzimXWN70RojPO9yMxyoh7fsb72jvGF/z9vHxw62zlF+bUdP+8wO/uOtUKL/LcMkiSpSZief\nKzmmWGOYbLvootR4b1qsUKn97KNYoPxb4W35dvw7WWq9dFElCYhtsnf8IVyXrAkfSvNK4/6MbUWt\njdbAUGAai8WjtV36ccGezR8XBNw+iaoabnq16euF4bBzory4keXl8c7a7cXZveJj/dmSth87LLxj\n5rRCFLFZpdwErv2FSj3hfZPtLlWKqlA5OdSgVpFaLX7qhwoVecAjze4zwq5WW2JTPReaQKCzITaK\nqx6T9UNMVVL8vunWifVrN1HcyOG/Vg1Zy+eNSatJhPb1jdi+7vhGENvWwj777OP88883ePBgqamp\nevXq5eSTT/b8889LTU119dVXq6lpux67KiwiTo2MMs65VnrHBnNl66xCufJGtkYFCnxqjr3s1uJ5\nV9vkDi+41KHy2tgkpVqNy013kFcNkmmmQ9xvV3vo1qT3VmcpLjXMHIcaIcf+XvGKtXrr7AS7GamP\nY+s5T6xWZrhsk+yl3IFqDJTjHM/6TE/dLB2YLrkX3igTEVguX5YkJQmk5zNtVjvLrhJP+y0pax+x\n1ZYHdA/X1579NB6J3Xj4lrNS3bO4aO94dJffqC64tv4sK8rvV8VNl/f8Aj1rkgKu3C5uGfZB4Zb3\nr480gf4C81tBbOuV65aA2J70gRIVTre3H7vK/7nUX929RZVjY/TR2yRHuNsDzYpUhtsZzK3nD4mQ\n2OJZluTQdLsyGv/tdctlfQmqiqiuNzGMppCczb5HkZQctqnpwNcR34hvtjZSay4qKygoaDaaaw1G\njhxp7733lp+fb/bs1kmChg4dqmfPnsafe65jr+Oiifz9kbcN8W0Z8rzkcrmhjHqDhimVGT4VE7Oz\npiUH9XGL5yWL+kEbjJGhVJWjveUm8/zGjl6wr2GtIMbu0kyxj33kOcqbZtrsXmf5sSP0c7FiZSpU\ne9cGI+S4AaQTCgP+4k2nOMOGIFXfvbtIfiMmXcwia2VKUtSI2CrVhHVW8YdiDRaXxf8e2g5i2z18\ni11DYvvDO+y+HfsNaf6Y+rh4b8qreXx6w+0FIbGlReLijxPzvvjyzXfy4u/x1wm6s2wJQwQWtEJA\nskZZXaug+rjXKyYYLk+mezzoUU842fHtchg5zxlmmeNt7yV8vbdBsuQmILbBNobuNLXEVhGNr5l1\n68yGMmpqUNaoVi2tK0NGhMFYK8bbilTkI488YuLEiSZOnGj8+PF69uyZcNmjA/89fCOIrfYmS7SO\ntmbNGkVFRV/4RuzWLW5eXFxc3Kr958+fb/Xq1T78w+89ehMXPcv6E69zu96y9TXPM9LDNOQiMxsc\nO89CgcBQg5s9f6FSd3vZOfaTq/ULTkUqHep1U63xnL39yPCE3ZGbQ6qoJ+ypvwyTvY2oP3nFKps8\n5UPPWWWDCifr7+K6Jd7Agy7QW2fTValWo3KvjSrfL1davtZMKxK6YCSLhKmy+G2cIl4fRvuIbXhG\nvFj6//qxbCP/mcf3Wg6KG6BHNvsN5vEZDbcvD4OGZeXx6O3AVtp8tYRowMV9eHI9K1t2vWqCfgLL\nWxGxLVViu0aKxQ8s8oZ5vu9g6dJVWW9BuF7aHuznW/rq7WF/T/h6/D4fY0FonF2LTvortEKNalE5\nIrJUBUWI6No5Xsu4uczn62q1SOsSL8yOJDXsvVbvim3FiSee6Nlnn/Xss8/68MMPrV69uk1r9h3Y\n+vhGENu+++4rFouZMmVKk9eefz7eFHPChAntPn9NTY0PP4zPKPv3b6NAIxZTnsJs9LSTgQ62wWxJ\n0i33nGydzQ998Wox30L99GnRbeQBrytW7iIHt3oo5apN8qZpNnrBvg5tZ71btmQP2c0CRS73kdfD\nppGPedtfLTVeZ6N0co1ky8QkqbJarosc7DWLkSxprwjl1Hy40jSLm7V3OstAtbdxssCC0nhk1Ksd\nUng4qltcsXj/+2SmcEIClWNL+M6OvLyQdfX6c84tiac33yyIF36PbUMZQks4tXv8vf4pQbPoltAa\nYqtSY7kS/RtNim43RX/dTAxt3qLhf+1FRMR3TPKEf6hpJoocYkyT30An/dWoUhTWSSbpoSpYR9BZ\n19ASckOxpsSW2pmy/DixNX7tayoU+SbiG0FsBxxwgEGDBnn44YdNn/55nmjz5s2uu+46qampTj31\n1Lrtq1evNnfuXAUFDSXq06Y1nZlWV1e7/PLL/X/2zjs+inJ749+Zbem9QUioCb13pAuKgNgVUFFR\n7KjYvfZrFwWvFUVFUCkqKoigF6UrRRCQJoSaUNIbSTbbZn5/vLPJZrO72QT8Ue4+fPgEsrOzszuz\n87znnOc8JyMjg6FDh5KYWM/uEFXBpqW+unMHI3ifIGKwYyaZ3vRgOOv4vsZT8iggqY4ulE9YzRi6\nkkKsz+2qDgOVSWxmHfksoT/93Mbn1BcdieIJ2vIhhwlBpHm70JQV5DKGap17CiFcSmOWcJxbGICE\nRBzdKOsSjBwCbMgnm1KCkDhJ7VkuU+nMV/QHxFTqA5VC6i97WXiXVsKzP0Ofd+DBxZpZrgcs2g2X\ntYMwz6JUrxjdVigfVx+s/t3mMugYCnNyRApRd5o0CRF6sb/ZOfW7JycikQc+m68PUo4dldYuQ2/3\nk8Nc1nM1HavaRlRU/iKTOaxjFmvYSf1zo1cwimxy+MNL5NeSThznIGaqsyHOKfMliF41PQnYyQNd\noypiK6qgdh3NFA3WYtCHgt191pxKjYjtPJb7n+/4nyA2nU7Hxx9/jKIoDBw4kDvuuIOHH36YLl26\nsH//fl555RVSU6tVe48//jht27bl++9rEkqPHj3o0qULEyZM4IknnuCOO+6gffv2vPnmm6SmpjJz\n5sz6H5yqYtcycnpCCSGWq1lILx6gIxO4kLFksI1D7Kp6SgmlROG9JriVw2wnk4kM8vsw3mAvn3OE\nWfRiEA2wtfCAh0gnCiMduJA4wpnIUIqxkeY2IXww8WykkCCCuYkBWEkmX2/A1EOCDYJ5rFRS6sW3\n0KLdoIOAg2Zo6SUNWWKGi2fCm2ugcQR8thmunA0Ot0Ahrwy2HoOL0uv/nhtHQpNI2KzZOqgqbDop\nhCPHrTD2FNSQnjAhUZD5hnqISOIQQhtP7clO7ELUo9u71FZfYhF6HLzJI/zNPubyO+15nM48yU18\nyERm0pF/MYxXycD/MLIvvYghmsUs8/h4M9qjopKpGWMDRGjGy6U1iC0X9E2I0T7jwnKE6bErTNEi\nFWmKEpFbAOcl/ieIDUSqcd26dfTv35+vvvqKGTNmkJSUxIIFC3jggQdqbCtJEpKH1drDDz9MREQE\nv/zyC9OnT2fevHmEhITwzDPPsH379oZ5RaoqjipiE3fkZPownOnI6OjNJcTThI+pbh63YsXow+tx\nLutJIIKL6eh1G1esI48n2MHjtGEc9TBYrANhGHiYdLbhYCfTMGn1mgi39snRNEZBpRsfs4o9lGIl\njBRMvUNgvRAEVFBOkZfZYM42WyOinpXqJcq69Wv4Ow9W3Qnf3gQ/3ALrM+E/a2tu97Noj2J4A4gN\noGsybBcZMhSgwAZHKoWasT42X/5gYCQkGkStzV9Ea1FJkY+IbQtFJGAiUUt3b+cIc1hHMMcAhaf4\njuv5gFYk8hOPUMEnlDGThdzHEfLpzwv8RabX/btCj55LGMZP/Orx8WbaaKXDmvExgIkITES6RGzx\n2MkBXRLRSeICKCgHVLfFkClaCEqCE2pP0fYY9gbSk+ci/icatJ3o0aMHP/74Y53bzZo1i1mzZtX6\n/euvv/4PHJWKQ+NQHcH8zWZ+5nNKyKc7FzKMcdzCs0zldrLYRwrphBHKCR/GNYv4k8voht6P2kcp\nNm5kE32J5QUvUwROBbfSgmfZxQwOcLtm5ux+q2hBGG1owU7ygROkEEMejTD12QNTFfTHT2JpXE4Z\nDipx1HLDqEBoK2UkTlg919cW74KFO2D+9dBDswS9oDnc1F2oHx90CW4X7xa9a40aKMlvHQ/faXof\nnQSNjbCtXDj418dCyx/oJLg0FhYXwFTPXtm14KyauSfiXPE7BVxAXJXS8X6+IJ1G/MCL3MdcvmMX\n73MTdzGsxvOupCcDaM1FvM4o3mQz/ybRR3bBiQsZxFy+oZAiYqiprgkhnHia1IjYQERtpVrqszoV\nmUBopIRBL1FUoYLFTQntFI8k9vQwRVsN9LKdJ/ifidjOWrhEbPvYw730Zy3fcZQMpjKJm+lIK7oQ\nSRxL+BiAcMIowt2ZXOAAOWSQzWi6+vXyj7CdfCzMoRf6f+ByiMbITTTjffZXufO7E9t6HOykHTAI\nkGhGHJXEIPcWDGXfkEUxQrad6zLPayMKS3FQjkoIYhJ1gb16BI0TiiL8HC9Or215NaYdZOTDYZes\n1NpDMPwURLJpcXCoEGya6M7pZDK44R0lPjEmVjSl7/XFVC4I1m7W3vS7zpaMvlp99is2spq/eYmr\nuY3PWck+vuX+WqTmRDwRLOFBbDi4mY981vKcGMoAVFRW85vHx5vShsPUbKWpTWy5qHIEkgGiQ2SK\nzEClWyjrrLEFxYPZzSNDdauxBcQk5ywCxHYWQJHEzf4DnqcNvZhLBh+xic/ZQzBhPM5oYkhij9br\n04oWZHDQo4psLXuRkBhYh9UWwAYK+IiDvEpHmnOapHoecCNNycXCBm0astHtsmtb9X8FSORZrgR0\nFCY3xtTEABsKOKkReY7WAuFApQ8WRmGlCJFey9W0JYluWdole2BfHjx3Ue0F+UAtylmrTTjJK4Ps\nk9C5AT6OTjSOEAISpzLytiTxc/zpKV3WwtAoMEiiR84fOINGb51s6ymgAgfDSOQYhdzCR6QSywf8\nym9k8BOPcBndfb5GMjHMZCI/8Rc/uCkaPaEpqTQlhbWs9/h4E9I5Sk0JfQQpnOSY9p4SUKlEkUwg\n24kO0cQj7sNGTdFierYhDMzu+VtPEVsA5yICxHYWwCFDPpDHCe7hTYxaU2wK6UxjOeHEcJAdbGM1\nxzhAe9pQTjlHPCjQfiOD9iTX2bumoHIPf9KNaO700Q93OtCTGMLRs0RrNDe5XXZRCNf7AeQSzwU0\npgmJhOMgHrWnEbYUkaXJurO1iG2hi73WHhRigBytBOc+cubNNXBBM+jjoRMjNhTaJVYT2w5N89D5\nFCb7JGp1tJwyWFYIK4rhRB/o0AD/Sn8QqhOuKSv9JLa6bt0/k008JjoTxVSWIiGRQyl/kcV87mEQ\n/rnnjqYrF9GRB/kSm4+BpU4MoC9r+N3jYymkc4wMHC7nPZxkTlZFbEIxYtepINmJCnJQZAmqPbrG\npKU59UFgKXCLytwitgDOWQSI7UxDVVFlOA6kklZlIeREFPG8y1rS6EIoEegx0JNu6NDxX1bU2t1f\nZNIDL269LviKLP6kiLfpekqO//5Aj8xoGvOjRmwHKfO43Tf0w4LKIo5zGT2IIB1rDwdsKSNbzUNC\nuGGIbRWaIaEDlqDQAbkqYktwidgO5MOag3Cv97Ff9G0qBogC/JElJP6tTqHbIVpTZRabYeI+mJsH\nIf/wN21gpOiT8yd75mya8FTuU1H5hqOMohGlVPAxqyjHgorKch6rYY1WFyQkpjKWA+SygI11bt+f\nPmxjB2ZqmxOnkI4VC3kuU8TCSaacXBxY0WtKXrtOEF90KBRbDFB+rOaOnMQmG4Xbv83lWnRPRQaE\nI+csAsR2xqFikyAP6M8oj7ZEkcQyg418xRESSSWOWPrThx/4qda2GeSQRpLPV7Sj8Cy7GEUjLmhg\nv5qKygYUpmClF5U0wkwjzPSikkexkeGW6HqANPK1NOJ2PFubZWGkCQns4yQ3M0DI+7tHQ4kCB04S\nia4qYtuKwpXouFi7hMejI89JbC4R24LtotH6Uh+zWNvEwyHNeen3w9A7RcxbayiCNWI126BEC1QO\nuU9IOc3oHQ7Z1mqXE18wazdsTwHknxSRQRnjSOVdllOunbP/cAOdGqCY7UQqI+jEGyyts9bWi+44\ncLCVv2o9lqxlFY5T3SAYphkIlJNXFbE5ZEFsUWFQXKFA+fGaOzK5jSt3naKtKiC70X0gNXlOIkBs\nZxwqZhkcQBMfKUEDRsKp/lKO4RJ+YTU5LkMizFgpopwUfM+G+4aj7ONkg1WQ63EwACt9sfAVDtog\ncxd67kJPOjKzsJOOhTuxUqrdzHoRyyRNFbmX2k1XJaj0wMJuurEAmY40JRwTdBeN6NLmfIJROaGt\n5nNRSQIeRs/FyAxGJs8m+sWCXK7q+dsEqYX6cCIJM0G5VYhMfjsM/Zo16GOpgkkTA1kdYNb4vVgj\nOFWFr7bD4A8g9F8Q8wxcPUcMMT0V9NYUnH/40c/mjFE8jfeczWESMDGUBJZoNlYDaM0dDG3wsT3E\nJWwnkzVuqkZ3dKAtQQSxyUOjdiJNkZBqEFuoZlJQTjZ6bYFml0U+Ojo6lKJyR+3RNc6IzUmyFlcv\nSYWAeOT8QIDYzgI45f56D07q+9jPbOYxk9ms5jdsWiLpFq7HgIF3+Khq2wptdR3mw2oL4G0yGEoC\nXamfaaEVlSlYuQArZlSWYCSTIOZg5BkMPIOBLzCSRRBvY+BLHPTDwlHtJtJZk33nexjF85lWO0k7\nIVOxvTOvq0cZTDtMcanQVELdko2MhRwsOFApBWKQGIKOnzChQyLfVnPy9b48UTMbW4ctll4WTdq6\nX6GgArqcgnAEqtWQehk+ToMrYoWbv80B18+F674Agw6ev0gYJ+/Ng77vwiNLNOPeBiDJKEQz2/2w\nKs3XzkecW3agAjuzOcJttECPzNNcTnPimcmtDTI4dmIo7WhBAp+x1ud2Bgx0or3HiM2IiTgak0P1\nCqCa2HKQMKAjCrs2tTcqXEeJWQVzXs0dmaJE07ZduwZtLisBVa3tVBKI2M5JBIjtTEMFu3YWdC5N\n1wUUchUTaE1PbuZu7mAKgxlNY9oyiy+JIpIJXMenfEmZtgav1EjP5KM9cQuFrKeA+6ifnj0flcFY\neQ8Hb2JgEyZGoUPn4YYXhMRk9PyBiTJgCBYKUav6z3JcJPvFqEzCykPYuNyqI2OeCb4wMLVYzyDa\nYCcCuuthcwEVlJBNZZVjRqT22odRSMJMpk0l1uWtL98nCOTCOt6q3vkt0MQnMZ5CmXrA6kJsE5Pg\n2/ainnXTfPhmB8y7HpbfDg8Phmcvgm1TYOooIXK5eUHDA4UOobDTD2LLQ7i0hLqdu4UcpRQbE7Ua\n7Si6cIA3ad1Az1AnZGRuoj9fs4lyfOdku9GJLW6Gx04k0YwTHKr6f6hWVyvXejp1xGOXRc9DZDgU\nVzhEr5rrByrJEBQHdu2Dcu1zUwMR2/mCALGdBXBoZ8EZsWWTwyBGsZrfmM0HlHAEK7lsZiWXMIyJ\n3MuDPMkU7qaEUh7maQCCtedXeHHoAPicIzQiiNH1uFmdQKU/FvajsBYTU9B7JDR3tEFmBUaKULkK\nK721dJHTMb4clZFY+QYHk9HxmmyAMCAWKnV2OtBGxHFdo2B7GQ61klwqKdMiDqeJx1c4yAEy7GrV\nyBmAXzLE2Jm6/B6dNTFnx3LiKXY+lGjah2ePw1At+Hjvd5i3Db4cB2Pdpg3pZEFyX46Dz/+EV2pr\ngvxCejDs96OWdxSVJm7nT0VlKnsZQRItXVo/TiVSc8X19KMcCz+y3ed2XenE32RQ6YEAE2lKjoub\niQ4jQURTrqXj9cTjoBSQiAxTKamwozqsYHNje0NYtQFyDfFIoMZ2viBAbGccrs4jBhw4GMutFFLM\nOpYxgbFEEIEePd3pwhxm8B5TeYsPmMyj3MaNzGQOR8gkihB0yOR7qGGBkPh/zVGuJcVvJWQBKsOw\nUIbKb5joXc9LpgUy32BkFQprCOFr+vItQqI4EwdbUPgvJqZjJF0vcf+FKlysEBNewgscFpO3uyRB\nkR1HVi65LmNXnZaQzm6kSptUFbE5FFh1EIb5EZhGaJnb1zSPwcYeHEdUFbJOQLEvg0UNBRpBbrLA\nqhL4IxseWyqUmdf4SIuO6wrPDIOnfhYilvqiZbDwyqwr0DisKUpd8Su57KCEg6znHWpOwcjHwhHK\nsfkxw83rsZFIV5ryHZt9bteJ9jhwsJu9tR5LJLVGKhJE1FahEZuOGBxSMchRRIXbURQoswAWN09I\nnUmLzqiZikQhcEs8PxA4i2caqordhdjeZSZr+J15fEwbPJsV3s1tLGYue9jHDGahoLCPA8jIJBPN\nAXI9Pu9PijiOmSu1wYx1wYbK1VjJReVXTKQ18HIZjI5J6HgMG31owiccZBaH+C8OhiLT02W/L7aE\n4K4WOkjN+Y18utIeQ5dmAJRv208JNsq0epxJuzkXaxFcsR1itOjrz2NCbn+hH0NCY7XU46ZMiAyq\nJjoQNa/350KjgZA6FGL6wPCJcNCHiX2OMwjQSqbP/wLhJnh1ZN3H8sxw6NkEbv+mulbnL5qZoFxz\nX/GF/ai0cCE2FZWX2E1bwtjHTh5hPjYUPuIAHfiJeBbRjB+J5Xtu5Q+O+TTj8o7L6c5StvvsaWtP\nGwB2UntgbwIp5HG0Ri9bCAkuqchIHBSBHENkuIjISszUNjuWDWIWmz64dsRWo8YW6Gs7VxEgtrMA\nivbdcaDyCtOZyA0MwkfjFXApl7CNtVzOKNqSzgTu5BjH6UsrfsfzkMOV5BKCjj51qCadeAwb61BY\niJHWp3ipvIEBA/ASFp5kJxP5gx0odHXbbxgSH2BgDSYggpYkYUuOIDI2GrYLhVuhdmN0ltOcUpST\nNjHvDIS6MUgPvfxQqKdrkdrCHdC9SXX2yW6Hm5+Ae1+EEf3hh/dh5r9hfyZ0uwp27/e8vyNFgiBj\ngyGoDJb+Bc8O963MdEInw4yrYHcufOp5qLRXNNZSrie8Z6JxoPI3Ku1dPvdfyGEVebxGFyzM4hde\npgfLuYMttCWCufRhGQN4mNb8wHHa8TPL6+He78RIOlOK2ev1CRBOOCkks8dDxJZACg4cFLq8tojY\nhEBERxQOSkCOJjJcRGSllYDVrb1EkgEV9CE1R9cojpqpSDXgRHKu4n/KBPnshFqV4PmFjeSSx6Pc\n59czo4hkAZ/Sk6HsYR/z+ZZ+pPEI8ymjspY6ci359CMOox/myD/hYDoOpmNg4CkMknQiQhOUvIoN\nMAEOjgLtPayIx6HjXqyUkYQBO0gSEZ1jKdkqiK0AG2CoOiqnyq/cDtHaFb05S6gbDX4celSwMDw+\nUQrdk6t//9ibMG8pzHsDrnOJtq6+GPpfD5ffC38uhDC3hrDDhdA0Grb3g0lfw08RMKkek7i7JsO4\nLvDCr3BLTzD6+S1N0qLVbKuY/+YJGahYqP7cVVReYDfdiGY0jZhPFjexiXZEsJlhdHdZBI2gEfeR\nxng2cAlrWcYAhtfRM+mKbjQjgQiWst2ne0k72nhMRSZoo2pyySIecaJCiKdIawEQxFYMchsiIsW3\nqsSMB2KTRHSmD3Grv7mlIs9jYjuwB+o5arBe+z7TCBDbWQBnKvJbVjCSSBbGvwAAIABJREFU4aTj\nR/7MBZO5nc+Yy0UMIYx47ucLfmAr4+hbY7u/KWU0dWvZy1C5HRvDkbn/NJCaE1PQMx0bVpoCh4Fq\nZaMrjEiMQcf3pPA0K4iiOce7rIbvRUrpGGZwUZA6p0FbFanKPX/LMf/qa070bCJc/ftqtls/rYVp\nn8G0x2qSGgjF3bdvQ4cx8MF8eOTWmo/vy4eEaNhXJMQgT13oH8G64qkLYe5W8fdmP80+orWPpMhH\nKnI9ChLQQ7uBf8Zh1pLPfxnI9xzjBjZyA6nMpIfHBVAURhbTn0tZx1g2sIXhNKvDvs0JGZlhtGeF\ny/gZT2hDmscRNk5iy6PaTSSE+KqITSZSi9hiiNRaPksqEQ4jrnDK+vXB4HARqXiK2M7TVORDN1BH\nU1DD8Q97EfiFALGdBVAlsCGxmwM8woP+P0+7oU9gLBMYW/X7PrRiARtqEJsdhUOUk+aH2fEL2MlD\nZRXG06aKA+EJeSl6NtCKd0llJN5z4dehZy4htKUxNmwUd0qEaVlIZWaOh1UAEVU+FkdQq/pt9RKc\nrBS9YY8N9v/Ypl0qZPoXpokU5P0vw7C+8MBNnrdPawY3XQ5vfgaTb4Agl+Xv7hzIToILfxBjZe7q\n63kfvtA2EUa0FmpKf4ktXLsnl/ogtt9Q6IBEJBLl2HmB3VxDE05iZzwbuJomzKIXso/zrkdmLn3o\nyn+ZyB/8yiC/r5MhtGM+GyihgkiPLeLQmla8x8fYsGkJbIEIYjBiIr8GscVhJh8VFR2RKJSiytFE\naMR2shJqW2NphKULBruLfZfqqD2Y9DyN2N78Atr5Z/lZb+zeA9fe8M/s218EiO1MQxUN2iXoUVEZ\n7KO2ZsfBQv5gDutYz36KKCeWMC4gnUkMZhRdkJAYRx8eYh6Z5JOqSewLsWJHpTFexktryERhOnae\nQk+Lf6AEOw4dc9EBkeDiTOKOi5EJAhqTwh+cgA6iEGbcfYhjvcSd3ikhUKDq3mWQYOtxsdjuluy+\nV+9oGQfLbhP/nvkV7DssUpC+7msP3wIzv4Zvl8P40eJ3DkVMB6A5ZB+ECV2E0XJDcEcfuGI27MqG\n9n5k/HQSBMtCQOINq1BcbMg2kIeF1oQzjg1cRmPm1EFqTkRjZCY9uIg1zCfL7wG1g2iDgsrvZHAJ\nniWirUnDjp1DHKmRvZCQiKERBVS7iQQTh51KbJSjIwpQUeQQwjRiK60Uz6wBp0hEH1QzYqtFbOdv\nH1vLttC+2z+zbz9c3f5xBMQjZwEcEpSiozGJNPVyg/iDg/TgGcbyHqWYmcIIPmIikxnOcYq4lGkM\n4EU2c5CJDCKcIKa7eElatEqe+5BOd7wiWqKZ8g+teUYi0waJ2TiIAg57uXmYkOiGjEQ0pSjQtilI\nIO08zAlNlecMTNogVc1gMclCERmkF6799YWiwEsfwrhR0K29723Tm0P39vDj6urflWr3yX83AnsZ\nXHEKs1tHthHN4l/UdpjyCr0Edi/340MoHEBlODrWk89ijtORSF5kD1eQzOf0xlSP1PNwkhhDY55i\nh9+tAK1IJIEI1rHP6zZpmvVaBgdqPRZLEkUuQ3ZDtIWbmQJ0mrONQx+MLkgmxKDJ/WW3OUaKHZBB\nNoHD5TbsTmyKct5GbOc7AsR2hjB27FjGjBnDvNVrULWIrQcdPW47j/X05wX06NjIc6zlaZ7mciYx\nhGe5kj/4N//lUUqooDfPMY/13MMwPmIlBzXpv1278fhqrM5G5RMcPIye8H+otiAjcSM6fsBBFBIn\nfKyKeyOxBz1xGCGkNboWEdh2HuaoNiLTpj23HXINYttxQkQ4+gaUB1duhCPH4Z7x/m0/rK94jhOH\nNGX5iv1CBVmX64kvGPVwZQf4dqf/z/FFbEtR0AFDkHmfA7QijJPYGUUj5tO3XqTmxIt04CDlfK7V\nTOuChMQFpPObD2JLpjEmTBzwsM8YkmpFbAAV5CM7iU1nBL1CWJDMSQsguy3SVDt89zYc21+T2BS7\nW4N2/cUj8+bNY8yYMYwdO7bujQP4xxAgtjOE+fPns3jxYsYNGoAVKENHdzrV2m4BG7iBD7iO3vzO\nM/TyYpQ8nI5s5UVuZwh38RkdSSGeCCYyEwWFOE0DlecjUfAZdnTAnQ2I1hQVlhfBpH3QaQskrIcW\nm+CyXTA7G6wuC/pR6KhARGstfVyC16HnGDCAdhiJx9A+FseuLI5qFmLOd9ISqcpwM0wW4o3W8Z73\neego/Ps9+OgrMHuocr83F9q3gn7+DSCnZ0c4kQfZmiXhdzuFynJnNtzcw8XVpIEY1VZ4Xh4s8G97\nmwpGL/fi+TgYjkwkEpsoZD9l7KKEp/Ex+qAOdCSKMTRmGvv8mpQN0IeWbOYQDi9RnoxMM1I55NaM\nDRBNIoUuEVuw5ndaSVFVxKbI4poKD9WLGpu7/6O1XCyE8o5XO5CAFrG5XPsNEI+MGzeOxYsXM3/+\n/Ho9L4DTiwCxnWmoKmYJQCKGmiM1NrCfG5nBePrxGbdjrINw9Oh4hwlcRAeu411KMbOav1nBbsLQ\nE4KO4x5mXYEQonyKg6vQEVXPL/OqYuj6J1y0A9aUCMPfyY3hmjjRNH3zPmj9B6zVVNedXPbf2cdr\n9UKiCxI7SMKKgcoO4bArF4uWhHTy0hXo6Kr5koXqICMP0jxM41myEjpdBm/Mgrv/DXc+J36/OQue\n/y8UFsPilXDXWP8X6l21AvxWTeK8aJdQWOaXw5DTML91aCvhOflTbfW7R1gVMHr4VmeisA6FcejY\nQiH7NHea+0mjN7GndIz3k8YuSllNXt0bAz1pQTkW/ua4122aeyG2GBJrpCKDPBCbQxLXR7hJERGb\nuxWL9aQo0CqALdDHdj4iQGxnARzazV3vQlwlVDCW9+hBcz7hNmQ/T5UeHT/wEJ8yqUoEsIXDlGOh\nPZFsocjj83aikoHKDfVIRzlUePwQDPlLEMrqTvB3D5iRBk83hddawOrOsLM7NDHB4O3wWbZIRz2J\nnqZI9PLxviQk7kfPfgyADto3hWNlUCxuyk5i64jM2w7R/axzCOePVm736ozDMP4RGNwLjq6CT16E\nOYvgx1Xwykp4bjnM+wUcDhhTjwktzZLBYKh2IgkziWncRh0MbOH/frwhIgh6pcDqg3Vva1HAqlar\nI13xMQ7CEYuASAyYkHmANKbRpfbG9cQQEmhNOJ+4GBT7QldET8WfPtKXzUjlsIsvpBNRJFBMXlV0\naCICkKikxIXYRBQWHqSIGpvd3SlFFoGYSk3SU+1uEZsCcuAWeS4icNbOAlSPran+Uj3FNxRQxjzu\nqTNSc4cOmVsYyDHe5m1u5HEWMIUvGUgcv1c5K9bEUhyEIOov/qBSgat3wxtZ8FpzWNcZBkZ5XuC2\nD4VVneG2JDFRemEevICeA5gIdonY5ufCVbvh+j2wSfNkTNMe70Rj9O00NccesZI3u6S+nAM9C7Wo\nMM0lFamqcMuTkBQHX06FiDCYcBl0bgPzlsFiLdr6bCl0SIOUepjZyzIkJ8BRLYi4qTtU2kWDdfwp\nmik7cUEz4aRSF5z9azFul4sDlVk4GI+OcCRaEU4RlzOdrqelnUNC4maasZCjnMRW5/ZRhNKceLZ6\niMicaEoKR6jtWxZNAnZslGnDaiVkTERgoRiJEECHIgnrlTCTRmyVbnlcU0T1+HDZ5f0r9pr1OE9j\nbAI4JxA4a2ccapVsXad923aQxfv8wnNcQdMGTrgGMGHgmBah/cFBLiCOI1SQ4cEk+TcULkCu8l/0\nBbsK4/bAz0XwfXt4NKXm/cETdBJ8kAZXxQlyO2CWaghZVhXD+L8hsxL+KIPe2+DlTEhXxSWaThMc\n6cJHkL+PIqPWcCws0T7EXG0gckuXiO2ntfDbn/D2k4LUQBBw386waafoW0OBHdth1KA6334tJMVB\ndj5sPy4UjINbwmND6r8fb+idCsdKILsOA2bnBPFYt7rejygcReUWlwVS8GlWvY4nFTMOFvtIL7qi\nK03ZVgexFVPCSbdrNVobVVPs4ocaRBRmipCQ0BGBw0lsQVBmM0CFm/2XKVwQm0q1GTIIYpMCqcjz\nAQFiOwugVEVs4o70IotoShyTuahB+1O1PwAPcDFTGct73MQIkghHz1wPKZ5dqHTy83J4+CD8UABf\nt4XR9SjPyBJ8nA4JBiEy2asqXI8Vu6py2z4YHAkbusKeHvBsKjx5GJ7KkOiryvxNBGpIMDQNg70n\nMECNamGBDUwSHC3UfBq13l9Vhaffhv7d4eL+NY+ndXPIOoa4wRWBpULYZdUXIcFQaYF3foN1h0W0\n1rYBrQbe0EmLIHfl+N4uS1PTpLh5Jb2OnTbYWF7HBOtTQSqh9CKGbznq1/adSGEHR70KTlI0y6ws\nl2ZsgEhtoVfsknkwEYlFi+BkIqojtmAot+lqT9HWB0O/S6HnKCEYcUK112wNqGWKHMC5gsBZO9NQ\nqxuNZWQOkcs3bOIRRvqdgrShsIBMruQ3GrEYA98Qwrd04mfeI4sbuZALSCcYPVfThM84XCX/B6hE\n5RAqbf2I1r7Jg/8cg7dawqgGaA4i9TC9pRjncnehg7k42GJVOVAJ9yWLyE4nwXPNYFY6fJQNjY4Y\n2IkRiIQ2UfD3UfQolLvcFPNtwtn/QIGI1pwL7S27xN8nJtVefKc1FYT0+jDoGC7Sip08D1TwCYMe\nbHb4Rpu99uXW+u/DF1rEir68nXX4Dh+pFIFIIxez5a0o/IbC32znaXayl1JUVJbgYAJW+mHhQiw8\nj43cU2xIvpJklpFNhQ/3fic6kUo+J8mhxOPj3ogtCpFjLnYRqrgSm4jYxJInLBghHqlwWxHogiEi\nEqJTwFJc/XvF5iEVGYjYzkUEiO0sgN2lxvYevxBFKDcxoM7nqah8RRatWcZYNnAcM7fSnHfpyqt0\npBvRvM1+WvAjb7EPBZX7SOMw5SxwqV8UI4KWxDqIrdAGd+2Hq+PgnrotJ71iVAwMi4LMg3oOqiYU\nq3jdZm7mdTcnwZMpsChTwlQqATHQuhG6vSdQcdSI2HJtkOhCbE588g0kJ9aO1gAaaXW4C1OgTyS0\nawlGPxz43WG3i565JkK7UKPVoMIMm3fC1t1CmNIQ6GTxng7UIfnfZ4YWwWJh4MRT2EhDooP2aeVh\noh8WLsXKNhRaIxEBvImd5lTyqR+k5A1jSMaMg1V+qCPbacS1x0vqshFJSEgco2a0Fa6ZMpd4jdjC\nUbRGkNBQPeWVCpjdjsfpERmcUP2YqmhiEfeILUBs5yICxHYWQNG+PBIy89nAePoSUof3dhFWruR3\nrmM9HYlkOxexgWG8SEfupBX3k85n9OIQI7mNFkxhGxewgiPk0RqZl9iD4nTF1356du6rxuOHwKbA\nO61O7fsuSfBECuw3S5wolTlpEzuL9hCgPtsUuoZJGA8aiSUeQ+tWKAdysdkqahBbthWSjHDiZDXB\nmCth7o9w8+Wg86AUjNIGihafhPXboG8DBYIVlSId+bBWn3tooCC7Z98Rc9x6XiPG3KQMgU8X1j0I\n1BOax1Q3f3vDngpo63ISt6GwFIXn0fMXw3mLKxmKwklgBUb+IohZGPkOE4cJ4np03IqNx/0QgHhC\nG8JJJYSf/Rhp04J49Oi8Sv6NGEkgnqNuj+vRE0YUpVSzfBCRWBAFSJlwHJKovoZGRVFucUClm2BK\np1lpBceDOVecEIe1+jEnlEAq8lxF4KydcVSPrTlICcco4mp8u94eoZy+/MoqcvmWfiyiP53ceuCc\niMHEf+jKGoZQio2J7KQPYeyhlKOa/MLJUb5MkTLM8Ek2/LuZIJBTxeAoaBEE045VW2PpPJClQYZr\n4qGyXCKYaJTWrVBtdmyH9lOESr5NqCxPaMSWV1atRvxlPZSWwQ1jPB9DqGabeTALdu2H/g30zisq\nhaAg6N8c1KnQNBJG3gEvzoDbr4VNX8HqOXBhH7j1KXjotfqTW0oUZBV7f1xVYVsZdHDWFlF5CBst\nkLgGHU9h5wFs3IuOLZgY4tbWEYPERxiZjoHXsPNhAyI3CYmLSGQ5dRQDAQN6WpHoNWIDSKYRx90i\nNoBIYmtEbEYiaqQiFcoBHaERYZR5jNiChPlxcLxIP1pLq82Qda4LykAq8lxFgNjOAjgzVJvJIY5w\nLvAyORvgAGX0ZwVWFDYxjCv8nIY9gHh+ZRB6dMzRVrcLOYoDhSSN2rJ91FimZkG8AW6vhxTeF2QJ\nHm4CC/PhckmkjrK9DMgM0wlz4RIMOFprB7BvL8dx8OhBuHoPbDwJyQYoNEO8Zjr842polQptvPST\nOTQmX7xS/LxkYP3fh6pCVjb8nAlpr4HFBhOfhLVbYPknMPUR4U4ysCd8/jq8+xRMny1G4tQH8aGQ\nV+798SMWyLFBHy0KXYTCChTex8A7OHgZO2+gZxpGn8rXB9BzNzoewMZuP/0fXTGURPZQSrYXIwBX\npJNEhg8STCKBbA/T4MOJoZTq8NVEOFZNPSkTjiKdBCmU0BCZCquKWllYcyWhCxJWWkHarDlLUbUZ\nst7FJFxR3Cy2AjhXECC2swDOr9wWTjCaLui9NElnY2Y4qwlBzzqGkkZ4vV4niWAW0BejdtofZDsx\nLKISK5FUzzVzR4ENZufAA8kQdBqvmN7a4duE9QqFXjJgETpQVImTZhmSWwifqv0HOabNFnMiRhX3\nr7hQ8fPH1b7l+3YtKPlhJVw2FOL9GyxeA0UlUF4BB7Xeg1e/hHk/wuxXYGif2tvfcz08MhEenwY7\nvdsl1kJcqHAz8YbftVaAPuGQh8pj2BiAzD5UHsTGo+h5CP/8vd7AQDMkbsHqt02WE0M0cYc/LiTp\nJLHPR9oyiUROeCC+cKI56WI0ICI28QHoCMfBSZBDCA0R14HZqoDNpW1AZxJEFqQVYysLXCI2l1Rk\nQDxyziJAbGcBRMQmk0kp/fDsmmvFwdWspxIHyxlY5/gZbxhMAgVczmx6AVCKjdvYTBdkNntZoX+f\nLzwIb/F/WLJf6BIGzYJV5AMGwvUq/SI9b3dZLDQzqRj3GTDQFFrEwYFDFCBhc7nvhmmhb3wo/LUX\njmbD6MHeXz/fxYTFtb6mqrDoC7iyJ3QKgTFdYNVSz/vYozmCXNQNsMK7H4mWgWsv8f66L94PLZrA\n5Jf8T0mGmcS8OLsXAcqvRWJqdrwRHsdGDioycB82HkTPa36SGkAwEh9gYBMqC+sZtSURTCvC+J26\nzS1bksAR8rF5SXsmEEeuB4IMI4pyFzVlzYgtVKQipVBCQ8Sxl1sAi4v60hmxmYQdF5biamJzjdjU\nQMT2T2D37t1ce+21tGzZktDQUOLj4xk0aBBLliw5ba8RILazAMJ5JAIFtcpuyB2P8RebKGQh/Uj1\nc2KxN4SiZwLNGKo1u37HMdKwsR7F4wr92wIYEAmJ9ait2Rxi+vNVs0WKrvEL0PM/8K9lcEQjFFmC\nR5MlFFXi7kYSYV7uIeF6eKeVhLVEh700BVolQcZhCoECu0q/CLglEVK1xXVcKKzYIIZ/Dujh/Riz\nXTQFznqbosDTd8AjN0JCI7jveYiJh9tHwdwPau9j137RJrDoXng+XQhJ3n3K92djNIrJ3Ks21ZwM\n4AtOM2Wzh6hWVeGXYrgwSnhCzsFBF2RWo/AOBqY2oBl7MDpGIPMkNuz1jNr6EuvV4cYVLUnAgUKm\nFxJMJIEcF/ssJ8KIoozqgqORcOxUomBHIgQVM0ihhASJ51XYAKsrsWnjaoxaXdpaXG27pXdpgDyP\nJ2ifSRw5coSysjJuvvlm3n77bZ555hkkSWLMmDF8/PHHp+U1AsR2pqE6v7YRyEh08FAzW0EOb5HB\nVDrR9xScSNxxCdUhWD8UTgDr3FboiirMiy+J9n+/v2ZA26lw/VyhUhzTDm7vDW0S4MMNkP4avPyr\nuG/cnChSnFfFgtmHHH5UDMioqOUGaJkKB45iQaLQDq2C4NPW1W79saHw+zbo0QFMPsjY6kIS0Vq0\n+Paz8NVMePkTmLEYbnsEZv0Xxt0Jrz4EmW4jwg5kQtPGIh05fQ7ccgUk+nGKRg6CTq3hP5/XvS0I\nI2QAu4cA6s8yyLTAyBjhMuJA1Es7I3EPOr8Gh3rCixjYh8riekZtfYhlG8VU4ru/oYW2sDrooY4G\nEE8sZsyUUzMHG0ZklaUWgFGbCm+lDJlgFCpADiU0RLx+uQUvxKYVJC2uxKatcJyhdMAr8rTjkksu\nYenSpTz99NPceuutTJ48mZUrV9K5c2emTZt2Wl4jMEH7LID4+kWQSiRB1LwTm7FzG5sZRDyTvaQp\nfUFFZR0Ky1HYg0IpEIEwDh5GS3pwlJ5EcxPhvIyFD3EwwKXGl2GGkw7o4Uc5T1XhpV/h6Z+FrdTC\nCdDZrd+tzCK2efIn2JMLs6+DqS3AsBbGxcNcL+PqFRAVNRlo2QjpcDaq3U6JQxgwAxRUiJJIdLCQ\n748f5ft4w1yk8Y3iYet6eP9FePBluHpi9WOSBI9OhTXLYNqT8JbLRJKsbEhtBO/OFTW7p++q+3Ny\n7vPucWLKQNaJuv0pnUIXvYf77II8iDPAkCh4DwcqsA+V9ZhOyQuyOzL9kfkPdq6shzl2T2Kwo/IX\nxfTyMTkghVgkJI54idgStHpdHgWEUW28GUpkjVSkUas1C2ILQcGMKgUTEiy+WWYbwtHfCSexyTrQ\nh4r6m5PYDFo2RNFIOZCK/H+BJEmkpKSwefPm07K/wHLkjENFlSQgglYeorGp7OUoZj6iR71W3goq\nC7DTHgsDsfI+dooRpFYIvIWdC7ATTn8eoAsyEnehE04gLiv0ndpiubMf2c9/LROk9vxF8OvttUkN\nRK3olZEw73rhq/jkT3BUs4JarN3f/siCXm9D52nw4XqRHlQBg6SCRSK2ZTqq3Q5ZRylTIFi7igsr\nhJ3WiVw4llN3X1qsS4dE4zj4973Qrivc/ljtbUPD4IZ7Yfl3UOESQOw7LIhtwTIhVPEnWnNi3Cjh\nWvL1z3Vva9Puswa3+6xdhXm5omkeSWWRdu7exUDv0/D1vg89a1DYWY+orRORGJDZ7GWShBNG9DQm\niiNe0pbx2vchz+3x2sTmjNhOIhEMOFClkCpiK7fiJh4xVg8YNUaI+ptNO6l6J7Fp7zfQx/aPoaKi\ngoKCAg4ePMj06dNZtmwZw4YNOy37Dpy1swDi6xdOS7fVbQ6VvMbf3E8a6fVQQB5EYShWxmp9TKsw\nkksQyzHxNSZ+xUQuQSzCSCbQAytfYWcyeloCL7k06BY7HePr0B58uB5eXQnTLoVnhtedwRnbBd4Y\nLZ6z74hw/p/XFnLL4MrZYLFDejzc+S1M+kZYRd3eCOSjetJStIv/0GEsavX8sUKz8Ihcv038vy5i\n69ym+t97foddf8LzM7wf+5BLwWaFTavF/0tOijlseUWw5wDcd6Pv13NHRBgM7S3Um3Wh1CJIzeSW\nY1lWCEetMCkJ9Eh8iYH3MXD3aUrGXIZMLPB5HWlFV5jQ0Y4IttZBbCCitiwvEVusNmutgJqd6aFE\nYMOKVXMYMVQRWzmyJqpSZRMhweLiNVupJi4QEZtzwKgxXIvYtMedEZvTHNlTZ38ApwUPPfQQ8fHx\ntGrVikceeYQrr7ySd95557TsO0BsZwEs6AEDjagpC5zK3+iR+Rde8nMe8D0OumAhE5XlGFmCiUEe\n6ix6JMagYysmRqDjOmyMopz9bOc7FDK0FbozIvLUPO3Ezmy4bxHc3Rem1KMX7MGBImV593fwVjO4\nNBbeWiv8/ZbeCl/fKFKVn/4BU1fBU6kSOhU2mFoI9jmQgU2tnkBSWCHSkJt2iLpXkpcp2k7IMvw2\nF1Z+BnPfh37DoHMv79s3T4fGqfDbf8X/12wWC/uf1orma3+nbrti1CCxn9Iy39sVmUU06q4+n5Ut\noulu2rpnPHruOo0VBiMS16HjS+xVTjX+oAtRbPfiA+mKFGLIwrOlSpy20Mt3I75QRG2sQlNCGjUx\nlU2rsQEospGQEEFs5ZXUjNhkl4jNECbSlLYyYael00oBzlRkQDzyj2HKlCn88ssvzJkzh5EjR+Jw\nOLBYLKdl34Ea21kA56BRV9PjAix8wAGmkE40/skRP8DOPdi4ApnPMBLux5cyHIkFGLgKmfHACNL4\nCdiGShoQIosBlg7VM7mpKtzxjfAyfPNSvw6zCpIEH14F7d+AmRvhgQHCNqprMiRrHD+hh3C1f/pn\nuLwD9A2HNVYTNImHgwdROlXf7AsrICYEdu0SwgxXVJpFfWzjSuh/EUx5CfR6QUYbV8G2DfDhD3Uf\nb9d+IrKDmuKTd+pQQnrDsH6iNrd+m2c/SydOlEKSW9B+wAyLCuDNVv+sem8sOt7HwUYU+vpZa+tA\nBN9wFAXVZwq9CTH85WHuGkCw9qeQmpYrIVr2ooKTRBGHQSM2K+VIiD40VTYSEiROkNl92KjOKCI2\nVRXEZi8XxGZw+YCV8zti23MA6nDtO7V9+4H09HTS04UZxQ033MCIESMYPXo0mzZtOuVjCBDbWQDn\nOti1MftTDmFH5X4/BSPTsfMgNu5HxzQM9arHSUhch549qLygOUauxcE16Eg0CuFGns2zldaiXfD7\nEVg+CYL8b5WqQno8XNcZ/rMWJl8ABeXVI2eceO4i+PovuOc7aDJAQrZKKM2S4XBWjSHIhRWQEAab\nDsHVLhN/HA6YNFKIQ4ZdDjNfh7ZdYfRY8fiSedC0FQyuQ2wC0KQ5bN8g/p3i0tfXtmX93ztAejOI\niYSN230TW1YxpLq5pr1zHEINKlMSK+mLqaqmVmoXvpF6SfS2GU8xL9MPmQTg23oQW3siKcdOJhU0\n89Ge0pgojvtIWcYQTaHb48Fa6tGsRWyGqoitHFnLeiiSkaAgLRVpoWYqUnZGZXZNPFIuojaDy2RY\nZ8R2ntbYbngUCKpzs7pROk/8dYWj7kjdE6666iruvPNOMjIySEurv1DOFQFiO9NQqyM2p4JNReUj\nDnItKcT7cfXN1kjtcfS8jL7BSrin0FMJvIadLRrdpmqrugyzZ2IrHkGFAAAgAElEQVR7eQUMaQnD\nGjDuxYmHBolRL/O3QUml8EV0RbAB3rkcRn8Ko1qBFAk0S4aMLCSqPS6LzNAyCg4fE7PWnPjoNVEX\nm/0r9BkChblC0j96rCC9lT/AJdf6ZzIRHQdF+eJ5m3aI3z080fdzfEGSoFs72FbHqLRDhcKL0olc\nq/DubNVYYZsO1qMQUSHz9GERxdk1sg/Twd2N4MlUiGjgt12HxKXo+BEHU/1s9G6npQt3U1oHsUVz\nkkpOYibcg+lADFG1iM01YgPXVGS5Jh4BVdYj6RSC9VBhAWwuEZvTwV+xipqatUSkKo0uEZt6fotH\nvngd2rY7HXsap/2txp7df3LDtd3rvSezWTTJl5Q0jBhdESC2swDVEZs4HWvJZz9lfIyP7mINq3Ew\nCRu3oTslUhOvL/EqBq5HR1MkilExhapE6WVWFosmbVfsOCEUjN/f1OCXBETqsXsT+Hmv6JvTebiX\njGwDvVJgw58qjuFAagz8uhmdTJX7SLEZ1HIRwTkjqJzj8O7zcNujgtQARlwDL0yGkiLYvhFyT8CY\nG/w7VoMRbDZYvAImvwhP3QnPTz6199+mhWgo9wa7A/bmwe0uFl2vZokC+RdNZMpVEz9kSnTOhGQj\nvNkCBkZCpSJI7j/HxM8fO0DLhhnWcDE6PsFBFgopfpTmUwghGB17KWUk3nsZGmnm3TmUeiS2KCIp\ndqvVVUdsIgqT0SNjwIYZWVsIKrIOdCpBek3u7zpQtKqOZhMN2RXZwgjZ6HKBOyO28zQV2bYldGv/\nD+28jjJZXl4e8fE1C+B2u53Zs2cTHBxMu3anzrgBYjtDGDt2LHq9nnFpzXGMEmQkazeM+WTSlBAG\n4lv9cAyVq7EyEJn3MZwSqbmio3YcXalkm6RyRWQwywrhGTdTlG/+gqhguKSNh53UExc0g+92ioGa\nnnq1JAkeGQzXfC5BPtA0Do5nI9mt2FQRVhaZwawt7ls3Ez9nTYOgYLjrX9X7GjBCRFxb18Oyr6BV\nO+jg5wLTYACHHX5aJ/6/+o9T7+FNbwYffaV57nrYV0a+sNNqr03lPmGBmdlwf2NIkSQu/0tidQk8\nniLOkcllH30iYGISjNoJA7bD5q7QuAG1lQu1q3M5ChP9IDYZiTTC2MtJn9slaanDExTTitpjx6OJ\nositxuYktgqXfRsIxk4FklY4UiUdyAoheqiwItKOVQenRWwOqyA2e4VGbB5qbPXsY5s3bx7z5s3D\nbq//dIT/Fdxxxx2UlpYycOBAkpOTyc7O5ssvv2Tv3r1MmzaNkJC6BmjVjQCxnSHMnz+fiIgIWPQV\nP/AJIFI+Kio/cJyraOKTqBRUJmDFBMzHiKGBpJZZCSuLYa8ZKhRIMkDfCLggEmZIRkKAfQnCQX9b\nmfB3dGLdYRjUAoz1vIrMlaJ/S+/yvPFd4W2NLN67wvPzLm0HidEqORt1JLYeSI76Jo6CY1TGtaDC\nKtKYFQrERUNsNBQXwrwP4OYpEBZRvZ9YYXhBWQns3go9BvjvdWupBKNJDCUFQUqnipQkIUTJL4IE\nD/3MGzO1lKWYzcm9ByBUhsnJcPVu4TyyshMM9Dy5iLRgWNsZuv0J1+2BVZ19q1w9IQaJLkisRMHf\nzGsa4ezHt9wzUSO2XM3E2B2RRHCIIzV+F6SlHitdHEn0BGPHUiUeUSQZZJHGttipuWJwEptqF04j\ndrNIRwa5fPgNbNAeN24c48aNo7S0lMhIL+an/+MYO3Ysn3zyCTNmzKCgoIDw8HC6d+/O1KlTGTXK\nj0K3HwgQ21kAZypSRmYbxRzFzBh8j6h+BwcrUPgVI3ENILUVRfBCJqwqEXq6piYI0cExC5Q4oJER\nHkiWebAJtI0TI2u+zK0mNkURacgnhvr3etv/hqmfwrI1UFgCRoOwvLprLIwfDb1TYYSmZGzuxWXf\npIcF10kMngE5maK4bMk+QmVaCzK0Ht6KwuoxNT8vFER0o1uqMChYEMXJEji8r6bLSF2oKIOQMLj1\nKmGwHBUuFJcLZ8Fvy0VpZugYuHyCiO78gXOSd3a+Z2LbkAntEiAyWJy3b/PhwzS4dZ84fz939E5q\nTiQaYUFbGLgd3joGD/k37agGBiLzXT0atVsSygIvUn4noglFj44cL60BEYRT6hb1GTCiQ4eF6rqZ\nniDsLqlIVRKEFGRw+mu6fEdk7bbnsAlDZLtZ2GpFuCiAAs4j/xiuvfZarr322n/0Nc7Pyug5BhVn\nKlJiKScIR88AH2nILBT+pQ2NHFoPqyMQI2jG74ELd4jo5vPWUNgPDvWGXT3Evzd1hTGx8MQhGLod\nyh0wIRFmnKh2CckrF/1m7RJ8v57DAU9Mg65Xwobtwkbq89fgjUeFpdWNj8GISVBQBItvEW0Dvd7W\nVtkeMKgltG4E2ERe1JyTSbkDdmvTTQrzxQw2gCVzoc9QiHPLcMkyNEuDOW8L4utQdymzCsWFEB4J\nYaHCstJyEi7vJmp2ZaWCLJ+aBLeOEDU8f+B0QCnwMkh0xX6Rqt1ZDhfvhASDGCO0qhgWtxdWWv6g\nfyTc2xieOwI5Xmbf+Xw+Oo6gctzPfrYWhJGFGbsPMpSQiCecPC8Rmydik5AwEVJVYwPQYcJOpUsq\nUvw+yACVdsD1mKvEI7bqiM1SDCYPNbYAsZ2TCBDbWQCnKtKAntXkMZB4DD5OzcPYiQBeqscoEoCN\npdD1T/i5SBDahi5wQyJEucTtsgQ9w2FGGqzpDDsrYOhfcG2caNR+OVNsV6oZDkf6ECPY7XDNA/D6\nJ/DKFNizBF64X0y0nnwD/Pyx+Lt1D1x0G5SUwvztola2dI/Yx/4jwkvRFUYZCA6B6BjIzaLEobIj\nG5pEinReo3jIPiqUkGOu93xsNz0AB/ZAUhPo2tf/z/DYYWis1RqLC2H8ALBWwg9/wZxf4YtV8PlK\n+HsbTL5aEHtdCNE+Q6eJsysy8kSNbWQbeDxTRTIqSLLKcQss6wgj6jlD7rmm4ks/9Wj9ngdUtRNs\n9DNqa0oICirH6hg6Gkc4BV5SluH/x955x0dR5///ObMtvYeE0Huv0ptiQxHFDoiI/fQ429n1rGfv\n/cSzg4CIvaEHAiq9SJMOAUIL6T2b3Z35/fGezW42Wyae9xP87stHDNmdnZltn9e83+/X+/UmgYog\n98UQh9Nvv1YceHDWE5tm5JZj7OD00FDdqBgfeN0jEZvmlGGj3jE2ECW24xxRYvvDoddHbACrKWZI\nGOPYpXiYi4ensJHUhBTk10Vw0kZRza3vL4QWqa40PFlqN2VuGL1RrnnfyYcNlb7xKTFhktk3Pw5f\nLobPXoE7rwmemjt9OCx4G/YcgMn3SB8bwA+7YfqH0GUstD4Zxk+DamMdc7kQu5GclpCfR4FH3E96\nZsPRYshMhQWfi6DttBD1uvMvh8xsSRl6yy8eN2z9BjZ+DBXBDefJ3S49bx6PjLapqoAPfoROfgqz\nQSfCyx/DqsXw1jOhXx8vYgyRXk0QNdlnv4LdAiM7wDcF4ErWyHcqPNK2sUrVDNJscFMLeO2QRO9N\nQUsUcoBVJonNK/Pf55cyDIZ0EihsIrHZiW1QY/NFbDZAQVckQouxh0lFai6IzZBozVnckNg8Rsrg\nT6qK/LMjSmzHALxJkiKgFBcDCD0j5n7c9EZhchNSkF8XwXlb4IxUWNQHWjWhMbNPAmw8ASY1g0KX\nSMiv2iGN0ABHQojeFi6HV2fBi3fD2aMjHKMrvP4AfL8YOCS3Dc6E6x6Ey8bDW4/AwhVw9l+FUBId\ngBshtqMHqdJh42Homibkl5kGK36APkMkbRgMVht8/Svc8KD8vW8lPNEJ3jwL3rsQnuwKmz5t+Jiy\nEti1BfoMhnlvw5Jv4LnZ0LxV4/0PPgkmT4M3npAUZTh4nfuDtTnMXCeOK2mxMCIVOGolw65z3n8x\nveiGHGmreDv08OqQOAGVdSaJraUh38+LQGxpxFMSMJrGiwQSqKMOd8AwUgex1OELcS048FCHgoKC\nvf5i0WEHp2KnQSrSqL+he6Ddub7b/cUjnmjEdjwjSmzHALzLxF7DaLZ/CGJbYghGHmqCs8jPZXDB\nFplnNrcbxPyGdzzOAm92hvOM7/3aStihSbS2N0gdyeWCvzwIJw6E6yaaO8aEsUKAbQvhg0kQY1yk\nP3YzXHkBfPGq9HpN/1AWeZxAdgs4coBKpwwvbW30AaenSLQ0JAShFuZDd5ukKm02yF0Gr58Cic3h\nlnVwXx60HwUzL4GCnb7HrVsmPXKdesLz90rv28gxoZ/TNXdCTTXMfj38c3cZa7YtIPrdki+EPckw\nc36hrUKMCi+3V4j7L9bbTDtcmAlvHDY/wduLfqj8EmIgbSASsJGCLSKxpRIfMhUZbzjhVAYQn4PY\ngFRkDB6jgUrBga7K+TnirNRg9/N+pGHEFpMKmUavh8MvrxtNRR7XiBLbMQDv1eVBNJoTQ7MQbiPP\n4aYnCuNNvm15tXD+FullmtMNbP/lu321X59tggV6NxcpeiC+WiwDOF+4u2k9XrdfCXv3g70ACoql\nHaC5IU45eQhccxHc+SwMzQaOAkoLKDiC24gaM4z1quqo1L+GhFBsrlgkv7+dCzVlMHMi5PSF6xZA\ny36Q0hIunQXxGfDdg77HVRjiji8/AGcN3PZE+OeT3QLGTYIP3whPIBXGmp0Q0L7zr+UyDdyrFu2f\nCIVDYWIEwY4ZXJUNu2phRfg2s0bojUoBhBgN2hg5xHIoQo0thTjKQpCfl9iqA+63ExMQsdnxIIoY\nBUc98cbYPDhdiLTfi/qIzbik7HaF/I71C4PrU5FR4fjxiCixHQPwrnl5uOlNcIlbLhpfonGTSXeR\nOg0u3iqCj3ndGzbt/laMTYPbWsI9rWSRPb0z/GeHr5fVi39/BIN6Q1/zQwkAGDlA/BIfeFmIILAG\n+NRt8lrlLoOEfTocagFFR1EqpVikGDWjfRtF0h9KFPLNXPm9YQ18fRfUlsHkD8DuRyz2OBh9O6yf\nAzUGocUb/bvvvgAXXyvEFQlnXyJTt7dvCr1NoRH1ZvoFDJVOeHcNXDekoQdn/O8UQIxKhhy7zHJr\nCnoYn71fTaYjc4jlMEFUMX5IIY7SEMQWZxBbVRBic/lZXPgTm4q9ntgcVh2nW5dmbC+8QhKvG0mv\naTBNh4w+vm3qnUeixHY8IkpsxwA0Y7E4hKfeYy8Qb+AhBbjEZG3tn/thTaWkHzN+gzlxSTW8vQou\nmw0jX4OT/gV/+xTGavBIW9nmrG4ytfqLLb7HlZbDd0vhyvObfkyAv18OW3ZLTS02wCEjJQmuOA/e\n+wwqNylQ0AJ0HaVAikVOY+3L3SISfnsIh41fjXltRbth9Ttw8l2Q1qbxdt3HyUX93mXy9wy/UVGB\nvXGhMOgkGVK65JvQ2xwxevD8ie29NeKYcVWYMTr/DSyKDCf9tLBp6ciOKNiBLSYl/82JiUhsycRR\nFiKqizPqdOYiNm8q0o6mSMQVYzdaRzx+5+CN2LQwktVoKvK4RpTYjiGUoNUX3P2hoTMLDxdjIc5E\ntLaxUrwE720Fg4PzZEhUOmUSduvH4Op5sK0A2qbKyJRvt8HJ02HYK7D+IAxpI/1VXscQgDWbJYI7\n6TcuyCcPliblT/4DI/o3vv/WK/z+iBN7/aSSw6gKVFRCbAzs3gJdevs2qymDz26CL++A2go43xgI\nOqw52ONh+LTg55LaFqwxULADyktl5A3AmRdBy7bmno/dDn2Hwi/LQm+zez8kxotjCkCtS8ylJ/eD\ntgbZuT3w4x54/kd4apG0Q9Q2UdUYiHHpMqR0c/gSWANYUeiAwg6TEVszHBREMA9MIhYnLupo3LwY\nY8j3awLI0YYdF74oTMWGVv94G7pRr3Z4nUdcfjW8erIK8xyiqcjjGtF37Q+HN2liwYlO8yDEthyN\n/eimojVdh2t3QpdYuKd1085kdR5cNEOmWN84Am4cDjl+qkJdhwU74ZYvYMBL8MgYmDYMLpklQofu\nWbB1jyjROkY4tscDG1fB1vWiUDxhBLTvInW180+F1z+EU4KkEtu2gMdugXtfAL1tc1gO1uLDxNml\nyTs9CfYuhak3yfa15fDCAKg4ImtV7k8w5QvAA4eegxF3QEwI8ldVyOwkxLZqiU8oN/KMpr2ufYfC\nB68GT68C7Novzd7e+95bA4fKYdAJUOyCBVvg9q9gf6lYRNks0kfYPAneuui3e3WOSpZ5e98Uy3gb\ns+iMwnaTEVsWMeRHiNgSjZpyBTWkB0yKjzW+D42JzdHAK9KCDY8x+V3Bhm5EbEJsukj662Fcz0cj\ntj8tohHbMQARj8iVaVaQ6X9foNEMGGHi7fqoEFZWwCsdmzaH65NNknLMToTNt8ITYxuSGsjCe1pn\n+OUWuGs03P2tzGJLiYX318o2ldWQlBC+/WfZQhjXCyYME8eO+66FM7vB1WfC/j2Sjpx0Fkw5J/jj\nvRZUpGaCaiGjOh+7RWpVqRYhIG/E9tnNQmo3r4Gzn4b9KyEpCU4+QQwn+lwU/nWJTRF3kfZ+5BGq\nNy4UuvaB0iIoClHPWr8Nehtjfwoq4Z75cGl/uKA1PP4dTJgJA1rCihug4hEofRg23Qp9c2SUz4fr\nm3Y+XjhUODEZFpp0SPGiIyp7TBJbBg7KcOEKEx0lGMRWGSSy80ZszoD7gkdsPmLDG7HZwekKILb6\nq4swz6E+YvsNefwo/nBEie2YgXyBM4MQ2zd4GIslosTfpcG9uSLtP8mkzRLAzLUSqZ3bAxZfB+1D\n94cDEjE8cga8ci68slTGxby1SlJjkeo1H/4brjwd0jLhgyWwqRY2VMGLc6X5ecJQoApmPdOw5uSP\n8ScbxJlvwZHajG2Hj2BRoKgM4o31qFNP2L9KamjnPA/NukBOHzm/wt2wdga07A/ZEUZ3qFa5eG/f\nBe58Gl6eB8mh2wyDok1H+Z23p/F9Lpf4aJ5gnMejC6Wv7cHT4LrZ8NyP8NzZMO8y8dO0qLIu98yG\nL68Q8+jJs2HRrqadkxejU2BpuXx2zKIdCvvQ8Zggt3Rj+nsxoT284o3PfFVQYhPScwY83j9Cg4ap\nSMUvFWm3GhFbnT+xecUj4YjN2Hc0FXlcIkpsxwA0BTDssTICiK0Qnc3onGYyWttV6xN3mMHCnXDF\nXJg6AD64pGlTsKcNh9tONM6zCqrqIC5GorZApSRIOu/+v8DEv8D7P8DAUZJ6jImVutW81ZCRDVNP\nEc9HL36cD385G267VKKe1GRp6qYMXInZFBSI51ZhCViqpf6VkAhLnof09jDIqMslGb7S+Vvg1y9h\ngIk5cu46X9vTVbfBmAvMvz5e5Bhp2SNBbKzWbBZn/0G9pH724s9wTne4Zh4s3gOfXw63jAqewrSo\n8M7FMKodTP0QKsJn/IJiZLJ4hq4P3h8dFO1QcIEpz8h04/NcFKbO5iW2yiApS4dBjLUB91mxBURs\n1gYRm26QnERsHrHMqkdTIrYosR2PiBLbMQNhlJQA/0evL9/QCG+VrsPzB+DUlIajZcIht1gitVM6\nwhsXBHe+iITHzpSo4c2LID1eBhjW1EJuwCJeWQF3XCYjYu57OXiqMi0D3v4O3C546K9ym8sF91wl\nHo1L/wPnD5DBoB1agrUO9IQsqMinThMTYU+ppCFL9sPGj2DULb4yiVfxfXSbjOfqEqa52ouKwz5C\nBHA7xXZr8bPy29NY79AICUlCTOVBTI6//QnSkqFjB3jge2ibDjPWwS+H4IvLYVyEmYtWC7x1saQw\nn1gU+VwC0TcBbIr4iJpFK4MY8kwQm/fzXEpopUucQV41QaI6u3GfK+DxVmy4G0RsVjQjSguM2Opc\nGtRV+EVoTSA2azQVeTwiejlyDEBqbDasQEyAQGQVGplA2whpyDWV8vOVyam4bg9MnAmpsTB7siyQ\nvwU2i0R6XnQzRsZs3C6CCC8+nC6OHzOXhK+/ZWbD3c/DnVPhmrVQcASOHoI3v4WUNJ+TfutBoFSB\nHpsNxdtwGcRmq4RW7WHdB6JoHOinovRmlw6slfsyOoZ/broOZYcg2SC2wt3w3gVwaANYHUJybYbC\n5Z9AUnbo/aiqkFtFEGL7crH4ZX62RaYlVCRLnTP3bvPRc7s0uPVEeHYJ3DAcspughI1RhdxWNaFR\n+/cmtliDvKrDEFtdwOMtWPH4qShVLH4Rm9UQj6jYbZpEbCDKSHuiL/wNm4o09q1aZLuSEmgTpCck\nimMS0YjtmIEFh+F054+t6PREjdiUPesoZNvNu72/vBRWHxBSSm3iwNrKKvhmCTz/rvzM/8lnUNyq\nOfTqDHMC+ra++ABOOcecTP7sS4Scpj8ukZrNBl16iRP/g6/JnLW2NnBVAXXNoPwoNXU6RaXgrIT0\nLPj1C4nIHH5qv8zOIu/f/Bl0OtkXyel6wwHL9c/zKLhrIaU1lOTBqyNl/zcuhydqYNqPUJwLMyaE\nF9iBkFvgOrppB6zfChPHStuEqgBHRZHalJQwwK2j5OLk1TBtBaHQL75pqchkIBYwYzWZZBBbRRhi\nizG2cQbZRjX+C4zYVCzofoIUpcHfVkQ8YsFuk9fdowGuJrC32zie1QaLF8PGjXDhheYfH8Ufiiix\nHTNQsQchrx1odI5AapoOHxXARRnmJiMfKIX7vhOp/pAmXISWlsPNj0HzUXDWdfCPl+TnzGvltrue\nldTh5efBZwuhxJgdmbtDZP1jJ5g7jtUK198rBDb335DWzHeRfcaF0H84rPgSWrQBKrKgPB+9RqG2\nFpxVkBQj6sceAapKWwy0NGwBe4wXq8Cdd8PiLPghGbZcLxNMvCgxBjentIJ3xoPFDjcshTZD5Hza\nj4QpcyD3Z1j0dPjnpGmN7cXmfCP1wrGjoFsWXD9U1I+3jjL3OvkjNQ4uHwBvrAw9yy4U+iTA1mpw\nmhSQKCg0R+GwiYgt3kgKlZsgttoQ21ixNjJBVrHgwXc1oWDxS0VapMamWHEYFwh1biQdaRb14hEb\nPPQQ9O8P48aZf3wUfyiixHbMQAmqejyATusIxLapCg7WYdrx/dGFYmD8aBP6sVZthF7j4a2PRY6/\n41uoXCs/W76CaZfAc+/B6Mvh9GEiiPj8B3ns+hXye4SJmpYX46dI6nHbBhkN4y9GufRv0izdORPQ\nmwmbldVgMdY+524RvnULMmV+9B2Q0Qm6nwXrzoS9z0DzydD2Vjj4Jux5zLft7iVgi4U9S+DgLzDl\nQ0gMGFra4UQYdj0seVZSk8Gg61BbDQ6/FsVap7yWE87wjfN5+VyR9Nt/Y4HguiHSgzh/W9Me1yse\n3DrsDG/p2ABZKOSbIDYVhXisVAZpvvbCUR+xBd9GiK1hSGzxIzI5jqW+rqZgNf5txW54yUmTtkFs\nZqxWvBGbxQqrVsHkyZHnPEVxzCBaYzuGoaNTCqRGILYlZWBXYEhi2M0A2F8Cb62Gh0+XyMYMPl8I\nE/4O/brBslmSbvRHtw7SNH3OaBktM+Hvolp862OJ3gqPQFKKWEuFg7NSLpCtDlns+w0TwUhlOezd\nKZJ7kKjt2bvAvQ1QDDYvK8DqkaJexXZoNQgSghB997Og21jYeSeULIH+30G61yxZgdzHIXsiJHSD\nzZ9DqwGw8HFRULYZHPy8h0+Dpa/KmJt+QaYZVFVIJJvqdz6zvoKjRdCqv7RJxNhk3TQTcYdCj2zo\n0xxmrYfxPc0/rpuRit5WDT1NNmpnAAUme9nisVBN6Fytzagru0JsYwmIzkAuA/0nDDT82wK4QLFg\nt1sADZcHI3cN9aKRcETlrhNS84bZ1j/XUrk1H/gNw2ZN7/sPxp/r3Tqu0bgvqBapFEQSOa4shxMS\nIdaEAOSVpZBglzSkGSxcDhfeDOedCjOeFPl0KAzpCz9/ACMvFSGHrsuCXl4aei6apsGy1yTiKd4r\n6b6Oo2HcU5CYQv01fN4eH7FZrXDqufDR+0CKsIW1soD0OCG20p3QK0RzN0DFetj7NHR6yo/UgPb3\nwP6XIX8exP8D8lYJ0ao2OOvx0PvL6gbtRsCa94MTm2FlSZrRWO7xwAvvQ7++cO9P0K4VTOoXev9N\nwYS+8MgCiVAcJr/dGTZIs8L2JkRsmShsNmmrFY+VqjARm4KCFQuuENtYUBsRm4raIGITYvOlIjWj\nxmazCcnVBSO2cBeM7jqwhvmwH+e4dDbww/9o51FiiwJAQQfcVAcQm7ejLbzTnvSu9TAhAHF7REo+\n5QRINBGt7T0o0dfJg2HW0+YuWru0g4+eh1OuhFumSuSVmgElhY23dTth1mUiy+8/Gc54BKqLYNm/\n4PkTYMh98IUTslo0nq120jh470Wwx2VQByS4i0mNkSWrdC+0GijbuUqFxDLPhpQhctuehyGuI7S5\npeE+VQck9ISqrXIx3/k0kfSf+yIkBUSpgeh2Fix8VEQkgS5MudvldzvDXeStj0U4smw29O0hj1my\nSuzILCoM6wc9OkV4oUNgbFfx+vw5F05pwj46xMKeJhBbKgpBRJ5BEYOF2ggkKOQVPAJUUBrNf2t8\nmxIQsWmABZvDDtRKxOY2TDG9qUglzJWgywm2EC7afwLMnATdev1v9r11E1w643+zb7OIEtsfhIkT\nJ2K1WpnUqQ2MA3BRh44TDw4jNaOiEAchRjD6sKcWzjahhvzPTpl4PfWEyNt6PDDpVrHHmv1M0zIx\nJw6CA4sgy0i9ZWZDdZWkFBP8pOhf3yUKxcvmQW+/aQBDr4NZl8KqR2DCBXDiFHHq3/SZ1PNG3QyD\nToS4RIivEWJzOAuItxgzzaqh5QCoPQgrB4PzoERig1fKWK6jn0HP93yN1/6I7wLl6+Tfo+8EW5zU\n0CKh7VBJpR7ZLA4n/tizTdKwWS2gvBIefwMmnAlD+sC7n0p7Q36htEHoukSx55wM7z4m4pKmoHdz\naReYv71pxNYuRj5HZpEKlJhMRcagUhsmFQlgRQ0ZsalBIjaJthqmIr2mxvXRm2LBHiPkVOcG3EbE\n5p3DFi4V6aoDW9MjttmzZzN79mzc7iYqeP4/o1sW9G/5P2TR77EAACAASURBVNp5E0ch/S8QFY/8\nQZgzZw5ffPEFk0YNR4b9yuVybsCk4DYmnNQrPZBigni+3SY9T/1MzBF7cx6s2CDpx7Qm2HN5kZ3p\nWzd6GES6bKHv/oKd8PPLcMY/G5IaSAZo8gfQvDck74TRZ4kF1rvnweZPxdR4708w9FSIq4oH1Y5a\nW4Rdh+xYcCSKtH/bDTJya9ivYM+E3Ceg4HOwJkH2pODnbU0Gj3El0WEUTP3InF1gc8Ob8uj2xvet\nXwHd+snrMelWKCmHB6bBLY/DlffCaUNh1VxwboCKNWIn9vNaGHMNlDVxEKiiSMP9kiD2XeHQxgF5\nkVIDfkhCwWxPtx2VugifYRUFLUzEFqndpeH9CvURm6HEcWmqX8RmkOT/IGKbNGkSX3zxBXPmzGny\nY6P4/RAltmMAKjoYTuWbKWtw30BUVpusZUTC4t1wUofI4q7ySvjHi3DZeBgeZHRMMBQdhX89Bped\nDGO6wMTh8PRdMmSzfRfo1he+9vuuL3kWErJgZIi5ZhYbXDhdIqAVb4gqMbML3H8AWg+Gj66FTp3B\n7lHAno7uLEZxQbIugo+ShXD0U+j6IiR0h7RToHITFC2E1BOlbhYMugvU31BaiU2RKQHFewP2p8Pq\nHyXC/HE1fPMj/OViuPQOeHEGvHY/zHgKBvaSiC0uVgyg//MW7NgLU+9u2rw0gBHt4JeDMs/NLFo6\n4IDT/LESkRS5y0TUZkMNa4IMwdONvx0qEs2p2L3EpjjE9Rr8iC3M8vcnT0X+2REltmMAFnSgjnRU\nPg6QKo1E5Rd09oRZGByKRG3h4HTD5nwYZqJv7Y25Qm6P3mzi5IGv5sAZXeH1R0XwceJZkNMG5r0F\n4/vC1x+KfP8/n8AeI6LZNh/6ThA5fSi0OgF6jpea295lYmRsixXCK80Dy3awuiHekUZtTRFaDTjc\nkNUD8qZDQi/IMtz7k06Ayo1Q+jOkh2k7cJeDGlCvdFdGXvAVBZJbQPmhhrdvXC31xSEnw/L1Ql7v\nfCpR24K34foQkWP/HpKK/HwhzP02/LEDMaQ1uDVYd9D8Y1rYwalDsckMWoIRIUVKk4PMcItEgIpR\naQ6G4ISnN9pGbyAK0UGxYDNGXLhwBInYosT2Z0WU2P5wKMQY9YOxWJlDHkvxKS0uwUIG8GQYVVm3\nOPg1wrDIA4ZKsV2EWpymwWuzpQbUMoxNFMj+XnkY/j5JetQW7YNXP4F7noPnZsEPuTD6bLhlIuzd\nAUmpMPMVcNVC6X7INiFJH/43idr2r4JBV8ltWV1h0JVQukrWHmdVGqUlJdRVg+qUsTQFX0CLq3zR\naYurIHkoWOIhZ0ro41XvhloV9q2E0uWwcij8kAiLm0mdLhzB2WLFqcQfX8+RGuPAUXDRGeIOEuOA\n5bODz5vzx7mnwriTJHpuSsmmexbYLbDhUORtvcgyotQCk8NLvdcjZvQmFhPRmI4ecnqFhoYasFTp\n6EZdzQdvOtIX/anYbAax6Q7wGLlWr03MttWwaFbwE6qrlY7+KI5LRIntD4dCjHEF2YM6TiCVG1iH\n24jQ4lC4CSvv4eHbEAX4XvGwuiL8onvAyHC2jCBGWLJaDIyvCyJbD8Tbz8JLD8AtjwiRpQX0jcUn\nwLMfwG1PwJzp0LIdfPmBpOt0HTI6RD5Gx9EixkhvLz1oXgy8XKKj808Hh5YGnmLcFYAT7LmyTfPJ\nvu1VK/SfD0N+kRqb/ouG9oEbfX/DSLh6J2xdAXOGwJrRojPo/gY0Oxe23Qi7Hwp9rhZHwyZtjwe+\n/1haE4rLYMqdUltb/J5PWBMJD98gg0g/bELUZrdKT9v6JhBbMyM1m28yfekjNnNN2pFG3AhRhSa2\nwPsa39ZQIUk9sck2Lux+qUjjKuG1m+BJvw+JP1y10YjtOEZUFfmHQ0c3vp8ObPyLExjCQm5nA62J\nowwXE2nHMqycQx2fYmdcgFHyRZnw7yPwUxmMiiD0UCPU1+b/JIM8h/YNv926ZfDMXXDtXWJ/FQqK\nAlfeKvZYG1fJ9Glv+tEVEN3oGhx4Q35q90NSf2j3D5j6sTgc+cvoWw8Swqs7BKqWCp7t6N7wYafU\n1Ox+5LH+QrClQvd/6Wg3utBflsVNTwL1AwfKOAvOI1B3BLqeD+75kHE69J4jbQAtrxEByt4noMWV\nEBtkQrirWlSUXvznUzi0H866RBz8338CEuOhWYR5d/7o1x1OGQLTP4TJZ5t/XPdmsLUJ6rQ0g9jM\npiK9ZUgzPKgTKO5oDC1MxOZBwxqwVOloqH7fA2+EJvDuR8VmlQsXNzbwGB84rzFoOK6tq21oFRPF\ncYVoxHYMoNb4gsYTQ2+SOZNsXmAn97KZZ9jBhfzELFTORuUi6lgfUG87NQW6xsJzB0NHbQnGxWdF\nBOXbwhVw8pDwAhNnLdx9JfQcADf/M/Lzs1rhqfclHXfvC76esDK/GpCuwYaLYev10mPW6m/gKoM1\nJ0H1d5J+9IeiyPTr0m1gIRU8JdiNl6VuG6SObLj90Y/FMkt/wo3+mhvlFRvq4VgYpqJd5USv0Sla\nINs6doAtCXq8LaTmRbu7RTW5+4Hgz7OmBOL8hpC+/5JEmoOvhfwimXbQFFLz4soL4Ke1sCfP/GO6\nZML2AvPbJxscUWqS2Gx4I6HI0I35FeHgRsMSYjly425EbB48AcTWOKoDpb5NxaVb/VKRxlmH07PU\n1YI9moo8XhEltj8cOk7jC7oCnTZ8zdfI4MwcYmlLHHuoogI3s7DTEYW/4eJHPPydOmbiRlHgntbw\neRE8HcImJ8foH9tVFPpMPB7YsB2G9gm9DcBHb8G+nfDYW+b72zp0lYnZ7buInD+9gzh7eHFohpBP\nn3nQZy50fBAGL4NW18P2G6HIcEmo3g1rToWD70HbYdKaFGsQWwyi1tMqGxMbQCIe9IddKLdbUafZ\nULIV1Kfs0nezVMNtpGsrN0OvGRLh+cOaCK1vhiMfNjRLBinbVOSL0hPghy9hzU9QYkTQeYfNvU7B\nMP5kqct9usD8YzplyvDXMpNN1zYV4lQoM0lsXkqJoFkChD8iE5sHa1hia5il0PBgaURsav1fACgq\nNqtBwJrVVwD1ElvYiK0mWmM7jhEltj8auo5TUYHmvE0lp5HFD5zEZwzndLLIIZZPGU4OscSg8BQ2\nlqJxInVMx8MVuFiFxpQsuLcV3JUL3xQ3PkzzJDENXrQr9KkcLRKRQuuc0Nt4PPDOc3DmxdApwuy3\n8sPw5e3wZDe4Jwme6S2+izVl4ry/5SvfyJhdd4tHY5bfhGrFAl1ehJSRsP0mcB6GVcOgfC38ejmo\nq6UtIIlk0MpwAOmqRFnJg0D/yI2nZQ36tx5OdcKgi9zQUUF5yE/r30OBRNDXaGQZU0k6PAzppwZ/\nThljQKuBslUNby/OlfpaVjexEfvnDZJ23bgcDi2Akp3w1rMyvqewiZZD8XEwepC0CphFG4NQ95WE\n367BcSxQZdrh3zzcaNjCLDUaGh407EEqIzo6btzYAgbwenBj8btNiM1S/285QwWrYb7pxi9i806c\n9T5Xd5C401kTTUUex4jW2I4BOLEBfRlJPO8zqD6lMp4W/ILGDNzcTy0H0LGgkARcgIUeHOIhMrkL\nFz/g4OG2Mlfrwi0wpRn8NUdGknhxSkf4cgs87wo+7+uIIcbMCpMu+/l78W18PkL/6Z6f4O1zJMXY\n7xJIayfqxu8fhpVvigVV2UGJcjy7hbQCLa5ARB9tb4VfzoZfr4W6Qhi1T1z49z4GbfpC6uoUoBYb\nTjJsDpKHgPKNG+3iOmgG2mVO1K2x6N96UO60odh9y7KiKtBHhY0ajiw4pRosYdazxD5gTYGSHxtG\nhYc2GK9dN2OO3D547XNRgT5/r6Rv4+LFgSUuHh55E8aZEOh4ceYouPUpmXsXZ2K9bW1Em3ll0DvM\nhYo/4lWoMhOCYWoGdT3cxuc2FLzmx7Ygy5F3XE0gsblxBURs/qlJrxBFwWqRM3RpFr9UZACxVZdD\nUsCHvq4W7FFiO14RjdiOAdThAKyMJrme1I6gcyFO+uNkFh66oHINVqZgYRQqH+DhH2RRgcpNxoKg\nKjCrK9zVSqK2Qb/Aj36GfjeNEEutF34Kfh7xxve4Ooy10qIvZQhorwGht9m/CqafDi36wb25cOG/\n4OQ74JL34Y4t4gzy88vQrCskNINaY+5ZfPfg+8s4ExL7QeFX0PEhiGkpvwHa65COSD1VyogHEvvo\naPe44DQVda4DCkGb7AQNlGuCXMvp4F03w5EaSBQZ1wlqApw9tn8vbid79otSFGQK+BO3wqTr4McD\nsL4SVhTAKePhtsmw4PPwx/LHqAESCa791dz2zYwLmiNNcC5xqFBnskfay39mBq870RpNhveHdw5b\nLI2vtmqRD2MMDRWKHlzY/G4TYrPW/yVLm4LVSEV6sPpSkPUEZ2xeHeRFclZDTBMn8EZxzCAasR0D\n8BjWPl6PyC1onIYTD/A+Ni7B0uiK9wg6T+CiMyrj/RaNJCvc30bIbdQGGLsZtg6AVjHQpRn8bTg8\nslDMcgOv5NON9FVxGHfbpf+RFFsocUnFUXjnXGjRF67+pnGZIr0d3LIOqgrFJ/KhbJhyi/SXWUOM\nMVAsUvMq/Bba3Cq32TOh1V8h9yWI8yM2u7sZaUUe2Kajvm+HHqqscQs0lOdtKFlBTrxch2TfNZ5e\nrkMcKNbgTzKmFdT6CTl0HXYulInd0x+HZs3h6GExf356Boy/1LdtWoYIaVx10v/35UZo0zH48/ZH\nj46Skly+HkaGuajwwmaB9DjIbwKx2RRwmUxFuo1YzRyxeXCEuYauMbSVMUGIzWnc5wggNhd1WP22\n13DXpyKFseR4VuMmt676IrVGxBbEHKyuJhqxHceIRmzHANzGF9KGBQ86U6kjCYVfiGEK1qBpnGwU\nXsDOlZqVn8vgzcPw7AGYfgiWl8M+p1x9O/WGBf57T4E2qTDoZbHY8kdqMmSmwcqNwc+zzgn7doWP\n1hY+CnXVcPmnoWvvqgqJzSA+HfpfCnkbRIzh8YsU9W0anlNr8WRW4xlZS/xeDy2uFNWkxxBEZJ4D\nVEGGQWxWylA9kPirG05SUQZaoBxZwNoqqDc2Xjh1XYc8HbIV9K0anv41aMk1aJ1r0T8LMfgyGemZ\nM7B/JRTtlrqhogqpxScKgfmTmhcWCzzxLqSkw4v3h34tGxzTKvPw1jdhiGh6PBRHaNxvcF6KOTEI\n+NSQJmw0qcZDbBgK9BJbLI29zGqMFvDAiM2FE6vf9h5c9RGbv5Ckntj8U5H1sn/vQUJEbFFiO24R\nJbZjAJrxNtix8goe1qLzDnaah6lLrKmAyVshYxmM3ADX7oSH9sFfd8Gw9dB5tUxEXtwb2hoEU6fB\neyXw0BQY0RYueB9y/YQmqipOF18sCn5M71yxrBAmyiX7YdnrMPp2SIrgWgLQ+wIxD/7pQ+mZrTQI\nVV+roQ2qhYM6yjQrKKCd7aTkajcHpkPR96BrOkkDdayZ0AKZsOqgAhUd2xYNZZwhJFhgLNVlOvwn\nHwb+AJlfwqu7JdQ6CpQCVtCG1cp8yrfs0FVBu7gOfWXjpV73NPTPXf4GpLWVMTe3Pi6R2j/fgKww\nta24eOn/+3oO7DZJVj06wuad5rYFSI6BsiY49jcF3t2aWfqrcBMfJjlUZQxmiqdxQ3SNcaS4gCPV\nUYvD7zYNF2o9zcosNlBQxWEc9+F9vlSkuwYsflddoYgtxuTU1SiOOUSJ7Y+GpqH5jal5GhdXYGFI\niLdG1+HJPBj8C6ysEJn/L/2hdgSUDwfnSFjRFxb0gj0DYbif08iHBXDbHrhoO8ycDJVO+PdKmdPm\nNcy94DTYtgfmfdf42GUGCSalNr4PYPl0sMfDyJtCP93SFbD+PPixHSzvB3mviP2zjgwABdDuq5MI\na1UM6oN21MUOlMstpH1RRwwayh4NrXMtXFJH6hk6rQxis1BBKhpKHShnGMyzzbgsLypCH78crAqM\nzYa/rYevDqN/I8Slv+6GBAX1pxjUK62onzmgv4p2VZ1EdX7Qan39bWWHYMNcGHC5XBh07AbLjpgT\nhlxwBaQ3gw+nR94WoHsH2J4rtmdmkOSA8iY49puR5Xvh7SKINfGIKjzEh4nYwhFbtXGk2CDE5l9j\n8+CqV0nqeIy0pF4/ldx99KAvYnPXNHS6Dqyx6TrUVkVrbMcxosR2DMDbvppLAgeBq0MsApoO03aJ\npP/uVrB9oBBb3wSweyfYKzA4CU5JhcyAzM6lzeDn3rCrN7y5QuopFgV6PgvtHocFO2DsiXDuKXDz\n41DZcIIOqYaTR7ChoSBDObufBY4QtbJ9L4hcv2oHZE8QEUbiWjghG+ytoGwN6GW61MOusaIkGt5/\nqoLykh0lE4YPqiPtgVpQQP/YQ4ejLlIMYtOpJAMPtFegK7CrEuUyK6Cjxm5CGZIGi0bBewOhYzzM\nz0d/wbiKz9VR37ajpBjHtCuoD9ngVx02NCS2mlyIbSv//vousMfBKD8yt5gpPCEz5s64CObPM0dW\n7VpCncunXo2EWBvUmvR+BPk82EwyW4VRY4s03d2NRhVuksMkLcsN8kqmMZFUGWOcEmgYPTmpIcZv\ne406LAbR6bgR+YAOOlhVaVPxRWzVoIaJ2FxOeUNiIj27KI5VRIntGIDHILI1JNEeJWS0dstumH4Y\n3uoMj7QTUoqESic8/yMMfBEyH4STHoeOj8L938MVA0RIsr1AxAan/Rt2FMDzd0NRKVxwU0MVXka2\niEYO7298nIp8OLQeupwR/DwO/Bu23wJtb4Nhm6DzE9KI3e01SDsCrjwomg9875F04PiG7KAkKCgP\n22GVBmMsqOtiUB6wEbfITTwxKKhoVJBi9aCcakG5ZSN0+g5l0V7Uj0pQamrgyZ4QY+z31Gbo84/C\nRlmglYstKKcFMNJoFVJoUGvTdfGTjO0A+1fDupkw5iGwOqQvb8lzsGOh+ajqjAvhyAHYtDrytm2N\nFPA+k679DivUNIHY6vSmEJsk+yK1MJcb1bjkIPUz3zaSbkwMsrdKg9jiA0ivluoGqUg3Tiz1x3DX\nR2ygY1Fl2kFDYvM7n0BiqzFmFkRTkcctoqrIYwDeiG0rsVyKGtRX78sieOkQvNIRrjRRv/Jo8OZK\nuHe+pKPO7QHn95K6S2Y8DGkjDvA/5cLOQjhYJs7/mQmQFicjU+57CUZeCqs+hJ6dwWaD/sPF93Hi\nXxoer9gwHs7p3fhcnPmw43Zx2O/8VMP7Wl0PjuaSnkwaCLpX7NCs8WugXG2Bvg704U74WaI6/uki\nBw924tHVSmJ0HcoOwIeGMuahrSiaDmdkwUC/0Qap9gYSQOUfjSMKxa7AQBV9ky9iq9oK7lKwtIV/\nnyFEt2MB/PgiFGwHi136fzuOhktmQnKEHrITRojQZNlC6DM4/LbNM+W32YjNqkqUbxY1mjRpm0Ep\nOilE9oAsNoQhqWEithKDvIJFbOXGnMIkkhrc7qSaGL8ozoMTq0GMOi5UEvBGbBZFvg/1xOaqAsUv\n7VkboLDxEltsNGI7XhGN2I4BCLFZKcTGCUHeklI3/GUnnJUGf20eeX+Hy+GU6XDdJ3B2d9h1J8yd\nAnefDH8dBhf1gVYpkJUIO+6Er6+E18+HLbcJqQFMGAvrP4UOreCiW6DGUAuMnwLLFzZ2z6gyFtv4\nIK71uY8BKnR6Mvj5NjsXRuZC79n45PhHjRV5bQkMWQTxn6GMWoJSVg0u0J5xiSXWRAutVDcxJOBI\nrMTqAWVNLozLhqUnweFa6JoI7wRIOQudKFkO1Hl2lBk2lO7BF2ilvQp7fARY/AMoNvhlKVQbNced\nC8Uj8tb18EQNXDNfJmlPPw1qwrROgKQt+w2FdUvDbwdipKyqUNAEN5GmoNIDCSaJrRhIM1Ff8xJb\nepD6mRclVJFCXFCvSC+xJQYkPWuoJNbvNje1DYhNwUaDVKSGz/zYVekrkqrWxm7ctd6ILUpsxyua\nFLG99NJLlJZG+KY2ESkpKdx4442/6z6PL2gGsUmdqGeQL/fTeVDuhtc7RZ5+XVQlpFZWC4uuk4nZ\nkTC2m3EmGhzMB2cd5DQTh4uBveCdT2SUTfeOMOYCePoOmHYefPCjzyvSbYhPlICFUffAofel58we\nxNFEL9PR33fjOKpLKtD79OsApwfOXArZDnigG7y+B877ARiG0jlJyOlsiJ2hk2CJR/NUAlUou0vh\n0UEwLB0WjYSRmZBfChuOQo8WogG3qXDUiaLmozy5Bf5SBVe0gWd7g8PvSWQjykkDR+aI48huY2Cq\nxQ53/CpDRr3oOgau/wFeHATf/gPOfyX8699nCMz+V/htQEgtNUnSxGag6ZGnOXjh0ZtGbIXomPFz\nLjSILSNMKrKIStJCVOtKKSOBhAYuI+AlNl/E5qaWOOSqqp7YdL9UpAeflZarEhTjfJxu2Lm94UG9\nYpJoxHbcoknENnPmTKZNm/a7nsCrr776f5zYQFZz+ZJ2CrgKLnfDK4fg+hxoGWE8VK0LznkHCqpg\n6TTxhowETYNvlshU5wXLZXI2SCTRroXMArvveiE1jwdemAWn3wifPAIfvApTDdFEhtFkXLhLetTq\nz3+dpO4yxjY+tv6DB22CU3rNUkB/xC1qhEREADLnABQ44acToUsi/KU9St8FqG3Ww2IdMiugRwow\nhDhPPHWVVSgcQE+2oYzPgc1lMPonuCNBJqBWOaFPK1j1AFzWBl7bA+evgNObwfgceGo7JNngMb8J\nqE7qC0mly6F0KfT9DJITYfdiOO+lhqTmRbMuMPpO+P4hOPVe30SDYOjUA4oLoKQIUiOwRXys2GqZ\ngdMtdTYzKHVLRSrDTGMakI9OtomI7YghDGkWphpXQDmZxoVdIEooJY2Gs5h0dKooJx6f5NdFNVYj\nlalTh4ID8PhSkW6gtkjcquvKQTXqcxpQGhACexu24xqmP6M4ftAkYlu7di1Tp079XU/g3Xff/V33\ndzxCQwHiScVDfMBi8V4+VGtwU4jeMX/c+iWsOwiLrzdHaoUlcP4NMhKlf3e44yro0wViY2B3Hmzd\nDa2awy3GW/7qLHj4Nfn3tAvgX4/6iC2zkzQn562CdsN8xyj5EdQ4MSX2h75NQxvnhBEq6jt2yFHg\ncw/6rzpKf1U8HGfuh1EZQmoAyTZ4oQ/KucshJwZe6I1y80awHSTBFYfLWoWiFcJ5zUUkUuoCnPD8\nt3BGT7hqFJz3MsxeAZcNh8vbyL7v7CyhcJwF7vsVLmsNXY1FrZL6Zq2810XJmXk2NFPh4UKIDTP/\nbvg0WPQk/PwKjH009HYdjIh591YYMCL8exYXC1Umia3WDYkmZ2UWGeWnNJMrwhF0BpmoZBymlnTs\nYU2QC6gIS2ypAcRWRy1uXMT5PcZNDTbjjdJxomAHNNB1VMUI1nQ3VB00iM2I9nTE0NQfXjFJXPBz\n+jNgaxXQBFeaJu/7D0aTiK1du3a/+wlcddVVv/s+jzdINSmWTBo7Xcw8KrW1SNHa6jz41wp44RwY\nHGQIZiDyDsMpV0BpBSx4G04Z2vD+wL8Bzh4Ns76C3h1h00wRO3w2AwqPwNgJ0HciLHoKhv1VRtOA\nRGv2DFADIgHtLhfkKKifO1BiDTI/14pybsBB0wJSWOc0h7mDYUQ6NI+FNaWoc7aREheLmlkNeVUo\nSh30u1+KK2OTYJkd3rka0hOgTTpsPSREFlh3u7UTPLINvjlST2z6rxp0VXEehdKfIHWUELjmDk9q\nALHJ0Odi2PBReGJr0UZ+HwkxcsgfFtW84rK8NvLEdC+OGFm65qEzhg2Qh84FJiK2PKppFUQU4o/D\nlNKXNkHvK6CIjICkZwWSi03E11DpogqbkfXQcKISK0SmKVgUn5sWFfugrgysRlpBp/EQwypjftGf\nOGK7dDvmHKx/C3b8j/bbBDSJ2AoLTcqxmoBLLw3iOfR/ABMnTsRqtTKpQ0s4FyCG9IDJh/tqYVWF\nGBuHg67DDZ9Br2z4axBCCkR+IYy+XEbUrJgD7VtFfsyWX+CTd2EwsPUjKDwMrm5wx2XSj/XFB/D6\nDPhlFqydCYOvlMdpLlACPmX6Ng0+96C8ZfeRWuATUhTIjoGtxmXlnBVw78eyWj96AWQbIew1bVFm\n7idesVJbWYmiuSW32jpFWOCbjfDcJCE1gJZpcCCE+sJhgYGpsLQI/i7uJqzV4HYbKweIP6QlERY3\nh7p8iGkD7f8BLcNcm/U4R6YZFOwQk+RgSEiC+ATINyHjj1Rj9UdpLaSYdIU62ARiq0anEGhtithq\naB2B2A5RypkEHwJ4lAJyaCgDrjSILcEvkqujErtRp9Op8aUiNVUuBrxtDxV7wVnqs8vS6//nQ1WZ\n1NcsTReNz549m9mzZ+N2mxxs9wdhZhfo1vd/s++tCvzRq3qT3rny8nImTZrEhAkTGDZsGM2aNYv8\noCiCYs6cOSQlJcEnM3iA1UAMaQHEtqBEqm9j04Luoh4/7IKV++G7q33eeKGg63Ddg1BRBSs/9PVG\nhUJ5qTjUz3sbmreCtp1h8GiZx/b8vcY+NakRZXSRqdYfXS1Ny/0mgi0dnEfkitnbOqR/7YFYUCYH\nnOz3+fCPX4XMRqbD9krolgiVtTBtBvRpDRkJ8Jd3wemC9pmw+RC6CrEulaKiSuAA5JfA1zdJPW3J\ndjjJ78qgZSrkFcORUli2Cwa1F7LzolsirBLi0z/ySP3vJBWX0abgKoYWVwiplSyBLVeLgXPzEE4j\nHUcLGe35OTSxAaRmymsYCW6PiEjMoKDSp3KNhDwnJFrkJxL2GkTQ1gSx5VLFqYReJ1y4OUIpLQlu\nZ5NPAf1o2ENSgchR/SO2OirqiU2jBoUYhNgUn9zfngrlueAsgWTjhQmWiqwqhfgI4XgITJo0iUmT\nJlFeXk5ysslw+Q9At3jo/7/KtB4D7X9NviSZO3cuc+fOBaB9+/YMHz68/qd79xBzR6IwAQepNJQd\n/1wu89SSI7xLry2DHllwWpiF04uP5sNnC+HjFyOTmR5xxwAAIABJREFU2q6t8NfxUHQUHp4OF17Z\ncGL2kNGw9mdx/D/5HLDb4dLZMCcGZk2B5JaQcQrsvEOEF2knGg/cpEEPFcXhtzD+cBTGLYUh6XB7\nZ1hWBG4d7ukK0xdBRS28dzW0Sodr3oYbP/A9NrszcdUKh8qr0dmLcmZvOKGt3HdKwGeydTrMWQmt\nbwWXBzIS4bMbYXgnud+mikQQ0N9yw0gVywgLI3PBVSiE5rUZbHmtZLu23SCDSe1BWh0cCZDZBQ6u\nA64M/VrHJ0J1Zfj3A0Q4Em8iCqtzQ1E1NDe5eO2ugQ4x5iLCHQaxdY5QY/OgsZtKrqN9yG0OUIyG\nTjuCF4UPcZgWNFTelCKZoxTjMW6cuKnFYURwOjWoxBupSAuqYvTzObKhaKNxlWWsvhqNia2yBBJC\n+MZFcVygSX1sycnJpKWloes6uq6ze/duZsyYwXXXXUevXr1IS0vjrLPO4rHHHmPJkiXU1ESuco8c\nOTLiNn92iFeknaSAiG15OQyLkOYvrILPt8D1QyMvSi6XDKs8/zQ4//Tw2xYdhakng80On66Fidc2\nJDWQyGHgKLj5n9CxAxxcD6UH4NwXpQa16i1I7Av2LJmA7a1z6Ht0lI5+J+vSYMJKOCkTFo6E+7vB\n/BGw70yR7Hsjq1ZGreXB8+S3wwoPjEc5soPYGhc16dWgVMKJXUI/sY5G9DB5KGx7HDplwWVv+Oos\nXlLL02ChhjJFnrQ9HeK7NPTOVRTo+hLoLtgb0Hjuj5y+cDjExAQv4uIb9wkHQ5XJQaPeOWzNTZaJ\ndtVCe5Npy21oJEGYOExwgBrq0OgYQhgCsNcgqTY0viqopJJyKmhOVoPby4zHJCKRthOpiTlIRkdH\no1pqbLhAM8QjAPZmsPtj2YnDqOnpNC5alhVAcpCrlCiOGzQpYlu9ejVvvPEGXbt2xWazsWzZMpYu\nXcqWLVvQNI3S0lK+/fZb5s+fLzu3WunTp099RDds2DBychpaMRQXFwc71P8p6Ebzqv+64tTEnf/v\nLcM/9rvtkmY5v1fk43z8PRw4At9EMN3VdfjHNVKDe+c/Ml8sFHKXwXf3w65Fvgvf2BSJVAZdJUKL\nvp/AqpFwYDq0vgHIVNCL/eoaC49CYR083UsiJi/KqiHWDv3awNPfyhO1qNAiFVbeL2nJtHh49Esc\nrlqcRRUouKF7GLuPy4ZDxyxJTyoK3DMOzn4BduVDp2zYUg5dEsQUGVDSQS/UUTKCXzU4sqH5pdLf\n1unJ4BcXaW1h/4rQpwTyuEANQyA8Higu883NC4fdRfK7fYQ0thdbquEaE442ABvR6RXCIccfvyKy\n+e6EZtcdHMGCStsgEdt+RE3TmoZfghLySSYdq7F81RipyVjS0KkFdHEe0V2gyewMTQdsxjHSe4Hd\n+FDrQHpAj0XxYciI8MWL4phGk4itY8eOPPXUU3z++eesWrWK++67j5ycHMrLy1m+fDlLly5l2bJl\nrFy5kqqqKlwuF2vWrGHt2rW89NJLALRu3bqe5Hr16sWBAyakYH96yALhHz7vqpEsSbcINZL526Fv\njrkr81dmwejB0CtCynL+PFj4Bbz6aXhS+/5h+O4ByOkDF06X34W7ZBEfcSNkGM3hKcMgZyrsflga\ntZXWCvqXGrquoygKzDsInROgt1GTqK2Dq9+BWQYbnNgFymtgY56QHEgE58WJXYlZuZ2aSsO9vUeY\nHKvDBqO7+T22ixQmF2yB9lmwvgz9tk7SU6eBdoERZrZTUJ+1oZzX+CuTdSHkvQrlqxu3NYCkZMsO\nSmAQqj7m1cuEQ3GZbJdpIku2u0ias9uZILZCl6gie5qsjWxA40QTyZ7NlJGANax4ZCdHaEcm9iBL\n0T5kmmsbGqqbisknzU9QUovURGNJQ0PyuZKKrAOPNGh7dEAxnmD788E7W3TACZAacKVQfBg6B3kj\nozhu8Ju8IsePH8+YMWN4+eWXiYmJ4frrr2fMmDGMGTMGAE3T2LBhA0uXLq0nu7w8+ZDu27eP/fv3\nM3v27N/vWfxJ4L+uHTDW6NYRZP5rDsCpnSLv+2gRLF0H7z4efjtdlynQI8fAaYHSez9s+lRI7fQH\n4bT7fAt264HQf1LD/Wk1YhxsTQZUKM+wkLjbDZ964Hwr5FULqXlX9mfnw9xV8MIlkFsAL3wvLs3f\nb/YRmz8mDsaxcJZMW7ZYoE0T0kiJsZCZCAUV8OUhKHOJr+RMBbbrKK/YIF1Bf8eNNqUOda2K0qXh\nop4yQsziS5cFJ7b4dPC4wFUdevJBbQ04IjgKHzDm4eWY0GxtPgLt08Fu4hu+1khb9jNhtFGOzlZ0\n/m6C2NZRQm+SUcNEdr9ykK4Ev3raw15s2MgJuL+Qg6T73VaNqG5iScdjNGdZ9ATqU5EYuseY7tB6\nDHSeDGuWy4Mt1oY1Nl2HwgOQHsHkM4pjGr/ZKzImJobbb7+dcePGcdddd/H999/7dqqq9OvXj7/9\n7W/Mnj2bffv2kZeXx5w5c7jhhhvo168fFoul0ZyrKHwoMtTC4Zwg6txiYNwjK/Q2Xiw0gp/ThoXf\nbsNKkfZPCWMGU5EPH10LPc+F0+8PHoUUfg+rT4KFCbAwHkp/hh5vQ/laWP2gheIYFe0ul3wGVKW+\ntkVJlaQdrz8ZbjwNnr8EZl0HqfFw10fSgxaISUOwx8dSRx20z5B0ZVNQ64IYG7y0G4anowxIQ10W\ng5oXgzrNhjrRivqxA1ooaNc3ns+mWiGhp2+eXCBsRsBSF6aGVlEGCRFEdLlGcsNMe8aGw9DHhK8o\nwIoKaczuGMmqH1iFhg4MM7F0rKaYwRGMtzaSR2+CN17uZA/taVufcvSigANk+qUnqzgKKMSRgWbU\n21RvlKjJx0sHsGbC2fMhpZMv72uxGbYkBiqKwVkDmSZe5CiOWfzXJsjt2rXjmWeewe12c8cdd7Bv\n376g27Vo0YKLL76YF198kTVr1lBaWso777zz3x7+T4tSt4wFiQvzDu0vlbJTJxMByrJfoEu7yFf7\nX82G7JYSsYXCwsflIveiN4Knzwq+hnVjQHNCx39CzxkwaDmkjYIjs0WsVlhrgZ26pIRS7bC9Qhab\nrzdAWQ3cfZZvh5OGwFEjd7Ryd+MDxjtwjO6BEw/Emeww9qK8Rn5S42B1icj93RpKmoLS0vfiKwkK\n6uM2WKTJjLYAJPSEyq3BD1HfrB5m6GdZMSRFqJ3t2AeJ8ZARIRXp0eCXg5KiNoOfy2BokjlF5I9o\npAFdItTX8qllD1UMInQutIByDlFCb4KTyA520SmIovIIe8nya+iuIp840lGx4jGIzaIbLO3RfddN\nm/wUPN4ozWYHt99sn6PGTKZmBtnm5kJtLRzD0v0oGuN3c/cfO3YsjzzyCPPmzePpp5/G6Qw/ujcu\nLo6pU6eSlWUi3Pg/CE2XoaHhFpsyozsg1YSabU8edG4bebu1P8OQk0MPy3Q7Ye0MGHQlJARRaNfs\nh01TxHZq0FJo+3fIuRRShsj97adqtOjgoYPNhTLRAgd0PGtawJYKcfwoqhTBSHbAKv/I+dC7FZx3\nQtDzso/shgsN/h5iIFwozN8kTHB6TzFafmsvxH0GIxbDrgD9/ZkWiAH9e0+j3TiywRWiD81LaLYQ\nEVFluURsOREcYzZsgz5dIxPQpsPy2Rhpwiio2gM/lcFpJtXt3+HhVCxh04sAiwzn6JNCyPgBlrML\ngCF0DHr/RrbQk24NbqumgmLyaen3mEoOkYCwuMeot/kTm4IRsRX6uVl7ozR7rM/BG+DIHvmdbRDq\nY49BZiZceGHI5xHFsYffdWyN3W7n/7F33uFRVc0f/9zdbHoHkkDoIfSO0qWIBRBFEVQUsGFBsQt2\nURRUBMVXsVcsiEgHpYj03nsnoSRAQgjp2WyZ3x9nk+wme3cXgVd4f/k+T54k55577rl39545M/Od\nmeeee44777yTl19+mTlz5ng9p1JZRlIFAN+y3RRzJUJ9yAd4NNV73FpBPuzbrmqu6WHPfFWupa1O\nto39z4IxGJr+oBiRxRAR7E8UYWhRSMPDZowNNbSv/LHfVwQHo5CwEJieouLVzJbyFMFXboHtb5UG\n1paBKSwYs0EU6/F88OcOFehdqzI8kwhvNIYxTVS5my7LIb/UTKUFadDFgCwuL9hMlaBIJzGPxRH1\n4qcj2FIdSkJVL4Jt616Vy9Mblh1RtfZ8Sa22LAvMAjf4INjSETYi9PRh2VjCaRoRThz6u641HKQq\nkdR0Y67M4CwppNKcJi7tKSiNvRqlZStySCEM9eW2ORiSRntx2QlK49icaf02KxiMYApQFbOLcfKI\nyjoSXgnS0uD772HECAi5DKKOK+AzLkk9tpo1azJhwgSCgoJ4+umnOXjwoG7f/hU7IdyJsVCjWnCK\nPOQFDHT43wp9qJJcWARBXgRg+klFKa/lfgMNwNG1ir4e6ybNV1EGpM+GOi+CqcxCKVNsyCdWtPdN\nGNYEYFgbqKpi9zIAZyEvX5kBjweqVWi+l8CvMjCZTNjt9vP323aoB0fSYdlelQb+9UYwogEs6KSE\n2+yTLt21lgY4UP4amkmZWN0hN01V2NYjjhzYpX4nNHJ/HOBkGuxPgk6tvd/S3D3QPaH0++EJU9Og\nfhA09EHr/x0bBqAPntOT2LAzh1Ru0iGFFOMvdtONRm7DBtazCYC2uGroSaiS7rWcNLlzJBPu8NNZ\nOYORKDS7gxFjcdLYxGlDYi1SQs0/CIqc4m2P74PqDZRanJ6uYl46e8lMXYHLDpe00Oj111/P+++/\nz7x58xgzZgz5+eW956NGjbqUU7hiUcmxKJ31kHKukkN5yfAhsNfP6KhJ5QHnHCGFkR6U6NTtUNV9\nWj/SZijXRewA13bJEOSpIrQ7jBieN6F1MKKFaLAjC+3INgyVtqJ1rgQ3xiJf5QCRyPMzvd+UE0wm\n9cAsFh+kvDOGdoHO9eHOz+CdeaW7+sQw6BANP5bxGdfQ4ISoPJLO92gtnxOzGOdOqNI2eibEvVuV\nGTLSAzX/7/Xq97Veqmxn5MHyI3BbU8/9AApsMCMD7onxzb/2MzZuwEAVL2bIVZwhDTP90Y8FSyeb\nLSRzI+4DMNewgRiqUJfaLu1H2EksNQkryTIiZJFEJMruauU0fsSA3ZEP1KJqZ4igStYUw1Kk/GuB\nwYosUoxju6GGhx1GBa4IXPIK2iaTiWeeeYb77ruP1157jalTp17qS16xcJY78Q7CwbFCt10BFbtm\n0OCIDzHu4aEqDsoTLA5Xg8nDTj/zGFTSyZCUuQrCr4KAMm5T+dUKWaB95ETssNjhrvVoK86g3R6v\nMvbvz0UTgBA4meHtllzg50iLct7JZw0GmPIoXN8EXv5dhRQUo188LE13NYtW0VQR1DKlOWy5ygTr\nDmcOQrQHf9fmVdDsas/TnP03tGwEsV6IQj9vVWEjt/og2H5OgzybEmzesA07q7FzrxdtDeA7kqlN\nCFd7II7MZgsacIOOYFvKSjrTvpw2d4AtJDglTM7nDGayiXKYJi0cx0R1sDteiiIbGiom1EVjKypU\nrJ7AkNKK2XlZcHAzNPIhk3gFLmtccsFWjPj4eCZMmEBsbCzDhw9n9+7d/61LX/bQMANCodNL3CRE\nsSK3esgfGOKvMvqvdU9EdUGTerBL3yIMQCXHApd+Sr+P2JVrwh0Kj0GwG6Enf9mhvQEtzmmR+jIJ\n9uXAnI7wRWuICYDcJCT+MEIK2it9PE+2DIoFm83mRS11h+rR8OPD0Kw6fL2itL1eCBTaIc3JB1Ns\nGi7z5hSegEAdBeXEZqjunvNCViZsWwedPbBQs3Jgzt9wj5dHYrfDJ6vh9mYQ6yVHpE3g/RNwayVI\n8MEMOQ4rtdC43YtgS6OQKRxjGAkeCSaTWcV1NKUq5amgGZxlHZvoxXWuc8bGXtbTlFLBk85OAKqg\nJHkRSfhTB2xpgD+Y1Vsldlw1tqICCAiGoLDSitmbFyrfW1snRm4FrkhccsF26tQp1q5dy5QpUxg7\ndiy//PILu3btonXr1jzzzDNkZ2d7H+R/HAZsQBHnnD6OQIMSbmu9FAPsWFtl9/dWo6t5fdh9yHP1\n5cqOZA4nj+n3Ka5F5g7mVAhwRzFfZUPrVuar9tEhuLsGtHQsbF8thwe+QZNUtFa14Jke+pNwg3+s\nsRVD0+CBa2D2VlVpG6CmQwU77vTQigl0ZcyOhUch0A1rPSsFzh3XF2zL5qvProsHMudPc6DIAgO9\nrLezd6u4xuE+8Gd+SYMDBTDSh3CtXdj5DRvP4YefFzPkRxzEiMZQ9FXUfaSykv0Mxv1EZ/MHduzc\nhGtC04NsJY9smjqdd5pt+BFENIkIQhGHlWCznwZjDNjNaOJQum1OZmpzPgQEqZpr2WeUBrd6BtRp\nDrHua8NV4MrBBQu2M2fOsHHjRqZNm8a4ceN47LHH6NWrF40aNSI4OJj4+Hg6d+7MoEGDeO211/jm\nm29YsWIFFouFjz76iNatffCGX4bYuHEjvXv3JioqitDQUDp06MC0adP+0Vhqqcgntcxu+OZomJ2h\n8kbq4Z5WkHRWpdbyhL49oKAQfl+o3yc0TNVoWvOXfp8q9eHUHvfH/MKUSa4csoEYpwUx3woHc+E6\nJxvYV8vhllaQMhG2vAmm80uKY3BEiV9Q0H+LmsoReVLV+yrh9Bid5n5UIAaXygRig6wNygxbFjtm\nqBjg+te7v+Qvn6rwiqo6AqbQDO98pYRavIfImAILPDsXejaATrX1+4FKofXsEbijCrT3korNhvAQ\nRSSi8bAXbe0IuUxgP89Sn2j0mUqjmUV1ohmA+7RVn/MdPelB1TJ12FYwg3CiXTS2Y6wgnvYYMGIl\nFRvnCKAJWI+Dph6YJsUam9OmpzBPaWttb1Ka3Jg7YNV0uP4+zw+kAhcFRUVFvPDCC1SvXp3g4GDa\nt2/PX395WHjOE+e1enz22Wfs3buX5ORkkpKSSE5OdksIcbe4VKlShdq1a1O7dm3q1KlT8neDBj7w\nly8zLF26lJ49exIUFMRdd91FWFgY06dP58477+TEiRM888wz5zmiHcgjpUxOvbtjYMxxmJcBt+uE\nA3WsDW2qw/jl0MtDjFPdGtCjPXzxGwzuq9+vex/4eRIUFakyNGVRvTWsnuQ+76F/HJhPlj8HK+Ds\ntzvkcFDVd9jLjmXApiT4dZj7SfkAzXFDdl/LS7tDjGOVP52tEiXnORbCYKcF/aAd6rneeM5OsGap\n1FplsWOaEmrBbuj02zfA1rUqJ6ceJv0Cp87AqMc8T33MEkjJhoUPeSaCiMDwQ8oU+Z8E/X7F+AAr\n6xFW4k+AB23NjvA4W4ghkJfQJ19s5yi/so7PuI8AyjtzN7CZjWxhDr+4zhthGb/TmVvxc5xnx8Yx\nVnA1TwFQ6DBLBtEcrBMprj+gFS9HNqd4tYJcRevP1+DOl+Dn0dCpH9wy3OmiFZmRLhWGDBnCzJkz\neeaZZ6hXrx7ff/89vXv3ZtmyZXTs6CU9ki+Q84CmaWIwGETTtHI/lSpVkquuukr69+8vzz//vHzy\nyScyf/582b17t+Tl5Z3PZS5rWK1WSUhIkKCgINmxY0dJe3Z2tjRo0EACAwPl2LFjuudnZWUJIFlZ\nWaph+mRpaGslyEbxl1wpELtL/+7bRGqvE8m26M9p7m4Rnhd572/Pc/9juQgNRT7+Sb/PwT0ijfxE\nPn3b/fEjq0WeRWTHzPLHDrwssiRSxFbo2m6NyxPbi+bShk1nRfhdZEOG+n/pHhHuFdl/0vMNeMCs\nWbMEkNOnT//jMWTHMTWP1QfU/18dETH8LpJVJCIidptdrNXzxfaE2eW0vU+K/F1JxFrgOtzBv9Wz\n2vZb+UuZzSJ9W4n0biJitbqfzpotIv7NRJ7Q+SyK8d0G9fm/tdhzP7tdZNgBEW25yK8+PKYvxCJI\nvoyUIs/jil0ek01ikN9knqTo9jsruZIoz0tTeVHMUv4LbRGLtJFu0ljai1VcH8oKmSXXCLJFlpa0\nHZaF8rYgJ2SdiIiclJdll1QWu9hEjseJJN8t8gnSKRoZUgmRB9qUDvjSDSLDO4uAyMIFIqtniljK\n3OfYsSL+/iKnTnm8f3co955fJti8ebMAsnnz5n/tGuvXrxdN0+SDDz4oaSssLJR69epJp06dLsoc\nzluwNWzYUJ599ln5z3/+I3PmzJGdO3dKTk7ORZnMlYBFixaJpmkydOjQcsd++OEH0TRN3nrrLd3z\n3Qm2xrYWgvwpSL78XeaFPpwvErJS5IF9amHSw8t/iGgjRP7Y63n+T41Ri+WmXfp9xo0UaRooknzQ\n/fFPu4uMb1l+Pjm7RRYicmqGa7vtzkKxtnNa9c+alWD71bEBWH1ACZTdJzxP3gNmzJghgKSnp//j\nMWTOFjWP1Ez1//0bRVqWSgv7GqtYyRP78tLPqOicyF+hIgdfdR3KZhOZ0Erkow7uP7eJr6kNxC6d\n9SXltEjVa0Q63a2EoB5m7RQxjhR5eJrn74fVLvLYARGWi3zjZf9gF7t86hBqw8UsdtEf2C52eUm2\nCzJVvpLDuv2KxCI3ynsSJY/IIXEvKMbKBDFItKyXTa5zF6sMkSbytPRwaZ8mt8kX0rRkfvullRyV\ngSLW0yLJiOx7VOQTTTpHaTIkCpFBDUpPfqixyGPdlWD76qvyk8nOFomOFnn8cd178oQKwaZ/jREj\nRojJZConN9555x0xGAxy4sQ/XweKcd4+tszMTH744QcWL17Mnj17OHfuXEkM0f8HLFu2DE3TuP76\n8k6T4uoGy5cvP68xFXkkmwisjMVKkVPAdt0g+E89+PY09NoFu/PcjzH6RujdEPp8Cw/8Bkcz3fd7\n73lomghdBsPoSe7JJI+/DlXi4J4u8Pfc8sdvGAWp21SVbOfEvqGNIfxqODBCpdYqwfVGWG9HljpY\naVH+EBdYGvxcnE1kvwc6phcUk0aMernAfMGK/RAWCLHhkG6GuSfhGsWvF4tgf9kC8Rp0Uq+N3Qy7\n71MFVKs7WVHNefDTQEjZCjePdzUN5ufBm8Nh0lsw7FVoUsbFbLPBF1Ohxa3qvN8nujcJ7z4Fd/wI\nt/4AfRvDp/3cmyDNdvjqJDTaBJ+ehC8T4QGdums2hGnYaI+Zx7DwBEb+g8ltALUNO79znDYs5h32\nMZ4WDHWT11EQ5rONVrzKX+zmN4aTUKZwaB55PMsrvMLbjORJl6BsMwW8zSCS2M1DjC1pP8AcDjCb\nNjyOhkYuyylkK+HcBoVLVKdMKxjC0TRNMf1zTilK//p5cGwPVPaQieCTTyA3F158Ub9PBf4Rtm3b\nRv369QkNdc1Y0LZt25LjF4zzkYJxcXEiIpKeni6zZs2SkSNHSqdOnSQ8PFw6dOggzz//vMycOVPS\n0tJ8HvO99947P1H8L2PAgAFiMBhky5Ytbo+HhYVJrVq1dM8vr7H9JK1sDQSZKk/IPvGXfOkrhZJX\nZpc8K10kYb2IYbnIw/tFUgvLj11oEZm4QiTmDRHTCyLDZ4qcyi7f71y2yPPjREzNRGp0F/l1fvnd\n/snjIg/dJJKIyPODRbIyXY9v/lnkhSCllZx1srzmHRZZXlv95CerNrvFLtbrCsQalSf2wzbV+G2S\n0toWnFQX7/S2SLs3PasdHjBp0iTx8/MTm832j86XE2dFAoeKvPq7+n/AWpFKc0ROKk3T9qhZrKY8\nsS9T2pqtUGRzH5HFASJp80qHyUgWeb+5yIshItt/d73EljUiPRJEmgWJ/PCR0uqcsXqLSMvblLl4\nyAtKayuLg+ki9/ystPNaY0S+WidS5MaUmW0RGXdMpOpaZXrst1tkvY7ykCt2+VgsUlcKBMmXblIo\n88XqVlMzi1W+kcPSQP4QZKpcK0vlb3Fv11wt+6WLvCXIIOkmY2SjG41ukfwtdaWlBEqcjJePXUyQ\np+SoDJU2cp0Eyd9Sas89LAvlHfGX3+V2sYlVrJIpe6S2HJIuYrcXiaQ0Fjl1g8ivrUQ+SpAuVQJk\nsB8ifYJFBtcUuTlQ5I2+Il9+4V5ju0BtTaRCY/N0jaZNm8p1111Xrn3Pnj2iaZp8+eWXFzyH8xJs\nTZs2ddtuNptlzZo18v7778ttt90msbGxkpiYKPfff798/fXXsnevvn2sRo0a5zfjfxk33HCDGAwG\nOXzYvdklPj5eIiMjdc8v94Wf+Yu0tdUVZKq8I2tlvlglWPKlh5SXXIU2kQ+Pi0SvFglaKbIss1wX\nERHJKRQZ85dI5GsiQS+JLNexEB1MFrnlMbWQ3v18+eN2u8j070RahYt0qyWSU+YdPbFV5K2aIqPi\nRPLOlrbnHxVZUVdkZaKIzeG2sJ+1izUhX6xtC0oHv3a5SN0/RWx2kT+2KzPgin16j84jXn/9dalW\nrdo/OldERJ6bIhL1mEhWvsjiU0ro/qIktn2aRazkie3rUr/QrgeVUEtfWDpEXobIqFiRt+uIpO5w\nHf6v2SINDCL924kkHSh/+Yk/qM/hqv4i67a5n+KPm5TZsdpokc/WiJh1/K5rskQiV4uYVigT9j4P\nLu51YpNoyRej5MtdYpZNor8xSJJcqS5zBJkqfWWlrJMzun2fk58FGSQt5GWZL1vdCsm35H1BIqW7\n3CwH5JDLsXRJkT5SSQZILdkvpZvINNkl70qgTJHeYhVloz0m98ouiRSzJInkTVdmyHPzRT5BZFQD\n6RIXJoNAZNxrImPvFPn1HZH8HCXQ3Am28eOVb+34cf0H5wUVgk3/GgkJCXLTTTeVaz9y5IhomiYf\nffTRBc/hvFiRt912m9t2f39/OnToQIcOpTTcw4cPlxQZnThxIqdPn6Z9+/Z06tSJTp060aZNG5Ys\nWUJKSso/UzX/h2B0ZESwIvTGyGj8eJXy8VgBBni6OtwXB1FrYHkWdHVT6iQ0AF7uAcM6QPQoWHEE\nurgJnK5XC2ZPgqGvwqwl5Y9rGvS7D6rVgiHXwvEkaOSUTiu+JQyeCv/pABlHINhhQQqqCfXHwfb+\nii3oXxm0KA3tST9kpKV08PtqwZBNKgvJdY2F2m7GAAAgAElEQVRV+5F0uOb8mbJms5ngYC/lxj3h\ncBq0T4DwINiTogIJ71IR17LdDjU0DA+Wvi5ZG6HaA1DZKdTqzCFVq+6p9VC1TEKNzasgLAKmrAI/\nN2/d4jXQrS0s+U6/yvbigxAbCodehCAP1v8tuZBjheR2UN1LftAt2DkHHCaA2l6if/aTwwkKWEF3\nrvGQtR9gPtvpSXPm8xwGnXEXs5TOtGcJs8uZO5PYTRYZTGAx9WlV0p7GTqwUcis/Y0TZaAvYQQR3\n4k9tsEwDLQIsjmj5XEqzcUfVhKGjPc4bgEOHoEkTqK6fEuxKx17slGYbuBRj6yMoKMht9ZfCwsKS\n4xeK8xJso0f78KVwICEhgYSEBIYMGQJAVlYWa9euZc2aNYwaNYq1a9d6LW1zOSLCUZcpK8t9fqrs\n7Gyioz0k/XMgMTERTdOIDwki6Zs00MaxY+DNMLAD/l6CYCOMnuu0FSMyCIJ9cH/GeUnTFOyhsrJR\nZ+F0mzex7JydnUK+JCu81HCeglamZpCb523QeXv8dJ5JSJh7oVaM8FB9oVaMyiGehVrJ3DSI87E0\nnQbEe/nOOSPeQ8Z+135RukKtGFWo7NaHV4xQ3NdBM5QJFdCcr3MxvkvnMcaUKVOYMmUKACkpKaSk\npFz2RZQHUQRchPV3ym/qxxk6a2MxqlatSmpq+YLBJ08qn3u1ahdevfy/llIrIiKCnj17Mnr0aJYs\nWcKxY8e49tpr/1uXv2hITEwEcFux4PTp0+Tm5pb08YSDBw9y6tQpNk8YS/3ZcTBnJC0H3sh+7EzE\nSg2dl31VFnTcBvl2SNRZX0Rg8QFo9zHkW6CejuAqKIQxn8O7X0OCTomTPdvglQchIBAqlwkQzsuA\neSNUAHKY0zFbPhz7GPzCweio9iFWQWbYwDmt1tJ0iDCBnwF2OcpDR/+z8iB+fn4UFRV576iH6BDY\nk6oCtGMCVIbgdY58lXGOxMcrS1MyBcbD6emQf6h0iLA4JezmjoCCc67Dx9dW5WneeEwRSMqibg2Y\nuxSGvQEZOsSfepVgx0no+RVsOq5/K/H+YBFosBE+T1VZwfRQHQ0bkICZD7CQ46FgUhyBGNFozxLG\nsIdz6D/vRGL5huUM5WuO4z7vZ11qM5N5vMAo8nGNh61CdTQ03uUBspzOLy5Ps5oxiGOuJmLJYTE2\ncsAQDfZsMDoW10ChRDMx58CMD2Hb355j1CpVgiNHIMdL2h8HBg4cyJw5c5gzZw6bN2/m1KlTHiua\nXA74CX82E3DhPwMHs3nOXJefnz6c6PHaLVu25MCBA+TmumZzWLduHZqm0bJlywu/wQs2Zl4AkpKS\nxGg0/ptTOG8sXLhQNE2TBx98sNyx77//XjRNk7ff1g88ckceaW2rL8hUeU12SFXJl8ZSIEllfB2H\n80Vu363o2q03i/x11s3gIrI6SaTbZyquqd1/RP52Q9m320Wm/iFSu4eIX1ORZ99VhBJnmM0i/3lD\nUdL7NBPZu931eMo25Ut6tZLIwaWl7ZZckY3XiiwOFslYVtpue9IsVmMp+UKWpik/1mcOB+CAT0Tq\nPC9i0Qnq8oKJEydKYGCg2P8h+US2HVU+vi+WKm781UtEGi0UybeKvcgu1m4FYq2cJ/Yj6nMpPCmy\nsoHIsmoiuU5uwQNLRF6JEhmbKHJyd2m73S7y0yRFHLmunsimVa6Xt1iUny38KpHodirW0FLGh2az\niUzbLtJwnPp8+34nsk0nbGxLjsiA3Yo4ErtG5N1jIpk6PrntYpMhYhaT5EuEI27thA7F/5DkyKOy\nSQJkmoTJdHlBtstpKSjXr0DMMlEWSBUZJgFyv4yQX+Ss5Lr0MYtZxsh4CZBYSZBWskxcH8om+Uv6\nSCW5Q+rIYdlZ0r5WxsvbgqwUFVZTKAdkp4TJMblPxJYncixWJP1+kcl1RT5IlC4xgTLYgMiAqiI9\nNZEbEfn2JX0f2/Hjysc2dqz7B+YDKnxs3uPYJkyYUNJmNpslMTFROnbseFHm8K8KNhGRmjVr/ttT\nOC84B2hv21bq5T937pzUr19fAgMD5ejRo7rnu4tja2prKshUqSGZkigFcqrMorI8UyRghUj8WpHJ\npxTXwh1e/kMteM0niMze5Z5gaLeLDHxOERVuHiay74i7exS5p6sSahNfKx9HdXqfYkSObylypsz5\nW/upuK6zK5yuOVfFf9k+dQqAbbJIpNNSdTNJaSLafSKfLXF/Yz5gypQpF76Q3PO5SPzT6iHtzhIJ\nmCEyeo+6hzMO8kubghLhWXhSZFVjkaVxIhankJz0QyLjmoi8FKr+dsaR/SID2ovU10Tm/Vp+CqfS\nRR58RURrJNJxoEiBG/ar1SYyeZNIwjveA7P354kM3S/iv0IRSlad0+97XOwyQookXPLFJPnyvZsg\n6mKclHwZKdskVKZLsPwuC8R9cFy25Mvr8rsEywMSI4/JfkktP0c5KNdIL0Ei5QeZUuY6yXK/tJAb\nJUxSJamkfaW8JW8LckAUJTVDvpXtguTIcpGsD0SSjSLLB4t8WkmuqWSUwWGI3BQocmyvIo/ciMjY\n5/Xj2B5/XDEjs93Qin1AhWDzfI077rhD/P39ZeTIkfLll19Kx44dxd/fX1atWqV7zvngXxdsYy9g\nV/RvYenSpRIQECDh4eHy8MMPy3PPPSe1a9cWg8EgH374ocdz3Qm2JrYWgswRJF9mlgnQPmcRqbFO\npMs2kVwPysxPm9Ui9/Zf5WnkzvhsihJqk2fp9/nlM0XzX6WzYP48SOTN6iKFrhtwKUwVWWgQOf6F\na7vtoUKxNswvbcizKG3tuyT1/5qDSlva9S8HaE/boOaR4ZBSA9aKdF5actg+R7Ej7TtLH3B+ssgi\no8jRT1yHKsgWeTNe5Ic7yl/GahV58g6Rq6JETuloXCs3iQS2ELn/Zf0ICItV5NU/1ef+6WrPt5Za\nKNJ1m0joKpHVHoSbiEiW2OUBMYsm+fKdB+EmIpIhhXKTrJAg+V1Win6YT4qclQYyQhrKSMmS/HLH\nbWKTwfKIhEkNOSqumXty5Jz0lVgZI/eWtNnFLt9LR/lJri35f6/UkRMyTMSSpJiRe4aJfGJQAdqR\niNxdz3GyXWRwLZHh1+kLtgvU2ioEm+drmM1mGTlypFSrVk2CgoKkXbt2snixl9Q554F/XbBdqdi4\ncaP07t1bIiMjJSQkRNq3by/Tpk3zep47wdbI1lKQtaJJnpwro609sE8kbJVIcnlrTwm2nhAJfFFk\nyBTPYWDb94kENBd5fLR+n/RTIq0jRF56wP3xtAMizxlEVn5S/ljSeJFF/iJFZcIQrIn5YnvMSe3b\neU4JtpUOIbRs7wWn1Jo5c6YA5xVDWQ4bj6h5bE5S/39wQGlthWpHYTfbxRqRJ7bXXVXYbXeIrKwn\nYi+z8Vj/nUqpdcSN0Dl7RqRTVZEHe+l/ZpNneU+BZreLPDVLxbVN267fT0RtjLpsU9+nDV4UEZvY\n5WGHcJvsRbjli0W6yt8SITNkh+jEoIjIfkmVCHlYbpYJbun/5+ScxEtj6Sm3lzs+XT6RrmKQJNlT\n0rZTfpK3BckQFT9xQobLXqmjHsrRCJGkISKfIJ2jkSHRiNzfsnTAEd1Ehl5dKtjOuNlhFGtt/yCz\nUoVgu7TX8IbzIo/8+uuvF+7U+y+M+d/AVVddxfz588nMzCQ3N5e1a9fSv3//fzSWHQMQSS0sRDiR\nRlLN8N1pGFMbagXqn//qQqgTDZ/f7pnM9c6XUCMOxo/U7zP7Jygyw4hx7o/vmgWmIGj3YPlj51ZB\ndFcwlQ1BOCTQzGliBQ4SRpAjS0glB+0y+Yz+xLygOAmyXAgbLczxkHMc1V1bRKjUHccUsUHz16CH\nEVnpysaoMUyRSHK2uw531RCIaQhrPi1/qahK8NonsOJPVY/NHQb3hWF3wUsfwBkdQommwQc3qxps\nj0xXFbT1EGKE+U2hUTDcs6/0Y3AHAxqfYWIIRh7FwhEPFO4g/JhDZ2oQzINswq5DQKlPVX7gYeay\nlT/YXu54BBF8zHssYAnr2eRy7GYeIoLKzOebkrYG9MOPQA4yD4BQulFEEhbtNPg3BpMqNioGFE3O\n34mYFFFFxc8AaCfhnnj4+S3XCT3wAJw9C7t2UYErC+cl2L788suLPoFLMeaVBsEAhFId15VmajqY\nNBjsoVzJwXSYvxdGdPNMA8/IhBmL4dG7INBDbNOyedChh1p43eHEFqjWEkxuBK35FAS4C/3xw7U8\neD2HIDvoYEU1iYe6VWDqev2JeUFxVv8LSqmV7mDBFWf5D3Vw8/NLJ6810OCw68Id2QEMAaqCuDMM\nBmh5F+yZCxY3ldCvvxVqJsCPH+tP6c0nVPWc97/R72MwwCe3gtUOry7Q7wcQaoTvG8DRQhjtoe4e\nKOH2CSYqo/EIlhIWojuEY+Jz2rCRs3xLkm6/W2hNFxrwGr+7Ha8vvalDLT7jW5d2E/50oR/Lme7E\nhgyiOh05yjIAAh2VtQvZCcZa4GBTiuYIZTM6xT8EhYKfBpmnYcFEiE+EH1+HFU7U9QAvQYAVuGxx\nXnFsOTk5TJ48+aJdXETKUT7/P0K9psFUKxOUPeMM9IqGSA+f0rcbVWzTQC8M2RmLwWaHwbfo9zEX\nwqaV8MpH+n1O7YS6Xd0fs2SAyV0IXxCqJlsxovwhNgA2nIW7aii1Y3BHeO8PyMiF2Aj4/N7ziiUq\nFmwGb4FgnnDotPod54id8neM5VwQL8EAx6yIRdBMan6GAFWLLWst8KTrkC36w6I34NBSaNTL9ZjB\nAPc8Du+PhFGTIMJNaZsq0fD0YPhwMrzyqIp1c4fYMBh9AzwzF57pAvU9xE83CoZXa8KbR+GhOJWP\nVA+haHyBiV4UMQO7xwranajMIGrxCjsZRC0C3fTV0HiT2+nOWBaxkxtp7nLcgIFHuI9RvMvHvEc4\npQXjunI7s/mcw+ygnkOI1aQrG5iIIPhTF40gCtlJmF9NMCtV2K1gCwyFwlxYPhXys+GrffDuQJj3\nGXS5Q/+BVOCKwHmtAoMGDSIpKemi/SQnJ3PPPfdcqnu7YqBMkQFEO5l7bAKbc6GL+/jUEqxMgh71\nINBL0O62fdCwDsToaGIA6adUEt7aHsLwrEXgr5Pgw78KWNxZE68yIKvL2L3urw1fJkGqIwvzyN7w\nwDXI5tPw5TKYsUV/Em5gs6nxL0hj+3ENdGkAUQ6T1UmHmlXVST0tFgIWlzMJrgcFR8sPGdsYgqPh\n+Eb3l7zxdrBaPRd3ffQuFXM4fZHn6T/SHioFw6Q1nvsBPFcdokww4YT3vj0x0g0D73nR2gBeozFp\nmJmKfqBdVxrSiGr8wCq3x+/gNsyYWcRSl/ZmdMaEP9tZUdIWRxsKySSb42gYCCCBIo6AMQ7saaD5\nK8Gm4RpRHxisqmjnnFVmycgqcM0A2LVStVXgisZ5aWxPPfXUpZrH/2sIAYCBEKdFY38+FNihlYes\nH0VW2HwCBjTX71OMnQdUVn9PyHAoLJU8mD41TT+2NbCG+8Vd62FE3rEgBYIW5NDCXqgPXyfBXRvg\n3powqCbc0Qvt02CgCHliKtrtbcoPpoMLyu5fWARfLIO/98Lkh0rbk/KUuaqak0pTPHwZOR0QDxk6\nacmqt4Hjm8ofA6hWExKbKF9brwHu+1SPg+7t4Ke5cH8//dsINMFD7ZRgG9NTpVbTQ7ARnqwG7xyH\nN2tDZS8boxfwoxdFLMdONw9aW33CuJE4PuEg91LbbR8NjXu5hjeZSQ4FhJXJZFKHWjSmIX+wmP70\nLWkPIJD6tGE3a7mdJwCIQeUuS2MHEdTERB2KSAJDB5B88I9AKFIam7Ng8w+CwnwoyIFgh1bYrg98\n/Chs/BOurdhwX8n4r2UeqYAnqMXeeblIdmS70csuApCaDYVWaBTj/QppZ6Gal37Fxac9pX0KqQJZ\nOuk9w1pD1nqwlrEua3caoQjkLSc1J9Ifvm4DpwqRh7fA8G0Om6wG+Cm76XmgWLD5eZq8Hh75AZ6d\nAre2hv5Xl7YvOA1tosDoZBLNQr01ZT4XU7TKi+kOsY3hjIdEFO26q0rantD/BlixCXI8kENACbbs\nQvhjn+d+AMOqqQwlv6Z573sjBhqg8W1Zie4GD1OXTWRyAP3MHQNoSwFFLGG32+PX0ZXlrC7X3pCr\nOECpNh9ODfwIJBOVAsafWlg4BkZHup0AI4LjDTM4vWH+gWAxq0ragQ4NvXI81G4KO0s1wgpcmagQ\nbJcpMhwyoJKHdTrDkYWosg9ZqGw28POizEQ4/GOZHsiJ1VrAyR3uj8UOAHsBpM9zbdcSDGivmpBx\nVmSFDbE5VL6+1bC/1QORZvB1MpwuRLoHAqfQRvXxflNOsFjUAzvv2oCLdsHk1fD1AzDzSQhy+GHS\nzfDnKRhUw7X/cTtU09D8XP1/mhFEZ82PqK6/GQBo3AqS9rtPtVWMHu2VyXKFjkmzGHWioVU8zPSB\nyFfZBDdGwS/p3vtqaAzCyExs5HsxR/YijhD8+N2DObIuMdQjloXsdHu8I205QjKnOF3mvGac4CBm\nCkrmFUFtzjkIK37EYuE0GBwOS5MBQeXOdBFspgBlVzfnQ4CTbb12M1WrrQJXNCoE22WB8iSJLCv4\na6WMeHfIdWh1YT6Qt4xG70pQcS7Ikx7yENa4CtL2QbabmqDBdSCyIyS/D/YyxQm0F/ygowF7VzN2\nvwLsA82IXZA3LIhUR8JCYe5JtOsck3ywk/ebcoLFYkHTtPMnj0xeDbUqwX2d1f8LTsHydBiyUZkh\n73QVbLJXoI4bUouHtT68qkpTWJTv/niD5sq8e3iv/hiJtSE+Vmlt3tC3Mfy5zzeld2AVWJsNKT7k\nw70LI7nAAm/Z2/GjF3HM5aTHfjfQlCW4FyIdUJrzBja7tNehKXbsHKVUJY2kDlkoG7gfVbBxBjEU\nE4Ao1dg0p++Gn7/S2MwFEOCkftdoBCccYxcXwjzklBC0AlcEKgTbZYqSl9EDgh3KRb7Fcz9Q8WvH\nPK8zhEdCnfqezWJNb1VJjzfpkGMbfAi52+HQK67tmr+GYXEATPXndHMT9qk25E0LhvH+EJ6rqhVf\nG6McRaGBEFBG8/p9I/T+ACzly/kAWArNBGh+sOqA55ssi2vqw4lMyMyDmSnQazV0WwFbzsGMDlCl\ndNcgNoG/bWjdy782lrM6jFBKyTYWN9XKAarXUb9T3fgni6Fp0KaJIgF5w7X1IKsQtpdPoF4OPaPV\n92yRTpycM+o5zJELfDBHXk8sGzlLdlmWjRM6UZ+DnOKMG5NlDaoTRSTby5gqa1AfgBRKhU0Y8eSg\nVGIj0YBg0xzC16gh4tDYNKddotEP7DYl3ExOO8NqCZB1BvKyoVYt6NULxo5VJo8KXDG46ILtggJk\nK1ACg+a9WlKxppblJkaqLGrHw2EvcUsArTvBxuX6x4OjoNntsO5LsLrZ5Ue0hcRxkDwO9j6hYrvy\nDoDlHGgBGkcP+LFrh4lk8cP+nhW6GTDefQItLhDuqQGRwZBbCHllBh8wCf7cAbO3up1X0abDmOzA\n8+cZ8H9zS6XaLNgJT2yHPnGw6VrYdwP0inPtu9YOmaDdUF6NLkpTrFB38HOQKvUEW2Q0BAVDigfB\nBtCyoW+C7eoaEOAHK/TDyUpQyQRXhfkm2AB6YmChD3W8riUGG8JK9O2cHagHwDrKa0QaGi1oys4y\nGl040YQS6UWwgc3g+P4YNewUa2xOW0Wjn1KTiwqU9laMOEfhwlNH1O9Ro2DvXpg71+s9V+DywUUV\nbO3btyc4OJhu3boxatQolixZQkGBzttcAY8IMyrHvseSIw5rS5IP7OQ2TWDHAcjyUonjulvh4G7Y\n6cHk1eMlOHccFrzu/nitZ6DeGDj5M2y8BlY3gJW1VHaOkEaqjz9AmOOPo/nQPhoCjNC9kXIGfupE\nMdzpZBuNKY1rKoHNTtGiHfhjgLzzLF1TLQoigiD1HET4qdi1NlFIhAmxl27SxC7YX7dAAw3al39t\n8vYpyr87FPve9Oq3aRpEVYYsL59jw7qQlgHZXkI/A03Qoips8YHKD9A1AtZke+8H0A0jxxCOexFu\nCYQSQwDrdErWANSmCpEEsx33O66GJLIfV9aNhkZV6nCS5JK2EOLIIw3BjtFRv83u8MFh1LCLY6Gr\nk+A0kOMztJhdBVtMLfU7zTGndu0gKAiO+bArrMBlg4sq2Ioro65YsYK3336bG264gcjISDp16sTL\nL7/MwoULKwKyfUQxaSTDg5kxNABqRcGe0/p9inFDJ2VNWbbBc79uN0HVGvDzJP0+VZtCz9Gw7H3Y\nM6/8cU2Dui9D11TouAuuWgqmyrD7QYjpB22/sVPNYMXwskkFOduklHlYpwoM7QLvzoe1h2DKOmj3\nlootW/i8Mh2WxbxtmNPPEWDwV0HW52s1CDRBQRE8WQ9mpUJyHvbbi7A3LER22ZEjdmSEBZbZMUzy\nRzO6GolFVDqtsBbuhy/2renF/4Gqrp3juT4jdVQpMpJ8EFgtqsF2L6bnYrQPg2NmlcLNGzo4loy1\nXgSbhkZbotmAvrTW0GhODXbokEzqUZdDJJWLnatCdc5QysYJIQbBRiHnSgSbTXOYMQwowaYBNSJh\nbk8oPFta0dVqUdpbMaJiwc8EZ3zcFVTgssRFFWx//fUXS5cuZfTo0Vx33XWEhoZisVhYu3Yt7733\nHr179yY6Opp27doxYsQI5s2bp1uJ+v8jnF/f4urHqV4UkJbVYL0Pm8m6NaBBHfj1D8/9jEa492mY\n/SPs9hAj3e15aHwzfHsLTB0KqTvUAn/mEGz+WS3mxkAIbQLR3SDmVhUKIDYIP2BFiwFtuGNBifQv\nyccIwBu3quwjHd+Guz+H2HDlAwsPdJ+N5Kc1mEMDCbD7Q6EFTp4r30cPRVaVGzLIX8XSmQzI9FSY\nZYODgr1ZIfaEQuQDK9qbJrQe5c2QuTsV1T/8ajfjo4qOahqYPAi2oBAo8ELlr+koLOzNVwrQLA72\npflGILk6TP3e7MOeMxaN2mhs8MKMBLiKaLbg+bNoSnV2416I1KMu+eRzGtd4hCrEk+50TjDKBpxH\nGgZHphKblgP4uZoiC7bDsYWw73tKPNg2iytb0mCASvEVgu0Kx0UVbEajka5du/Lqq6+ycOFCMjMz\n2bRpEx9++CH9+vUjJiYGq9XKxo0b+eCDD+jbty+VK1emd+/eLFjgJcnd/zTUIuG8BjVwLIL7dJh0\nxbihPqxOVrFL3vDonfD7Ikj1Erc0+AlIbAojh0ChjiXZYIT7ZkDfibB7NkxoAc8b4J1E+GUQfNgG\nMhw+nsIUOPEF1HzSYY47JtDAUJKSir5VYUMmHHWs7LERsOMt+PsFWP0KPHEd+PtBC6cy35l5YLao\nnz93Ys7zIxCH03GPF9ZEttNNrTsM+UXKBBriB80j0HZloT2gFjttlB+GPwIwpAVheM19KMHp38Ev\nUglwd8hKgbCqropBuedp8K5oVnEw2PUSIjsjsTIU2eCED/vGGgEQboTdXgRrMVqgscMHP1tTIjiD\nmTT0v5z1qcoh0rC7Ga8WipF6rIzgiyaOs05hAEEOv1ohmRhQsS928kDzB6MBe7FBQBwqabKTv0yk\nVHsruUBVOOujuluByxKXlBVpMBho3bo1Tz31FNOmTePkyZPs37+fL7/8kmrVqiEi2Gw2FixYwE03\n3US/fv3I8bEc+/8SNJRa5qychRrVgrPLy2LTq6FKfutLQO4Dt0OgP4z/1nM/kwnG/wRHD8Fz9+jH\nVxmMcM2T8PoJeGQx9P8ChkyDZ7aokIC/31XrxtabwBAMdV5S50mKoFVz0rxurqoyrY9zYjT6Ofxt\nHRNhwxFoXas0xiynAJq8ojS62Vshz0whAQREhSrfiSfBNn0jRAxTPjybHT5fqqoLtHIIzWYRsDML\n7QklxLSWBrReRrQq7jmqtgJInaw0UoO/2y6cOwaR7pJDl4E3wWYyQUQYpPvgU01wpE47rO/iKoGm\nQdMQ2OVlE1WMFhh8EmxNHNrTLvSla33iMGPhuBuTZU3UQztaxlQZTRznnIRhIEriF5CBAbUjtJMH\nmMCgfGwagNURoJmyHKwOTbKwgHL84+iqkOEDpbQCly3+63T/xMREhg4dytatW7n66quZPHkyL7/8\nMlWrVmXWrFl07dqVs2f/f+VqM2AFLGSX+TjahqkYI0+oEw2d68CXOqVPnBEeCi8/Av/5CTa7T/hQ\ngvpN4aPfYPUiuKO9PpkkIw1WLIKoptDhYZX09/AydazuNVBwWPmfGn8GJofGocVpSIrTKh5mggnN\n4dMj8NQ2FUv2+m4YsA4O50KtyrA3tVTT+mChMjduOQoDP4OoWAoi/AnKDkYkBDYl69/YNofd9vEf\nofJw+G0DjLujdNcebIQiO1pLA7TSsE/2TPM+8haYT0KdF/X7nNwBsU08DkNhAQR6yDJTjLAQyPOB\njxXvIBal+GjpTwyCQz7yvBqhcRrI8mKOrEsIBjQOoW/jrOMwIya7YU9GEUkQQaTiGjQZQWXs2Ml1\nmDkDUXWSzGShYUAjCCEfNFOJj82oAZY0qN4DEChwsCr37oVTZZzUkTGQ5UM6lgpctvjX4tgqV67M\nV199xfTp03n77bdJTk7mgw8+4PDhw9x3333/1rT+RZjJKvNxdA6HDTmuyeXd4bEOsPQw7HITNF0W\nz98PzevDfS9Bnpcdeo9bYNp6pZn1bwvDboXxL8FvX8OpFHhzOHSIhUdvgUf6qJRcf42FOc9C9xeg\nzSDI+EuFD1W63mngZgbYaXcNDXk8AcY1he+Oqliyz47AotPw1j546noosMALv8H7f6gqAM/1hPfu\ngAFtkcK2FJyDQFswGtXg1/VwzKGqZJW5yeNnoX0CLHgOHu0Of42AB7qUHrfawU99Dtq9fjDXhm2/\nnbWtYUkobLkJ0mZB9lY4+iEkvQd1X4GQBu6foc0CJ3dBfCvPzzovB0LCPPcBCA6EfB/MzsH+yiV5\n0ke2Y91AOOLDuAD1Hd/TA14Emz9Gaob7im4AACAASURBVBPsUbDVQqW+OuqGPakYkLGklgn0jnSc\nk4XSwPwIwoCJQoegMxCEnXzQ/MDgZIosPA2x7dQX0p5TfBHILWOSCIuGHB/jHypwWeKiC7Z169Yx\nYcIEZs6cidnsmWbVvHlzjhxR8SJ+fn48/fTTrF69mq1btzJvnhu63f80zJwtk1z22kgwCyzzwoW4\nvZliR74w3/tVTCb4/h1IToE+w7wLt8QmMGMTvPm5SpL8x6/w+iNwc3NY97fqExIKaamQeRwWvg5d\nn4Ob3lHHCpIgsBb4ObH0tW4GyAQWlJHYIxrAid6w93pI6wMDqsOuLEXJH9lLmQ1H/gZ3t4c3b1MV\nAUbchVYABQYhMCIEqKuCu0dMheE/QtTjMNMpe8Xxs1AjGm5sBu8MgG6NXOdwrABilK9Oe8hPJfCc\nayN3N9jy4Nxa2HYbrGsN+5+F6g9B3Vf1n9/RdWArglrtPT/ncxkQ7qZsTVn4m6DIh4B8gJhQSPfR\nb1Y7ENItnouPFiPBYbrzVHy0GHUJJQn9SQThTxXCOIb7PG5VieVkmbRaYQ6fWpZDGGpoBBBOkSPQ\nu0SwYQSDhq2YFWlOg/A6EBAFdscX30B5QlJIJOSdBwGpApcd/kHGWH188cUXDBs2rKSacVhYGP37\n9+fuu++mW7du5dId5eTkkJnpujNq2rQpkydPZvz48fTpc375Aq8k3HXXXfj5+TEwoTrarXaggDO4\npvJvFgIJgfBbOtyok9UCFK9iQh/o/yPM3QM3N/Z87eYNYMFX0PMh6HYvzJkEVT0kSPbzg7sehj73\nwJNjobkfLP9QBXPf/RhsWgGDhsPaz8AvAK5/rXSt0Exucih2MkBbA/YxFgw9DSXfFwDCTeoHVL7G\nOEd081u3w1M3KAajBKkVHmBmKmIwkB9iJSIyHMn2R7uuE/z2l4pSTohRQdu9myuBdyLTlYTiDLvA\n2gx4WpVB0II1aGFA22mn7SrY0gvi7lS+wsIUCKoDAV4SS++eC6ExKsO/HgoLICsTYuM9jwXKD+dr\nlbrIQN+C9wGqOfyDJ4s812cDiEAjHDjuAzOyBkHswbPaWI0oTuqwJ6tQmfQyQi/M4VPLdTrHRAhF\nDgGqTJFmwK9EsBlNAAJhtSEgUiU1VZ1dU20BhESoGm12e3liiRdMmTKFKVOmlCTlvlyxl2zU7vJS\njf3v4qIKtnfffZcnnniC/Px8Fi1axPHjx/n222/57rvviIqKokuXLrRq1Yq4uDgyMzP58ccfadiw\nYblxunfvzgsvvHAxp3bZ4ddffyU8PBxm/MibrAcKSS+jsWka3B0DE1PgwwQI9/Bp9WsGN9aHR6ZD\n6/hSH4seOrWGlT/BTY9CvZ4w5Ba47Xpo0QCCAuHIcdhzGOJjoGtbdc5nv8J3M9TfT98Cf/4GY76C\nwcOVye2VntDlaQhyurYxWFHhRZyEnaZhGGvCfp1ZxYe9a0Lz05BkOxwQSNTQ6hggxwohTs+kchgc\ns8JVC6FrFRjbBBm3H7upLpk5hYTb4kALUjmqzHfBtkxoNx9YBvd/A+/fCclnoLYj8/ukw1A/FK53\nJMmcdgIyLdCjNIWI1tKAbLARcTVEdYHszRBYXf14g80C236Fpn09r4+nHKQ/XwSbXcorGHqIDLo0\ngg2gBhrHfBJswSzAs428KpGkehBsW9ju0hbq8Kk5CzZ/QrE4TJ4GArFTqEyOBsFmdyL2hNUC/wiw\nOTQ2DTcaW4T6whbkQoibhAAeMHDgQAYOHEh2djYREV5ewn8Rg1gHXCo/4pFLNK7vuKiCLTw8nI8+\nKi2/vGrVKiZPnszMmTPJyMhg1qxZzJ49G1Cpt4KDg/n2W0XRW7duHZs3b+bee+8lNDT0st/xXExo\nCJDHGYwUIfg77ckfrqpqZn19Cp71sJhqGnx/J7T9GHp/AyuGqYQantCyEWyfBf/5Eb6fBZ9PdT/u\nbx9C/xvhoQFK2NWKhpmj4A6n0mVnk1TKqMTrXM+PaKsIaLm7IKyZ07g9jGgTTcgzFmSODeprsNAO\nVqCahuFEINotVWHkTkgrhJhAtao/7ihvsy4DOi6D2EA4nUAeeRjzQxCiYXYq2kctQIxAGDzYF76Z\nrYK9K4Wqat2Hc1WpHAPwUkNoG6XGHhAPHZ2qsUZCcSrDqoNhez84tx7MEfBDP+g3Cep1d/98t/yi\nMrR0fsLz53DEwWitq+Onc0ZBIQT7IHgAAv1UWJ8vqORQgDN8fO2qonkRV8X9AknDjA07Rh3PRwzh\nHNZZZCsRRWYZoRdECAYM5DlpBn4EYSnJ+O+PUAQYQbMpjc1fHSGsJviHQ64Hja24Plt+9nkLtisF\nP9GeRuhkFLhA7GU7gy7JyL7jogq2Tp068fPPP5dUxe7cuTOdO3fm888/Z/ny5SxcuJC9e/dSVFRE\ngwYNGDZsGA0aqLf5jjvuICUlhVmzZjFp0iSionxwOPyPQIWQ5iFoHEFo6CTYqgfAoBgYf0IJuVAP\n2f7jwuHPB6Hzp9DrG5g22LvmVjkKRj8Jbz4B+5Ng72EwF0GtaiqF090jYNBIuLop1IqHz16D29oo\nf9BTo0vHSXcw9auUSQwS2QkMAZCx2FWwARieMiFdjMiHFuS0oL1rgigNebAIUgSG1IKXdsGwrTA8\nAcYfhHVnsdEW7YUIDO3y4VQQPGAk3y+fQP8QJD8ew/HjsDQdesSAtZ9iDgxsAEnpcGNTlcXk/V2q\nhPQjdeGDg8q51DYKPm3luoMPguLsTDG3qLRZRz+AbTY4vRd+vAte3A9Bka73lp8Ji96AJn2hapn7\nLotDexRxxBeNLa9AEUh8QaDJt/hGgGjHSnDGR0EYh8ZRHzS2qgRhQ8igiBjcT7wKYW7zRYJiRp4t\nYzLT0AgmnDynMAITwVjJdxwPcJgiDaWCzQQEVQZjgBJs9uPFg1HOuBvkYPHk//smtUuFRoTTmku1\nxv77m4GLKtgmTJjAQw89xIIFC3jxxRdp0kRxnA0GA927d6d7d52tLdCuXTumT5/O0qVL6dOnD5Mn\n66SP/5+DwfFaKbVgD0JZ4+zrNWFqOryaDBMT8IgmcbBgKPT7AZpOgLE9VfFJT7XYjmXCmTxoXVcJ\ns2LY7SoNV0hQqZawbL4qrzJ7G4Q6fX9tjp2+X5kSOsYgqHILHJ8ENYeXj/XSWhnQJgcgdrVxliU2\ntVyageqOYqTDt8GMVIgyIR93gCcikaUGeCMcGVGExWAlx5qHMTQU8iORuBC0KcehZhC0/hseqg3v\nNoMeTs7HU4VQPwy5uzFcn4BWuQiahZc3S2WCI0sTmhGq3aeYkMbeqi03Db6+SZXz6TUGAkIViebH\nO6EgC24Zr//ci7Fjg6rJ5s3EKALnciDSB/YkKHnua71WkwGCDZDto8ZWBdjsg2Cr4giaT8esK9gq\nEUqGDnMykgiyyMaOHYOTxhdEKAVO55gIwuoIBNcwKY1NMwAaNjsYDSihBmAKLQ3WNgLxZUwhwY4H\nXFiR/u9KxUXPFfnTTz8xdOhQRo4cScuWLb0yI4vxyy+/8OOPPzJu3Dj++OMP2rf3QiP7H4LS2IoI\nx8Y2N0yzOkEwpjZ8lAJ/+eDvbVcTdjyr2JKPzYQG4+D9ZfDXAdh4HJLPqkXSbIVRC6Hh+9DmI7j9\nB9UGsH0fDHgaFq+Bye9CFQd5Ze4v0KQ1NCpjxQhxuK3y3JDbEkZB4VFInuB+vnkHYWUdODwa5LRj\nsYx1rPL31ITkXrDrejjeGxkcByGgPeyH5Ar2r62k2P0oJA9zbih2g4a0rgE/HIU7N6gb/eQwPOPq\np6FyAHLGjL15IfYegsS4EWqAHLFD3dL26B5gy4H2fUotWLnpsP4beKsmfNwJxjVUQdkP/QGVdRIj\nl4wvsGW1IuJ4Q1YOWCyln8XFRqgRcn2szhKFxlkfBFu0SndNBvq54aIJJZM8t9lHwglDEPLKMCuV\nYCttMxJYRrBZgP9j77zjoyjXt/+drekFEkINvfcioNLEigKCCgIiFlREUVGx67GLBTk2UFFQLIAF\nEQQbKiJNeu+d0AIkpCfbZt4/7tnsZrPV4/kZzrsXn3xCdp4pOzv7XM/drlsBtxSpAUn/h8rEVr9R\nhWMToydxlfz/Jxbxv4K/1WJzo3fv3vTu3ZuCggKs1jC6YCKdj90uzP/foOgTRBNK+QETz1FZuum+\nOvBDLgzZCT+0ge4hrP3q8fDhELjnQnhlCTz1k4e0QFyUt3eF536Rv2slwTfbYPtJaJwMl90mLq+P\nJ8JVfWSMywW/L4QHXqp8vmTdjXZmH2T4ZNAntIbM+2H/0xDXGGoO9WzLXSrKJK5iOPwGNPy3vsHb\nJZZshmQz2mIX2sAylGfMKCOMaDNckA9HMWKjCM2ZQJlJIb5xY+iTC7+cgglN0arFwBNbUSY0g4Z6\nu3FVg1Iv9f6JDpQ3K5qTmqbBRg3leo+5m9RFVFRMp2D4TJh1I/R/RTqLr50pLtlWA6RYPS4MAtq9\nFc5kQ9feocdm66VeGdWDj3MjkkQTkDyd4jAtvFSUsHLq3MSWG4TYUolHRaOQMpKpKKiZhFhPBRSS\niMdUjSW+gsVmwlpex1aJ2NwWm0H/XpniQfVacJt9LMmoxXbO479CbG4kJf3zvtZzAQZ9pdqFQqaR\nwB7U8iLY8jEKfNUK+m+DS7bAZy1gUFroY7evDbNukPrmk4WQWyL6gdPXwDOLYXwPmLYaThXBa1dB\np7rwwMsSy9kwV7o2u5F7WiyGBn4E9qs1gGoNYfdP0HpA5e1NXwLbcdhyPZxeKBJUpQdg3zNQZIXU\nmpDSGZRLDGiAtsiFMtLzeGouDfVBO2qiguFRB9pKFZa5sHc2UrjOiYoTI4kUuAzErdTgl27wYzba\nRbVRa5ZgsO6CF3fBB51ktl9yGi6qDn8okKWhfeBEG2tCaeF139epcExD6e8hNoNJyLlkH3R+AFZ/\nCD88AQ9uhiueDf15+OKnuaLs3y2wl74ch3WVJ7cYcijYnJJAEi4sirRKCgeJiAScb7KTL5L1RVp+\nkIajSYif2x+xJejaj8VULLi0Eocdj1SKEQsu3GRlAlzomSFSc2/EQ2zmeNC8iDbOx7cboy9+ysIs\nAoyiyiHaQbsKwE1sLSggEfgkQIfiZBP81Bb6VYPBO+D6neKadPissktdlWMlsWbYCXQ5AINyYPZI\neS3WArseho3jYUIfWLcN3vwUnrqzIqmBWBYAaT6vg3BFi37SxsblJ05jMEPbz6DFO5C7BDZfC/ue\nhLLasDIXyg5KoolSxwDdDGifOCsok2hvOmGrxvrTFoqetMBiF9RTONzFQqEen1RI4IxmhPUqWpEJ\nhtVDm64CRjRbM5h+SFRNpuyHDXkol2ag3KHP/FZQR9mlSzZirWmvO6Em0LPi1ySusZAyiAj0qd3i\niowUmgbffwF9B4IlgM6kNw4dk7KBun7uvz+UOaWUL1xYDKFVbtxIrBAZDgwrRqwYyA9isSXpsbd8\nKqsFJOi1nUU+rkgrsZR5jTdixakTm4IJDSeVXJHlFlscuLwstlgfYrPGyQMdJbZzFlFi+6dhMJQT\nmwGV2zHxBk4OB1B1iDPCly3hvSawsQgu3QrJK6HzBrHkztsAKSvltfbr4ajX97djvLQoWdgaHl4I\nDhdc1ULaVLWtJWNmL4Ia1WDCrZXPHasvpksDqJV0vRXOHoYNn/vfriiQeTf0Ogx9TstPzM0QAyiq\nJ2vS8IgJFquo19rRFrlQH7SjPeigoJuJAoyUdTBh2BWDYXkMpxYrHNWnV5VEcjCiGUBzq5roiR9a\nSibarPPgz1xJRrmpPgytizJSV/Efa4J1Ktpwu/Rge9KB9oUL5XULiqmiRWJMEtcpQJ0O0Kq/WG4g\nVu3ofrBlrf974I0lC+HgbhgyOvRYkIzVRnVFPSYcFNpEVitcGCCMqJnAbVeFIy+ZiJniAIs1gASd\n2IqpHI+P0625Eh/SsxCDw2u8ATOqbhUqGNG8LDaXBqa4WE/yiCm2oivSl9gURcjNFqYqdBRVDlFi\nqwIw6F96Jy6exkQqCnfgwB5gmlEUGFMbdneBDZ3ghQbQOUFqkdonwGuN4LPmkOuAHpuk5higlhWW\ntYXPfoSpK+GdQXBhQ89xNQ3m/wYD+0pfNl+k6+R3KoDweb3O0HawpLk7gqSZKwawpMGJPRKTG6HL\nbyV20rcPNmH4xgK/u1D729CmSy+0mC/MNJ0IqX1AyTRQclzBth+O6cRmJxEnCs6mBrQf5J4ql+lv\nRANleCacuAoOXAEfd4FYI2QqktKfrmCYZxEibVuG9ppTWtaMqGzyKMaKairdboOj6yFrPbzxFCz7\nEcZfD0VBzBlVhbeehi494bxegcd5Y/s+aN00vLEgxdnJERBbJHAftiwMKozHSBGB0y3j9MzJIj/t\nbWL1M5X6bLMQg93rNaMXsUlGiHxAqqqhaWBu3tEtPyLE5vI6nr9aNWtc1GI7hxEltioAk26d2XCR\nhMKHmFmCSh/sbA9gubnQmK04KUxw8UBdmNYMvmgJHzaDe+uIYkmHBDhsg2NeXqCpK+GLzfDZcBhz\nfsVjFhTB/iPQp6v/64xPEDfknm2B38sVL0DBCfh6TOg2LHsWw8ltYCgTLUmzV82dMtiE4XQshoMx\nGE7E4hpnpvSgQsNHwaInT5z+DrBAtl7PZCcZVYGSVkb4zoV2SEVrACQAVtB+dgmZuRNIAMWgQAMF\njmgoV5swHIvF8KsVw/4YDM/49w+qpRXLFlr0g4R02DpXatIy6sDRg/D6Y7Bzs99DMOV52LFREnHC\nSfDQNNi4UwSsw0VuCaSGWcwN0g8w3AnB/fbDyXmOw0RJEGKL14mtxI+7MrbcYqtoG1qwViA2AyZc\nlSw2DadLbq4R1eOKNMYgKx33SfzUT1jjoCxqsZ2riBJbFYBRE/Jy6KvMyzHyB1ZOodEOG1dh422c\nLMLFfFw8h4PW2LgBB1dir9AbS9Pgx1wYuB0W5sL7TaXXFkit2nO/wB3d4IZOla8jRxd4qBEkm697\nX2llEwg1W8H1M2DdJzD/frFMvGEvkY7bLzSArDUwfg3ENwRnQUXvEIBiVFAaGFBiFbbdAusugmxd\n0stVBkemAE2hRCc2jWQcZshpYIIU0F5woGwFioAUBfUmG1qJH7ZNViBfXldSFJS+RpR6gb8aZVkQ\nU8/zt9EETS6GPb/AqHsh+5i8/vkUGNINFs72kLymwYzJ8PYzcP8L0KVH4HvpjQNZ0mD0/A7hjVdV\nEUDOSAg91g2HCuYwSBbApLNCONUBMRiwBRFMjtETTMr8JJi4m8fafCjUhAWn13gDZp3MQBhLbrhb\nwMhkcHlcke7f7o/YL7HFgj3MPj5RVDlEia0KwIQN0NjuFSDvjoEdWHkXM/nABBz0x84g7EzESScM\nPEwOBlzc7/UFf+gg9NsmsbWZzUWtxI03lkkK+POX+7+OfN11lhRkMuxzFWzfAFkHA4/pNEKkppa/\nBW91g9UzYN/vsPwdmNwRNs0WNY6t86AwG2L0LL/SAMfMWw2nF0B8C9h2MziLIesdsB2Fo9UgVyc2\nF8mUKlC4V0F5zIw23YU6zg5WMMyzwmnQPvFjOcRCEAH6CtA0SRyJqV/x9eaXw9F10KMPXHEdWKzw\nyz64ZBA8MAJ61oUbL4JLmsDLD8JtD8Gdj4d3ToDlG+R31xAqJm7klEiae40IiM2mSaF2OHB7qsMh\nNivGv0xs1gDEZsbiE2MzoZZbhQb9yjScejKQEZfHzC4nOH24b1YkRGNs5ziixFYFEIMN2M3X5PEW\neyjGyXFKmcUhDrOTj7BTRAzHiOFnLLiAebhYQhqFGLlN/4bOOQWvH4VXG0rsbZRP9txPuyVZJD3A\nZFdNdwXmBmlOeckgSKkGn74d/D1deBeMXQKWePhyNLx7EXx7H2S0gntXQ90uIkMVnwbJF4AxHo59\n5P9YWVPBWgfafy1uwHUXwd4noM5tsHcTnCUfMOMkllwX5C0D7jahPGSCVSrKS2ZKYwyoFxrQZrsq\nZltqGuxQoZmCswjW9ITT3wd+X6X7pbFoio8bt15nIb1Tu+ClGUJs0yfBKzNh8ly4eiRUqwF9B8An\nv8HDr0ZWY/bjMujcGqqHqYJ0RLe+66UEH+eNEhfE/xdmBDMKziDEZtGrjux+3JVmnfTsPqRnxIzT\na7yCAdXLYtOkaKTcFWn2Z7G573+cH905SyzYohbbuYr/ah1bFGFAUbBqKrCXi+jAeDZxH5tkE5CA\niU84xFYupxZmRuMkE4U7MTIflQcxMhwTy/Lhlj1wYw2YULfypJlXChuOwZ3nV7qCctRKl/2OBlG3\njYuH4WNh5hsw5lGoHqRtS+PecNfvUFYA+cchpa5ITgHMuQmaXSZNTA3xUH8CHHxJhIYT23iOcfQD\nOPEJtHxPCr07LoQtw6DubRA/EuzvQT55YEjGpiqccUKjfCjaoZD0qgVtvAmltoHlCqQbTbRz2dE+\ncqHcqj/6WRpkg9LFwKlvIW+5FIxfuAfi/SRq5PwqySOpPSu+nt5MkmJO7YRGPURH86X7YUMeLNwE\ne36Apg0C36tgcDrh5xVw1/Dw9zmiV0/Xj0AOsFit2Ezh74IRBWeQJBMjBgwofonNgAEjRhyViM3k\nRWTuuJqq/9/98HssNrPi9HJBWtwHF1j8iEhYYqKuyHMYUYutCsCifyFvwMou+tELaZvSiiTqEUcp\nLlxoPIuTH1GZjJkJmFmGlUn6ivbJQ9AmTpJI/FkCh3LFDdmuVuVt5ddhgab1Yf324Nd703iZC14c\nH977i0kCSzq88SyczQHVBcc3Q5M+njENH5Eu1GsvhIOvidW04y7YMQbq3gH1xsi4tMvhojPQcgoc\nWiP5AMWcBUMKNiAf6QGXt0zGK7U9j/hplwnlZiPaaDvaSheaqqFNcoorsocRl+6KtWTA5utA9fGM\nqU448pbIapl8EulMVkisCXl6C5qR46SQPWu1/G0LXMYVEr/+KVb01ReHv8++HEiwQlp86LEgz0ax\nCxLDJDY3pYQzgRhRcIXInjRjCmjVmTHj8CE9I0ZcPhZb5RibhsMp5zUpTi9XpDn0xVujFtu5jCix\n/eNQsOpfyCLKiMHABs5yKRm0I4UGxDOPHryJgWdx8hImBvr0bdtSBH/kw8P1ICbAJ1qkT6yJIRTO\n+naTiTQYqqXBk29JUsS3n4bzHuGZu8Q19+8nRDhYdUGKdwJGLJy3DGpcC/seE6vp5Bxo/jo0ngQ2\nL3UjRX/7OxdBUhNwcRaMqdgUyeyzNIezyyuev/ql0iRUmWqBSw2ovWyoDcvQ3naiPGdGqa5QTScO\nV0dps7P/mYqZncc/huId0ORF/+8xLhVKdUvJaIQb7gbbETi8CNo0gz/WStuZSPHxPGjZWFyR4WLP\naWieHr67M98pVJAapg/HoRNVOCV1SrloXGAI+fknNiGxitE8A0Yfi82gux/lLwA0FYe+ODErTknz\nB092ZLB7Y44BR3g6t1FUPUSJ7R+HgkWfPcsoYzybSMLMV5zPLLqziJ7sJ4XndVJ7zM9U8nE21LLA\noCAagnZ9DgiVHHDpBbDnEOwJkhwCMGAEXHMzPHk7LP0h+Ngli6QpacPmsOAzKMmV12N84j/mFGgz\nA/oWQY8DYpnVvx8+HQ4f9Ks49sw+KRcwNQdVEWLTdOvE0BRyfgKX14K788/Qbg5oJgXDIivKFDPK\nICOGn6wYJsg9jWsKphTY+SPsVcU1umMMFGwSl+iue6HmCEju4v99WpPA5lW7dt2t0gHh6+mQfQZm\nLYJP50dGblknYO5iuO26yGJyO08JsYWLs7rxEz6xCcIjNrxIxz+MGIIQm6FCPA38EZsC5fu7z6V6\nsiJxeMXWTO6DBEY0K/KcRpTY/nFolOoy8UexMo9jTKI9yXqlkIrGqzgZgMEvqQFsKoILkoKTVi09\n8et4iBZTV/aWJJJpXwUfpyjw3HvQ83K4cwB89O/Kqf2aJq/fPQg69xArrfdVHkst74j/YxtjIK6h\nxKxObhfL7OByOLLGM2btTCGSb5eBzXAWjNUwJQJmcDaXrt2nvql43B13wqp2oKFgGGPG8KbFU8Ct\nv6e4ZtDlShi8WeJ6J2fDnx1hxx2QcR20/jDwPVEd7oaWgrh4uPhq+PkbqFEdXpsAT70NF98Svmvy\npfchMU6avIYLVYXNJ6B9ELezL07pTFUjDGkv8CiOxAY1e/TrQcMYYpxSnvBRGUaMlbZVHu99fE3/\nW8XhlIfSjN3LYtOJ7fJb4OIb/V+QJWqxncuIEts/Dg2bnsOzABc9SGMYHh/dfFR2ovF4kLXxthKJ\nrwWDOzvucAhJ9hgr3HotzPgGCkOkwFus8PZcGHUfTHwAru4I778MC+cIoY3sI6+Pug+GjYHD++DG\neyTmllBDMghDYfnbkFQLqjeCFVPktaIz8Of7UKO7xOzM8bkkp6SKtq0VCmyQ2huOzfAc59R8OPo+\nFO+qTHjeiGsChgKo3U7ien2yoctv0PMgtP1EXKaB4Cir3I+u31DpkL1zM3wyX2oFN+yAgXfBcf9N\no8uxaSd88DU8ejskhhkrA9ifA0U26BhG41I33MSWHqZcl4fYQkPFO6HDPxQU1ADEZsDgxxVpqGCx\ngccq1NDKLTiHw4vYypNHdGK76g54KEDfR7M1GmM7hxEltioABwpg4jAubqdRhUlgMS5aoNA9yEdV\n6IK0EBNSghUapMK6o6Gv596RUFIKr4Uh7GsywWOvw+zlULchvPsCPDAcJj0qhcvvfwePToK5H0H3\nizwFyY16Sh2br5XnjbyjsP4z6Doaml8BxzaJFbjwYXA5QOkALhOUOHKxxlbHFAt2M5zZC3VGQ+5v\nUgMHkPsrxDUX2a7TCwOf01JdrD03jHFQ7SKIbRD6XhRlC2F744JLxHJb8bNYbS4X3DEUVmyE5v1g\n2Tr/xzqVA0PvhzZN4d4ARkUgrNYt4c51g4/zxnGblHWFS2zFOomEUybnRC0v6A4EISP/8E+KSqUx\n3tmQoEiMza4Tm2IT8WPwBGm1VhW90QAAIABJREFUIA+f2Rq12M5hRImtCkDVE/sB2lCxpmYtKuf9\nTR9T70bw+/7Q4+rVggduhtdmwMEwiBCg84Xw7rewsRDW58HWUvjkV7ioP5w+CWt+h/4jPON7jhc5\nrc1fBj7mt/eBNRH6TJCGndk74N2+sPYj6P+alCU4jIA9B2NsdbBAoRGy1kLGMCGxHXdIrC1vFSS0\nhOoXC8kFkvtSzKD+hQxGW7E0HK3WoOLrZjN0vADWLIVrLoVWjSV1f/M86NoOLr8d3vpUFhJu7Dko\n7srCYvj6DbCG6R50Y8UhaFkDqoWw4r1x1Aa1rdJ1OxwUIvE1axiuSAca5hDPsMfK+jvgdkW6sOvB\nZTM2jyuynNiClJdHie2cRpTYqgBUBdD7TjXzWQPvRqNtiC+8VYGSMNqNXNZcYi+HckOPfWKMSGvd\n9CjlmWXhQFGkv5h3osP65WKZ9fXq09aoB7QeKOR10k95wa8TYes3UGsQHD4M54+Bix6Gkhy4YRZ0\nGw3Lf4bS2DJwlaBZquE0QrZN1EwKTkDraVC8E/7IhIL1UG8cpPWTAuvcX/1fv2rz5Bac2QdLXgut\neQket2r1xpW3dboQNq+WTMn5U6Rh6JRZsPBduOlqGD8R0i6A7tdDh8HQsr+Q2m8fQ5P6lY8XCkv2\nQ8+Gocd544gN6oXXExiAAjT86HX4hR0Vc4hnWEXDEGCMpv8LhorbxfkJLhx2eXglK9LXYosS2/8q\nosT2D2HYsGEMHDiQ2X+s0F8xYwLivWrmNTSKgKQQk0KDGDgYRqbdwFYQb4FP14ceGx8HsybBqs0w\n4bXQ472x/wg0vkzS1AFOnQCzpXIx95APpPbrnZ6w7C04vRcO/ylZkN8/Dl3uhsnvw8OjwBQDV74I\nE7ZAp+Ei65VzEopizwBgt6ZR7IJjelbi0fWQ1Bm6rYGkjtB6ulhrqX0g6TzY/6x/wirxKsxe/Ly4\nPbfND/2eD/8p5VF1Olbe1rgl5OVIPLBJfbjnBnh3jmRK3jNWirefuwdaNxHJrOkvwK7vJcU/UhzK\nhd2n4fLmke13sAwaRtAJ4CyQEqaFZcNFLMEL5FyomAKM0dAwVJqq3FaZ998G/X8qCkZxRepZOhYj\n0jkbPKuuYCsWsxWckZvus2fPZuDAgQwbNizifaP4+xBVHvmHMGfOHOkwPn8OM5kFmInHUMEdU4Z8\nXUN5lBrFwN4w4twJVhjSDj5aB4/11bsKB8GFneDNx+Du50WV5NHbQ5+joAiuuVdcmHc/Dzf0h5xs\n6Qrgm66eWAPuXgrz7oUFD4j1BpCYAcNnwoKVoBlg12Zx5XX36jL96wKwxEFZTA4AReZq5OWBFUjI\nEHdk28GQ1EFS/d1QFGj8jNTJnZ4vnbzd0DQo2gG1Rsr/t3wtyijfPQjNLgVrkASOPYtFJszshxwa\ntZDfB3aJy/ah0fDBV3DHRFgcB9+M8t//7q/gh13SVPPiJpHtt78M+kQgv3UWjXBFTcpQsYZBbMYA\n62wVtZKb0td1qVUY4+5T4MJeJuRkNuLlitTP81+w2IYPH87w4cMpKCggOdmPVFcVwU6OA0HUzv/j\nY/+ziBJblYFSKcBuRdakoTircyK8kqV3Cg6xiL7nQvh4HczeBDd2Dn1Vd42AU7nw2GTp4Pzm44Fj\nPtln4MoxcPg4tG0Gdockl8TEQlmANxGbAiM+gf6vQPZOkdyq3QFMFpg+F5KTIT9X3JtuaBr8tgBS\nGgPFpwGwx6VzuhjqAtVaQFaApAwQd2T6ANg+GhI7eBJDjn8CtmOQdqUQYGoDub6sdbDkVbjiWf/H\nKzgpJQkDJ/vfnqFnJ57RpcoS42H8KHhmCvz8KbSP0G0YDF9vhT6NIDmCdjWFTjhhh+YR7JODRlqY\nFlsxTuKCEJuGhgMX5gBjVFSMPtt8rTghOrfF5hKLDRcOh5CXxQSY3W5+7ySTADBZJEPpfxQjmQoE\nKXz9j5DzXzpu+IgSWxWGAYVkIC9EfKFXskhqbSoSkguGTnVhQCt44VcY3iG01QbwzDiomyEW2PL1\n8PID0K+Xpxmp0wnfLYFxL0gsbdF70PdmkdxSFKieIa44u11ku/whqZb8uKFpsHe7kJrFCs28VO3X\nLIWdm6DedcB6cUWSXAOHPl8lNoG9s6VFjsXH3D2+RUjq6imwoRes7g4NH4O4xrB7PNS6AarpjT/b\nXA2rpkHPe2WfrrdCNT8xrzUzJIO888gA7y0FDAY4e8bz2m3XwbNTYcVSuDRMxf5QOJ4v8bUPr4ts\nv936oqNFBMkmp4HMMImtBFcFF7svnHraviXAGCcuP8SmlhNZ5b+dgBE0J3a7VGhbjPghtiAwWcBh\nr9hv6H8In3EXLWkTeuBfwE62MZIQqg3/ZUSJrcpA86u7kIHC8RDE1jURkozSfy0UsQE8exl0fhPe\nXgH3h9m9+bYhcF5bGPssDLhLirjb6k0vN++GvALo2x0+fQV+WSnW2tArZHvzdnqjzJXQrU9451v2\nExzZD9YYic2ZvdLQP3kLmraG/RrAKZmEkhNw6U9zTDMhtT2/QJuBFY/7wxOwY6GQVrdVsPdRITSQ\nLMrm//aMbXaZJLG0HyJlB7NGwp2/VKxVO7MffnsZzrtJJLX8wWiEuAQo9lIlqZ4KNw6UOOTTd8sC\n4P1VsPE4vHtNZCojbsxYCzEmuCZCotym1ytGYrGdQqNLGAQhcWIn8UEsNpuuKhLIYnP5ITYXLh+L\nzeXXYrO70/2NgNnHlxyMrEz6A+d0QMOG8OuvcN99gcefY2hJbTrR4L909DCy0/7LiCaPVBmo5fp7\n3miGwp4QxGY1iJzWnFPhLSw71oG7L4CnfgpdsO2N9i1gxSxY+5XUVtVKl58HboINc+HXj6B2Dfj4\nW7ioG2TqfdbanQd16sP3X4R3Hk2Dd56FDt3hwYkVLZ2t68QNedkw2L0DiD8FSRkQL6of5hgoNUJ6\nc9juk/Shqh71km3zwVoTWn8EPQ/B+Zuh+zoRa3bDneFYnAM3fyNxu48GQ4l+zwqz4dOh0j27/6vB\n35PBUPmzGX6VuG1XbYJTRfDAQnj/T/gyQNftYLA74d1VcENHSImAoAA2F0PjGEiMYJl7Ao1aYRBb\nKS5UNJKCCAzYdIGumABjnDj11CoPVFwYvMjOQ2YgEs0m3WKTV6wmwKyv+sJZNbiJzeWExx6D776D\n9WFkXUVRJRAltioD1W8zxhYY2BFSQhaG1YBdpbCuKORQAF68AlJjYdQccIbTLVKHokCXNmJlzH5d\nfp66Czq2ku2nc2HJarFGvPe58nrRiywKIekFsPp32PQn3PUU1KgNpSVw8hjYbfDITdCyA+QmiaFG\nbDYk1iDGAtVTJEaXky0W2Y6FIuPlxqldIsDc4ELY+b0QjaJAbH1IbFd5vkuuLS7Gs4ehwflwy3zJ\nfnyhvmRyTmwK+cdg1FeiphIKvsTWqwvUry36kfO2QokdSIWng3QoD4SP1opcWrgWuDc2FUH7CBqS\nlqBRAGERW4FOWolBiM3dYNTqZ4yGhgtXeV82N3yJzftvDafHYtPDZEYDYAm3QAFPBwCXA4YNE6tt\n2rTw94/iH0WU2KoARPtcOk7ZfWSCOqNwGI1TIcjtslRoYIW3joV3zqQYmDVCinkfWvSXLhuQyfqN\nZbBCF03esU9++3Z6HjlOQhYv3R/8eGWl8PRYaNNFdCh7XQHxCfDcOLiht7gnX5oBB46CkgiKPRuS\na2IxKlRPljDK8SPQYZiQ2NZ53hcrv5r0ERX+vKzg12IwSjlCvn5PW1wOD26C3g9CUm3o/QA8uBnq\ndgp9j4oLId5nXjUYYGBf+P4PuLQZmAzQNkbS9XtNDa/eECC/VMhwZCdolRF6vDdcmiyGukYw5x/V\nb2TdMIgtTyetlCDEVqqPiaNyANaOnq7vs78LJ8YKpTEuDPrfGk4UzQy4sDnAajHKosVtsblXGMEs\nN6N+bJdTMqAyM6E4zDbrUfzjiBJblYHEGfJ8Giq6pbT+DNKBGCQb8p46MOc0HAszS7lnI3hzoBDT\n28tDj/eHGWvh/gXQYyoU22HHfpkHmvokWdSqB0+8CV/PgK8CSHU5HGKRHTsEr34isamEJLjvedi0\nShJJZi2DFu3g4HFwWBAdq6SamA1isZlTYM9WqNsRGveB3yd5jm/SU/HT9RqvA8tCv7/k2h5iA0jN\nhMufhlFfwOXPSGlCKJQUi5RWkp8YXL+ecOQElJ2F27rCjmypNzyWD5d/KO1nQmHCQih2wEv9Qo/1\nxc4SKHJBtwiILUsntnp/E7GVIA9sbBBi87XYnDgqxN3UcisNNBzl8Ta7Aywmg6x4DO7xPu1t/MFN\nbM7/3czI/2VEia0KwKAB+hc4l4pFoZko1EPhN0L7C2+rKY0inw+gmu8Pd18ID/aCe+fDpN8jS/5a\nuh/u+Vb+H2MSl+bZAkhN8p/9eO0tIob8xG3w0gNQkOfZduQAjOkPv3wLk2dDk5aebTePh5Un4ec9\nEq8rs8HmXUACxBSdJL16BgYgLRXUBDi4W9yWve6HI6thj64y4m6Xk9EKGvaAdQH0b71hSQCHnjW4\n/GcRM44U2ToxpvkhwV5dxHBYtQneGgRXtoBNx2HBLbK9+9vBZdDeWAYfroHJAzxC15Fgeb5oRHaJ\ngNgO6bqO4Vhs7uc51Q9puVGij4mnsvSJTd9m9dnmxIHJ65gqTgw6+Wk4cOfF2Z1gNRvB4u0rDoPY\n3DE2NQI/fRRVBlFiqzKQL/BpKppbCgr9MPB9CIsNIMkEj9eDD0/A7pLwz/xaf3i8r7gk75wLZWEs\nUudvg37T4fz6kB4PIzqGrp1SFHj2XXj4VfjifTg/A67tCgPawyWNYd8OeO87OK8vvDEzcGuXn1dA\nUTFQU6M09yRt69RC1cRiKzWJdbRvJ7TqD416wZejoTQfTu+W/dObQZdRsPcXyA9RS6o6ZaGfcwpu\nvRyu7kB5QkK4yDogvzP9KInEx0HLRtK13GyEV66EE4WSQPLpaOhQBy6ZBq8sEcV+N2xOeOpHsZYf\nuUisvb+C3/OF1BLC7JwNcACNuihh6UTm6M9zmh/ScqNYH5Pgl9hkm9WHGJ04MHu95sLh5Yp0lFtv\nNjtYzQpYvczlcFyRBi9XZBTnHKLEVmUgX+BsKmtjDcDIXjS2hUFu4+pAXSuM3x++9aUo8GI/mD5E\nirfbTYZvtvpX3j9ZADfOhkEzoV9zmNAbThfDTXrzTasFSsqCiAwrcNtD8PNeeOQ1Sdtv3w1emQk/\n7JS42usfwf0vw6wAKvy7DuheJedZcNg5GZuBQxWLLU8/756tEsMa9rFYam+fL6n+1RoCJvj2dxGg\n2DI3+L2xF4sLc81Sz2tLvgu+jy/2boPYOKgZQG2/UyvYuFP+3zIDHu4Dr/wO6UZYeCuM7wGP/wA1\nnoWeU+GS9yHjWZi4RJKAJvb7a+UBqga/5UHfCC29/Wg0CrOG7Qw24jASEyTdv0h/5v1ZbGX69yKG\nipIuTuwYvdyTqhex4eWKtDnAalLA6vUmy1X9w4mxRV2R5yKixPaPQ5ragwMTcMIPsV2KgRRgdhju\nyBgDTGkCP56Fz0P0+/LFrV1h0/1QPxWu/QQavQzj5kn8bfJSGPYZNJgosk0zhsLXo+CD1ZKw4Bbd\nbdYAiktEeT8YMmrDqHvh5Y/ghWkweJQkiWgafPmjjPl5ReX98gqk64DqAvaIueVKrUmJXSy2nCKo\n20CIDaB6Q7hnhXTrrtYQblsE334K38wCpS4sfyvwolzTRAg5rQl0PN/z+rKfwr2jgo2rhLwNAb5t\nzRrAfq9ElvE9JZHkg1UQZ4ZJA+DgY/DcZVA3WdL57+8J2x6Exy/+a6QGsK4QTjugX4TKSntQaRYm\nsZ3CRgbBRSgL9Wc+yU93t1JddyfW5xgO7Fi8iFDFUU50Gg49ecSL2Cze7K0TmyGImepWH3BFXZHn\nIqIF2lUIqRg47kdAy4rCdRj5HBfPYQrZjfiq6jA8He7bD72ToV4E4rYtM2DxHbDqEMxcD4v3CnmZ\nDNC6pkyut3eD1DhJbJi/Hd4Z5JlcO+lp/ys3wvURdHB2Y8MO2HtYSgp+W115+9TZcMZde1co7FmQ\nWgtnHiQniSp+k9awe4tnn1pt4d6Vnr8/uk6iLEuPQQ+H3vPt5srnKjoFZfmQ3lSsrdadRHx57gx4\n6BVIDkMsUVVhwwoYclvgMY0zpUwivxCSEyEtXqTP3loOD/WWe52ZChP6hD5fJFiUC8lGOD+MUgU3\nNDT2oDEiAmJLD+KGBCigFBNGv+n+gSw2BzbMXscVV6QXsbldkQ6wmqmY6h+OxRZ1RZ7TiFpsVQAG\nPZidgZFdFPodczsmDqOFFWsDeLsJxBth2C6wh7dLBZzfAN67FnY/DLaXofglWHMv1G0NP+u1cvO3\nS+Hrzed59quTIaT06YLIzwnw7mzISINRV0siijfsdnjnc2jeEOLraJCoW2w1pBI8RpeEqt8Stq4N\n3MS0WrpMaWoKtBoAi5+DMj+3fe9v8juzm/y+WS9VcLngqw/Dez/b1kt8rsdlgcfU0bseZHsVoo/v\nCWVO+HxjeOeJFJoGX5+B/tXBFIHFl4VGMdAyzKnjBKXUCmGx5VNCMrF++7GVIMHiOB9rrjKx2THq\nf2vYUfQ1u1hseFrWgCchRPGy2Ep90k/dFls0eeScRJTYqhDqYWIr+X63dcVANxTeJLwVZHUzfNkS\n1hbCPfv+Hqm7zUVw0264eQ8cKoPFe6BPY4j1WWjfPgR+WBbaHemLPQdFteSR0f41LN/4BE6egXH3\nQnFHBeofh+RUtESZ9BQ9l6BRO8jLFT1JfxiodxS5oA8MekN0lOfdU/EeqSosnQSNe0OKHhtzJ8r1\nGwIz35Q0/lD44UtIqS492QIhTbf8znhliWYkwjVtRPYsWJfxv4qtxbCjRCz7SLBNX4S1DtNiO0EZ\ntfy4GL2RTynJAXpYlOgejHif7XbKsHgRprgi5QHQsKNo8gCV2RVxRRq8kk80H2I78C3MqAFnd3nG\nRC22cxpRYqsCcE8RdTGynyIK8R+wHo+JX1FZG6bV1j0J3msK007Cs4f/8+t88xg4NShTZVJck+W/\noeWwKyEpAZ56K7Lj/3smpCRBWR1RwHc4xD0H0uPt6Xfg/pvgp+NAKmA5CjVqYdBVM/L025KaKR0F\nVgVoJnrhZZ7f1RvBNVNg3Uz4bATYimSR/vMzcHQDXPG8Zz/3In7UfSLz9f7E4O+nqBC+ng6DRklt\nXyCk6K7APB8LddyF4u5dcUj+ziqDLhvgzzDUW0Lh42xIM8Ol4fae0bEVlQTCF0A+HobFlkcJKSGI\nLc4vsXlbbLbyGJuKrfzqbE6DWGwGrw/ATWzuGNvWKfrJvFZi5RZblNjORUSJrQrAqK+CM/W4wCby\n/I4bgpEWKPwrAPH5w601YWIDePYIPHf4r1lumgbTTsAXurcm0wrnWSG/DBr76XyRlACTHhKB38V+\nEkD8YfVmmPYVWJrC4z9DvG5JfLZA1Ewuu010KZ8dBzklSMPxU8egRm0SYqFGAhzVw5P5xdC5B/y5\nxP+5MhvBHg2G6nGvLqPg+hmw52d4ri48nylNRi97Bhr19OzXobv8PnMSRk+A6ZPgwO7A72n2u1BS\nBLc+EPy9m/U51+Ezh/ZoIMkic3TL8/EjGuuL4NZ9Gup/YIGXumBmNtycAZYIZ4CNaHTAELDbtTds\nuDiFjXohOgrmUkQ1/De7K0LM4gSf7TZKsXhZgk5sFVyRBk2uz1bqIgZ7RbdjucVmAmcZHP1FP6iX\ncKohmjxyLiNKbFUA7imiJhCDkXUB1LGNKDyDiR9R+SOMDEk3Hs2EFxrA04dh7D6wReDaOuOAwTtg\nzF4o0fd7qzFk65ZU3QC9FG+9Fi45H0Y8BDuDFBiDJIPc+Ai0bgYn0uS137Oltcu4F6D1ADAosORj\nSIiHvDLADBw/Chl1iTNA25qw+yxYzHD6LHS7CNYvC1xz5nLB8J4wR5f/63oL3L8Beo2HzjfCuOWi\nMOKNmnUl43LDSrjjUajXCMZe7d8leWQ/TH1BkkYCpfm74SY2X81OgwFu6CS984odMOskkOpiZ5HC\nov9AQP2TbDjrhLF/JbkHlY5hWmvHdGurbghX5FmKSQ1AbMUUY8KExaeOTYjNYwm6KhCbDUUn/jIb\nWDV7xdRR1ctiO+ylJ1fm1UfMne4ftdjOSUSJ7R+HomtFyofRkRRWB2n7MAQj3VC4BwfOMMSR3Xgi\nEz5sCh+dhAs2SYwlFE7YoM9mWFEAX7SUtibXpsHVaZIlCeAKQJKKAl9Mhppp0OtG+HWV/3GHj8El\nt0J+EXz6KuVPZNtaMO05OcbcN2HjN1Bfb9hpMCAZ28ePQs16VDfK+B2nIL2aZBj2HQDFRbA8QGr+\nrwtg/XL4fIrntWr1RSar/8vQMEBMrElrOLRHShOmzIOTWXDXIHE7lt+3LCG8tAzpThAK7kJ0qx/V\nqWvbwtlSWHsY2iQBToV4k8brR+Fo5A2esavwUhZcnw6NIuwCcBaNvWicF+a0cVhP/KgfgLTcyKGI\nNPxLnxRSRCKVFZptlBLrdVwnNkxY0XACajmx2RyVY8BoOlkZzFBwUFRJLMmia+aG22L7bwQ4o/iv\nI0psVQDutaQLlR6ksZTTaAFIy4DCO1jYisY7EVhtAKNrwaoOEiPrtAHG7YNdfhRKSlww4yS03yAr\n+2Xt4bgN9pbCY/VkTJIe3igIMrlWS4HfZ0LHlkJeQ8bDgt9g90FxPT71JrQbBLn58OsMaN8UMvVy\no2vbCjkO7QfXXCaWWvk9MAJldjiVDTXqUc2o0KYm7DsjiRjZOdCsDTRvCws+939tMyZJuv7uLdLQ\nNFzUbQhHdcHnRs1h2iLYsgauaAGvPQqvPgyDOono8bsLKnb+DoQSvXQx1k8oqnMdyEiA73fBpPoK\nFBrIMCnsLYUem+BAqPbqPphyXAjxqczI9gNYo8d2u4VNbLJ6ygzhijxDEdX9kBcIsfm6IQFslGD1\nOq4LGyZi0PTygHKLzS5ybxUzg3RiU0zgsoExRpRJ/Lkio1mR/2dYtmwZV199NZmZmcTGxlKrVi36\n9evHypUrQ+/sgyixVQEY9QnDiYt+1OIkZWwMEGcD6IKBuzHyOA72hJlI4kanRNjQCZ6vD7NPQct1\n0GItDN0BN++Gi7dA+ioYvUc6c2/oJJbaO8dhZA1PI9O0eOlKfCBEF/jqqfDDNJjxoug7Xn03tLgS\nug+DNz+FmwbBlm+hTTN4ZBHc2AnUV6V2yx/2nYHtJzRwHQVNw1yjHnEGaJ0hShrV0yTRBKD/CFEJ\n8XUVahpsXg1jn5QcgfURCEBXS5du4E4nvP8FtOsO89bDhZfC/E9hwWdw2TUwd21FvctgcCeNJPsx\nWgwGuKQp/HFQEj1ebwQHyuDlhpKm3z0CcjtYCk8dgjtrQavgRpRfrEClOtA0TFfkQYqpSUxQ1REN\njdMUBLTYCigk0c+2Mkqwerk43a5IVSc2g05kZXawGuVM5VD1GLXBBM5SndhSwO71nYsS2/859uzZ\ng9FoZOzYsUydOpWHHnqI7OxsevXqxc8/R9bLKVqgXQXgniZU3WJLxsx3HKcTgVPWXsbMT6jcgJ0V\nWLGEOdmANCZ9NBPG14VFOSKrtLsUjtqhphmerS8ux7JYlfVoJOUb2V8mGZZuWEzSsHT1EbgnxPmM\nRrjlGrh5MBw8ClknJOuxZWOPlXIgBybpslXDOkKbmpWPo2kw9AsN1aoQ13A/JUBczfrEGqC5nmyS\nUA026M1ErxoGkx+Hbz+BEWM9x7GVSYwtLUP0Gw/sqnSqgIhLEKL86ie48xk4cRqeGQevfBz+MXxx\nQk/KqRUg9b57ffhqi2h43l9HFiSvHRVLuvcWuHIb/NoO6gSpgy5TYehOyYSc6CeTNRz8gUoPDH7r\nzfxhP0U0DmCJuVFEGWU4yMB/lXgBhST7EJsTB04cFVyRDkoxEYumq5goehF2qT9XpOrlinSVgSlW\nXJE2r1KbKLH9n2P06NGMHj26wmtjx46lUaNGvPHGG1x2WZBiUB9ELbYqAHeBtoqGGQP9qMm3BG+s\nFo/CLCxsRuP+CLIkvRFjgGvTYUpT+KUdrOwA37SGCfWgYSxch52rsDP9JDSNrawp2D1TLIlINCkb\n1YPeXaFT64qut4/WQnIM1EyED/0ojgAsPQAbDynQWaWk9HcATDUyiTGIhZdghfhqUj9XVCyJHlcN\ng2kvS+mAG+6uAnEJ0LQNbFkb3vWDaD6WlcAvunfkp7/Y7scbx06JZVYjgLRV90ywu2DzCbmHHzSD\nHcXwTQ5830aSejpugPln/O9f6ITrdkhcdW4rEcuOFKVo/IlKnyDWly/2UUSTEMSWjZirNQIQWz4F\nJPtsK9NjdzFexOaiDBNWVG9i02QxYDVRMVbma7GZYgNbbNGsyH8UsbGxpKenk5cX2IPlD1Fi+4cw\nbNgwBg4cyOw/VpSn+6u6W/E66rGJPHYEKNZ2owsG3sHMVFy8HWbhdjiwoaGh8QdWSrQYFp+FAdUk\nM9Ebg9tAVh6sPPSfn3P5ISn2rp0kq2x/eHMZxCdpkKlBVjakp6FZ4spT1lNiIFY3cvfo1zTmMWk8\nOvcjz3HcgsatOsKlg0XyKutgeNfpcsmcd34H+btb+0jepX/sPQwN6oA5QMuy1jXl3m/Ty6w6JMB1\n6fBaFqRYNR7s6KR7ksagHTBou9S5qXq94bwz0GUj/JEP81t7XMmRYpnu5Ls0zClDQ2M3hTQP4GJ0\n46Tucq+JfyXmPPJJoWKgshSRvon1Ik1fi82gucClUOKEOAsV69jKic0CzhJRJbEkgd0rA+gvKo/M\nnj2bgQMHMmzYsIj2i8KDwsJCcnJy2L17N48//jjbt2/nkksuiegYUWL7hzBnzhwWLFjA8F4Xlge6\nHTo5DaAWaVj5kNCz7R2YeAAT43Hw5d9Abt/gIpYybsVBdRSOlikcs8PFfryiPRtCw2owNUDGY7hw\nk2OvRjKBu/xYgJuPw7fGmNJcAAAgAElEQVTboXMHMKjA4VzIrIOqgVkn3NRYMOqL+136rWveFq65\nGV5+QFLwARbPE1KrnSnEFp8g8bFw4HQIAd0wAPb9JN2vP54Xer9g2H0QmjcIvD3WDI2qw3av+uFn\n6kOWDUacUBlvcTColYvZLWBLMZy/CWKXQ+IKuGYH1LHA6o5weYRix974CZU6QKsw3ZCnsZGHIySx\nnSgnNv9ZNmfJC0hsbotNxYULG2biPBab6gTVQKlTd0UqXlOdqqehGsw6scXqxOa1kHSPj5DYhg8f\nzoIFC5gzZ05E+0XhwdChQ0lPT6dly5ZMnjyZMWPG8OSTT0Z0jGiM7Z+G4inQdmdCWjByMw2YzkFe\npA2xIT6m1zBxCo0ROLADI//ixzobJyN0t2aefi379MSEtn6SOQwGeKAX3DcfnrhYVP7/Ct5cBvEW\n6Sm2YHvFvmMgXqS750GLGlC/scIKO3D4BNSvh6ZR7hxLjRO3XK10aW3jxpNvwdo/4OZL4IZxsPgb\neOhV2RYXD72vgiULYdy/Ql9r/llITBE3amEx7D0ksbabB/+19w6waRcMvzL4mCbV4aBXFUiLOBia\nDr8cN0BtqKYoDKohltyqAthUJMklFyZB2/i/3gEA5Ln8Dhf9MIYdX9uhuxhbBnAxunGCPKyYA9ax\nnSWPaj6x5hJdTzVOJ02H7po0E++x2FQnmlOh1KFbbCav2ga3xWa0gKNYLDZzIji8LDa3K1L730z3\n38keiMCtHPmx/zpeeeUVJkyYQFZWFjNnzsRut+NwOLD4614cAFFiqwLwTvd3YyyNmcwePuYQY2kS\ndH8DCh9jxgzciIOjaDyCKexJCGAnKnfioDnF7Cae6/SHPltf3NYI8Ezd3g1eXwrj58NPt0c+geaW\nwAdrYOz5EiOrHq8ri3jho3UiK7XkTnixRMNl0eDQMejfEfCcMzVWar5aNPJYbAAJiTDzV3joRnjt\nYejaG4be7tl+6WC4f5go97fuFPx6T2aBrrlMlm5B2exwKgdq+FFhCYXjpySZpmu74OPqpcAGn7Dr\nvXVgziaFb3JiuFovbDcp0DNZfv4ubNfr196IYCLcTj5mDCFjbMc4Sx1SAz6ruRESm6oXhSuaE7vd\nhIaTWCtg9iJOl7fFVgxxNYXYvF2Rhr9msZ0rGMnt/C3T/2y7/HgjP3jQ3eFwkJtbsVY3PT0dg37P\n27XzfBluuOEGOnXqxC233MKXX34Z9mVFia0KwG2xObxciY1IYCh1eZldjKYhlhCTihGF6Zipg8Jj\nOFmGyjQs1AlBbhoar+PkSZzUROUo+4D2NNe91HlOiDNIJqU/WE0w9Rq4cjpMXQl3BxH79YcJC8X9\neF8P+bt2Eqw6DCV2WWmvPiI94W45D7o2gDWrgRpOOHwSGjWs8O6qxcHObOjUCH5fU/E8dRvArD/A\nbgOrV9LK8VPQ+gLJjpw+CSbPCn6929ZBW72bQalX67zHJsP0FyN77wBL9ESZCzsGH1cnCRburPja\n+UlikU05rjA4LfJzh4svcZEEXBxB5GIbBTQnEXOIfY5xltoB4mt27BRSGAaxST2HhXg0neQMqo2i\nUjNQJsRWQd3fLjE3RRGLzZwgbW38WWz/o8kjn/EBLQmzHiUYhus/Xti5YScjOw/3Oxxg5cqVXHTR\nRSiKgqZpKIrCwYMHycysXFxpNpsZOHAgr7zyCjabDas1eAskN6LEVgVgwQW4OEPFgqunaEUbfmIa\nBxhHU/87e0FB4XnMdMfA7dhpQRkTMDEOE9X9ENwRVMbh4DtUJmDiWUxcQUfsaHTWx8cbxb2napWT\nR9zo1wLu7QHjF0CTNLi8eXjv+4ddkg35/rXwXDYMVcUC/GA1jJoDXevBi79BpzowdTC8dRwKXdBY\ny2K/3QGNm2L2islV0y22Lm3g3Tme/mbl90epSGoAdXrL7w/HwuTH4PjLEnvzh1MnYPdWSUgBuFC3\n7i7oCDPnw+NjpLdaJFi0VHrY1Qyhsp8aB3l+6tVG15Saw8NlUD9GJK9K0OjxN7mZNDQ+x8UQjFgj\n8ABsIY/2AeJm3sgih3r4N3VzdAWeNCoGB93EFq+7Oe16zM1MAqq+j6LZKS2T6S0+FiEvN1x2MOgT\npKNQrDVTvBRrq3p2UHlM7m9oi1EF0ZJmdOJvyHzyi+CLgQ4dOvDLL79UeK1mTT/1PTpKSkrQNI3C\nwsKwiS2aPFIFYEIDCtlPxZ5QrUjmFhryNNvJIXz9pKswsp0YxmBiIk7qUkY/bDyOg1dx8CgOLsFG\nY2ysQ2U+Fl7DzCJUlqHyOOZy11CiPj8Whli4vt5fCO2ambBwR+hr3HQMhnwK/VtCv/bw3gmps2pT\nE6YPgQU74JHvYUg7+H606Cm+mKWh1XQRd0zPtW/YAKsCDjexxYkb8/wOUoKwZkvA0wMSH3Oj1yBI\nTYfn7w08/o8fhBwv0BO06mSI27NZA1E8mfxx6PftDYcDflwOV/UOPTY5RrJF7T75QUPS5TP68CQ4\n0eiMjZ7YWRqhKk0g/IHKATRGRkCULlQ2k0/7AJaYN7LIpW6Aek03sVWvRGwFGDGWa0VWtNiE/Q0u\nGyWlQmyxZiq7Io16CqqjSEjPTXwOvdng/7jF9k8iOTmZvn37VvixWCycPn260ti8vDzmzp1LZmYm\naWnhuyWixPaPQ0HRhNj2+dGIfIm2ONF4iM0RHTUVhUmYySKGF3Tq/BwXE3EyBxcxwL8xcSW7OK5n\nX/4bJ30xMMDrsWimx9x3+JHe8obJCF+OhEubwcCP4aGFlZNAQAhn3lbo/Z4UVc8ZCdX1+F0r3Vs0\nvCMUvgClL8GHQyA5VtbNBU4FElW27l8nDNOwAXEGKNVDk9XixGJrWl9awawK0I/NjaPZnv9n58Hj\n/4Zf58PibyuPdblg1rvQrY+oj7jRqjEcy4br+8E3iyu6J0Nh4e9wNh+uuzz0WKvuW7H7zLMJRiG3\n2afAoEEHfUFyFXaORKhK4w9v46Q5Cr0imCp2U0gxTroQPA3ThUoWudTH/4R1GpG1SffZXkQ+8SSX\nL77cFpuFBD3GpqBoZRSX6BabFTB7JbGoNo/FZi+Q4mw38Tn1B90dY/sfTR6piujXrx+DBg1i4sSJ\nTJ8+nX/961+0a9eOEydOMHny5IiOFSW2KgD5EAo4SC5On5V2BjFMoh0fcYhFHI/42OkoPIiZH7Fy\nmBjOEsshYliIlXROMJ29jGcjiylhFSp3+ySdtIkHiwLr/Tf2roA4C8wdBRP7SYPM+i9JUskXm+D7\nnfD2cuj1LlzzCfRtDL/fKavp+TlQ2gOWenlGrCaI8arrMil6IbsK7D8JddPBaiXZKNqWANXjRJS5\n0A7d28OqEGuBQi/P74nT0kD00sHw0EhY9VvFsZ9PkfjaPc9WfD2zliSRjBshjULfDLNsAMRd2r09\ntAvDdWvUPxKnn3l2aBrsL4ONRQojdMsqAbj7Lxbuu3EYlXmo3IsprDY1bqxDNBc7hbDYTpCHE1cQ\nYpOKc19iK9aJzQ277pq0kIhKCQqxKFoJJaXyzYqzIDE0N1w2MFqFtOyFkurvjsE59IdCiRLb/zVG\njx7N2bNneeONN7jrrruYNm0anTt3ZunSpQweHFnacZTYqgDcxGbHxR4qt52+jUb0oya3sJYjPnG4\n/wSfIt1HbWh8jYMkqGCtgfTr6pIIv4ZZ+G80wCMXwZ6HRfdx7lYY9jlcNQMe+E50+xbcAt/cBIkx\nQmojdsF7ITh7YxGoKGBRYX8WNKqDCY0UI5x2yP5ufckzxXB+e/hzc3Bxdm/FlDNnxQh87VPp5Xbb\nFTDleSnmfv1xmPgAjBwH5/WseIyGdUUmrFE9uO1a6fIdjtW2cQcsXgnjbgg9FjyRHn/00jcVqpng\nuxy4TCe29hhYiMrK/8Al+SJOUoFREcbrVpNDCxJJJnh69gFOAdAQ/wHG05zBjLmS8ogQm+c1D7El\noFGKgVhQiykplesWV6Q3sdn1VP8iQKtIbE79++W22KKuyP8zjB07lqVLl5KdnY3NZuPkyZPMmzeP\nCy64IOJjRYntn4aiYNQAve5nE5VbXSsofEI34jByDSsp/hsKsXdSwCJOANCVahwjhu4YMPuZOgdX\nhx/PQlEE3/HMVHjjajjyBOQ+C1lPQPGL8MsYGNDKk6L/6lGZsicd03AGiNO7NLhnn4YlRsVc/Tjs\nOw5NG5AKpJkUFuZKn7nD+v45JdD7PBEX3hAk3lfTyxAo1hMz4uJh6rcwfCy89xKM7COdAO7+l2Q+\n+qJVY0n3v+dzWGgT1+JzU4PfG02DB18Vl+n1/YKPdcOtxlJJ9xCxZvumwC95QmhXYGALKk34f+zd\nd5xcdfU+8PfMbN8km15IJ40USOiBAIbeiyJKUQFBmsgXKSqiAmJDRQURUQQLkSKKEOklEEIChJZA\nCumN9LrZbLZN+f1x725mZ2dbiD+K+/jal2Tm3rt3Zmc+z+ec85znRByq2l934vMyT9K9Eq6Xq10r\nojWYZqODGhGEpGNRSGy76571+bXW665bg1aAbUq1T6vLVdsmJk9MnqTtoopJlSsPI7biPIFlVi0S\nlUHEVhXu1vI7kVtLbOEHoa5v5dMpHvm0o43YPgYIvkI1eig23eKsx3SV79/GeV+Zz5umaid34ott\nc6hJRni67rF77e9NSQc08nE4vWtgz/TPhrXdZhGJBJFUn46BcXI65m/nta0R+tRYWRXxSiMOYhM3\nMnVrRPXQGjWWsWg9gwbqIqVdWjCxLbz99dsCpWLHDkEdqzGk950tSNtP5Bfwvdt4fQOPv8f0TUHz\ndjbLq5Fhi+Hvn+ODOOedzS/u5a0mRuH85d+BzP+275LTQl3y9upAlZrbSPB0ZMfASmtbgl/KVYm9\nRZ0r5mtqPNAKcktJuUKN3iIubWW0tlWNd5U6uJH0YjoWWau3TgobiezWWa9Hlmhumy0NUpF5Yb9c\nQGyFpKUii/MFdbRa1KYi64itI7GwmBxPk55Go23z2D6haCO2jwFq/wh76+k/3ml0FtveOnnMOC9a\n5ySv2NbKGkqlhM+a6pWwdnGUHjY61RAdrMXujezMBxZyYufAUT65Czew74QCNJ2CxaOxXrm11USk\n5Jck2LiE0koG766XqA1pb8Hm8PwN5QEJHTsukNM3hvxwPT1gL/72GOUZApmi4mCuW3ETPcY9uwVT\nu4vDfcbNlzJmD065LBiimomXpgdOJed/juMPa/y6mdi4PRgV1FgD/CElgcj6jTJGivqJXP+ScIUc\nZ4r5ihrPtnAzdIeEZyX9Ua6CVkZrU6yXlDK+kfRiOhZYa4jGZd5rrNMzSzRXZnO9iK3KVnlhajKp\nTFT7IGIL/55FuchPJ7bKYFRN7cTs/M47nEkSaXnkSFRbxPbJRBuxfQxQ+0fYTw+LrfOeFY0ee6Qe\nnnaY1200ziQLtEDVgbUqne0179tqn7CJ9W776SzfmvDL26uJRey6voEy8rFm5q+1BretYmx7nkkF\nCrVejZRkKpKB6rJbJMG8D4IHhw3TR9SPB/LtvowpZnU8kMWvD8skJ43nzVmsaSTSjIVv/BePp7KK\n53fC8zISoU9PLt2bxC10L+Hx3wdkt98Z/OOpQNZfVs5vJ3D8RRy2H3fd0Lrfs76cbk3MUBteRIdY\nYKcFXxUzJJy0fq9cx4o6VbUHm4ncXpBwlRpXiDl2J3rhXrROH4XNjquBBdYY2iyxNfRpK7NJ+zTF\nZbUy+SGxJWwNiC1Zblt5SmFeRLSwU32vyNrholWhCrkgjdjSI7ZIpK3G9glFG7F9DFD7RxihsxJF\nHvFmk8eP1900R9ouYS/P+rE5jUZvKSkTLLOHp7xsvduMNNAA3eXrFfYB1aryswxwrsO4Eo7uyNWL\nqdgF3/WZ24JF+Dt91S21uVl4NZXipVLyClJqbFU87wMiETmDh+osYnhRMHSzdz6rq+nWLkhFwvGH\nBpHbQ09lv4eq0Alo1JDAXX9yK8bXpKNbp6Ce9/ISdv9pkNWa/g/2H8UXr6JoHzodyBU/DgarTryT\nVtjegZWlgStLY4hF2LsdM0NSzxfxa7lekTRV0j/lOk3UWWp8SXXdZqYWKSl3iztRtSNF/VIjowaa\nwbPWOlKPZu3ckpLmWd0ksa20Sq8sxFZqow5pxBZEbO3D65aJpYpRo7xsu+L8CAUZ9b54JTkFVGwI\nCC+/Y0B0NIzY2lSRn0i0EdtHjoicUJ4XE3Gafdxnaj3fyGwYpcQMx/i6QW4yR39P+Ia3TbTS2zab\nZoPfWWB/z/uy1x2vl3mOd5IBJtrgasPkhzvyonARaqZVzR2DWVnFD5d/6Bftt6vomptS2jmuY07w\n+jdnCSYmrAtqbPrGrbdW+bw5cvp3lVfYoe6+oWcea2ro0Y7VYRDbpROnHM49/8o+M25zGN106hA0\ndTfX99YYigoD8cnPXwqMiu+YSrfOPPlH3nmE267jzh+w9HnuurH+HLqWYsmmYJJCUxhexNy0P+Jx\nokaL+L64i73pLZP8WcyTEgardIFqd4r7iRr7qXKRGueLeUxeVhFRc1ilwntKHdsEWdVihU22qzbc\nblmfT0hYba0+Gc8nJZXZpCSthlelVH5YcwtSkUFoW75li+L8GIUZadHa4aIV6yjoGhBYLOxri6cR\nWzTa8mGDbfhYoY3YPgaI1Y2tqXGZoyy2zkRvN3tesRy/NMYCxzvfAI9a6VRT7es540xypRm6yjfJ\nePcbq4t8t1ugnRyXGlR3ndpAYHMz9YShRdzQn1tW8NzmnX21QW3tnjWM7pd0brRGMgwOVmU0dE/f\nysULOKpbUnn3hKRS5q0SH9ZTREyaX7seuUEtbvfOwTTuWlxwOu/Nzy7mWB9momasZ251oKDcmcxT\nXi7VNby4MPj30/N2PDdmOJedzUVfoH/v1l+bYG1dtLF5YhtWGAhyatfiiIgfyzVF0t9stUCZMcot\nUuBqOaZJukKNn4nrKeJFeX4vr1XWWel43CpREcdkibIyMTfsyWyM2NZZLyGht171Ht9mi6SkkjTV\nZZVSBSGxJZSJpYKdQ/m2KsUFsYC80hGvCBq0K9bvIL1oDJEdzv8E/26L2D6RaCO2jxqRHYadKUkH\nGOQww9zi8UZFJJnor9gvjbHcSVY4yVuO9p5jbXKafxvrcc9bYI2EpL9b7hz9tE9LNbUX0Qvvt+D3\nfbsvR3fii3PrRwctRSLFlYuCRfjm3SIuFLN3AZ1yeDCtFjZxI4e/GwzVjA2u0U8c65m3iT36SNbt\nywN0yWVjDYO6BCRQi2PGBU3Ut6YNGq3FwuXBPMk7ZzCjNCCnxY2XNxtFPB7U6w4MfSJPHtH6azSF\nlaWBXmZkM4FQ/wKqUkFfXy2OFzVExH728S3D7KWjTiJukmuuAjUKlCrwhPxWTcfOhn9b6TO66aJ5\nP7/3rFAsv9Hm7BXhBPm++tR7vDQUPnVME6dU1ovYtoqmgi3Ptgra5wvc+9MRr2DdSjYsrJ+mjOaS\nSksbtEVsn1i0EdvHANHwuxMPq03XO9XrFjVba8tEREQfRfbRySgl2st1m2f8ylMudq8pNlilwpf0\nb3DuSFGzWmDBFIvw0HD65HPMu0GE0BrctIxXSvn9EA6KRN0tT3Ek4ucD+fNaLl3A2XODSdDHdebR\nPVNezE3a17ZAhbFwK8N2Ux34S9Rdt2su5Un6dWHtNsrCjFIsxvcu4cEneXde/XuZv5Q+vZixGp0D\n+8BHnmvd64GqGgry+e4RjBvAum3Bz67Ce2HP/qhmiK1fyCfL0yLfqIir5XhboYvs2cBBJBL+78Ni\ni2ovWOdzWhaWvmuFUfqINrIE7SC2+tfbEvqpphNbeioyYatYKihgbqugOC9JUUYEmajgncm8+VRA\nZrWI5tSP2NpqbJ9YtBHbR45I3T651k7rGHs6yRjf9Hdlsli6twIdBY2neXK8aJ2u8h2QxcPvAFGv\nSEq2IGrrmMPTo2ifw8EzmNTCtOQfV3Pzcm7qz+EZbksX9OSaPjyxiTe3BfW8h4ezIpZSjfVWyV28\nhHiKPXpLiEiffdoxDHt7htddnGa7ed5nA9f9K39aP9X49hz2HBr+I4fdh/F4E+0BjWHdxsAE+Zhh\nfPPQwE7sVy+3/jqN4c0VdCxkQHav4Dr0CAUpGzJ0RF8R0x5/2UXGyNnwTx9ISPlcRoTVGGZYZkyW\nDVYtllmhSFGDkTXZiW2LAh2lpCSViqYRW/vcGooz0p3V24LeiIj6asloTv35a5FIW8T2CUUbsX0M\nsCNi27Ei3e7LNiv3dX9tcUoyHe9a7ni/cJW/e9533OcSU21wkC5Zd+jHitqAN1v4u3bL55XRQarw\nqPf4v4VBKjAbtieC9OPFC/jGblzfjwnizlUtEf6+SIRf7M7yA5m/P5ftFjQkLwyjyNesUDMnNH/c\nI8j5pdfYSsLdQaewYLhww47ncnP5402B6vG7vw7Wqlfe4uU3OTnNWf/Mo5n2TuAe0lKkUoGZcp8w\nKPhzGGTf/XrQVL0rMHUpB/Vvfohr55DcN2WIcApFnCnmXnE1UjapcphJ7s/icrOz+LMljtHDbvX+\nKtlRodpcq+zdDLH117fBZ3WzdaKidXL/lFSYiuwopUpKzY6IrSqiXX6K/AxVZGXpjskq6cQVyamf\nimwjtk8s2ojtY4CccHGPp/UYDdTdXc5zn6l+pRG9eiP4vn8a43ue9q4KNbaq0E0Hb9tibCOO6weL\n6karHCo65/LMngEh3buWvq/zpfe5ZzXPbOJf67lmMQOm8/tV/Hp3bhsUrBdfVuNvEt5uhkgnSOgh\nIa6a2UvoXEDPYKGqbR5eJeWynCD/Fs0PetkWbKh/nSPG8tNv8vN7GHsmp/9foIS84HRe+wZ3fY4L\nTwqMJp55pcVvgbUb2F5B/zAomLuWwwcFk8EnZzeRaRWq40xdxqEDmz+2MBrYa23J8ie8WI5VeFbS\nO7aYYoNzvO6eRpxuWoNZSk2z0flacJOC+lpCsgXE1jD622ytDrqIhXmOatukJBToKCHYkURTQXpx\nW1UssNPKy+iTSNYEfdcR9R0Hojkk09+8NvHIJxVtxPZRIxKpMxTaniG4P8c41znZNR7wW8+26HJ/\nNMmPPOYHTrO/3Q3S3fH2UiFus2p96iXwdiBHxJfluE9CVSsixFiEq/uwaH++14/3yrlwAcfN4vNz\nuX8dZ3Rl7n5c2ScgtaVptbyZTdT1Fkp6XNI4G+VJKJi9lZHdxCJBaFKrmv+ruDmhtHR7kiFdGxIb\nfOtCnrgr6Ds7eTz/+HVQgzuwHxcfRL/dguGhd/+zxS/fO+FU6zHhMOLj92DhxkC08NouCIimLg3G\n/xzXggkAkQj5EaqzvKVjRIwQ8YCEw3XXM3z3rvCOZR/SWPu3FuilwGmNKBwz8YbFcsWM1vhU1iWW\nGZiF+DZbp1Oa6rIynCRQoFOgmkUsFXw+yiqjgXgkM9TNKw5Wvgjy0r4PkRiptFRkm3jkE4s2YvsY\noCBFoYSZGjr2/tgZrna8K9znQn+ySXZVwkqbnOcPLvZnlzlSTyXetMRfXaxAnnVhG3aPJtqwLxSz\nEQ/tRC2mex7f7cfMfSkfx9ID2HAQKw/kd0PYPS1D9ZSkGLphThPE9ncJJZhhjhqbVM/aIDKyt14h\nOddq75ZJ1eVztyUY2o35WYgNTvgMj9/Fn34UDArNxGVnMek15i1p2et+a3YwpXtgGFycvicrtgSz\n5u6eHozR+TB46v2gN290r+aPhdwo1VnW4oiIs8Q8KqFaYHy9pxId5blRE8aWzWCVCn+11OUGy2uh\nqvJ1i+yln/xGmsBTUpZY3gixrdU5K7HtiNhiYRRWVh7XvkBDcsprRwydugYu/7XIjNgibRHbJxVt\nxPYR4cwzz3TKKad4YPIroilKxL2h4cjniIhfOtvdLvCw6Qa7xlX+7hnvmmmZp8x0mb8Y6lpPmOku\n5/uNL/m5J3zBAcYZmnG9xjE8HDL6I3HxD+GRVxQLpOddcrPXhYKoIdDDlTRxR1Ml7S1psTKpmkWS\n87bIHzVQ39CuqXZJmi1V90muTDKiB++t3rnN9ueODsyT7364ZcdPep1D993xOvcMCWif/qze+uGi\ntmSSh9/l1JE7pqg0e06q8S/1SWLK8aqkrxjgPaUGKfaA5W41b6dquT8xV5Eclxnc4nOmWmCcIY0+\nv8FGZcrsbkCD5zZao0tab1tFOIy0SNcdxJaoIRFRVpkMIrZURm42msvp32TgyB0DR2kYsWl9je2B\nBx5wyimnOPPMM1t1Xht2LdqI7SPCgw8+aOLEic76zKGi6CBugaU2yG7GeKHx3vdz5zvMBFMd5xfG\n+J4T/NJj3naNEyz0Sxc7wiPetMR633ZS3fkF4W66qhlJ/w1yLZAy4b+koHtD0hRJ54pZi4GNEFtS\nyhuScpUGDcMLFlGTYtQAu4URW0547lzJuk9yVZJ9ewd9X4t3wteyID8YGvq7+1mxuulj12/ilbc5\n9pAdj3UI18k/biOvgEd3PhgybRlLN3POPi0/J54K6mzZsJeIbnhO0mf1tpcSi5Q7XR/XmOmn5raK\n3Oba6g8W+bZhOjYze60Wq22x2LoGG650LLAIDLF7g+c2WaNzmrPJ9rCvrVCXulRkNFklWcW26mDm\nX/2ma0FklkrscPmvRSaxNafWyYKzzjrLxIkTPfjgg60+tw27Dm3E9jFALIzY4GXTGj2ul45udba1\nfmeBX3rdjRa71Qduc5PTlYQL/t+84hBD7Z224y0JTZLWa3oK5r6iviDmO2ps+S84m/9VXBcJuQI9\nftdGiG2apC3YYrU+UswKZN41IwfoFSrvahNf5dR9kqtT7BumBd/O4q7fGDZt54ZnqEkEtbjiwubn\nqv3ufnJzOOuEHY/l5QTSfJXoxYS3qdrJ8Xl3vx5I/A8Z0LLjU6kgYi1o5FsdFXG4mMmSoiIeNc52\ncd3lu8EI15vlJ+a26HfVSLrAGwYq9n9NkFQmXvY+OKSJc+aHxDa4hcQWlSNfiYRgDE0ssV15afDZ\nbZ+vvoSfgMCS8dL2EmwAACAASURBVIbEFo21yf0/JWjhNKg2/NcQCcpDBVL66uVxz/ick5s5JWKw\nHoS1himm+ZFb/c3v5Sj0rFl+rf5o5gIxfRVZ2EiNLh2/kmsPCdep8fsW7sRbghopj0jYaJkzLcQx\njcaP/5BQrMYbFulumeh7ayR75kt07VgngKldv/uJmF+rLE0FRsh9O/LWSs4Y3bJ7+86TAZEcOpCj\nhnLT5Vz+Iz57VFCXy8SWrdw+gYvOCDwp0zG8O7sX862TGH1rQG4XHNCy+6jF2jIemslNx7Q8Dbkt\nQRIlTXyrDxF1jRqVUgZq50pD/cRcMxwjKuJ7Zukg1zeaSBXCt8z0hk0mO7wuG9ASvGSuYXrZTeNN\nee+br58+ijKETuW22q5M1zSRSoUNCnUVEZFQKqqdSHKLsrBlo32B+r1qCBLyqaBROyet+LsLUpGf\nFCw1VxPDIj70tT9qtBHbxwC1fWwn+4x7/cstbtStBYMaa3G9H5niVX/1gB72kZB0hoYr6RDtzG3B\nmJveIn4m1+VqnCzhhA9ptVSLeyVCV/nlhJSWrf08KeUf4sqtcKX+fuM/+szI9cHobuH91e+V6idi\nfiQlJ5JSmQwiwH17B43NLcWLQZBg2rKA2C47m+de5fNXMu3+HapHgtrXV74T/P+1FzS81h7dmb0m\nqPWdOJzbX+Gr+7cus3Xr5GCo6EUHtvycWpl/xya+1QeLqsY7kg4S8y3D/N0y15jpcYfYqsYV3vGW\nzX5tjE4ZG5uklB+Y5TcW+K29WzRQNB3Pm+0oI5s8Zp6F9sgS0a0P3Ui6prmRbLdeUXgPCaViSkhu\nUhqaBpQUakhstaKQeDPEFgkJ8FOIH/lSCwYL7Rx2oenOTqON2D5yRITm9k7zGX8x0R3udpPrmj0z\nKelXflfXxHqcI93uNaP00SNtwnAtDtLFXRZLSjWwVsrEpWKekPAV1d6Qb+CHzFrHpfxc3Il4PCTX\nznhfkgzinCxprQjW6BUurPGZ2zgnWNC6hXrI2mivR/hainJ3TAjYry+/eCkgn+YinoqaHf6Sb4bj\n3iIRJtzC+HODn59cyeePZe1GvnMrT00J5q7t1nAOpoGdeGIuh89kfU/mzeXxuS33kFxZyh3TuPqw\nYPp4S7E2LCX1aGLizEgRUcySchAK5fieEc413QxbXKqXYYpdY5YnrPYtw3xWb53kecMmPzbXVBvc\nYi9fb4VghGD+2kJr3ersJo+bY57jHdXg8XXhnMLu+tY9tt16xeEw0oQtojqS2GRraUBKJQUa9rGl\nwia2eAU5mXL/tBzCpzgV+T0TjDS8+QN3ArPNdbov/Veu3VK0EdvHALURW7F8FzvPrX7nK840qImG\n10WW+LprPeMF8Lrn7WWUae7zGXtkPedw3f3IXO8pNVrHrMfU3ZOI++Q5QJVTVJsiX8cP4Sl4q7gl\nUv6lwL5G6Cbfw6LezUhGVkv5ihrDJcy1yRIRhZvi1qxYxeh9QSc50tvZa/fcHXJ2ENvYfoGAZPba\nHUrFxjB/fbB+jR+0g9igXTGT/hLMUbv8R3z95uDxHl0DUsuWooT+nUK/yM0oZuxArnuSE/doWVrx\nqv8EtaGrG7l+Y1gdOp00NrCVoKl9sIjZae/72fr5ibmuMcMk9xpnqDmudqPZvus930pT6+6pxHM+\n48gWOPhn4ikz5clxhMYZvkqVhRYboWHj3jorRER0axCxBZF8si5i26B0awxxHQqRl7nJSwWkFd+e\nQWzRhhHbp5TYBhhumFaoklqBD9cVuWvQJh75qBGJ1I2tiatxk+/oqbsv+qpS2b2dXjbVaIea430X\n+DLIkyclZZF1RjRiRDtOVx3kekzLVBVdREyUZ6WUE1Qr28m0zCJJN4r7phxFyn3XcF83xKGinpO0\nOu26f1jNB7Ny1VhigCKzzVcxYwEoGD1QkZgOda4TwXm1KZWSHDaFUcvBA8jP4YWFzd/fmjA723O3\nQKKfboXVoR1/+SmLnuVft/H8vSx+tnFSg161AUIVIlx9VECwdzSuC6rDgzP4x0x+fUooQmkFllUG\nw1q7N1MWHSpiYdp7niPq+0aYZL2YDgboqrcid9vfBqd60qEedpD3HGumY3aK1OAxbxtvuHZN9FK+\nb76kpJFZNmfrLNdJD7lp6dFy6+qILWGLmE4kNyvdFuzZSwqQn1HPS9YE9lk15eSmJeSiGRHbLjCH\nbsNHgzZi+xigNhWZENdeew/7i0WWGO9kc0IVGVSo8Ft/dJwzjLWfaZ7xjBcc4whj7GmbStXiuoXT\nhDORL+ZUu3nIihbLukeKeka+2ZIOV2VtK8ltq5TTVNtNxGXihnnKRd4Cl8jRDkepcr+4smTKFZMi\nPBuzsCLPr4ww1fuB/X5hVN7QvrorqIvQautz3dJSkRvDiK0wN3Daf2FB8/dYFrrhPxgav6ze2vCY\ngX343DEceVAwWLQpdAmDgP4R+ufz+aF8YxzffoKZqxo/7+0P+Oo/OHtvzhrT/H1nYnElAwsCN5im\nMEDE0oy/4+f1sZtCX3GuCS6te7xEnuP18nl9jVKy05MA1ttqsvd91r5NHvdu2Cw+KkuabK3lemY0\nbW+3TnFItAmbxVIdA2IrC4itfQEKMmzkEtVB2lGqPrHJiNjwaa2xfdrRRmwfOdIjtiBU2NteJnvc\nVmVGOdgIY+3ncF0McoVvO9eZ/uMBf3KfLbb6k9vA1nCpL2nENgvO0s8cW71uU6PHZGJ/UZPlWyll\nX5WmtLDHrVTKqaotl/IfeV6xFvwnHDLZW8QLof/EOWp8szrOPKwmWt7OeksDAp6xkT2LRWMFusuv\nm5xdm/I4QcyeIvrl1DdiPmoILy0OJPxNobw2QgtlYqub19c0idq62J8GsjQUf/zshEBMcvQfmbWm\n4TkvLeLIPzKyB386Y6daqMyvYFALpnP3F7E8Y8HOF/NNQ0yw3AZVjZy583jYdPA5+zV53EyzDdBP\nSZYa8RrL9EgjtqSE7TYoCmtscevlKEHclrKo9oUxsVisYY0tvn2HoCSd2CLRhq0Bn9JU5KcdbcT2\nUSNCTpj9SKS5++9llLled5+7HO4Q+xjtJt8xzxt+71eiou72N2f6XN0wxlqLouomjIyP1dMg7dyu\nBaFMGsaIelOBgaIOU+0i1T5oYjf7mqSxqsyQ9IQ8I0RtD++rbxrxDhM1Q4Fr5PhHQdz+X45zXtyZ\nnctNNle+St6Ks28nRUr0rJuVrK7PboyodxXYPTdSF7ERENu2KqYtbfq1xWuzT2FL06adGKCajvxQ\nC1OdCAamnjM3iCCf/Ro927P/bXz3KSYvCiyzznuQI/7APr15/qLg2J3B7HJGtEDD3U1EGQ08Qc8N\n+x4nhK7/s6xwpjsatXFrDf5iiuPtpXsWwkrH22baV/Zwda1leqb1Zm63QUqyLmKL2yCWDN6A0m10\nKo4FE7LTVZGpVDA5Ozd8o/LT7idTBbkzu4s2fCzQRmwfA0TrUpH155zkyXOOL/idX/qj37jWFYaG\nSrSH/Ntqa1zlsrrjC0Ji267xeSlREd8w2MNWWKF1K3hvES/Jc7tc/5Kwu0qnqvJbcU9JeErC7eKO\nVOUgVdrjVfkOCWtiq8KIskuW3rgrxJThjSE1oiMXujXa1wtmqSxfzvsJkX17oUAPBfLCWWybMU/S\nD9RISemaW3969L696VMS2FI1hXgiGJFTc2SQzpy3vunjm0NuGrGdNpv71wcz5roUB5MELh/HndMY\nfxcn3MOkRdx+akB8Ja2sq9WiNM7SKvZqIbFBpp1mNwU+p7e7LJKS8n8meMjrrjRh524qxHtWeMNi\n5zq0yeOSkt420972bPBcQqJBKrI8zAC000NKUsJGOakgZN1SllJSGA2ILR01ZSSryQlD29y0tH22\nwaJtEdsnEm3E9pEjIj8RlKk3hl/UluAR/3GwAwxPU48Vy1cs3ypNT/78qoFK5PpxFtPl5hAT8Q05\nlirwS7k24Go1TlDtBNWuVSOJ++WaJt8e4UdsiW1+IRhhPShLB01fUX+Ra4j5PmuTrbZYq4x3VpMk\ntV9XVaJ6hcKDbiLWSfmJuJvFzQyJbUucmnBtikb54uiA2OJNpCO311CUR06Msf2bj/CaQ20EmBMl\nP/yG1a6PRXn84iTW3cCsq1nwbZZ9NyC72If4Nr4Zpk/3z15erYfaQ7ZlibgvMNA8Zd622dDQ4eM+\nU036EEbJv/KU3jo5pRkV3kKLldrqgCx1uPU+kBC3W5obSS2xFespYROScpLBpmnL5nIdi2MUZUhi\nK2u/G+GbnZ+uDo5qi9g+HWgjto8cEfmpoKfrVU9nPSIh4ZcucamDbVNqu+2e85KTHJtxpYhBulvY\nDEG2l+s79nCPJRbtZJqpvYgr5Jgq3zYFViiwXL6tCrwo31ly6rwc4XYL5IQft1E6ZL3mOaJKLTVK\nB38xJXC0eGsjBRFGlCiVrBu3soeIKZL+Fdb7/i6he5jCS58gfeaYQHr/0qLGX8vSzfQKV/uD+wdN\n2h9mo14R/v7C3B2+jQMzal95OYzsyeCuu2b9fK0sGLY6rAURX2H4d8kWrx+uu27y3W+565xcJxY5\ny53NbpiyYZXN/m6aKx0rr5nuoumhqGg/ezd4bmVos1Wf2IJiZbEe4taBnGTwIdhcltSpKEJxBrFV\n1b6G8A+crphsc/P/1KCN2D4GiCbphdnesEr9eSlxNb7vdBP9wWyvWmmR6d623fYGxAYj9DbT8mZ/\n52UG66HANWZ+6PvPE9FHRF/RwLA4AykpD1rhyLDIPypLnWWzlC95zUbVDtfdv0yXtJI3axhdpCS3\nk7hU3didk8RMlVSOA0VMk6wjtnXp6cg+wQiZu15r/P5fX77DX/LAfgERrtiyU28F2BracbbPZ8Iw\njuhI152sm7UUr5RyYIcgpdocat0Rs0lEckR9Xh+PWqmfrs5wgPYKbLHd59xmtg+ynNU4bvJvxfJ9\nzeHNHjvNdMMM0SlLj+UHFoiJ1auxlVmpQEe5CsUF+eNYIljStmynY0GSoowZcbXElowHqcd6wpIs\nfWttqchPJNqI7aNGJCKapCeKtPNXP6yT4lfa7mbneN1TSnQxxBjD7GO2uXLlGpbFz+9gQ7xlqcom\n6mxQJMevjPGolZ7UjI39h8QcW61R6aRw3EgiIwVWJaWzSg9pJ8ccu0mab60aq3R4s4B9O9o9FMjU\nRmznp7mVHCxqk1Rd/9batJceifDNQ3lkFouyzGgrr+atD3ZMqB4droPvfoi3ZG0YBPdoz6ld+WF/\nBr3Bql0vNkSQen1lK4c3rcuoQ+273xgHHqenxcotss13naxMpR5KrLTZYX5sqZYVIWdY5m4v+WGa\nQXdTmOJVhzoo63MrzNfTwHo9bFt9oEPoQlIbseUmI6SiNm+P6pRfQfuMmW61xBavCqK1dGFJJCMV\n2dbH9onF/xSxLViwwBe+8AXdunVTVFRkzJgx7rrrrlZdY/LkyaLRaKM/f/vb31p9X9FUYCr1ZVd6\nyl9c5xS/8nXnGGqax/3AA9rpaLhAOz7PQkMMkptlUOMhhqoW97omcm8hztDH0Xq41Fu2qmn2+J3F\nv3ygUMwRoXotc3TO9Lp/d1BliSvch5ROm1fa+n4ZB3bRIdzF10ZsxSImyPULOTqL2CRVZyW1NuOl\nfGU/uhZxy0sN7+21ZUFNrJbY+pQEjdEzPwSx1TZ89whLidctYUkl963b+Ws2hdfKAgPkI5o2k6lD\nc8Q2Xnc5Ip6zxmj93eCzPrDJvS5UotB4PzG3mSb/7aqc727D7eYSRzR7TxttMsvcRontA/P1ydjI\nlflAu9CMIIjYckSTNSRzba6I6FiQol3f+heqI7ZyCrpk/Ja2VOSnBf8zllpz5sxx8MEHq6qq8sUv\nflGvXr088cQTLrvsMnPnznXbbbe16nrjx483fvz4Bo+PGdPKztpIRCwUNhzmWB0N9Lg/WW6eg53s\nC67ygflWWuS7/gq2KNVV56yXG62f7jp4wgyfacYLLiLij/azl2dc4R1/yWKc/GFRJeFOi5xngKJG\nzJTHijrAbNO9joSl1suzRWx6UAWKHdRHx/D19rBjzMg54cf3N+LKURijQ4w1GcFqYS7XH8k3/xOY\nEY9N28Q/My8goJGhmUYkwgF9Ayn+9Ufu3GteuIHeJRSERLsqvJ9JW/h238bP21lM3Bj4Q+7XAuEI\nOxrbGyvHdZBrb51Ms9ElBvu+0zzgVbd4wr9c5nNuN87NJvqmQ7JYX9WIO88fzbPaq34gtwXLzEte\nAeONy/r8Mu8blzH1YqsVeoZCk7h1cnQXSW4jEbV5e0rnYhRluKRUbQ7Sj5UbKMww+myT+39q8D9D\nbJdeeqmysjJPPfWUY445Btx8882OPPJId9xxh7PPPtuBB7bcSn38+PF+8IMf7II7i4jV9bFVOtFX\nneirdc8mJd3sbCMcaJSDwTbl2jUydCIq6iRjPOpttzizWaeIAYr91j7OM90RuvtKlqnFHwb/sMJa\nla4wpNFIYatqcy3XTdxmMe9brYN1oq+3o/MWicGdFGqnQIXiLB/ZIsFinZLSKy9S55mYjsvHBeNj\nzn2Ily8N0oRLNnHnq1x4QH0Px5OGc/XjQa2sQwsanjMxbz1DQ9P7ZIoVVfTLZ2ppkDbM3YV5klQq\nILaTu7Ssvgbbw79EU50BB+tS10gfE/Ur5zjJrc7xmqWm2s9FjnKL7znFxY7QLRQELbHO5f7mObM8\n5HKjM5xCGsMLJhtsd/00ZP5qVVZbrH/GRm2rFYY6DSSsk6MbyfUqy1Iqq5NBo3x+RhhbtTlIQVas\na0hsbanHTw3+J1KRCxYsMGXKFEcccUQdqUFOTo6bb75ZKpVy9913fzQ3lxaxxUOd2lYrzfYAeNcr\n3vemC9xcj6SSTUzCPtNYC6wxvQXpSILG3PMMcIm3vNEKR5LmkJB0i/ftrchZfi4VNmhvz3Au+Y9V\ntol7y9dc7xQFcmy1yNbXSzkgj0hEgSKd5GYl6gKB0381eufzQZZaVizK388O7LMOuZOfTuKUP9O1\nmB9maHBOHB64lUxqgc9kNry7OnAZqUVelL3bUZ7k3V3sEPteeeA4clpmVq0J1OpiOjSxkB+gs8XK\nbQlrtSca42ijLJKLuFud5BJH+JGJerrcKN8xyncMdo23LPWYb/psMy4jtUhJecrzjmlEYLIi9I9M\nJ7YaFbZbX6/GlqMbiTU2hSF7p0JEM3oma4lt+9osxCaLWKRNPPJJxP8Esb300kvg6KOPbvDcIYcc\nori42OTJk1t1zfnz57vtttv87Gc/M2HCBKtWNWEC2BQiEbHQLSNuu4RqDzvVo862xAsmeVAP/exr\nR16sRAelshgahjjCSH118WdTWnwbd9rHaB2d4hVLd5E/918tNdtWW71thmUe87oCMcszhOYvWW+0\njrqIudPzOilTkoqrfi3JQUF+rUCRkiw1xZSU3HDxqcLuBSxqZEj40G5MvoTBXfj+M0Et7ZGvNIzK\ndu/C7p15bn7rX3NpRRCx7R8GHtEI+7WjOkm7GI9tbP01m8J96+iSw9GNz+1sgA1SojQx6pORoXJ1\nTtrn7AdOU63Anz3iMAf5jS9Z4Tf+4KvGG+5Qw/zJhRb5peO1cMIrZpljqeVOcXzW55eGPXQD0qYC\nlIXqzJIwIgyIrQfxD2zeEGz6uhRr6P1YS2xVmxrW2LKmHtuiuE8i/ieIbcGCBSKRiCFDGqoIo9Go\ngQMHWrp0qWSy5YXjBx54wFVXXeX666937rnnGjBggKuvvlqqtfLgSFROSGyLPG2qn1jrHTkKzXa/\nqf7jMz4vmvan6qyTDU1EVjFR5znU/abV+Uc2h0I5HjVOkZijTLayla4kmVin0nXec6qeFoX2XY95\n00G6eNYOs8TNqjxqpSN194BXbbDNaq/qNL9CYhPGdtFRoRoR7bMQ220WOFtgm18pJLaKxlXaQ7rx\n1IVU/ZQpl7FPn+zHnTicf89uurE7G54LncpqxSgETdOzt3N2N/62dtcpyGuS3LeWs7sHUWFLsU5K\nZ0GzfWMYpr0I5qYR2yGGOcpId3ix7rFuOrjQeHc41++d73yHKW7CvT8bHvOUdtoZ75Cszy/2ni56\n6ZBWVy4Nbb9K9ENaxBZfbWMo2uxUpKEYpJbYasrJyyxKZtTY2qT+n1j8TxBbaWkw/qWkJLseukOH\nDpLJpLKy5t1vu3Xr5pZbbjFr1izbtm2zdu1ajz76qCFDhvj1r3/tW9/6VutuLhJRWBX0sc3wV1Pc\npIN+4irs5gjrfWC4/eudMsgASy1Pm0jWEBc7XIUaf/JSi2+lhwIvGK9a0iFetLAF07azISnlAm9I\n4S776xnu/o83xln6et46K233N3GdJZVKOk1nv/Wc/fTBdslX4sGnc2wvo/VXJq59lvraT8xVuxhV\nY0ghpQk2Nf7WoHGXj2WVQV3s/P0Dl/+n5rXutT/8Lnv3DqK+WgwvYnlVEFUtq2JBy/YazeLRjYEC\n9KJm5s1l4gMpfZqJRArE9FJoWcYG5/8c6y1LvBpuVsqUSbTQFLsx/MO/nexY+WnCoHQsMMPgDP/I\ngNgi2odtIHHr5KS6k9pgY7jn61KMaMZnpnJTQGzJGqIZG6U2scinBp8aYrvxxhvddNNN9X62bm08\nXbezGDFihGuvvdbw4cMVFhbq2rWrk08+2aRJk3Tr1s3tt99uw4YsDVONIiJWw344z5MuNleedrob\nLRpKmXfP8M4bYpAaNZY20YjdW2dnGes3nlHTBAFmYoBirzhcnqiDTPKi1mvUrzLDE1a71/56KqyT\ne5/tIF/QV56ov1vuqroWg5hDXW+m5Q4PZ2u1n9pHzp45ijv0Mlo/27IQW1zSZtVqZ2lXSxkcSv12\nhjxWVTFgOnetDshp3z7c/XrLzy+v5vE5nLFX/cdrXUcGFQbz0p77EM3f6bhtJYeVMKoF/pDpWCGl\nbwtSbP0VWZaRlj7BaEP19BvPqFKlRH+nNjMRuym8a5b3zHGW0xs9ZoF3DM1wIym1TDs95ciXVCFh\ns9xU4OxfS2ydijQkr9qILRUPR9dkoi1K+zTgU6OK/OEPfyiSseM6//zzdejQoS5Sq43cMrF161aR\nSET79i3US2dBjx49nHrqqe655x6vv/66E088scnjhwwZIhKJ6N2hg56dKe/OuWdNd/hZBdab5cte\nNj+sI/QI0y212MtI8I53DU6zGMrEt51kgmn+7GUXtaCXqBb9FJvmCF/0qiO95Fv28AMjFDXzcYlL\nusoMv7XQnfZxkt3c5BHvWiHlvrrjxuliuk2ONcD9UlgKRurtSQ/pKmLR1BXiR+UjxyDdzRDXN0Og\nHhWRI1pH2xHqEdvY7M5djWJquA+qFXh87QAu+zfvr2OPLDqDTPz1TSrigY1XOkrCty2ZYmx7Ht3A\n13dreH5r8PKW4H4njmz9uYulHNuCPW0vBdZm+JNERV3sCN/1sHLVjvQZJUpM8JAv+WKr7+UP/qKn\nHo5zVNbnN1hto9WGZPhMbrFEx3DCfE3YU5ebCHYQG7fQOT/w/mwwsqZyIzOnhc7jLYjQWhDFPfDA\nAx54IBB7rVy50sqVK1tfkmjDLsWnJmJLJpMSiUS9n379AkIYMmSIVCplwYKGo1qSyaQlS5YYOHCg\naPTDvR1duwYa7/Ly5sUXCxYssGbNGm/94Q8eu5LbJ/LZMweZ4U86GayvQ2yzRUxMYYZpcA/dDdDP\ntHDGVWMYqY+zjHWzx5p1IslEF/mecZgf29OvzbeHp/3eQmVZGrlTUqba4CAvuNMiv7ePSw1WpsKt\nnvKIN72cNjB1N4VWqZDrXRH/ETHXm37oV04wyzy915WrnI9D88Wl9NNFuXgDqX9URGd5aheomECg\nsVvezkVsb4SZ17KQKc/bn74dgxEzzaGihh+/wDl7MzCjxbBdGBhsS/C1Xjy/hfkfcjTOTcsDJ/+T\nsrczNoq4lEVShrTgq99NftbZbGc5SFzCP0z3uAe9bKovu8TTnm/VvZQpc59/uNCXs5oNwPzQP3KP\nDIXlZgt1Dhu2a8INYG4ieKPXbw4a8kULdoynIbDRqtrCjGnE41mGiu4czjrrLBMnTjRx4kRvvfWW\nNWvWZF1r2vD/D58aYmsKtY3Uzz77bIPnpkyZory8PGuzdWvx2muBIeGAAQNadV6slEiK8tRb3vdP\ne/uaiIgK5QoUZ5W4H+Zgk7zc7LVv9DmrbXGbhq+92fsSdZ3h5jjOwbq43Du6m+gYk11lhu97z0Xe\nNMLTDjFJlaRXHOGScLTOJHOUqVQg19N2zI4ZraNXbfRXS/W1wkDt7GugZz0nX0qnV0ISHhfstvvp\nartE1gbv1xzp1rD+UiuGGFrI+ztBHDPD/cjiUFWZn8PNx/LvWUEjd1P46aTAY/KGhsJb7cPb3prg\njG50zGHCh3AheXJT0Ox984DWl4WWSKnB0BZEK53k2ZRlQ9RLR8fZywTTrLXOB2G/26OeaNW9/NYf\nVap0kXMbPeZ9byjRtUHWYpMFOoWfsxorQG7IUxtK6dqrK0UZYXZNOVLUyC4MaZP6f2rwP0FsQ4YM\ncdhhh3nxxRc9/fQOB/2amhrf//73RSIRF1xwQb1zNm7caN68eTZurK/Pfvvtt7P+jttvv91LL71k\n6NCh9t9//6zHNIZkEakIW7WTUK1/mDbMlSfeiNXV8Y7yrtlWarrNYIieLne0H3nMajtX3BmknQcd\nZIkT3GykAjFPWu2vlnnDJofo6kmHmuEYY+1QTSywRjsFcsV0TmsHvtIQX9LfYFFrzfaoK8F75uiu\nnTWTO8gZEJHXN7jWYD1USCjMQmx9FRkeNgfXLtXDinh/JyK25SGhpffBnbM3xw3jyw/wQSNv37Pz\n+NELfP+owK0/Ex3C2y5LUBDlxM7cv27HeJ3WoDLJNxcF9lkntzJag5nhYj26BV/9QjGVjQhDTre/\naRbI18HxYRrxKc/rapDnWyBY2myLn7vdJc6vG5SbDbNMM9LYepu7CptU2KizoQiILaazaKIU+daX\n0a19jOKMI7xYQgAAIABJREFUfG+tkCSCSHLHTLZ6yCD8NkHJJxKfmhpbc7jzzjsdcsghTjvttHqW\nWnPmzPGNb3zD2LFj6x3/29/+1g9/+EM33nhjPYeR008/XW5urv3220+fPn2Ul5d77bXXvPPOOzp3\n7mzChAkNan3NIRl+vzZE1shRoEfYA5SnQLVKKakGUdsxjhAV9YRnXeS8Jq9/o8/6u2mudr/70waT\nthb9FLvGHq5p4fFTzNdXZ3OtqnOmIIgEf2cv+/mn4+1lT32ttMrzXrK7bVZMrpbzmVw9DLJdex0U\nqmyE2LJhTDH3rAlIoKAVW7flVUG0t7CCRIpYJHAk+duZ7Hcb437HQ1/aYcmVSgUqyPMeCsjve41Y\ncBVGgzRpaZxKKVf1Yd+3I/6+jvN6tvz+4EfLAt/JR0bs3Jr7jqSe6N6CiK1ATEUjxHayvUVFTPS2\nJz3sOjf5jbscaF+f9WX3uctpGq8zX+sHEpK+66pGj4mrMdurvuL79R7fFCoya1OR1VbI1ZfkenS0\nfttae/VMNRxZU0tsR53N5vuJZRLb/46z/3pz/2vW5+vN/S9dueX4nyG2ESNGmD59uuuvv96TTz6p\nvLzc0KFD3XnnnS6++OIGx0cikbqfdFx22WWeeeYZU6ZMsXHjRtFoVP/+/V111VWuuuoqu+3WelVA\nKiwvlEU2K9FfLKw3dNRNSkqpjTqqHwp01slnjPMPjzZLbB0Vu9XZzvUH5zjYiVrpZ7kTWGyd/3jH\n1x1lrlUGqj/J+NsetFapR1yBII0VFdFpc7WF71JwZbEOeukTGidXS8prJMqo/QvVLkP7tSee4t1t\nHNBCAUl5gu1JxrQLnDw21qibFtCtHVO/zhcncNAdgeVW/05MX8EbK/jCaP7yxfq2XPXuLxIQbEUy\npZNKZ7eLObFznl+v5Cs9Wm6F9dIWfrqCG/szspVKyFpMl3RACxM1Td1WV+3ta4AXzfU1h/uMcX7m\nN851lnxRZzjP/e52Rmh5lY4/+7t73Odut+mpR5arB5jnLRXKjfGZeo9vDOu16RFbrr4kNhDPsX5b\nRPfiREMD5FqF5KiDmHJ//enZ2V51KvWpjdgm+pI3/0vX3kmril2K/xlig8GDB3vooYdadOwNN9zg\nhhtuaPD4tdde69prr92l9xXORrRdqWI7tvBdBSS50aoGxAbnOMPX/J+VVumtaUL9snHuN81F7vWe\nn+icZYr1rsTvPK+jIocY6g7PGZy2gG2yzZ+97Gh9jAotkR7xH50k5U1BisrxCdXyDAvfjxrJukGl\nmahdepICpduexYGs/o1WEFvtcNIR4XSVtWnEBn06MumSQP7/2GxeXBT4Qd50QRCtNbf+5UeZl0qp\nxL0Snu+bctTMiN+t4hu9m7+/5ZV8YS7jO3Jdv+aPz4aklOmSvtPCr30yS6YgHYfZwwNelZJynKOc\n7DjX+6EB5htmmC/6qvfM8XUX6qG7SpXucLdvucFFznWBLzf5+9/xokLtDMuYqL3RPB30lRemt2us\nUGwcyQ1UJ63fFtEtv4x2GW9UJBr81IQqoUzFJJ9aIsvEKSbYqxmT9J3Fu+a605f+K9duKf6niO1j\ni3C9rlKuII0AuoeL/ipLDLJXg9M+7xSX+5b7POQ7vtnkr4iI+JML7ek6l/izh1zerEHyziIl5V/e\ncI6DbVYuKqJXOHZmu7h7TZaUcmhIxsss95Kpdldu+4vk9qNmQMwqZYamzXBrzCmjlu5qk2b50UAx\n+EYr+ss3hsS2R9gusCFLaTM/JzBTvjy7AX2TiEXYkpbaGlPCJb24fmlgYDygCbOOVVUc+S7FUR7c\nY8dU7tbiPSlbcVALI7YaKblNfEYONsQvPWmVzXrr7Nd+Ypj9Fci3nyqnucotbnOzX+htN5ttUaHC\nFS72Kz9u9vP3lheMdpicDMXkRu/rkjZVoC5iS86zfXOV8qqkboXVDWexEfSu1YQD8zKJ7X9IPNLN\ncL0yWih2Ff670x1bhv8J8cjHHanwr5CSEk2rI3XRSzsllpmT9bwSJc5wqj+5r0lT5Fr00dkffdXD\npvu9F3bJvWfDC2ZbZoNT7K1UhRJFIiK2iyv2iFvMcYYDfMul4Hf+pFih7qqteaGj3CNjuumpTKWh\naRFs5jJ4j8V+YFbd7iy9GnRAe15vRX9+LZHV9sFtbnlPe4sQTzE0bahlFxE/HkD3XI57r/5w1HS8\nXcbYGUG9cNJedMvLflxL8KKkPBzYwq99thaLdOwTToJ4J7S3GmSgc51lmz5+4Tk/8j2rvW+CPzjX\nmX7oOu+b7jd+Ws8iLvvv3mqmlx3ouAbPrTdb19A3Mqk8aM7Wl/hy61YE0tYe7VEyqOGFU0kStbLX\nTg2fy0xFtnlFfiLRRmwfK9TfIUZE7G4vC8xo9IxLnG+RJS3uITrDgS53tG/6u2l2wuW3BfixiQ6w\nu6OMUqZCu9A7cEaoytwgxyWhqXONGveYYLzREmtZ/d4WOUfm1Rne9k9LwWbuny/0ppvNqVt60rlo\nbIdAGbkxu6i0AeZVkBdhz7B2tXkXz12tSdExEvFLOf4TToHunMvTe7Ilzpi3A6VkZTJYT+du54qF\nHPBOMGvttb0Z2NgAtRbieQnjRBW2cLHe1gyx9dNFJ8VmhMQG17vaJls8ESojO+vkHF/wY993tcsN\nDSX6zeF1T4urcXDGDLYa222yQPcwg1FdK/VP7UZ8ubUrA0lrt/boMLDeuVLJoHetJpTMZhKbjJra\np7jG9mlHG7F9jJCjQE2GN99wB5jjtUbPOcgB9rePX7mzxb/nVmc70CCn+Y0lO2GZ1RTetdxL5rrS\ncSIiEmFtbKsa91lqvLVGWe+QsPD/T4/ZZLNSr4mEQWT8yCL9wgWwf9g+EDiM7IhKP0h7n9aG/53O\nRbXTpJ/f3LL7nlXOHkWBmXC7WNBztquQTAXilPYxrpbrpLSofHAhM/Zln3ac8z6FrwQ/I94Met1u\nHsArY4JxPB8GFVImSTqhFV/5jap11XiIGBExRA+L0j5DuxvgVCf4nXuk6jw8s8wRagYvedgw++qV\nMR9wnfeQ0iO02KoORzPlJTqg2tq1wXE92iM3o45cldGvUZDZL5ERobUR2ycWbcT2MUKeItUZxsMj\nHWSt5daF7gqZiIi42te9YLK3mojs6v+eHI/4Px0UOtYvrJPdaqy1SEn5hr8ZqqfTQ+PmVHiPv7fQ\nXRabbLVvOEpERErKT/3aWKOlbFIxieKRbO+Z0EkvRfLqRC65ImrSYrbnra3771qz5nRi65PPyCKe\naSmxbWdUKBzpEAuk+bsK5YngfajtZ5sr6Y00ku6ZxxOjmLsffxrCLbvz5ChWjQ2EIvm74Fv6oqQK\nnNjClgnYoErXRoyJa7G77hZnbI4u9zVzvG+yqR71e/+PvfuOr7Mu3wf+PtlJ26Q73XvvQqHsPYuA\nIAhFEEUURQRBFEGG8lWqIgjIkCWCCMheBcrehTILhZYOOtOVtmna7Jxznt8f50mapCerFC38cr1e\neaU9z+cZJ+c5n+u57891X/dBsizXcieOMpvNNN1+jt9q22ofSJGmWxjRV1ogIkt6LEGeawsT1NSt\nQ8rWBsjloe1/EE9Eaw23b5V6bEtFflXRRmw7ELLkKm/QjmZc2MpjdhMuI99ylKEG+z9XtvhcXXUw\nw69sVu5Af9wu5PaQd7zqM9c42a9cYr6FqkRlSjNSrnSBjjglfE+vedPHPtVTqW7x9pY8S+ZBiVsy\nRXv9da0VGDQsFp5vs35yZElVGkYEFQ2SlYd15pmi5suRgiARsY1plxBM5KUF23WNbX14rM7hPHq6\nat9SFao4t2BEDj/oyTm9Obxz62rwmsMjYgaLGNGKiXqVCj2aaUHTR2crGxT+72cvgw10t/sVSxgc\nPOUOm1rYxPZpd4qqcrDvbLVttfd1NVJaeF1VFsg0RCSaSEmuWUeXLNLSkkSaxTWdY+Nkd9t6exBP\nqCbroi1i+0qijdh2IOTorLROrzLoLN9Ao73XxBpamjQXO99jnvK+2S0+32D5XnShdTbbxx8sUbjN\n177ceme4wzftLMsm1/q7c/xaqUo5Mo2Qgqf92h6yZQgELnGFoQYo9K7D5l+geDmRQ1P119tqm+vV\nvrWXpqTOKlqRap1liAlqrZEbOnRO6cSqKt4rafral1UmUo/D2gUyVMjMDny2nVrLQNjQWc9Mloh7\nU9xygddbIPjZHqgWeFjM8VJbpYRdrkxfOU2O6S5XYYMsQ0TEVN/yoMec4Hy/cJN/m+b/nNysyCku\n7mF/s49v6Z7EkWS19/SoI/+vtECGoUSXE2RaXUSPZK7+ULIilPuXkJ2sfi6oT2xf4wLtrzvaiG0H\nQCT8/uTootwGUfVbQE92uLc81eSkcJLjDDfUr/2uVeceqbfXXKJazG5+V8+suKXYpNyxrpUjw+1O\n95Z3wAYbrVGskxxnuMMA3fwkFI286FWvetPe+ulloGUzVknJiMjet7vxxlmssJ5wpIN0xXWSjetU\nypWuWlz7cLJuSGx75yWEF/9ao0l8HO7YLxSOlOXEzdk+TcSxxXuyb6ZaMsvDc/8lYntW3Aac2Io0\n5CbVilU3S2xddVCsbKvWSCc5TrFNnvOSdzwH3va0mabXrr0lw8setNx8x4WF+3URVWGtj/WsY4hc\naYFMQ4ktJ5Zn1SZ6tpPEVQSlKxOEVl5ITmPE1rbG9nVAG7HtCAi/57lhDVtxgz5re/umDdb4pAkR\nSZo001zqOS951outOv0Q+Wa61Ci9HGCaiz2gshGPyoZYq9jhrrTAGo87V2ft7W9v0FFHr/pMuWov\nm2u8FJsUiYr6pUtNMlGVBcbZzf0zbtRpn4iNOTETjLVYYb2IraHT/CIltam8EWHMVtJgwkxP4dT8\nhAijogkOmbmJTmn0CJeT8toFCqq23zrb7BL6ZSbMj3NDEo7wBXuUtxx3ihkrYlwrorUFYRQ2pJlC\n/nbhGlx5g/tlpOGGGGS6Z+ulFC90lF85QnUSc+VSm1zvXHv7prG2LhZcaZa4an3CbXEVqi0NI7YV\nxDpYWUyvXLRPUvVeWpB4vbSAdkm2B/EGPdraiO2rijZi2xFQS2wJN/LisD9ZDUbZTWf5XvVwk4f5\npiPsZTfn+Y3qFhJTDbrL86wLXOYYfzLdaL/2L6+raqRJaSDwiHft7FKLrDXDL000wGpr3OA2C7zn\nd36vSKk3zNdXlgfdYneHuNoNZpvjMmdbaq6M8lKLXybnkLgSFYYYoURFPWLrLtPakNjm2eQDGw0K\nnSdGai+FpP2+f9Aj0U37wUayrLGAf63l+K5Ew9A5Nyfxe+52Yp4PSxMF44n3kZgoiyWUil82CgUe\nE/O9VqYhF0jkb1tKbKVJlI9HOMR0z9rL0fZ0FPihP3jP837jGOvrpN2jqv3Z6Ups9DPXJD3XMq/J\nlKt72Hi3yucIwoitgFh7q0pT9Rw+cGufSBIRW06vkNiSOPW01bF9bdBGbDsCwvmtg25SpNtgYb3N\nqVLt41gv+o9YI6a0JNY2rvVHn/rM9W5t9WWkSXWJb5rtD0bq5btu1tvZTnOrv3vBI951jzdd5H6j\n/NqxrjVWH++63ORQnv8X17vb/R7zlNG2OD8s96QjHGK5Ahf4rZ863aem66Kndi+PVF1O2hEJdUWN\n40rdVGQf2ZaFMc7jVsqRaqJOUkX0lS0Xm5MQxbCchJv+b5dSlSRqe2kjyysTZsQ1f9kO2YGI7UNs\n8YBZmxMF49CvVgzDe/+FVORtolJwaitNhj5RrIcsnZqQ+6PW5iyW5L0cYG8rrFRgpYvcKVt7xdb7\ng0fM845TjHCTX3nI9c60h9c86mJ361HnvqmLZV7W1961JgaVodIy0zBiqwSlVVZujOvdMdZIxLaS\n7O5UbaJ9ko4CDSO2eLxxA9A27NBo+9R2AETCOSEiRSeDbEhSOH2IUxRa4QMvNXmsnYz3Y993qWmW\nN1Ii0BxG6e0JvzDHNKfZx7sWO8tdjnWt77jJHV61k/5ecpGn/FIfiXqgTTa5yW1SBK72N8+Y7S5n\nGGS1fezkAf/UQQeHO8jFzjbDXYZo777p18sdkCVrZE8D9a9N0fWr0wJnvI4KlFuuzNNWOUB3a1Xo\nLVuqFLkijeo6/zgw4Yh/QwN31iDg2oKEo/9uHbYUgGekRgzI4tPtQGxzyxIF2HuE7k09JUhtkIh3\nBFZ/iVFbVOAmMSdJ1aWVkcdHio2T94XOv2so8pjlfR10dJJfecT1skWd53xT/MCTbnOds2XI9lcv\n2McxjbyXSsu9rr/9a1+r9IlUHaUFXYitsm7ZelXRQO/s4q0NkKFsFZnhe8pK0l9oK1VkWyryq4o2\nYtsRUDu3xXQ2vNa9vC5G201fwzztn80ebppLddDemc5vcqG+OYzWx5+c6CNXKHe7QjcqcauV/ubf\nzrRfAxPV172lTIUeqqxSKFuaN71ssff8yW9ly/apmR5zj1c9JC4mO1hgzlOlcqdUi0Y6mGxnKxVJ\nl6qbLe7rB8qXJdX/+dRr1jlQvlUhsZEQYxQ38l7HtOPMXlywmFfrKNP/uYYnNzBtYP35K4KROduH\n2F4pTng7Ts6tOXbEQBHjwq/e001E4F8U94lZLnD2NljCfmCj8aG/Z1OoKZpPSUKcPeTro1etUvfb\nztNOnkfdLG6Ds1xlug1eFnO9V40P12aTYbnXRFUYYEtvoHKzZRkrEl2CqIKFiXxzr+zirQ2QY9UJ\n0UhGSGzpSdojBLGtxSNtqcivJNqIbQdATcQWCOQbb7X3tyKkiIgpTvOKB2trgxpDnjw3ucqTZrjT\nvdvlGtOl6aqDdrIaXatZZoUUKTobZT97mGyAu9zgCLvbLSzY7qO3FCkedr1J9lM8j6LF5E6JWW2j\nsUZZZaMeOtbzE+wkww8NdKvPDdDOVP1sVK1jaJDbSURTtdhXDUqoJA/5OGFV9eMFnD6f0/I5tsHD\newS7tOfNTYk1uC+Ch9axb17CzaQG+SKimCjihS8pHRkXmCbqCCktaipaF6vDyHhXzXcyLQ9FIDmN\npCxHGWFumIHI1s4RfuBtb5jsIrFwHbgla3/zPCxP/9pehVBhtiwTqE60Ny8oSHxYvfOQ18C6q3wt\ngi2RWsN6NUJiq/NBBUFbKvIrirZPbUdA7dwW08uuyhQqruO/V4Mpvi8QeMo/mj3k0ab4rhOd49cW\nJznWl4H7PGyQAT7xuVNMdZXrVSq3ztMW+6R23EzTrbDAcX5i7mOJh+ecA9iszGgjrVasR5I02G+M\n8hODvWI/+bJsUi03JLbO2NBEdJqRwhOj+VXfBNlMX88VA/n70C1j6k6vh3RKpBBb0yGgIVZVJnqo\nndigFjhfRIGYQcq9/CVFbA+I+VTgN9sQrc0KC6l3aQGxlYXElt0IsY00zLw6riPHOkuFMg/5s3f9\nTaXmnarjYj7ziOGOqSXBuDKVFsg2PkFsQZYVa0lJieiRa2sD5PKw5qPWRisJmcZjDerY4snHtWGH\nRxux7QionY/jekt08i4wc6thnXR3oKkedr1oI2rFurjOH3XR2VSnt1ol2Voss9wr3jDRWIHATsa5\n2T/lq5QuqBWEwHP+bYjxlvineY+Rfyg52YntE421ysbaNjd1kS/LjXbWO6ytqhKXGd7CnUWaJDbI\nSeXyARTsxvLduKBvoiSgBjX/jEj0cctL5dkWWnIlw91rE33hjmtAbBlYpNSDPlUguejli6BS4EJR\n35Bi91bUrtXgdev0lq1fMzVsUKRUtgyZkhREo58+VtRpPdlNb7s61FtesrMzZUjW7LM+lnhRqdVG\nmVr7WrmPEJdlItH5RDspWE/P7EBaVntyGrQmrw4LE2sKtxvaaYH41hFbauv/fm3436ON2HYA1KYi\ng6gcXXU2zHJvJB17nHOsscwrHmr2uHny3Od27/nQ+S7Znpe8Ff7jEenSvOtB2bLd6i6Vyl3tL55X\noZ3EItNyC7ziQXs6wAern7TibXKPpr1huumqrz5WK05KbPXP95ZNKmpVeV1FrNuO7yctwoGdWu41\n2RDVcW5cybe6JurX6iIusEYFoaR+1nZOR94oZqnAHxshm+bwqkJ717EzawoblOis8XbevfRQosSm\nOpHZgaaa401rFIiImOnPPvNYo8d4z426GqVXmM6GCh9K2IaPono+pSlWrKNvLrK6by36iIV1czUR\nWTJnknjDVGRbxPa/wPPPP+/AAw/UsWNHubm5Jk2a5IEHHmjVMdqIbQfAljW2RBTWx56Wez3p2GEm\nmuQg/zatRcKQXe3sGle4zs3bbb2tIQKBezxopD4S03bgZv+0h/5WmiujjpHug66Vq4v2Flv0RAYR\ncqewCZNMEBGxWrF8Tbe+PsIEgVQ5YUTSVaJm64tgSyfuBKZ04q1Nie7VrcW/1rKkMpH63BqBREFB\nsfYqPbQd05EFApepdoZUo7fh671RlXcV2T+sqWwOa23StYmoq1tYsrGujk/kPo6RIcvrIZm96AIP\n+qZXk7jmrPah+R412S/qEW2Zd2UZJUUW0UWUBJYX0bs9IknSokH4Nw7NkqUliUaDGCkNIrY2VeR/\nFXfccYdDDz1URkaGadOm+ctf/mLfffe1fPnyVh2nrYP2/wgnnniitLQ0U8eNc/zomlcT6cL+9vOR\nfypVqJ2tzVpPdpGfO8BbnrK7I5o915lO94GP/dA5Buhn3ySuDl8Ez3rRhz72gsessdZJfmiA3u7x\nqO62FMIWWesZdxqpq8WetvChznrus1pG1xRzLfFjB4iLW2tT0jW2umgvyzqVuoWkmS9ik4QRctY2\nPmXX0EANPX67G+d+zs2r+MPAxvbaGmUxLl+aEKWMT1LfnCVFqlQxHC7icTE3CL5wR/NEd4UqObhi\nG6O1F6wVEzhUj+YHo0CR3hr2NduC3JD0Ntcpn8+SY6L9vO1pJzhPP/tY5lWv+a0eJhoWFnPHRc1w\nls6GGue79Y5b6jUdHEhQmSjOrhpoaTFHDkFOEil/DSrDEDyry9bbghiROlNiEK9PdC3Avffe6957\n7xWNbudOtf8fYOnSpc466yznnHOOq6+++gsdqy1i+x/hvvvu8/jjj5t64IEi4cNkEBLbIIcg8LkZ\nSfedaD9j7ekfLmtR1JZoG3OVfezhaCf50Mfb622A69xskon2t7dxRsuSKdc8Vzuj3rh/uUIEeZY4\nYONtPn5xtd7HZuhhhELrTTBWkVJRMd2bIbZAYJ0qXULRQo2jx9ptjNoCgX+EkVMNF3VIS1hy3bq6\naUuuhrhsacL4eNqA5NtTMVKuJ+3lDO0UYPZ2WGe7W8wj4q6XoeM2kuQzVhmug/5NpBfrojliax8e\np6SBk+cuDjXbq6pV6WiQLkYY5mgPOc4MZ5vnIQ84RoG3fMMdUuo8g1dbo8p8OfYmuhiBoJxlm+jX\nyZZatboIwg+wsjiRjsxMkupuqIqMx1sdsU2dOtXjjz/uvvvua9V+beCmm24Sj8f97neJyL20dNsN\nW9uIbQdALbEFiTRJez30NMlCTyYfL+J0v/eZ97zm0RadI126h91liEEOcaw5Pt0u1/62dz3lOWf4\nnoiIkYZ70T/lielnRO24dVZ6wi3G6qeHoeZPD8SqaXdMmnwTwHhjap3iuzeTitwsqlpct7B9Sa9w\nIl+1je/jNXGXh6ngw+oILs7uTVGUq1pY6/7sBq5ewW/7J1xPkiGGHCmO0MueUrXDw18wHTlP3Jmq\nnSLVcdsgGCGRRH7CKt+QxI4qCQKBRdYa1ETaMi0kpGiD9zfSrqpVWeJTY5xsvXnGOs6uTvCJezzk\nOIU+dqz79W2QYSgNu3O3tx9ViRq5NQtWq4wxoF+H5AbHNarIWFlC8p9M7h9vmIpM0samDV8aXnjh\nBSNGjDB9+nR9+/bVoUMHXbp0cemllwpa2Wmh7VPbARCpJiVOdR2nkCG+YZFnamt9GmKi/UxysFtc\n1CKFJOTK9YwH9dbTfo40y3tf6LoDgXNcaIKxvh8a3d7jzy5wuEkOcmad/nA3+IUs2dqba1fnevCB\nh/TclVifMml6aKedgfpbG4oMujWxbvO6zxSEEUBNxFZDbCu3MfKp20Imu87rQ7M5rzf/t5TPminY\n/qiEb89N9IH7ZdK1tQRiSA2vN0vEaVLdKLrN3pGbBI5Tpa+IG7cxBQkzrbdGhWOStItJhvVKFCsz\nRDKn/ARqahEbWsENNk5ExHzvG+AA3YzxtnN1c7cfe85ZljrTIiMcu9UxS7wk03DpelL1AZGelixP\nfDgD+rdP3pKmdFWiuWjFhoStVjIE0S8csbVh27FgwQLLli1z2mmnOf300z300EOmTJni97//vYsv\nvrhVx2ojth0AkTgZ1VRFFtW+NsxRKhVb4oVG9/uxP1nuM0+2wheyqy5e8JjhhtjPkR5oYcSXDFe6\nztvedbU/SJVqiU/d4TKwoE4374+87gX3meIIGVL1Kt7H008/pe8JifWWlYqMN1qKFOtDpWBjgoR5\nVtrb790cimtqOjx3QRaWbSM5vC9uWEg2Db8Ul/VnYBaHz6Fga69f8EIR+37EoGzuGUFqE/Nhqfrk\n+TNp1ks0A20tqgS+pcoKgYdk1Lbw2Rb8xzK9ZNtdkvWnJJgXyviHNbEeV0NoqQ2iyBzt5etnufki\nIsY51UobVCFVO3n61XpC1kUgsNnT2tc4kFR9QKy3xaFnwYCctcl9IDctIncgZauTGyRDPLpFLVkT\nIbRyje2rgnJzlXn/S/kpN3ebrqmkpMTGjRtdfvnlLrvsMsccc4x//etfDjvsMNdee22rUpNt4pEd\nAQGZUaoyPq99Kd8EnQ3ziXsNdljS3YaZ6DCnut0lDnSiDk2sddRFZ50871GnOcu3fd/PzPRHl8lp\nQd1SDe7xgAtd7iLn2d/e1lrhV6boY6gBRlsbtt4pU2Ka7xltNz1EZZrgjifGqKoi//hMg+1uuo8c\nFk5UG0Ji69jItdwapqGeMx99aiO2GquqRdsonf9AYHcp5ottFf/mpDJjLHvPZuL7XDGAY7qSm5pw\n7r8Gm+lpAAAgAElEQVRxZcKe66COPDiKvGa+VYWC2jVBGCrFQVL8TtSxUlssfqkSOEGVV8XNkGHk\nF3hOjYm73won6ZfUHisZPlEgVYrhTaQuK0PX/6w6ytga9DTIKol7foxTvORCgWsSpsaNoMzbqi2T\n5/jEC1WzKR1q8aYOOnVKkZdZTId+W++4cQF5QylZRsdGjh+Pbqlvi4f30dfUeWSFk1tQQdg8nr43\n8VMXJY2Ztoaorq62YUP9burdunWTnZ2trKzMiSeeWG/b1KlTzZgxwwcffGCvvfZq0XW1EduOgDgZ\nUTbaQmwREaOd5G1/Ue0m6Y1M9D90hVc85DaXONf1LT5ltmz3uM2eJvulyzxphj/7nWMdWc/KqiGq\nVfuja1zqCqea6gLnWGmx8x0qELjSM671M1naCQT+6qfWW+ViN3vCFLs4w533v6vf7lT2TTHYzha4\nxW/8AomC31zZ0hpZJ/ogbOmz2Eb00bmO48UQEQu2IWIrEfhc4Cwp/t1I8rdfFrMmctZCfrgg8VOD\nXhlcP4Sf9CSlBZywRmBMSB5RcWlSXCvdeJWuFnVRC9KJxQLHq/KKuIdl2G8b19Vq8Jw11qgwVRJS\naAQfW26oHo0WZ0N52DQ3ObENsCRc620v32CHm+t+u/hZo8fb6G5pempnb2Kria9hQ2+Ll5UZ2Lkb\niumQpDtA8UJ67sXqmfTef+vt1E9F1ohNvqZ1bH3cbUgDr9dtwc+mJn7q4oP359pr55Mb3efNN9+0\n//77i0QigiAQiUQsXrxYr169LFy4UH5+/VRy9+7dBUGgqKjlRaVtxLYjIE5mNdWRAnHlUsJE1Rjf\n8Zrfmu8xo01NumtXPZ3mcjf6hcOcamSdItbmEBFxlh85xAHOdZHjfc8Iw5zmOw53kJGGS5UqLm6R\nxZ40ww1us8Qyl/qVqb4lT3/76aiHVNd4UXd9jLKb2/zGX5xhhrtc7G4FHpcp15gNF3jzmRvs85e4\ncuU6hk/n4yRqHoqVy2sicjzWLl4yV0/dFUiRU+cWHiHFA9uQzlsYkuHIcBJrjBrzM3hgFMsr+KCU\nwqqEQGS3DvUdTJpCILBMoL+ImdbZw4s+cahR8pwrzWWidpbi0CaI6l1xJ6lSKPC0DAd8QVKD2yw2\nRp5JLYz64X1L7NRIi5kaFIdrph2TqFzzdFNcp6x+sMM962yVNsmUG1b7bSGWmGIb/VtnPxaRSlWo\n7l21xudrYganhwKR3EH1TxStSPRgyx0QNhtthLzrpiJrI7avZyoy20g5dvqSjt00JkyY4Pnnn6/3\nWn5+vp133tnChQsVFBQYMGBA7baCggKRSES3bluXPjWGr2ec/VVDPJGKZEuPKehsiH728UEza2jH\nOstg413ph6LbYJ01zBDT3e8NzxhrlEtNM9aeMuXrYpB2ehtmkgv81s4meM9LLna+S10BllvpArfo\nLeHPN9F+YmKecKtfuMmu9jTbP0zwI489OF08Fuh5Qjt5uiiVIkWKkSHBbVahQ6h0TIaT7eEIE+xt\n9Fa9wkaIWCpQ1sqorSbK6xOSYqyZ/ftmcVQXftAzYazcUlKDIgm/kX5SPKoAPBM23LxCmkOl+KYq\nN4iKNriOheJ+ospklfIwS+Z2IbW1KjxupdMNbHEtXVTMbMvsZECT44ok2inkJSW2LvUMvQc5RFzU\nUi+r8Ik52lvkANUShLXGZeIqda2J6CrfJpLLulUWb2RgpyDRSLShc//m0Cs1rX1C0p8sogsC4tVb\nUpHB1zsV+b9EXl6eAw44oN5PZmamE044QRAEbr/99tqxQRC44447dO7c2c4779zic7RFbDsCwogN\nKs2XbVztpol+5DEnW2eernXk83WRJs2v3ObHdnW3ab7n0m26jD1MtofJSpWa5X2fWWCjYjlyDDXI\nXnbTIczMn+PXHvCYwwwX9bYPXGiCt5GQcl/kTqNM1s9wjzpJpo4mO8/l9x5n+EHZgvxc4+3uE/MM\nNVhWSGblqhp1ig8E1tjkSb9wrg90btC1eYwUAT4VmNSKFNIycZkCYz2BKV9q+8/5IVkNFXG1tWCG\nVc4zXJqIB2T4hWpnqXaFantIkSZirrjZAl1wpTRnSZOxndJkt/hcmohTmom+6uIjy5WpMtngJset\nUShDhrwk5RtZ2qmoU9/WyWDt9LDSLL11EyhT6iWfGS7Hrko8p6erpNcU/Ve8SPruqqIzLC1hcPcI\nHYdudR4lifXeWoVjUmKrIbKaiC2M/L+mEduOiKOPPtqBBx5o2rRpCgsLjR8/3iOPPOLNN990yy23\nSE9vueK37XFkR0Cc1DipQZ7KBr3YRjhOjq7e9/cmDzHcTr7jQnf6P/N98IUup5129re3HzvNr53r\nbGc43MG1pFap0q3uAst8pD9WmqUsTCtFRBzmu/oZrtCnPnGfvVxs9fLPvfLKK4afWGa1dcba08c+\nrU1DkiC2xpzi7/aGEX7lbQvrtaypwegw3vi4ldT0griuytUkIb9Mz4jPwmvrI+YdRSj3srUqw2gx\nW8SNMrwn07elKsJqgZ2k+Ld0y2U5T/p2I7UqMTdY6BT9dU6yDtYY3jBfhjSTNG3JsspqPXRPGglm\nyAyrEbd8Xj1Nssq70iU6YPd1l86+J65UH7fr6tzEwKCCyjcJRvl8XaJT+dBeqckbjG5ehsgW0spK\n0rUgHnpJpoT33tc8Fbmj4rHHHnP22Wd74oknnHfeedauXevf//63H/zgB606Thux7QiIJZaos4Lh\nyhvUlqXJNMGPzHa7ChuT7x/iVJcYZIzLnaTctlftN4cHPFardgtEa02zSpKUR7/oAh0NMCjo7dq7\nd5WZnarPcQkRyjh7+8gnxhpVO75SVGYjiYRnfARe85mNquU1ILZ2IoaKeL8VxFYu8KK4/japcYms\navHercccgQEiylSFVLZaFaEp8hbsJMVfZXheppdk+ocMJ0mTvZ3FDPdYZrUK50gS6TSBV8yzi0Gy\nGnkIqcEKK/VuRDWZGn7O8TrrovnGKzRHul5StFdlqV6uMcQbOjttC0FWvIlK1qdbsC5BPkO7B8ld\nR8pWk901kWqEtCSrQDUmyak1xFYTsbVNkf9N5OTkuPrqqxUUFCgvL/fhhx9upZJsCdo+tR0B4Xeo\nXTBRqTe2ssma5CwxVc2utaXLcKl7rbXMtU0oy74IoqJOcYa4uD1VmKDaYBN0NEg3Y+qNXWGmhZ40\n2XEKq8/0xF2M/2YgpcMAebpqp4cNikyos19UrFFF5Bvh+uNihTYlITbYQ4rXWkFsr4urxBHhJJsu\nsA2exy3Gh+ImiOgtOzxjYiLu2opoaXshJm6aeY7Sy6hmLMzqIi7uJXMdUOeBpDEssczARlKcNYUV\nqXUeZDoaZLOVYmI6OMymxlz/K54jpRsFn5tf1ldOVqbeg7uSmSQaqy4hvcOWqCw1yd+6xhy5ZlvQ\nFrF9ldFGbDsCwu9Qu/h4MYUqw47DNeigp9G+Y5ZrRJuZdvsb4Vw3esodnnR7k2O3BW97t/bfFars\ni3XmGOFbW6WbXnO5XJnSXWnWh8stnseIU2LWidvFIT4Opd51U5ExcalJbsvl1lsapjpX2livyWhd\n7CfFbIF1LRSQvCCuBy7UR+DbckS22QGkOVQLzBI3SYpUKQZqL11XmQ3Unf8t/Mdy8212cQsIqi5m\nW2aDkhYR22JLmyS2VKn17puOBiCwyXK5jlHuXdWhyKYWQTWld5NzNKtnmr8m1bARI0WimxPuIg1R\nvZn09gl1JFvSjXWxVSoyfNpss9T6SqLtU9sREBJbTnw0UpR6bashe7hAqdVmu6PZwx3uVEf6kb86\n05wkDUu/CCab5Od+ZJgqI8SNRIWonuorlpZ5zeeeMc5OInjsDrr2of9BFFhhov18Yp722utXpwlp\nRKTemksN3qlT4zdRf6Vi2iUhg0PCaG9GC2T/cYEHxRxcZ3Jtr6ZL2vbHTHGb6lxjRxmqxVWJi39J\nZNoYqsVd5hPf0LNFnbLrYroPdZBlj2bSlyVKrLDSMEOSbi9TIlv99gdZ4bVU2KiDQxBR4gXi5Wy+\nhfhmSv9DbAUZ36W0wLwPFxnRIYVoWXK7rMrihOlxZVHidzKbrBrSq4nYYm3ika8y2ohtR0CoVkiV\nJdsEpV7dakgXw41yojdNE9WIr1MdnOM6I+3qN75ppcXb7VLTpOloqd7K7Is8p0O9NGQg7gXn62mS\nMb6vopxn7k2zy6mkp/YXFzfePuZZYISh9Z7YU6Uklds/XCdSPNRYZaK1vdjqoqeInURMb0E68mlx\niwTOrEOQuSKKvySSeVpcN+wcvt92YbwSoORLlaxsjVssskiJK4xt9b7TzXaIsTKaiTI/sxCMaIQA\ny2yS00AtmRWmRCsVS9NVtok2e45Nf2HDGawcTdF5ZB3OpsRn/NlGRoQKUzlJiK1sdcL4uGI9mY3Y\nhTWWimzroP2VRBux7QiomYODau0coMRzgiQT814usVmBD9zc7CEzZPq9h+XIdb5DFdV88b8g3vOC\nF/zHCIzBWjNFpOhcZ/J6z01WmuUgV4EXH2FzcdSIU6mODNVZD30NM9f82vq1GmRKU9mgFq9EhYe8\nA0brbVeDlYvJamQt7hipHhOzsRmCulXURBGT66XCIs1IdLYdj4mZIrXWsipDih5hmcP8Ov3Kvmxs\nUOkynzjVAGOb6VTeEKts9JaFjjSx2bGfhArfxohtsyLtG5w/Nfx71KTcs+2qwkdhe5o0UvPJ3IMu\nt7FmlqLSiDWVDM8M/35ZSYp4139E59GUryW7kSLfeANia0tFfqXR9qntCKjNmlXLc5So1crDibwu\nuhphnO953e9VtmAi7Kibq8xQZrNzHVSvGHZbUK7UVX6im2xjA9phU7BBRwOlhuq49T7zogvs5Md6\n20mhaR66hTH70GUoSxTYxSHgU/OMblCb116WkgYR6VNmq1CtryztZYmIqBSX3QixnS5NNf7RRBT0\nlrjHxP1EmrhAcaiF7EaL1+dagw/FzRX4VoNrnqijdCne+oKfTWtwsTmqBdsUrT3iXWlSW0Rss80x\nyAC5jbQgKrJWpwYtb2qMj2se7DIMVGUpmTsjQo/X6f4oab1Y9IBPFydSmSPzw/XWhi1rytYkCK3r\n+KYNkGtSkTWKybY6tq802ohtR0DN/BtUy7GHVF0VN+K6v4/fqrLZTH9q0aF7GeQaL9hgtXPsb33o\ncrEtuM3F1lhquHJjIggoVyknnJwqbfaAb8rV1wH+bL3rLJi/wruvsPcZXeQZY7G5dnGwVVbbZPNW\nEVuubMXq94d52mxZqiz3qbUSDqsVYjIbuX17iDhRqmvElCYhqZjA2apMDFvGnGe2jh4VFddNxJov\ngdhuFtUTh9W55jiypdpJx/8asb1lvb9b5HdG69ms+dHWuM9bDjRKZ0lagzfA+2ab0AR5brB6K2Lb\ngsRnkK6vuGKxjBGopmpOYnPx56x9xyfz41IjDO8d2rBlNeievT603eoyLtG6JqeRTgQNU5FtxPaV\nRhux7QioDSyqRaTKdaRNHk3aHTtXX7s6z9uuUmxpiw4/wCjXedlmG/zE7rXGs63BbK950LXG6Gi0\nA3ULhhAhP7KnQnNUKfWgb9qswPEeVe19a/3Rk7f1lduJnsdukhk+5Y+3b22aalSDiK2vzpbbIBY+\nsW9Q4iHvOMMUezjETgYKBCrFGyU2uESa9QI/T2Ix9kvV3hO4TrpUEdeFZQSzbNBHRMF2JrZigX+J\n+ZE06XXSnuVicqTZWScffGkJ0C0oF/U9s+yis7MaEXQ0hSUKveYz37FHs2NjYt7xgckat0Faa7nu\nDUyXa1KQaWFKMi30roylJwq2Vc+h4GVe+iGp2T5eVGpoDll9+ySUj6kNlLJF8xKF2bkDKV1Bu0Z6\nzUXLE79rIrYa8UhqmznTVxFtxLYjoCYVGSQm4TzHqTRPRZ2eZnWxh1/L0skLftniUwwwyo3elKOD\nn9jdKx5u8b5lNrvCqfrqrYciB7vGgMiTBphukNNV2ewa+Qq85QTT5aiy2BQp5Tt74PZC+59KSlZU\nsQw9DJCvr099JlPmVlLw4XqqVG2xQvA3z4qJO9+R3rPUXobVeiimN3H7DpXiOuluE3OeKusFCgR+\noMpfxVwn3V5S6xVGP2eNPiJWSbSE2V64MXTw/FEDsUWZaBixdTLPZmVfsoDkYnMsVuoOu0jbhq/+\n3d6QI8MxJjU7do5PlSq1WyNj4+IKrdBdfaeQqATBpIZ1fSmhmCSeEiVtEBXvM/2oRH+1LlPN2cSY\n9uien1A8NsTG+eQNSRRnV6xP3qsNYg1VkeFn0RaxfSXRRmw7AmqCiiCxztPBIdLkK3Jn0uGZOjjQ\nleZ6wOeebfFp8vVzozdMcrBLfMuVzlDWxFpdIBAXd4Nf2GC1wdaZ7FwddVBloVxTDHCYsb5rhGOd\n4jU9DbLYwTIN886DJynasNnkMzP1NtnH3raTRMuQzyww1KCtGlDuZogMaZ7wvs3K/cOrTrCbFTao\nVG0PQ1XXrr80ffueJtXV0t0gpqsKfVS4X8xt0v00JJl2dc7fSbrBoUpx8XYitiKBP4s6Q2ptl+8a\nFIdF5mPkiQt89iUKSJ6yytXm+5NxrSrGrkFc3D+86ni7at+ESXUNXveWdOkmNbIWV2iFqGo9G1hy\nVYSp5szwGiPh2m2gmrTBVC9O1KXt+VfB87N8VMK4DujSg7QkXSE2LyWnD2s+Sfw/mU8kWyK21AZr\nbG2qyK8k2ohtR0ClRNQWS1hSRaTp6DuK3JP4QifBaCfpbz/POFN1gzWpppCjg8s94Bf+7jl3+67R\n3vBE0rFnOFe+IZ5wq9Ey9TPa3i7zuQMs8Q0xG6XKcJQ7HeUuPUxU4CxEDDLD3//2e7sdmCYyNKaX\ngy02xyQHgwU+NzSJgW6eHFOM9xdPO9a11iuxv57u8JQs6SbqXxuxpTZjLxURca40C2X6t3QPyLBY\nlh/UiZza1ynynqKn4eFX4rPtRGyXq1aF3yQpJi9SrZN0w0MPzi+L2JYodbK3fUPPVltn1eA5cyxW\n6AwHtGj8q2baxcRGm9euCEsB+jRIiVZI9NzKTtY+J7UXNereBW9Z+dkcG6oZ3wHp6USSpA1LC3j/\nTX5/UOL/uY14W9ZEbGkhadeusbWlIr+KaCO2HQExiarg6o9qX+rke2IKFTdiKRQRcbibbbLCqy5r\n1ekiIo52hjt9YqAxLnSUK/1ItEEq7CWvWqdIFx30leJ4j0mXoyoslq5qsMZX5B82eVTv4G8+eOly\nb72zzMFnRcVElYcT1cQwYlvoc0MaMdD9of2sUewlc93s+9Zb7hPLDJEvXVptnVtzxFaDvlKcJM1x\nUnVtsM86lV61v8ftZYgOekqYXM3ZDh7/74q7Tsyl0uQ3OG9M3EZVOsvQUYZuMr8Uyf9m1Y72uo7S\n3WVyi9vSNMQNnjdOX7u1YG0uYbn1mn3t2eiYpeZKk75VxFYWEleOGll+zT2ZSmo34hsSa2bzXzdb\nQigyNi8tTBkm+czKVlFcSrw4QVLteie/oGh5Ig1ZI++vSUW2RWxfSbQ9jvyPcOKJJ0pLSzN13DhT\n4yhGt9m127ONlWMv692go+OSHqOLYfbxWy/7jeGO1cfurbqGngb4s+mm+4er/NhmRX7n/trJ7xLH\nu81Fhog4xgy5eiv3kU5OV+plWXWKsqsVWOk8nXxfXlnE366/QZ/+aQYdmaXaYIss0M9wXfRQpcoy\nK5JGbDDFBOvdJCIiVzb2NN0f5TdQ8W3rJF0XEzyrQLmY42uPuYcUL4i76Asct1Tgu6qME3Fekq9Z\noUoBeoTvaaRc72l5h+CWoFrcCWZaoswbDtiqf11LMd8qT/rQrXVNiJvABz5SaJ1DmojuPvexfkZI\naxDJblYgW+fajvGx0AcmRXuJ5/AgIekvKPBBSYaOKQzISSEjL+EwUhelKxM/A/cnWE9WYeNrZtGy\n+ubI2xix3Xvvve69917R6H+34L4N9dEWsf2PcN9993n88cdNPfDAxIPmZgnFV7DlC9HVWUq9rNzH\njR5nN+fraRdPOFXVNjj6R0R8ww9c6J9e9qBPvAWecZfbXGSwVIc61yAHCwQWGK/IbYaZk+hiLLEW\nt8IZUuToGVxp9bzz/edJjjszam1qtRGO9aFXjLcPEsa4cXGDm2h5kicnJLUE5lllmPpS7WSq0dZg\nlXIFoVjhhbCZJXxDqlfFrd/G4wcCP1ZtqcA9MuopIWuwOhSt5IciiSP19Kw1SreTgCQm7jTveN5a\nD9rdmG1YV6vB1Z7RTYcWqSFhhhe0194edm10zCIfGZSkFGCT5TrYElXFwyg2NUzXEiRssyrWe29j\nzE4ZRFJSEx6RlRsSDUNrUPBK4veP7mPyoVs3IK2LaPmW9TW2OWKbOnWqxx9/3H333deq/dqwfdFG\nbDsC4tgk0WMquqWDdp5jpetjnasb3TVFmqPcZbMCz/n5Nl/C4HCSiYi431/90fcN1tlkw+3r/6Ce\nOXO0TouaInfYbLo+bpFW9qwb71oiLZ09T6dapZ72t8SntWnIRaHFV2OpyC3niBpgnF+5wgobars1\n19y0XzRZOLNO7djiOg8F35IqwP0t8JtMht+KujsUqYxs5CtWQ6i9Q/I+Wm8VYp6vQ7Dbiqi473vH\nPZa522QHa6R2qwVYqcgdXnWOQ5ttUVODJ8xwsP1kNDI+KmqhDw2z01bbinwur859EVWIiFSdiJcQ\naU88SkWZdzeUmZQO8cTaWaySkhVbDrZ6ZkIRmdN9i19kY4iW1Ref1BJbW1Lrq4g2YtsRUENsULVF\n4h+RrqtzFblbleWN7t7FMIe4zodu84lte1IsDB3U42Ju8Au728NgG4xXJhJO+hvdWzs+Gq6FVJpv\npXN08n25wWHKV5znprs55lTKO3WXb6IlEpNNXWJLl653bSe35HjI45Za7sqwqWnN+k6NVD2Zp2Rr\nMMsGvWXrLMOGOl3Y8kUcJsVNoq0+xxWqXS7qCmmmNpHpX6ZMqkitpdZQHQzXwRNWbtubCVEu6gQz\n3WOZf5vs25I03mwF/uRJOTL81EEtGr/aGm9711EOb3TMMvNUKjciSSnARot0qpOijlobroymES8i\npRMVRdYUxS0v2mzSWWdQXUnH4YkdiuZuOdjaWeRPTvy7aiMZzRBb3YiuTTzylUYbse0IiElI/lN6\nU/V+vU2d/VCqDtaFvouNYbzTjDbVU35oXYMu3C3BGx6Xp4ub/VqeLtp5x0C0s0TUGlVWKDRNdviU\nHagSV2GpE6XppZfrKH/Gvx5ebX0Rx/2clZFio53oQ6/oZ4QuYeSw2DL99d1K6t8QhWGbGjrqIU+f\n0Pm9JrVX9QVjttcUmqSTsiS+k5dKN0fghhZGbVUCP1HlN6J+K82vm1m+fleR0XLrteg5Th//sVzh\nNnaEK1BmPy972moP28OJDYqfW4tl1rnZS85zuLxG1I0N8bAnpEp1pMMaHfOpt6VI2Spii6m20eJ6\nvqNRK6XXRJzxQlK6UL7GO2FgNmnPvRP/WLMhUaC9LnwwjMdYN5tuYYF4xYZtjNjaxCNfRbQR246A\nmrkzfXfKn6+3KVUHXf3cen9X3cTTfETEFLfI1c+DvllbD9QSbFToaf+UpZ2PvG6CND2NdrRPDPKS\nLGMU+rOUIEN+7KcgTb6VfqbSp/r7j9QgR2zDb111G4ccRcfBPURVGu4YH3mtdn2NxBrboDCt2BRO\ncQLobpCJ+tcKF9KlSBFRsY2pQvhciTet10eOCjG7qe/6vqsUZ0r1a9VebuY8s8XtrtLtYm6R7jLp\nzYos3rDOnurbP/3cMBFM24YHk2esspPnrFTuVfs7SiPqv1bgUg/JleXnDm3xPvd52EH21aWJVjhz\nvGGQsXJq180SKLJQXFRXI2tfq7JYes29Eisgnku8yjsFdO3U0YD8ruR15Y1H6LknSx5PjF31ekLC\n3z2MCivWNW6ADNWl9SO2WmLbukzja4GquVS+/+X8VM1t/vxfMtri7B0BtcS2NyUPEltN6pZ1ka7O\nsc411rpCb9c3epgM7R3vUf+wi0ed5NserzWVbQqzPKtKhTWWGaK7jqod52Ht9ccocaU2BLfqXlwh\nErucLqzwI6Ve1sftsk2g7EFPPPW++Z9zyb8pjAzQTRcpOlniUye7sPZ8SyyzswnNXleePIEiQ51v\nRJ20ZUREttQv5NTxL0vlStdPjgwpJiZxub9SuvkC+6syTZqfSJMXElZU4HVxN4v5j5hRImbKtHML\nnhULVfjMZpc0aNTZVabzDfcHcx2rt700MRGHWKPChT5yhyUO08OddtW9BQXUzeEDS9zlDdf7rg4t\n9JRcboXXveUfTdyjMNurJidJVa4Lrd661vm7VFok15SEKCS6nCBRQjBzDbt1SRe5+DDad+KTN9j/\nfJ4+hlVv8OFVCUf/ecuJz08QW0MfybqIljaI2ML60a+r88j6k30B29hmjv0lHbcVaCO2HQE1xJay\nGyKUP0v779ZuTpWnm19Z41JdnSuzEZk8dDbUse53nyme9wuHuKbZ0+/nOPO950V36meD470kr47V\n1To3CCJRnbLukJ6yk06us9mT+rpTJ98liAo2XmrajUzejTGTMz0f+dSuzvWhhDJtvH1rj1dglaNN\nafKaAoEHPWZ/+1lkrbEN1opypdn0BYhthtUmaecj642WKzPJA0C2iMdk+IOoS8KfoYnVHosFSjBY\nxA3S/UCqjBaWH7weplj3SUJcFxjhJWsd7Q0P28O+jZgEr1buegtda4E0ETfb2ekG1bbE+SKIi/up\nO43Sy4/CddGW4C73yZbtWN9odMxqSxVYVLveWn/bh9rJ1y58z3FVqiySaQTxdQQlbK4SS8nx1voy\nF+UlbNeUFDF6T/oenjA7fnivxOu7Xs0l36HnQCYXNh+x1TVIronY0r6mEVuXu+kxsvlx24JVc3Hy\nl3PsFqKN2HYE1Lr7tydjZ8qfrkds0NXZ1rvear/RvxmByCCHOMR1ZvipTgbbxc8aHfuYv+truBAc\nmjAAACAASURBVMMcpNhfHehKfe1Vuz1mo0LTdHGGjKzvgb5uEwi2pNtKbvXiK3PNms0tT6Yrs7tK\nLxvhOPe4WS+D5IfEFBW1VqFezSj1Zprl277vDOcKBMY1ILaOMhTVEXy0BoUqvG29uNlyDXJAAyPm\nusgW8XvpfizNE2Lmi4viFBH7SLWLSKvJ5GWFBmqnb5J1q0ypHranY7xhfy/7pt6O1EtfOcrFzLPJ\ni9Z6zhpZUv3YIBcaqUtYNrA98E+vmWmhl10krQURPwkyvMM9jnd0o21q4H0vioiYaL+ttq32nh51\nTJOrLEBMppFEE04lNqz38erONsfK7NkJdyzi9Qe5/QLWr+ScV3j70oT0f3n4xLh2ceLhsUliK6mf\nioyGEdvXVRWZMZLMrVWp2+fYX85hW4Ov6af2FUNNxBarJPtINl1JvJyULSmgFDnyXW6FHyh1jnbN\nFGNPcqaNFnnOz3UxwqDQyqoGVSpd6jiH+Z6IUo/6jkH2Ndl59catNU1che5+U+/1WlKLF7PxMtNu\nyjRuTKVdp1RbGEnXxQjdjN5qfa3QOoFAfhNptlKlZpplhKHa6ynVIqMarBnly6xnYNwa3OpzGVJU\nWC1uhJ4tSN31EfGT7fB1iQs8ZIWjm1CEdpLhRfu5zef+bpHT6vTmy5FqD11dZ6Kp+m1z0XVjWGWj\nX7jHyfa0r5Y/0b/gFYssdkczachZZhhuZ7kN1uACgZVmmeSs2tcqJFrUZBlN1YNIZc0qr72xQkaE\nSdNX0bUHB5ySILbMnIRAZJ/rEgd4/IbE75o/UVOpyOoS0uus+X3d19i+5mgTj+wIqInYouW0m5pI\nuZQ/udWwTk6VZaKVzknaYbshDvBnAx3iEScoCm2wavCsu73pSff5szedI0uKYV6xwW21YyrMUehq\n3V0sXYMGjeXPsmp31hzsjVmbvPB6pZ9cmCPNIJ+babSpSm3yuY+Ns3ftbmtD1/78Rvtw8SuXOd+l\nrvVHxVKM1lt2gwm8jxzLw1qw1qBa3I0WOVl/cbehnYGaKNzdznhFoQLlTtaIGW+IFBE/Mtj7DlHi\nWJ+bosCRNjvWc/Z1piHbndQSheV3yJTuGt9p1b7Xu9UYI+3VxANXVLVZZtgtSRp6gwXKrde7zv7l\nZkvXW5ouVL1H+mg2zPfaEnbJI7umh1qXnjwTcE6DzvL7fDvxu1f4EJFVXyBUD9UlCVVlDWrW2L6u\nqcivOdqIbUdAXWL7f+zddZxWZf7/8ec9MwwM3V3SAraAihhgB8aioqiL3d2tu+auuvbaGCjYAbbY\nGIhS0t09MEzn9fvj3AzDMDOAtfj9zevx4DHc51znOufOz7k+8f5U6UhyDzKHbjIsJlELD8n2o1TP\nbHbaBImOMUxVdXzmmo32TYjHvhYYL1+G3a2VrLoV8WLsQunmG6hq6KhRwYkbT5w/m5UDyPuevB/d\n/lgD3Tqz5wl5MmO95cnQ1UBTfK9IkR1KaAaujEeWGyn/7nmMqOThS6ONM7+4MLskbVQ371corbxl\nscWyXaijVXJlKPhTDduL5mmnhj00sMQa+7vTYqkVHlNDku3U1FzK7xJDK49nfOldP3vcYA1KZSxW\nxCxzjPChi5xdYTboBF/LsNZejtxk3yLfIqZ5CbWSHONVs1P0IO9ntFeUl+GLRexbH/N+qfjC6jbi\n/UKuit+sVS0/U1N++saGrSCfhIToXyV/OSrftW2B9QL+hfEVSI1TyH4/yo4sRQ17q+dUy1yroLjO\nq3yqqWsPV5nuLWkWFG8/x93210dXBfZ3oOoIctR1sqDQQqfIt0CbzKMkLO5AzhfRgbnfs6w3iU1o\nudp3c/7rw8+WuPjKqhISYpbI0Ug3DXQy3pfqa6JViS7ZqXE9xPplZCESrRo6xwux97anKRbrbtMe\nWturbbFsaVsRZytU5FaTHaSJzqqbGdch7LgVP+K/hdVyvWKhwdqKiXnfBF+Y6p/lCF3/mUyx2CVe\ndJb9HL0F/dZKcr9HNdSguDyjPL7ypiZa61xG89EFvtTYjsWq/kGQZYwUPQi55E0kLdEvy5KszKVf\nfTQMvNaLsXduWGGVJiGBguh9LreOLQTy0kkuERvMz6XK7xe3rOTPpdKwbQus/23Oi8uP1DiZWBUy\nyl6VNfNvFFnqii2afkenSlLNxBL93aZ6RrKv7aO5mJfiW4s0cL7FzrfOSK3DC6qteQZJrD6dvEms\nOJQqHWg6mvzg5vPP071zzN5/r65W7FizfaqTYxClde9kn43u4tdKExNTqxxjcrM7fexzy0zXSXfZ\n8mxfRjyqWzxB4ZdiyZbN87IFplrnMttJcYYRcYmwDmpu5sjfh0fMEnBe3HBPi9clDve9vD+4yWhF\npMs2wEO208gDW5nNtsxyQ7zsImdLqaAsoFChr7xpH8dusqoLgvk+16ZE5myuGQqtjmLJeRORz9Kl\nRs1romqVJHvd8h++PDNqHvrDDUx5qsSEgfw8XriZtFUbvldVynmfC3MIhRvH2AryNo6vZWcT++NW\ny5X8vlQatm2BXORXYXVc7DixHtVPJP2J6AtXiiSNNXOvNV6Q7pPNTp8kBcFamWb42Vdu9ZWbdVFD\nBwna+1o9p0nS1CKnSfW0lp5UO6dmpPZQ5zoK5rJ8fxLb0vg9Ehr5+rOPfTqNq66IKaiyRqaecqzR\nxbHy5ZlurO6lWpdkyVZddQllfPQyZLjdvVZaJVOW6fFCm25lrNi6qaO6RN9uwaoV1spztYn+pqW+\nmlvqYTHVNVVNjT8hh2qtPA+a6SztNIxnMI4zXy3VpMmyaDPuyD+KIkVO9rhFUr3uYtW3MrvyXx6S\nrIoLnVXhuPG+sNpSfctY1aWaKc182zmoeFumr0UpU3tGXgJVmD/dJ6MX69O2oWopExE49hva/41J\nj0QG7Y37uaQXHz3Dy//kg6fiAsfVyq9JW2/4yluxjRvHmDEceOCmx1ayTVJp2LYFArKqs3zMhm21\nLqBwIVlvlXlIPaerYT+LnF3c2qM81pojT5Z/u8eZdvOV2+wUuuhSVKRT7tNq2FuK3RVYJtdM2/lY\nfaeTMYTENlQ/NpoooRFNPiKhjvDzv1x30Ul26Zak9ynNVbOzeaaop70mdjbTOHlydS+lCJ8jR9Vy\nkh6esSGumGqNyRarqZrWNg36V5FgLw19vr7xZAUEwWXGy1TgQTtLlqSpupbI0/ZPiq/dYapcha7W\nufiaxlvg8Hih+uLfuWXNlnK914wwznAXbFQEvyUstsRjnnGZ89Urx7W8no+8qKWOuuq1yb45PpQo\nWZsSJQCZvpJiF4lqk/M5SbvJSVvly8UcWCuLWa+ywwXUaEr3CyKNyPkf8+rdzPiRR86PJvr8JYry\nSKwg0SYvrtJT0rAV5FElfsw//kGHDpx00pa8LJVsA1Qatm2BImRWZcWPhHi2Y9Vdqbo/6/61cSuO\nODExLT2twHLL3VTh9D97XFKJlPYWdtQ6Nk3z1dmSMj8E9Z1mO5/oYpZa+pE3mayXo9Vale7U+SdN\nRpHYmMxlPnxnmNFzuPWaAplVF6vrHNO9ZXvHiYn5xbeSVdNhffC/+KkWlblaS5fuTverH4+xpKhm\nskW6al5uQsJRmvvEcvM3k0TypDmeM89DdtGiRO3YIllabaGqxm9hmnUeNNO1uhSff7k0qTLMMRas\n3AqX6u/FQz5yj5Huc6LDtkAJpjQ3u0tNNVzu/ArHZUn3pdcd5OQy38tZ3tPaPpLjNxlBkOkLNewT\neSxyvyC7qS9nklXAoV2yI/dh579HE7TYL2ogOmcEaSs3TLzrQSybE3UDiFXwU7e+j1tyidY+JVds\nH3/MGWeQVFkd9Veh0rBtCxRhXVKUmbWmhE5gnavJ+5HcL8s8rKr2mvqHVR6U5Ycyx6RbYowHFcpx\nsGoOkqizKWo5VN1GedSPxJUTpKjlALH1jR/TbiexFTVPI5ZI3RtJak4ICoft5JpnJujTs5rdj2kr\nIVbbOs1kS7W9KMV6ktG211OVUquzFCmyy6g/+5eHrJOut146aKerLn6xeBPFkZIM1lZtVdxfop1O\nad612IV+dr72Bpdqk7NKnka/Y2FzWRQoMtgYbVV3ZXy1BjPj7WnG+ALk/skxtud97RJDXeFQl1Wg\nxF8eE0zynJfd4poKC7LhU8Pkynao0zbZlyPNPJ/rqH/xtlwz5Fuopn7kjYtU/ecvMXJWI22q0X3P\n6nQcSO14yUQsRqNdyZxFx91puwP9Tom2b79X1HG7vOQSIrktSCmRqZuft8GwhUD1LROBrmTboNKw\nbQus76AtxvISBqrawVTZmbW3lXtoQ5dKsatFzhZKifUGwTRvFG/vqreeYpo7UlvvbDBipcn5kqzh\n1L2VWPKGFh4wdYiXvlph0hLuvjbH2hpp6jnFNO+qr6MmdhYEk4zeKM1/PTVUlyVLQYkf8gkm+ZeH\nXO58M8y2j70EwRSLdatAzLemKi7W0RNm+8rKjfYFwaNmOs53jtLCg3bZ5PjVctX/g2US7jDVj9Z4\nXk8pJWJ5c4pdqFEjzUy5f+h1lOQF3zjdU860n387cfMHlCIILnGdTjo4twxjVXrs2x6zh8OL1WdK\nMstIRfJ1dnTxtnQfiElW037kjCJWXZj2oxHfrnTE4X3FYml0OH7jiRruxKqJHHAq8yYx8HpmjqV7\nn8gNWZRbpucDGwxbyQLuyqzIvzSVhm1boBA5+TTozpKvNmyPxah7S+SKySl71RaTpIVH5ZhobXF2\nY8Q4T/rYxTo4zAFu0D58rXM4Wmsvl2/UQh6pF5G0G4n9mf4iQ5qydiY5qbI/vdgNI/hbP7r2aasg\ntkY9Z5rhHV38TUzMCgulWmb7MuIpnXQQBDNEEkmZMg1yts7a21dv0810kgEWSZUtT6fSheGluFpn\ne2voMF/7p8k+s9zT5ujpUxca5yztvKyXJAne8KNzDSk+tkCQ/Ad+Bd6zxG0mu0VXe5aq25tqiRQJ\nKJQiwYo/yRX5mE8N9qTT7etxp222C0FZvGC4L432kLtVKe9zFGeCr8wywbElFEVKMsUrWthT7RJG\nL91INfWVoEZU9hK6m7gomJ9B/x3yqN6M1qXa4tTpQNZSusY/cxlrSU+lQYuoD1tRQZREUhZZK6KM\nyKQSCjT5uVT57WLSlfxvqHQabwsUIi+bNkcw5cnoS7i+wWHKUfFV2800+aLMlOPqeqntGMvdqq4T\ni43WTyJJofqaq2WIKgVVtVo+WkLT1MitWBZpd5A/lW+TSS0he/X1RdTq6D8fZ1qezt03kVqvjup6\nW2mNbKt1FiWZTIm7RctKFNhJdzDWeB21N9AZ5luok6VucLXOOuprH5/Hld47alLhS5ciyTv2dq2J\n8QSNIgli9tHQ5/azX1zhZLV0A0RSS1c4VEdNFZXUu/ydGWeNgb53pOZuLKXiD+/42b46+BAt1Lfk\nD04eKVLkFm+63Tsuc4h7nVhmrHNzrLDS5W4wyHEO3AKB5OHu01ZXPWyaUZhtjdk+dIB7i7cVWifD\nl5p7gMKV5H5Dal9vTK6hbt0q9ms4lu7Xb5oMUqtt9Dcz3pC3MD9aoVWrQbV4YkvOaqqU4VLMXk71\nUp+zvJzKFdtfmMoV27ZAIXKz2O6o6Mu3dPSGfbEYdW8n9ytyPi53isaulWfuRrG2xHjCSIZhktTX\ndlm6hMKlFK0te5LcH0m7k9QdSM3asL3X7Sz42NIfn3XXJ1xwHK3aNZaROEEDZ5vmDbW01Cxe2DvF\nD5poXdxYtCT11NXDrs53pW729IFPvegxyYLx5jojnmAw2woJYtpuQeuWGpI8bFerHGWmQ6U6yuf2\nLzZqQXB0iS4H62vGqkmU/Rt6upXHL9Ic4itd1PKSXpuohcyz0jRLnOUQwRpdtDS3lCv19yRDjuM9\n4nbvuNsJ7nPSrzJqkeTW5WJi7nfHZsfPNsm3RjjRVWXeQEw2TFBUHJeFdUagQG1Hkv1edNaJ473y\nY5Gj9+8uWQ4dy3CfrjdMBenxDbFIwDhjDSlx+bbs5WVfaNayDWPWU+mK/EtTadi2BQpF2ZB1ulGj\nOXPf3nh/ymFU7c3a6zZkTZYixS5iqsg2sXjbAEMcqaPOoZl2GaeoUuMaal1C8qYrCEVrWXUCsY58\nN479n+LEyfR7nrUzENz4Vq7k5AQ3X0dqk90kqqe2v5nmTV1KFN5ONabM1dp6PvCacwy2sx384FNH\n6+9kTwhiTjUQzLVSS/Ulb4VToaYqOqilTqm42Ycm+sYMTdTURfPiurjmUiz+FXqTFfGTVH19oZkU\nH9hHzTJcdZ+aLEHM/vGVXBfNTbP0d72O9Uy1WC+3+sgkb7nENY741avU5w3zlpGe9IDGW3DDMdSd\nmmjtwHJ0Jyd4RgeHq1niBmitYarbS7LWZL1LrJuJ01aZsSzbCe3mRS7Iuh02nWx9L7Uq8Z+0vBxa\nbR/F22rFO4lnLCz7QrOWUaOUyzs/h6p/fMZsJX8MlYZtW2B9HkVWOu2OjWp0ikpkycVi1L0nyhDL\neqXMKWKqSFRfgcUgz3yLHSEppGmXe4Ok1deQfg/1y+jPVpTNimMoTOWXujTYhe1Pp35X0ucx/QU/\nzmfId4X+cXaROnUaSq0yRj2DLTVBhiW6GIBIYWKGn3TRo9yn20B997ndq4YUNxx93nCHO6hYHHme\nVdpWoCe5NdzvA6yx3DJ72vCj2FZ106WXf+BW8rbF9vWF7dQwyr7FhdilGWGcHtqpF09v76qFuVZa\n9zsa2SJFHvWJ3dwMxrh1q6WySjLVdBe62mAnObYMrcfSzDbJZ15xsusllWHcl/rZMj/byenF2wqs\nlu4jdQ2kaB05H5Jay0vf0yCZfq0XsUPZsToJ8ZuZqlWj78uyObTszOKZUVJIUgrr5pV9bObSKG5X\nkkpX5F+aSsP2P2LgwIH69+9v2KhRG7QiM9bQZTCZS1jw0cYHVOtNyhGsvYmwaepynvkKLJeih0zf\nmaWnWFGGDotXqJYRd23WGLzphYR8Vh1P3g8k38/c79j5ig11Px0HKup2oYs/amuHNlWdez5pjQ9T\nGFutgXNN9ZqammkVz4BcYJocWRUattLMNtePfjbIccXbFlit9e9g2CZb5DNTHKIPajqjhGzT/hob\nI/VX93VbT55C15jgGKMdoqnP7Fduf7RFUo00Tn87GCq6SdlbJ0EwuoKyha1hhqX6usuFXnCaPsa4\n1fYVZJdujgwZBhisjVYe8a8tOuZJ12muncNLGK6SjPWw2lrp6PDibWu9gqCuE8h6nZCjYNwkQ39K\ncGJXqlRvuGnSyHoK4q7zGg2j+rVPnouKrJOrRYaudnvSZpV9bObiqA6uJLnZJG/9im3YsGH69+9v\n4MCBW31sJb8flYbtf8Tw4cO9++67TuzXb4NhS18d1eM02ImpZehE1r2TgjmRIkgpsk0AydpaaJAq\nobkOSzIlJ/Uh8wXq3ETDUscVZbJqINkf0fANRj9D/W4bp1LX7WTI7J19P3Geh67IlZjUwOpqU9V0\ngGQdTfNGPBsy+ihNixccdywjvb40yy30oEu84k3VVXd4CUmlRVK1UoEa+xZynVe10dBCa/TQzl46\nFu87VDNFgg9tKja9pYyVag+j3G+Gf9vRa/asUKLrSZ+rrqrPDXOKc00zQwdNNFfP+/H38NeyVqZr\nDNfddRZK9alrPWqwGlvQb648ihQ5zYUWWOR1z6mxBUotP/nMd95zljvLXK1lWmGyYXZzgYQSr9Ua\nQ9RymCSNyXiBgs4+GZNhaXqRwf0b0OXk8mWx8uMr7yo1OeJ8pn7H9++SEtd/rNOBtJmbHleQTe6a\nKARQkrzsX7ViO/HEE7377ruGD6+4GXAlfyyVhm1bYP2CYfWS6O6y65nMG0HG4o3HJe9A9eNZdzdh\ng6uySJ5Ca8Ukm2VPBWG5VqurSipKjHQdq+5Jfqm71bxfWNYrMmqNXmfhapZ9S4dLNmRkYs2aNa69\n9hon965i3yMTZNUfJCv2owYusNRY6yzUOS56DLOM10J7NdWxOWqr73S3eclrjnJo8Y9mECyXpukW\nzFERX5tuhHH2s73JFrvHCRvFl1qpbl+N3GaydBUU8JbBfJlOM0ZPnyrC9/q5UpcK41dZcj3lc4Ps\nZVlcAHmFlWJizrKfJ3xWLIy8NaTK8A9v2c7lHvGJ6/X3i7v0022r5yrN9f7hDe960eO2L1FgXh4F\n8j3kYt3tZf8SK/CS/OhhCZLsUkJfMstPso1V35lRW6TcL1mc4JnvqureINGujVaz/RnlnzgzHqOs\n3oQ9+3NevNnojvtSWEi9zpHsVmkyFkV/a5aqscvLroyx/YWpNGzbAvmo14zpca3ILqeSmMIv/910\nbO2rI0HirA0JJqvca5G/a+FJdYsO0Xp1TdVy5tPoLRJqicQo48Wphcuj0oGl8XhL0x9I6M3oy6mx\nOzedzagXi+e++uqr5WWv868rkFDH6pprVNFSbUeY7i0pGmhdokP2bBO1LyWjVRb/caHz7GmKWaaY\nXpw0QlSsnCNfo80oWlREoSKXGqqndtbK0k0L+5XREfpJu1si26nGyNqM+kcQjLHaacbo6APvWeoR\nuxrrALttweryv0ZZJcNVDpMRlwFrGNfBvMYRWmngVE9I3Yz25/prGWuO8wzR2qXuNMKp9jbLfW51\n7CaNWX8Nj3vWPR50r386uoTLsCJe84D5prrMo2Ua+RxpxnrYrs6RUuI1S/VE/HN1GBmPE6tjyegp\n3v4l3znHthdruV9U51ke6fMj9/l6l+JRF/FWBg+fx7PX0KRXZMRKx9nS462c1ieYrOdXuiIr2Tao\nNGzbCh16MilenJ1cm+1PY/ITmxaVVt01akSa9VrxpsJ4cW9hwS9aLfxQ7exqkcFKOSAakNQ+SjpZ\n2JRFzUj7F7Uvo+mPVOnKl+dHd6jvjo/GT/uBnEyjv/jM008/7Z6j8zXbJSioe561sdc0cB4STfem\njvpv5E6aY5J2dqjwqT7vdm951ByTPOlZzTXbqCZqTfxHv95vECh+1Cd+Ns9NjjbCOGfbv8wf2k5q\nGaqXDyzV2kj3mGqM1ZbJtlyOSdYaboGL/ayD9/Uyyigr3GUHcx3ufB0kbcHXaK1MdxvpNH2010T1\nuGZks3hGYIpkw11gjhV2dqNHfGKBVUL8hqRAoTlWeN0YF3lBB1fq4Rbv+NmVDrPAfzzoFM02I0a8\npbzkVee70iXOddlmtCDXs9hsz7rFsS7SsRztybEeViBHT5cXbyuwyhpD1Xe2WFE+Gc+yroOnvk9R\nrWpVp3SaQZeKFU6kz6VGy41bzSyOxyw/eIrm+yHG4s9LHTc/+luzVAeJyhXbX5rKAu1thQ6788pI\nsjNIqckOFzHxYaYPpVupliBVe5M9ovhhE7dqnH+ChCWHsDaHScmcVCJm0OAJqu1LwUKSWpNyKInx\ndO0pT0dZmLMaxxd1GfQ6Uu6x9Z31Q6KeHWs6+9wkEoI1NauhSH1nWWWq1abr577i06y10lortVP+\nnfUC0w1xK9jenl7xngucKdGG2Mn6OrOqv/LjuUiqG7zuPP0stkYQDLRHueP7a2Gig91rultMdq1J\nm4xpp4aDNHWMFvppLHEr7wlv9Loc+W5xjPd97BLnON3Jkko8xx7aGesfrvGKS7zoIi9IlqSqJJly\nFcWN3HYaOdgOjrG7vrpKUk7c6VcyzOtOdZ7TDHK/O7aoPKBQobsMVl9TZ7q9zDFZVvvev+3qXLVL\nJLOsFnkmGjiPzJcoWiP3pyKPf5PglL4t1GmUE2lDVsSa6ZG7sSRt45/D/U6kWj0a7cLiL6KbxvWk\n/kLt7UgsFU/LzY6Kuyv5S1Jp2LYVOvSMNBmnfMtuB0W1Ou2OYfy9dD1jY3Xy5J1Jf4CidBJqScib\nyvKDonKBrxGbxazX6BQvZI1VoebfNz3n0tF8dSEJOzBrBgf8nU+fY/I37pieZ9Zafr6IhFZVhdrX\nWJ0wRB0nSNLINP+VrJbt9Cuebp4ohtGmDJffel5wuyoKFYrJ10yaqU4rVeeUHy+a/jU/2DnynOy/\naqnmLsc7yn8coJvGm4nXdVLLk3b3oJ39Yp3lcgQ0lKyjWuWm7m8Jo83wmFH+Y5Dm6mkZ70nW0252\nLrW6bauRV1xolXTfmmmB1fIUqBVv37Oj1r/bqqwshnjJmS52ihM85cEtLuQe7l6TjPagL1Qvp3Hr\nt+4UFOnt+uJtRTKt8rD6BksK9Um/n4KdvPTJeMvXxFy621x2+GfFbWdg7XRa9tt4W1IVPiyhD9l8\nP2a/vvGYlT/RaNOO3nKz/m+7ItdM9YdpApQVy/yTqTRs2wpN21OnERO/iAwbUdr9m72Z/yFtD9sw\ntmAhCXWJ1aBgASsOJ6kN389gXS51ULdTxedbO4v3jiSlA69M4rR7+PAZdtzfxCH3uGsu1x8Y0/2I\n9sSWyajVXZ65WnkZTPOmjo7YqB3OUnNAc+3LPGWeXD/6WFV1rbPWHFn2tocO2m00rmaxYsqmXQAq\nokiRUzzuOzOdqq00Wb4y3ZDNNMEsSYokPX6HbMz1rJJuoEf11tEFDjDb3OJ9s83dxLCtp6Fa+tv1\nd7uOzREEd7rPje5wjsEede8WG7VJRnvaDU50tZ1LxFtLstp0P3pYHzerYYPKxyqPKbRGI1eT/S75\nUxVNauXfX9Z01N5NdW6+nK6bef/y0qOMx50urXhc8z5MuD8SHKjbKZLdWjGWnv/YeFxBPoUF/7dX\nbJ+czLTND/tVlFMH/2dSadi2FWIxeh7ON28w+I7ocdM9abw7Ex/c2LDlfUdyr0j5fNUgipIYXzVa\nsdVBywNpXMZd6HpyVvN+f5Lr8f4i9jiG1t1YPEN+UXDa+AJd6nPDMTEaLaHWpVYnvqSanVXXyxpz\nrDDB3m7caNpl5quvqarlpJc/4yZr4qr2PfT3oNFl1kU1iN/xr96CJIqS3OYtr/sRP3raO2IaqS7Z\nsb+hMPm3kK/ACR6RI98wF0iS6COjivdnyqrg6D+PPHnOd6VnvOg217mpHAmsski13K1OZBTUAgAA\nIABJREFU0M2e5bogg+Bjl6itlT1cWby9ULqV/qW+MySHNqQNIHTz+ojJpi3iuUEL2fFKqm3mRmPJ\nV5GgQYu+0eOC7GjV0Ch+Y/D165Fu5F5HUK1BlJS1939YPTGqf2u2cTNcOfH+flX/D7eqOXAoO5bv\nWflNTJzKPSf/MXNvIZWGbVti3xOiwtK5E2m3U2Tcul/AZ6eRvpBarShcTfYoEuuz4hAKu/LZFGrG\ni5nrd2ffR8s/R/oCRhxM9ipmtCIxh0ufKs6EvOvrmSak8/3lJO+1O7HJ8moPtM7OWsQz3WZ4R6Kq\n2tu4WDbVMg0qUONfJKojaqCZVg7CaAMctcm4FMmaqGOKxZvsK4siRa7xinu971qHuNtI8K5JjtNT\nrT+hmWhZ13SGp31tuk9co6X6smT5h3/bQVeTTFGrHJfdn8kiix3nND8Z73n/3Sg7dXPkynGDYxQq\ncKtXNooXlmSyYeb4yHHe3WiFv9LdimRo7Aay3ybvJ4UTW7v14+oO2aOJXtutYKdLtuBJfErN1tRp\nHxm5TwZFGZD9no8yjH/+JHJL7nNclIQy9Vn2vCeKtyVW22AA1/P/g2Grt/2mz/t3m/uPmXZrqMyK\n3JbYuR816/HVqxu2tT82CmzPiktpZb2CXAqXknAcH06l4ZH0eTjav++j1O24ydSI3I9v9qEwl2qn\nMmkCN7xG7Qb0v8i4o//h9jlct38tu29fg7pTqHW+1MRXJaihbjwWNsPbtnOA5FI/zDkypZTxY/2J\nlx2khm+NdJpb/dsH3vSefvYtTncvTV9djTJ5sy9ZgUJneNp9PvCAk91lkJMdr6Vulst0chk94f5o\nihQ5z3OG+taLzrVvPOb4lBeslupIh0iQYD97/+nXVpIPfWoX+1pksa+9v1VGrUiRe5xupnHu9I6G\nyu4WkWG5j12sq4E6lZDiyjPPSvdp5ErJoRlrrqewq5deX2Dqoiy37buEnS8jZfOalBaNorApc3+K\njFrN1lGyyednkTqFS57ggkeisV0Gk5salbdM+E+kZFI6cWS9YUv53994VPLrqDRs/2uS40Hx5cuj\nu8q9/8ZnL1EUFztOrh0FxRd9Gj3Ojv8tasn7I8iswRPvMP+9SBOvWRk/liEw8xVe7xFp5u32BMMf\nYcBVdI3cMDn5+QbdO0T3Otx4ZAZ79UQQal8q1VPqOVWiWjKttNA3OpWx0sqTu4nSxBsedqdTNdBc\noQLt7KCqBr723UYSWqU5UHdjzTW9AnHgMWbb021eNNqLznGJg8GLnnCEM7TSoMzatT+SHHlO8bin\nfOFZZzohno0ZBP/xmJMMsMAiu9tFvT8wCaQiMmS40FUOdZwedjHOV3pthbs2auJ6hU8Nc4MXyhW8\nDoL3nCkm5qB4y6D1LHGZRPU1cg0ZT1EwTfZ3y934YXV/69NGz0612eWqzV9M5jJWT2L0GIYfSU4q\nB75Ev+ei787UUmo7DbrR8zYmPRpJae3zyKZzrjds/5djbP/HqTRs/2t69aJ9e+6N96Q6cDAr5jOp\nRGPRlCbkpkX/r3sLRd35ZlHU5ub4r3hgDA12iDoBZ5dKdUqbw4d/4+OBtDqIPV/ktkG07spJNxUP\nu+7Si8yeO9eLg2uq2rglNcZS6zxpiaMVWK6BcxF1PA6Cjvpv8lQaa2W5+cWPP/SCB13sIKeIiWmh\nvd3086q3VVXV0Q7bZI71HK+njpo6zL0WS91o32SLDPKYXm6Vr9DXbjSoxMosCEYY52923+q0/N/C\nUmv1dZc3jPWqCw0ukUjxhnfNt9A5BptngU7lJNj80Xziczva27Ne8qC7jfRKuavmsgiCp9zgNQ+4\nzKPlqovAGA+YZaQjPKdGiW4Aad60ztuae1BiYQ5rr2ddJ/e+mmHZ2jx3951Pj1sjw7Q5ZrwUCSBf\n+TZ1V0aJILXbRquw9gOiUpbSHTF63MzgpQxeQs0yNDSz4/Jc6+W4KvnLURlj+1+TlMRNNzF4ML/8\nQre9aNExirXtFC9aTqiyoVB79s98MZ0OgzjghQ1lANnbRTp5Iw+n06Doy7zs20iaK6URB79G4/25\nYu/I9XjnJ8V3pO+//74Hnnjag3sk69Yhg1598Sm1r7LaADXsq1q8Nm26t7W0p5plNADtYnevuM8b\nHjbfNG97zOHO0NEuPvS8F0xRUx2veMuhDlC7AmWRGqr50FV6+6eOrnKwHaRINsViEyzQUn1POM0Z\n9lMg353uc4ULVVXVBAsstsYRW6BX+XsxymQn+6+YmK/coGcJw5Uv33X+4VAH6G0PCy22dwV1dX8E\nCy1yjVsN84b99fGJt7S33VbNEQRPu8lQd7nAfY6poHB7se995hq9XL6R0HGBNRa7UG391TGAtedQ\nVGDeyBnu/CjJpQfX1WH7lpvPhCTyREx9JnLXLx0RJYZ0P2/D/k4nMvlxln1Hs1Iu6Rqb9gosJjue\ntFS90rD9ValcsW0LHBt1nvbLL1HCSN9TGP1m1DoDlnxJ9cZ8diafnU7K7vT6z8a1bSkNOfpzYon8\ncANjbolcLXv9i0EzaHkYNx/OulXc8g51omSTZcuWGfz3Ux3WJMFFg2rSak+qfE6t82UnLpPpaw1c\nAArkmOfTMt2QsLej7OlwD7rYV95wjrtd4b/e9pjd9NNGFwst8qOfnVBCX7I82mrkF3e51hEy5Vos\n1c5ae81FZrvP2fpKEJNqrS46FRd5jzVXTExv5cQaf0fWynSuIQ5wt65a+Nk/NzJq8JhnzDbXXW4W\nBMusKFYc+eOvL811btNJD6N8ZYhHjfLOVhu1QoXuc54X3eE8/3ZCCeWQ0qRZ4DVHa66H/d1VvD0I\nFjtbkKO5R8WyPyfjKWFqcMFrdTWsU93N+6+m77MbK4iUx5ppUfZjkz2YNoTdrtu4Q3azvaMGovPf\nZ/4U3n9yy57s+hVbtcoY21+VyhXbtkBCqfuLPgN48WbGfUqnDlHx6drpVK1HTg9GfMfsv3PrCBJL\nFDE33p3jfojuZImMJFFNzl3HMXcSx95NTnS+wsJCp556qoScTENOTBGLpbJrZ4omxFdrN0vSVB1H\ng/m+kC9Lh3J0A6tKcY+RMq1TXS0xMSM8ZZ4pbvACGOFDSZIc6oAtemnqqeHmcoxgEJziHC95zRzj\ni7PypluqrYaq/Q56ieVRpMhw37vSMOlyPOJU5+m3Se3XYkvc5E7nOd1OdpAuXa5cjX+nXnPlkSbN\nw55yn0fkyXeFC1zt4gpXyeWRI8s/nOQ7I13rWYcpX94qV7pX9ZckxQBvSSzxHqzxgjSva+01yaEh\nqX3JaeHFoYu9P453z6Fm75sihRDIHRO5KUMRjYaTWKrL9czhkZdixViqNaLbuRvvjyVEGpErxvLk\nqyyZRd9Bm4+dZa13RVYatr8qlSu2bYEqVaIkkllxBf7W29OsXZSmvLZEj64aR/LJj5FE0I8fRN2B\nyyIW22DUstK58VB+GEnadgy+mO7dWbjQnXfeadSoUV7aIUfjnYvodhJFr1PrQoWJydZ4UQPnicUT\nQmb7QG2tNVRGB+44hfIt8y2CdGs87hoHO1VnUV3d+z6xj73U+Y3K/WON84spXhJpZn7gk+J9C6zW\n5g8yHEWKvG2s3dxskP/aS0dT3O0CB25i1HLlOtGZaqjuDlE8c734cfU/qARhljkudZ1WdnC7e53i\nBLP97HY3/iqjtths59vLTz51p3crNGr5sr3uaGnmOt6IjQqxs4232PnqGaxu+BupF1Iw34L3V7rk\ndQbtzJEH70OPW6IDcr9n+b4UriBvDOmlSliKCiI3ZOOeUcbwzleQVEb9ZOPdWfEjqfGuCSsXbf5J\nZ62LjFrpG85K/jJUvnPbAsnJnHEGDzxAevxusWUXls2NCkjbHEF+V55/ITJqu8aVSZpuxp2UmRYZ\nteljGHA3X07mueeoWdPnF17o1ltvdUPPlvodWJekRLo2QKD2lVI9h3z1nV083Rwfa+fgCot3v3OP\n4Q71i5cMdZd8uc51DyhQ4Gvf2V+fX/1SwXQz9XGYgc50hQvtpPtG9XCN1LIiLgz9e5EjzxBf2cH1\njvGguqr7yo1ed7FWZSRfBMF5rvCDn7zuOXXjhryJxqqpZq4Fv9u15cnzhncdYoCOdjPUqy50prnG\ne8g9mpYRD90SvvGus+wmW6bHfGfPCpJ9CuR6w98s8p3jjdS4hF5ovuXmOVI122vhUTL+S8YzCuZ3\nc8pj+WpXS/DISejzUNRvLW88K44keXeajSFWLfpXkvkfRK72zEWRu3HHcjprN9kj6rd2x2tc/wot\nN6PIA1lp1PhtN16V/G+pNGzbCtddFxm1Z+INRpu0YdUsPj6ROVP5eDpXD+Xal5kzPjJqFX355v3C\n5b2Z/wt3fMQzb9GjB6eeavHppzvh3Xf17dTCza0X0XgdPS4n5xlqXSwkNrDao2r7myrxWFCaBVab\npl2JZqClKZBrtH+CN11juHsNcp0G8Tl+Mt466fqVI7u0JQTBha7WWEMzzNJcU+N9rXGJrLvuWppu\nqaXW/urzrD/XD2a5xItaudTpntJeY9+4yeeu16eC/mT/9G9DvOQZD+ldIlEkQYKO2vn5NzYVzZXr\nQ586x6Wa294Af5dmnSEetdAv7nTzr47jZcv0oEtc7yi72N9TxmpfQceGfFneMMA8nzneu1qXuHEp\nkmm+YwUF2npHQs44Ui9nTUc33THB6LkMPSNJ3d3PouFO5E1k2X6RRFyjtxGjaDUJperZpsXT+NfO\niLIck8pZATfpGf1NXMk+x2/wZFRE1jqq//qWSZX876k0bNsKrVpFaf8L4nfyiVUoTKD+2Xw9myuf\nj+ID0KY7y+exoAyx0YJ8Xrmbi+KSWvd/y+IMRo/mllvk5ec7bsgQVZMSvNx8kaS+bSNV9DYZSKD2\nFdJ9KM8sDV1cPO1C30Sntl+Zl1+kQJECNTVWhPHS7aC3U0oI3o43SYIEu25Bv7ayeMf7amrpc1/b\nSXcFCjQrYzXyNz00VttxHt6i3mYlyZDjfeNd6HltXGYPt3nVD061txn+7V2X6638u/4guMkdbnGX\nO9zo5LjgcUkGOc4LhnvK88VtaTZHoUITTPKQJ/R3ogbaO9RxPvWlM5xsktG+87HBTpLyG9yc433p\ndDsZ4UkXecDt3qywaWy2VC870HyfOS5euL+eIrnmOVaOidp6W5X8HFYeSWYtbzw+390fF7nzuIb6\n9NqBPg9SmMrKo0najiafkdiAnOhzp2opibi0SJdUk14Vt7SpWpe6naM425wJnNae1M10TE9fEwkl\nVPKXpTJ5ZFslO4N5k6Nsrt6n0KZEeni/Uxh+BzcdxiVP0X7nyO048QvevI9F0znmcgbeyKuv88gj\n9OghdO7soj59jF21ytf71tZor0YUzKb3S2ScQe2rSGxgtYel2E31EiuNRb5VXyfVy4hdFSkwRC/5\nshzueY+6yBrT3FFKSHeqGdrbTtWtVMrPlesjo5zqXDvq5ns/GuFDPezqBMduMr6R2l53kSPcr7vr\nXOAAfXXVXmN11ZAgJkueVdItkmqW5SZa6Huz/GSeAoXaauhouzpWD3103qJ6uEKFLnO9hz3pLjfb\nUxs/GWW3Eh0Q4GqXmGeBs13qRa841pG66Ki+ehIkyJZtlVSLLDHdTJNMMc4k6dIlS7aXnm50hcMd\npLuuW6zrWBFpVnvS9UZ40o729i/va1WBAYe15hruMNlWGeRzLfQs3hcUWOhUmb60nQ9UL+rCyr0p\nSjF26BKnPMPA3bjq4GT6DSGWzYqDKUqj6SgS4ium7PdIbEGVEv3dPjmFwpyovvOI9zafQdlw50gX\ncsz9LJ3DqBc47uoKXoyVkSB5JX9ZKg3btkrDeOHoQWdy+VO8MYlx46JtyVX51xfccgTXH7jxcT0O\n46qhdNyVu+7ihhto3JhhwzzVp48nly3zTOc6etXLpW0GLQZQ6wcyq1H7crlmSfehlp7d6AdzhQma\n2VRYOdsaRfIt8zPIU81PZjrFDZsoUiy3QvOtdI8tsNBhjjfZNDvp7nXP6eMwddT2kifLVaDfSyeT\n3Okar7jLCDd6vcxxEBPTXmM9tfN3e+unm46abpXBWGSxQc72je894l9+9pj3jddSRy+bsdHYmJjH\n3OcwB3rA465xqzx5m8yZLFkH7XTTxQ0ut4ceetr1N63ISpMrx1se9YLbFSl0mUcd5dzNKvvPNNK7\nTlVNPacarUEJI1gky3wnSPehNl5Vs6ALy/cgb56Z79Vx2EPs2IhnT6kqduo8YgUsPzjqDN9kFFXi\nseOQS9ZwUo7Z4ELMWcOModH/j/osql3bHHXas/Qb1sRft4WbkbVft4q2FTfLrWTbptKwbasMupmu\nezMi7oppUUohoUkbHpsQZUYumR1lcbXfhbqNonT/1NRIzeT883nkEV/efLMLli1z3iF9nR77giN7\nkz+WPS4lrS91biKhrtXukKieuqV0A9dZqFUpbcM5PjbcYfb1T+eZKUGSfzhbA82c5JpNnlIttcyM\nt7bZEn4w1tFORoEHXOYiNzrOYCut9oHXdNyMekcL9Q11nlz5plhsgdXSZCtSJEWyBmpqoZ62Gkn5\nDaUBbxnpTBdLkeJz71rkKzONlyBWbifpmJgjHepIhypQYLEl1kpTJEhRTQP1NVB/i1vHbC2FCn1s\nqGfdbJXFjnCW092mnsYVHlek0Jdu9q07ddTfkZ6TUkL1tlCaeY6U5SfbGalW0V6s2Ie8Zea/kePA\nu3LUr8nIS0jp9zCxQladHGU+Nh4V9RpcT+awSBO19kXR43XzebEtnU6mw/G03N8WUbt9lGjS/Eh+\nQvfNJC+tWc4uW1aOUsm2SaVh21aZMJF+x7Eunt2XUsZdekJC1AWgXamY1Zln8uyzUbbltdeaNX26\nY++80z7163uw9aqoB1vOt/S6ncLnSahD7UsVybXGEPWcJqHUqiDLquJ40DyfSzXT124VFPrSjXZ2\nhu99ZqxP/NsHUmxaK1RfXYsskSdPcjmGpFCht73ncUN87ms97Cz4zBtuMV+Wt4z0lqE6b0XxdVVV\n7KKtXbTd4mO2hJlmu8at3jLS0Q73tIfUU9dhDtISawXJ5bTwKUmSJG201uZ3vbqyyZXtIy96xX0W\nmmEfx7rXR9rostljV5rsPWdZ4gf7u9uerhIrYXhzzTDfAHkWaOdTNfJqs2ofCmab+w797oiSHj+5\nkIbdj6DrKaw4mpzPafQq1Uq0jwm5pN1NyhFUiV/b1GejvzOGsufdW/6k68RvgPocTFYmux1S/tgQ\nSFtB3YoNfCXbNpXJI/8jBg4cqH///oYNG1b2gJtvpkkThg/n9tt5+23mzdv8xOPGRUbtyiv5/ntr\natTQv18/DQsLvX7F8aosmEivOtRuR7cjyXiWOteQUFOaNxVarX4ZjTl3cZYx/mOYQ72krw+co3U8\nkaSN/SSq6QnX2suRein7h+Nkx1tplbNdKl/+RvuWWOrfHtLRbgb4uxw5HvEvnxtpX4dpZw+Pec71\nLndUBWnnfwbLLHeBK3W1h7HGedlT3vSiAhnucposWWLIQN+tUMz/I1llqafdZIDW7nOudnbwpB/d\n7o3NGrVCeb5ym6ftIkeqU3xlL9dsZNTSvG2m3QV5OvhGjdwYy/cmc6HJL2fo889ciUl8cQmtBjzP\nYW+y+hRyPqPxSKqX0h5Nu5OCOdSNK5cU5ka1a0Sxtepb4dKuHW9kWzuZq16gQfmtlWStIzeb+hWM\nqYBhw4bp37+/gQO3jff9/1tCJX8qaWlpASEtLW3TndtvH8Kll4YwZkwIhPDSS9H2jIwQGjUK4ayz\nyp50+fLouLPOCmHHHUPo0CGE/PyQs3Rp2Kdly1AvISFM67NrCEckh/DIISE8IoR574ew4sQQFrYI\noTArhBDCrLBPmBX2K/MU+SEnvBL6h5fCgeGn8Hh4PuwdHgudQlZIDbkhIwwNd4f9QlKYH6ZV+Pxf\nDMNDldAotA7dw0nhzDAwnB52DL2DUDdUDU3CoHBW+DH8vNExa8La0C3sEZqFLmFdWFfxC/wHMivM\nCZeHG0JKaBbqhjbh7vCfkBWi1y47ZIa/hx3CUaFpuCocFg4JtcPpYadQFIr+Z9ebH/LD9+GDcEs4\nIewXksJBoWZ4IFwUFoVZWzzHnPBJeCJ0C3eGpPB5uCHkh+yN9heG7LA03BgmBGFeGBAKitJCSH8x\nhPk1Q5i3Qxh1qVA3RdixZWJYcne1ED79ewgFy0NYskcI85JCyHx705PmTYn2rbl5w7Zvr4k+t+Pu\nDyFrxda9EIUFITyWHMKEh0MoKgphxGMhrFtd9tj5U0I4WAiTvtqwLSUlhAcf3KpTVvg9/x/y008/\nBYSffvppmzzHxx9/HHr37h2qV68e6tWrFwYMGBDmzZu31fNUuiK3JTp04KOPmD6dzp05IZ4qXqMG\nV18d1brdcANtSjmtbrghWtl17RqNvf9+ITHRmfvv7/tFi3y2y046d8ohuRM1JtGoP81asHQ49f9L\nQoo8c2X6SitDy7y0JFUd7x1EKe0zjZBqliqqy5XrZfc4yrlaV1DbBSc7QVddPGuoiSaLielpN1e5\nSGMJGqhvt1LixUO9YrpZJhmtlj9XmDZHjre952kvGuVL9dR1ufNd6aLiouuvveMZN1lkhqf85HUP\nKZDvas/8LhmLW0ORIpOMNspwX3jNWiu1sb3z3etQgytM3S/JYj/4wvXm+UwLezrdT5rYcaMxmb6x\n0BnyzNHEPzUuPE9s1UByPhCqHOrR/9Zx6UOT9G3Pa+cmqTN4LLUasPwAilbS9GuqlhKDLlwVFWcn\ntaf2tVFcLX8dufGaxIQqW9ajrSQJidRsRfp8ZozlkfNZvYS//3PTsavizW0blKH6X8kfysiRIx19\n9NF2331399xzj3Xr1nnggQf06dPHuHHjNGiw5V0oKldsfzIV3sl99120Uiu5WlvP+lXbySeHMH78\nhn+ffRZCUlII995bPLSoqChcfcEFAWH4gAEhPH11CIdXCeG900P4b9UQ1s4OYfkRISxqH0JRXggh\nhGXhH2FSqBEKQnqF118Q8sLn4YZwexCmh3dCCCEMDXeH/UOVsDws/NWvy/Twc9g/JIcDQ/WwOMwu\n3p4X8kKnsHs4Kpz0q+feWvJDfvgifBPODpeEuqFNEOqGPuHQ8EIYVrxCCyGEolAU3g9Dwj4hFi4J\nfcPYMCosCwvCgaF6GBJu+9OuNy/khrHh03B/uCAcHZqFPkE4NrQMj4QrwrTw01atGleEX8Kr4ehw\nexCeCN3CtPD2JscXhuywJFwVJoRYmBn2DNlhcgh500NY1DmEeXVC2nOxcOJuAsIlhzQM+Q8KYdJ/\nQ8j6NIRF7UJY0DiE3MmbnryoKIQVx4awoH4I+XNDKMgNYWjnEJ6sE31m87NDKMz/dS/SW/uF8OEJ\n0XfhYCEMahlCQcGm4z56Ntqfm7NhW+WK7U85R9f/1955x0dRrf//PbM1u+kkIQkQQq8BBEGUGhEU\nFQUVBCsIiooN0Gv7fQVR7HBVxHYvcK0goIIUAaUJoUgTlF4ChEAS0jZlk63n98dsloSEagIknvfr\ndV4zOXPmzDOz2f3MOec5z2nZUjRt2lS4S30u27dvFzqdTjz77LMXVJcUtkvMOf/h+/UTonXrir90\n//73KeErnWJjNeHzMXnyZAGI981mITYuFeImRYhvxwrxsV6IDa8IUbxOiMMIUfCt/5w9opk4Kh48\np/2LxEgxUejEb74fbq/wijtEHfG2GHFBz6Hk3BxxUgghxHgxWPQUOtFdKGKKGOMvs1KsEYhQsUqs\nveD6L8SOfeKA+ERME3eJB/1iFidai5fEBLFX7C93zkaxRAwWjUU3gXhTDBMe4RFCCPG2GCFuF9H+\n+6oKXMIp/hLrxTfibTFW3Ch6C4voJhB3iTjxoXhG7BBr/facDx7hFnvFfPGN6C1eF4gpIl5sF18I\nj3CfVs4hToopYqeIFTuEUaSLt4XXuU+I9H7a/9OxxmL1Gw1Eg0i9CArQi1nDECJjmxAOmxB5n2ll\nTnQXwln+eQqvW4isJ33/l3O0vNTftO7HjxDi9wl/55EJsew+Ib7vIsTo64QYWEsTr4Pby5f7+lUh\n7o4qmyeFrcqvkZ2dLRRFEc8//3y5Y61btxZ169a9IBtkV+SVxty54HCUjdpfwtNPQ69eUFxcNr9R\nI60LEvjqq68YM2YMz+t0PP3cszB9LDTpAJYd4I6D9i9A1s1gSACL1tXp5BgO9lKbsl0zNuZTxDZq\nMw4FhT38yDY+4yY+oYN/4dHtnCSVXgy5oNt0UMREHmAN85jML9zOoyxnFgB9Geov15bW6NHzJzvp\nQZcz1HZhOHGyg52sZxNJbGANGzjOCXTo6ER7nuZRbqIXnehQzt3eTgGf8i/m8QkJdGI0P3M1ffzl\nirFTnxaEVmIQ5hwy2M3v7GQDf7GOXWzAQREBWEmgK0MZRwduoClXXVDXp50stjONLXyCjcPE0onb\n+IoWDERfahK9QGBjLmm8gJPDhHEfUeIlTIXrIfsqcCrk7Yrm5e9imTpzDV0aCn4dBQ0TR0F4Y7CN\ng/zJEDQKwj4su9wSaK9nWcOh8Cuta1zpDnOugfanotbQfOjfe4gBUZDxOzS+EXat01arj21cvlxa\n8rljsEoqHYfDAUBABd7fFouFXbt2kZGRQVTU+XmrSmG70jAatVQRigIJZ544Omf2bIY++CAPBQdr\nq2BF5cKWPfDCq7DjZbhlIbjXgmMVRP7k/4EpZA0AFjripQiVAIrZwxHfcjUWOnCQNJbyJM24g/aM\n9F9zE8sIwEqb0+a4VYQbF3oMePDwJN3Zw2aa0I5xDOJb9vMG8zFiKhOXMIxQ+pDIO3yIDh0305s4\n6p3zB9yFi3QySCGVwxzlIIfZz0F2sZc/2YUDBwYMdOQq7mMgPehCVzqfMQL+cQ6xiOks4X/kk8Md\nDKKA2eSwCLWUF6iKSgp7SecotYk75zM59WzcZJLKcQ5xnIMcZS9H2cMBtpNBiu9uqSuoAAAgAElE\nQVRZRNGKa3mICbSlO025Cj3nsW5Zmedi5yBL2MNc9vADIGjJ3XTguzKRQwC8FGFjLll8gp31BHEL\n8d5vMNt3g/1ZKFqIt6gj3769iX99X4jNkcbk5wby5LOvoLMfgwgbHI8Hbz6EvQdBo8uLmrcAcp6D\nwi8g4huw3gMrH9FEaPUj8HCeFgdS9f1UCa/mSenYAKoFrA9qobfORUAEFGdBx77w0xRtdWyzpXy5\ntGSoXUrYvF4tSaqU2rVrExoaSlJSUpn8rKwsdu3aBUBqaqoUtn8aS5cu5b777mOwEHzeqxfKrV1h\nzrMwdDwcmAKNBkL9myG9Cxg7afODfATQDpUg9tMJD1nU5XMCudF/PItslvEUrRjMTXxcRlSCCMNB\nETYyiSC2QtvSSeELJrCY6URQhzt4AhvZAIQTTS4nMWCkK7dVeP4HvMVIRjOal3mcZwkmiHrUIYxQ\nAghAQcGFCztF5GIji2yyyC4Th7EW4f4oHvdzNx25iqtog/ks88wEgq2sYA4fsJ6FWAmmB3dxPy+T\nyiKWMRvPaRFD+nA/a5nPIOJpSALxtCScaMxYUVFx46IYO4XYyCOLbNLJ4gTZnMCDB9DEsTb1iaM5\nvRhCMzrQgk5EU/+inFEc5HGARezhew7yMy7sRJFAd16lLQ9hpawzhpMUsphCNv/FQw5WetJALCYo\n/yDYbgFvDtCE5X++xAsvfMvmnXDXVYJJAyDuvvsgohnkLYTMl8ByF4S9A/r48oY5t0PG7eDNgPCP\nNFEDMIf7PwF0Jk3UhAcKZ4HtNXDvBTUcvIVgex1itoO+3tkfgiEQXIWQ0B0S74WTR2HVLOhZyi1f\nCEjeAe2uP5X3ww9aD0rHjhf62K9sju6myvywKophew4URWHkyJG88847vPjiiwwfPhybzcbzzz+P\ny6VNDSoqKjr/+oQQ4tzFJJVFXl4eISEh2Gw2goMrJ4L4smXLuP322+kVEMAPDRtiXPmLFgQ5JBJu\naw0H58CQnaDfrcXji/oZAsrONStkAznMwEMuNubSkF8IoAO5HONrehNEXe5nFQbKvuUWYKM/0dzA\nPdzFU5iwUEwhOaSTQwZrmc9a5mElhEGMIZ0jLGIa19CXP0migFwm8iPdfK3Ds5FFNklsYDf7SOUE\nudgoohiBwIAeK1aCCaIWYdQmihhqU4861Kfeea//JhAc4wAbWMxPfMYRdtOQBG7nYXL5DjNWbmQq\nwdTDgxMFBSNlF6S0k89qfuAvkjjGfrJJx4EdL1506DFjwUoIwYQTShQRxBJJXaKpTwwNiCYe4wXG\n0zz9HnJJ5jAr2Mc8kvkFD05iuJrm3Elz7iT8tAnuAjd21pPFZ+TyHSpWwhlBLe99mJw2yBkDzm2I\nzFiWf5PK6wtg9QG45ppreGdIFN2ta6HXp1ArBfI/B/d+CH4eQidW0PXohaKFWsQRQxOImAOGhqeO\nuwohbR1YYiG8JdhnQ+54cO/RXsiCnwdTF/Cmw4n22vI2kfPPHrl/139h5cPwuFeLv/qob1mdn72n\nzktLhqENYcIi6HSz1lJr2xZiYmDZsgv6DKrie14ZbN26lQ4dOrDlWmhfCWbNPKGl0tjc8FsObNmy\nhfbt25c7x+VykZ2dXSYvKioKt9vNqFGjmDFjBh6PB0VR6NOnDw0aNOCzzz5j27ZttGnTplx9FSFb\nbNWc1atXa6LWti1zN27E+Oqr8NkzkJ8Nz70DqwZCj48hqB6kjwBjRzCfao3h3Am6Wlh1nbHQiUJW\nYWM2djZhpSfzeAA9AQzip3KiBhBICI/wJlMZw2KmlzveiDY8wb/pyzAsPgHw4GEdC/iaPexlM9ee\nYUXu06lFOLdxM7dV8gTtbNLZwnI28wub+ZWTHEOHnq7czmimchU92cV3zEPrJtnEh9zIh2XGoUpj\nIYi+PEhfHqxUO8+EFzfp7OAYSaSwlhTWUMAJFFTq0ZXreYdm9CfktNgmXuzkswQbP5DPIjzkYqA+\nsd6JhBUIdAWzwDUJAKdIYO6CYUx+dzpbUqB9QyvzR9rpN2k+irU2uFIg8w7I2Q6W/hAxE0yn/agJ\nAfa5YHsVXDvB3Acivwf1tJWqDVao1xvcKZDRF4qXgrkvRHwBplLdpbpoCH0Xsu4D9wFNJM+Eztcy\n9zhg44JT+Sl7tIV9AXZv0LZNr9a2+/bBX3/B22+fz8dQvfjX19Cqxd+uZogvlWbrzt10GHDfGc9Z\nt24diYmJKIqCEAJFUUhOTiYuLo7PP/+ciRMnsm/fPmrXrk3jxo255557UFWVRo3OHkKvNFLYqjEr\nVqygX79+dO3ale/tdkwdO0JQIfz6JYz+D+wYD1EdoeUj4D4Mxb9ArWmn3lDdRyCtM+hbYIt5niPK\nQEAQyA1E8CQ7+II0tvIAawg8S/DiQTxDb+7hBMkUYyePQ6xkFNfyBDfxXpmyq/ien5nBMMYTTu3z\nFrXKJJt0drCW7axmKytJ5i8AGpJAIgPpwA2YyWUn/+F3HieE92lCP//5Xfl/l9zm0hSRTSobSWU9\nx1hHKhtwUYgOIzF0JIEHqEdX6tKlTBxH0JaSyWcpNmaRx094KcRMG2rxFMHeHgTkr0fJewe8uZAV\nzMHfYfrmtkxflE5a2nRu6FCHJf1S6dOiEOWGGWA4CTmTIf8jUEO1hUGNFcTH9GRC1oNQtBjMN2ld\nj6bu5VtzoK2anT8V8t4DNQyiFkHAGV5mzD21rWvf2YXN34Ur4MRBqNsMjh+Av9acErYdq7T9knBa\nHq1rmPDw0yur/sS10AKlVwX5Zz/crl07fv311zJ50dGnfl8iIyOJjNS6x71eL6tXr6Zz585YreXD\n9J0JKWzVlEWLFnHHHXeQ2LQpP27bhikrC2b9Dz4cCV3vglrpcGgvDNyiTVDNnwOIsgs25r4MogDh\n2kSmeA2z0ooIniGUe3DiZAmjSOD+csGPSxAIDrOCulxLGFGEEYXAy4fchxUvW5hEAndRx7f8zVK+\nYiIP0IM7eaCKxcGDhwxSOMZ+UthHCnv9DhnpvtWrY2nIVSQymDE0pxUNfM4Tm/iIxTxJHD0IJIZZ\n3ER/vuUlvHhwoD+P+I9/F4Egn+Nks48s9pLNXrLYSxZ7yCUZAAsR1OFauvJ/1KMLMVxdzjYX6dhZ\nh50NFLEZO5vxkodZtCbSfTehjhhMbhN4UsE+ELwFZObfwvfv/MjXSTmsPQTB5u3c3+8aHhv3K61a\ntYKcvcB+KHwCThzRBC3oCQh5SYs76v8QMsD+PRQtgeLVoBg1pyVLPypEOCF3AuS9qwle0JMQ8nLZ\nOk9HFwPowHOeK5ILoa1lGN9acyDZlQQ3P6Llb18hgx9fAkJCQrj++uvPXRB49913SUtLY+rUqRd0\nDSls1ZAFCxYwcOBAbu7Th++SkjBecw3cfz/s+BLMVnjkNfjxakh4CiJ8fdKW26FoPmQOhNq/gakj\nmHshCr8hPQQK1e00YAlBPqcRHSDwEEPFg+YO8ljKk/zJl9SjC4NZgpFAFFSiac8BFgIKoZwaOylZ\n36uYQtI4QiwX71btoIgsTpDJcTJIIZ2jpHOEEyT7k8vn2KFDT12aUI+mXM9gmnIVbehGEFb+YBob\neImtpBFBC4KoyzHW0YKBDOA7isllMuF4cKGgVKqoeXBi4yi5JPvSQXI4SDYHyGE/LuwAKOgIoyHh\nNKM5dxJFW+rQmTAalXEmEQicHKaA1RTyG4Wswcl+AAzUJYCORHmGE1yQjzl/KXimg9ADVlJO1mLh\nb+35cYmDFSt/Qnjhhmbw9X0BDGhfhGXI+xDdShMrdS7Y3gRDS6j1HzB3A6XUc3Fu147bvwcEmLqB\n7i6I/D8wVhDqWXjA/oP2ouU+DCEvQtDToDuflpIb8JS9foUP2zdFRmcCoxlcDmjcHjYtgmK71lo7\nfgCe+OQ8rimpCr755hu+//57unfvTmBgIL/88gtz585lxIgR9O9/7jH40khhq2b897//5dFHH6V/\n//5806YNxmXL4D//gY3fwZal2sD3X+9qX+CrS7WKDE2h9q+Q1g1O3gF1knEH3srxgD7k6pYRzRt+\nUQMwEEAdOpPEREAhiFgsRFCMjX3MZw9zcAs7TRU4JDbwpdKNISzDSiR9+Zil6GjFEKyllkFpyTW8\nwXze4xEG05D6tKAhCURSBwtB6DGioODFixcPToopooBCbOSTSx5Z2Mgkh3QKsJV5LlaCiSaeaOK5\nhr7E0og6NKIuTahNfRQ8eHDhIJfjbGYtz7KPeXjxEE804Vhw0AwHgs48SwdGoaAwH23VciNB5HMc\nM6HofZ6YJXjx4MGBiyJcFOKiEAd5OLDhwEYRORSTg50M8jhGHinkcZR8joPPc1NBJZg4wmhEHTqT\nwP2E04RaNCOUBuhOWw3BQx7F/IGTQzg5TBF/UMhqXKSAUDCTQJDSByuvYfG2x2hfAwXTwPEjKCEU\npUWS9CMs2+hmyV4bfx63odMdITExkY8++ogBt95I7X0TIXUF3DABDDPgxJPg3AIYIehhCH0LFJM2\nvuXcCZ7D4PxLc93Xx0PYu2C9D/76GtaOhpY6SPzs1E04d0D+Z1D0E3iO+cbcfgRjq/P/QngytK2u\n/ErqZXAVgN6i9V6Ex8CBrTDyffj1f/Du/dryTwk94KpeZ69HUmU0bdqUnJwcXn/9dYqKimjWrBmf\nffYZI0aMuOC6pLBVIz7++GNGjRrFo48+ypSJE9E3aQIPPwxqMfzvZbhjjObN9dVT2hvqsrvh1p+1\nL7Nzl7ZatrdAm1eElzT+j1zdL9ThE2r5JlyXJoEHWcVLLGdsGbf2EOpzNU8SxTrcrCQAA9v5gyx2\nYyWSYOoxkHkV3kNXbqM9iaxnEdv5jSPs4SA7KKIAN04EAgUFFR1GzAQQSCAhWAmhDo1p5ev2DCea\nCGL9HoVW3/wzgSCPo6SznRNsYA0fkMJaXBSWsSOKBLoxnpbcxlFaAhBNJ6J40V9GILBzEoDvT1up\nW0HnE2EPcC7HYgUzIVh8z6YWTYmnF6HEE0J9QmlAMHHoTpuTJnDh4BAFLMHBXn9ysg83Gf5yqrBi\nEnGEuOpjtYdgLUhG7/0T1BPAbPBmkmsTbNzVnrXbBvDbuhNs2LABpxuizdCnjcJLfQQ3jZ5FaJu7\nThlQ97/aNncc2D7XvA+t94G+IXiOQ3oiuP4EURIwwAK6CAj7tzYZW/H9vKT5nDKOr9a6/NzJkPcG\nFMwAXSxYBoD1ATBdfY7nWAGOjdpWf/bVvik6CSbfeGNYtLbmWmwjuPM5bTV6o1lzqDibZ6WkSunY\nsSMrV66slLqksFUDPB4P48aNY+LEiTzzzDNMnjAB5b33oKAAxj4Db9ytrbj9wATthPhb4PAiSPlF\nc/Wv3wrSOmk/QLpoiF5FsbKPbKZRm3EVihpAAncSznJymUttZqGjLQYsBFEHFR2Fyh9s4RYOKU7i\n6EQ9zrGAow8LQfRiML0uckkXL24c5JNPKtnsZTsLfONPu8lkFw7yfNeJoDYtaEU8FgKw0JYwbiGK\ndoSW6gYt5hXy+IFaPF7mOgoKD7EJO1nkcohC0nGQhws7XtyAQEFFxYAeM3rMGLBixIqRYMyEYCIE\nI0GoVBBJBm0StJssikjCwX4c7MPJPp+IHUTragOVQEw0w0RTAsX1mDwWTI4MjPY96IrXoXh3gzBD\njp785EJ27IetaR62pITy+196du89AWwlIuIo3bp1451XnqaXZxqtIgpQzCHQ+1uo3xfcqVp3oOe4\n1oryZOIXbudmLWHQuiGN7cA6BPStYdUbkLwKbvkYgk9zCOr2JrS9FXRHIOMmzYlJjYCwSRD0uDb2\ndrHYvwVjezBUEEWkNLb9EOoTv+BakJ+l7d8/Hnrdr31/AgLPeLqkeiGF7SJYuHAhy5YtY+vWrfzx\nxx/Y7XbGjx/PK6+8UunXcrvdDB06lG+//Za3336b5/r0QYmJgcJCGDUK9q/RulU+3KSNrx36UYti\n7ogFx3HY9w0E5YC+sdbNo4sGNZAT3Aa4sfE9CiZCGISp1HgYwFHuJZ9FmGjFSR6mFbll1uBazr/5\nk+MA1CeOP/kSK7UxE4aRIPSYfa2QknO8eHHjwYUHB26KcWH3d985KcBJPsW+LrxicnGQSzE5FJHt\n3zpPc7syEkQtmhFBC5rSn0haU5u26DjBIXqgJwojkRQyDR0HCGZpmfOjeZVoXj3jZ2ChFhbOHN1C\n+Np2bnLwkO1LB3CTjYMsPGTh9m09ZOMm27efg8BRqiIVozcUkyeIIBFLhGiHSdTH5K2DXgSieG1a\nq7voO3DvpahYz67UNuw+3Iu/Nh5h58bN7EiFg5m+56LPpk1sNonX9eT5F9/k2muvpUmTJiglrZLC\n57X/ldBmYA7TRC21bsU3GTZVmwStb6R5HyqlWpeH5muiBrDmae3FCrSxtrz3tJWw8Wj/B6ZuEP4f\nTRDVCiJ/XAjOXWBfCGFvnrts1l8Q63vxCgzX1lxzFmsttXpnWJEi0/cg9fJnsrohP7GLYNKkSfz2\n228EBwdTp04dDhw4UCXXyc/P59577+Xnn39m1qxZDBo0CAYMgOhomDIFbrgBDm7VCtvztC/vkrsg\nop32o2LyQNNG4PgAIr4r81Zbx/0yefaDFFispOtfI40XsdCVWjxOKANR0BPGfeSzCBeHCeLWMqIG\n0J3xFHAcDy6S+YW/zrDkzYWgx4zJ19IxEYKZMMwEEoQVHRHoyEKQjEIuFoKoRWsCqY+eWqhYABuC\nFeTyLXn8hJkWNOAX9IRj43uOcg/76UAwN2OgLipBKBjRxNeLwI3AicCBlyIEdrzY8VKAlwI85OMl\nDw82PNjwYvMJlKuCu1HQEYqOWuhEOHqCMHgtBHjM6Dy10Lnz0bkz0bnSMLpcGN1eVLcNim1gTgPd\n79jyPew6BskpcPCogYMpVg4ctbDvUBRHU04ixFZgK9G1o2gdEcDtbRwkhAdzVayTlo3sGOp1h75z\nwVyBMFtjtFSCLhZqTQfnn5BxCLJPQKtHwRCqueirFaziDlD3egiIhqI0aNdfW/naPlcbj9PV1cJp\nma4FQ2tQz99l+6x4bXBygCaygSPPXjY/BXJ2Qcf/82X4WqAVTTUozaRJ0LQpXHXV2ctJrjiksF0E\nr7/+OtHR0TRq1IjvvvuOIUMuLABwOXJztfiQllNvsAcPHuSWW27h+PHj/PTTT/Tt21dbHXvePPji\nC+jbVyvYrBPENIJVM6HxCQiKhzvXQ+oqyFwAxg+0uUClQmjhOoAx414iXMlE5Ojw1v4ZmzmdbP5L\nCveQwasEMwADDQjhbvJZRBgP4iQZBTMKBkBHEGEMYjbaD4UHF/kUcoIisnCSg4s83OT5BEKgYkLF\ngIoOHXp0KOjQJEWHBx1OBHl4yMLFCVwcwcFOhN870ITZ25BAuxmjw4jbGESxJQS37gQOduPFDrhR\nMKEjgnBGEs2rqGg/piHcSSPWkcFr5DIbN2llW0ylUIQRBRMqZlSsqASiEoiOYHSEYqQ+KsHoRDA6\ngtCJAHTChM6rQ+/1oHMXonOdQHHt1VaCdu8CUeCvX6ix5BQ04PihcI5vP07qMUg9oZBy1ENKDqTY\nPRzNA1upKEIWi4FGjerRuH4Mgwe1pmmLVjRr1owWLVoQHh4O7mLY/Dok+8Y3r3kNGvQ//3EjRYHA\nYbBrGqz8txbKKm8R3DS3fFnXISj4THPl9xyH3ioQCd5JYLNAQF/NVT/g1rKtu8rAfRiyHgZPGsRs\nPrdYHl4Aig7q+Zyj3L6XkFfGwZEj8O235c/ZsgUWLICvv644ILnkikYK20XQpUvlRJkHtC7FJk3g\nhRdg7FgA9uzZQ+/evbFYLGzevJmmTX1jAxMmaIuR3uOLqVdsB2eRllSdFg+v4BgcXgiN7oDoSDjx\nkRbbLyVUG/RXQ7UBfzUcwldD3n2otncJM/5AmHoPdjZzkrfI5VvNw873dnv4b0b7UCiRPy2d3r5R\nhAEVq08kQtATjlU0J8x7HUZPECaXgqn4CIr9JzB1gIDRkDcDspeCoQ3o47R7U0zgH8+ygXhSu5pw\ngCjGIoqIF0XgDQNhRHjzECIP8CmI0GxVcAJOtNmmJ895f14v5OZBRi5k5UBmDmTmhpNpq8XJHCsZ\nWS04mS1IP1lEekYeaWnpOJ3Hy9QRYTFQV+eknhm6mSHu0RHEx4dQ33iUeNt8ajdogSK8kLkMQg7D\nTQ9ARNtTFejN0Pl1Lf0d3L5n4XWf2hcOcG6F4pVaOCzHeu15B9yh9QQIp5bM14O5q+9zqGRcu8H2\nrrYKgBoOkXPOMSkbKDwOv4+DBrdr3a2ghc4Kqw1vvaX9XZGwvfqq1lobfHHjwJLLixS2y43VqnUv\nvvMOYuRI/jdnDk899RRxcXH8+uuvxMT4uopKt9b0eti4CF6/Q4uO4PVoX9Sft0KXbrDkTujwErQa\nCfU84N4BjnXg2g/ePO1tOng0qMGgmwRZ90NqPTC0xKJGUl8NBKU3AnArxXjUIjwU41WKtW464QAc\nCOEEilG8DhBFKF47inCiCFBLkltFLTaADoTRgfA1HpQSAfGVU3ABub6UUv45KUGaw0LISxDyL23e\nUtBIbf6TY702PuQ6BKJI+0EWbt9qdYBXgEeAxwtuD7jd4HSCowiluBC33U1BAeTnQX6OQl4+5BdB\nnksh3+3FVqy1nPKKILdIxVasJ9euI7cQcgoE2XkebAUuykddzSYoyElkRASRkZFERdWmTZvaRMfE\nULt2bWJiYoiJCCF233hi7OswRzYARxicTIfmCeDZA/Z0iLsRGiyELW9pDiJ/7YTmaTDnarjqX9By\nhLZCtHoRX2fh0LoOXXt9LUoPRJvgpm7ac7RmQUot8JaK7WfqCmEfgGWgr7VU0iLUXgkQHhD2kguU\n2grAq22F17fv8e17AN/nhhuES0s4tZZZwX+0qCW6WAh7W+t+PFtLzeOA/KOw4iFt1e0epean7V4H\nzTuDb0X4csjWWrVHCtuVwJAh8J//sGPWLB56+GE6duzI8uXLCQoqFX570SJN0O68U/v789HgKhVZ\n/hufR2R6FAx+ALa9C1ve0GLkWWO0MRZjCBiCQF8Euqe1L7xqAMMdEHgQ9JmgHgPVBXhQEBgQmhO6\nUEEoWvKWJMCjgEsFlxkcKhTZoahYa+wUA84IKAoAowBDFugKtf86XUnSgd4EOoPmHq5oBzxuFYdD\nobhYwVGkUlwsKHamUuz6lGLnRxQ5PBQ73BQ5XBSVbF1gd+Lf+pMLCp0KhS49hU6VQgcUFAsKHR7y\niz04PaU/DFFu36KDYAOEBOgIDTITEmSgllVPo1iFMIsgLMBFmKmYcLODWlb8KcIKJkMBUAAcLlWv\norWwTypaAjAAuXu1/UDgWPKp4n/uh9p9oPkbWmSZ/ChYegwG3wTb3tM+Z0UFc6QWGd8Uqn3OBqs2\nd0tn1lpzqgl0xlOfu2qAgC1graCrseSXoaKhQ8daLeU8XcHBKsIdA/Y7wN4CUjLA/bLWmvQUaUGT\nXfngsIEzV3Ptd+Ro56lG6DId9v6pzVXb9DNsXwmPTMYvbB5PWQEbP1621qo5UtiuBD7/HOLiaDF4\nMCHPPktcXBxutxun04ler0dVVRg0CMaNQ8yYgXj8ccTbq/Am/Yg3dT9egxnvVb3xRDXAO64fng++\nxGMET6geT7AejykLjyEbjwoeReAWWvL4tm6vwCPA7RG4veDygNvrSx6By6vg9mj5Lg+4PQout9b4\ncbm15HQJXG6ByylwFutwFXlwOcFJFs7AWjgLC3AW2f0dfA4UnAIcwovDU4TTW4TDAw63wOG7/oUS\noIcAnSZEATqwqNq+VQGrThCjurDqINAAVquewPBIAmPrE9i8A0EJ1xEYHkHQwoUEf/IJQe+9R9Do\n0QRPn47+3iHwxwr4fREc2AKp+yHf5zHnRuutzEcbLDSiiZQeMKhg0IFeBzoFVFXbKoq/cePvpBUm\nX6NGaDfvEdrDLnZqLwgLfEv6mCzw5q/ww2T4dq52vXAdhAaAxQHGdDCka9dXSzWdFQGK15d8rSfF\n12oKUbVWrSK0lw3lDIkK9qlg/0yUf2c41ZA7PZU06LwKeFSwnwSxCPi51EuWCl5VK+NWtM/CBRR7\nwW7Vmtk2J8z3BeQ1mKD5NTD2f5pTSwmzZsG92kR8Nm+GhQtla62aI4WtAsaPH3/KJdrH6NGjq2b5\nicJC2LgRXn4ZY2AgkydPZvjw4Xz//fcVl3/ySS2Vo6II5G601kLloVe0ZFDAoCi+7al9o6JgUBSM\nigGDomISOgw2O0ZFR5BqxagTmFSBSVUwqgKjAkYVzKqCSQGjqmBWwaSAyZcXoCqYfGXMqoJZ0bYW\nVSFAVQhQVUyAoqhoXWG+5N/3/QAKFbw68Oq1/UIF9hfC/t9gwW/aDR46BEOHwjPPwOrV2nby5NOe\nQiwQDTq3Jg6q55RglBGOEu+7kl9rTm3PJASi5GCp+xA+2z0GcJng7ke0gvrGoHdAhhsUD6ilbKjo\n+oqCpr4l+TrKqY1Saltu/7StUvrcs9xTmXvzFTz9kZRJpS4iSlVaUb7wUuZzFgoIo9ZlK4K1z9uj\n156dxwiHs2HJe3DihObtGBsLjz9+arwtPV221moAUtgqYMKECeWEbdiwYZUqbIMHD0ZfMj+mZUv4\n6SeGBAUxdOhQ2rZty8GDBykqKsLj8eApiTLudKJs2oRy7BiKoqBTFNRSSVfBVqeq6BQFvW9bel+v\nqv5U+pjBl2coddzgK3P6c6lx3HorjBmj7U+ZAh9+qI3HSWoWigKPPAKBgdpn7CrV5zps2AW11mbO\nnMnMmTPL5Lnd7sqyVHIRSGGrAO8lWAp+1qxZZxTKDh060KFDhyq3QXIO6taFd9653FZIqpp33/1b\npw8ZMqTclJ+ShUYll4dzzFCUSCQSiaR6IYVNIpFIJDUKKWwXwfz58xk2bBjDhg3jk0+0+TE//vij\nP+/tC1xK/vT++epIdb8Haf/lRdovqUyksF0Ef/zxB19++SVffvkla9asQX2mZUwAABLiSURBVFEU\nduzY4c9bunTpuSspRU34UlT3e5D2X16k/ZLKRArbRTBu3Di/t2JFacWKFZfbRIlEIvnHIoWtGnIx\nb4cXek5Vv4FWtT3S/sqtX9ovqU5Id/9qyMyZMy94RYELPedirnEl2SPtv7z2SPuvbHYvXgy7d1dN\n3cnJ5y5UxUhhu8QIX6TcvLw8f57b7S7z97m40PKX4hqyvCwvy58qX7IvykfGvqxERERgsVi47//+\n79yF/wYWi4WIiIgqvcbZUMSV9uRrOMeOHaNevXqX2wyJRHIJSElJoW7dM6xKfpk4evQomSWrg1cR\nERERxMXFVek1zoYUtkuM1+vl+PHjBAUF1fzwVBLJPxQhBPn5+cTGxmpBzCWXFClsEolEIqlRyFcJ\niUQikdQopLBJJBKJpEYhhU0ikUgkNQopbFcACxcu5KmnnqJr164EBgaiqioTJky43Gb52b9/P4MG\nDSIyMhKLxUK7du349NNPL7gem83GK6+8Qtu2bQkODiYyMpJOnToxdepUHA5HFViuUVn2AxQUFDBu\n3DgSEhKwWq2EhYXRoUOHKv28KtP+ElwuF23btkVVVVq2bFlJllZMZdiflJTE2LFjufrqq4mIiCAg\nIIAWLVrwwgsvYLPZqsjys7Np0yZuvvlmwsLCCAwM5Nprr2XOnDmXxRbJaQjJZadnz55CVVURGhoq\nmjZtKlRVFa+++urlNksIIcTOnTtFSEiIMJvN4sEHHxQvvPCCSEhIEIqiiKeeeuq868nNzRUNGzYU\nqqqK7t27i+eee0489dRTokmTJkJRFHHDDTdc0fYLIcTRo0dFo0aNhE6nEzfeeKN44YUXxOjRo0W/\nfv1E27Ztr3j7S/PSSy+JoKAgoaqqaNGiRSVaXJbKsj86OloYDAaRmJgoxowZI8aOHSs6dOggFEUR\njRs3FhkZGVV2DxWxYsUKYTQaRUhIiBg5cqR49tlnRYMGDYSiKGLy5MmX1BZJeaSwXQGsXbtWHDhw\nQAghxKxZs4SiKFeMsHXv3l2oqiqWLl3qz3O5XP78DRs2nFc9b7/9tlAURYwdO7ZMvsvlEh07dhSq\nqoo1a9ZUqu1CVJ79brdbXH311cJqtYrVq1eXO+7xeCrN5tJUlv2l2bhxo9Dr9eLjjz8WiqJUqbBV\nlv3vvPOOSEtLK5f/+OOPC1VVxRNPPFFpNp8Lt9stGjVqJAICAsSOHTv8+Xl5eaJZs2bCbDaLo0eP\nXjJ7JOWRwnaFcSUJ2759+87Ymlq9erVQFEUMHz78vOp69NFHhaqq4tdffy137OWXXxaqqooffvjh\nb9tcmsq0f+bMmUJRFDF+/PhKtfFsVKb9JRQXF4vmzZuLxMREIYSoUmGrCvtP58SJE0JRFJGQkPC3\n6rkQli1bJhRFESNGjCh37IsvvhCKoojXXnvtktkjKY8cY5OckVWrVgHQu3fvcse6du2K1Wpl9erV\n51VX69atEUKwePHiMvkul4tly5YREBBA586d/7bNpalM+7/77jsUReGuu+7i2LFjfPrpp7z99tvM\nnTuXwsLCyjTbT2XaX8KLL77IsWPHmD59emWYeFaqwv7TMRgMAOj1ly464KpVq1AUpcL7uvHGGwH+\n9n1J/h4yVqTkjOzfvx9FUWjSpEm5Y6qq0qBBA3bv3o3X6z1ndIXhw4fz7bff8v7777N582auueYa\nHA4HixcvprCwkNmzZxMTE3PF2r9161ZA+8EaO3YsTqcT0CJMREZGMnv2bHr06HHF2g+wZs0aPvzw\nQ95//33i4+Mr1daKqGz7K2LatGnAKUG5FOzfvx+gwvuqXbs2gYGB/jKSy4NssUnOSIm3WUhISIXH\ng4OD8Xq95Ofnn7Mus9nM8uXLeeCBB1i7di2TJk3io48+4siRIwwZMqTSW2tQufZnZGQA8MwzzzBm\nzBhSUlI4efIkU6ZMwWazMWDAANLT0yvPeCrXfrvdztChQ+nSpQtPPPFEpdp5JirT/or4448/mDBh\nAtHR0Tz33HMXbeeFcj73dbk8NSUassV2CRg/fny5uJCjR48mODj4Mll0iktlW2ZmJrfddhtZWVn8\n/PPPXHfdddjtdubPn8+YMWNYuHAhW7ZsITAw8ILqvVT2e71eAPr168fEiRP9+aNGjSIlJYV3332X\nadOm8dJLL11QvZfK/rFjx5KWlsayZcsqtd7L9b996NAhbrnlFrxeL7NmzSI8PLxKryepZlzuQb5/\nAoqiCFVVy6QjR45UWPZSO4+czbbnnnvurE4dCQkJQqfTnZdH4L333itUVRV//fVXuWMffPCBUBRF\nvPHGG1es/ZGRkUJVVTFjxoxyx5KSkoSiKGLAgAFXpP0rV64UiqKISZMmVXj9v+M8cqmef2kOHTok\n4uLihNlsFosXL75o2y+WgQMHClVVxdatWys8HhQUJOrXr39pjZKUQXZFXgK8Xi8ej6dMupxLOpTm\nbLY1adIEIUSF4wVer5fk5GQaNGhwXuMjS5YsITw8nFatWpU7lpiYCMC2bduuWPubNWsGQGhoaLlj\nJXlFRUVXpP3bt28H4Nlnn0VV1TJJURT27NmDqqoX1eq5VM+/hEOHDtGzZ0/S09OZM2cOffv2vWCb\n/y4lY2sV3Vd6ejoFBQUVjr9JLh1S2CRnpGfPngAVdl+tWbOGwsJCf5lz4XQ6ycvLw+12lztWMn5l\nMpku2taKqEz7r7/+eoQQ7Nq1q9yxnTt3AlS6Q0Zl2d+6dWtGjBhRYRJCEBoayogRI3jwwQevSPtL\nSE5OJjExkfT0dGbPns2tt95aSZZeGD169EAIUeF9LVmyBOCC7ktSBVzG1qKkAq6keWxCCNGjRw+h\nqqr4+eef/XlOp1N069ZNqKoq1q9fX6Z8Zmam2LNnj8jMzCyTf9NNNwlVVcUrr7xSJr+4uNgfeWX6\n9OlXrP3JycnCbDaL6OhokZqa6s/Py8sT7dq1E6qqihUrVlyx9p+Jqp6gXVn2l3Q/Go1GMW/evCqz\n93woPUH7jz/+8Ofn5uaKpk2bCrPZfMahBsmlQQrbFcC8efPE0KFDxdChQ0WPHj2EoiiiXbt2/ry3\n3nrrstm2c+dOERYWJkwmk3jggQfE888/L1q3bi1UVRVPP/10ufLjxo2rUJi3bdvmD+HUuXNnMWbM\nGPHYY4+J+Ph4oaqq6Nq1q3C5XFes/UIIMWXKFKGqqoiIiBAPP/yweOKJJ0SDBg2Eqqriscceq3Tb\nK9v+iqhqYass++vXry8URRHXXXedGD9+fIXpUrJy5UphMplEcHCweOSRR8TYsWP9/8v//ve/L6kt\nkvJIYbsCGD9+fLkB+NKpJErE5WL//v1i0KBBIiIiQgQEBIi2bduKTz/9tMKyJfcyYcKECusZNmyY\niI+PFyaTSVitVtGuXTvxxhtviOLi4ivefiGEWLhwoejRo4cIDg4WFotFdOzYUUybNq3KbBeicu0/\nHUVRRMuWLSvT3HJUhv1n+36oqip0Ol2V3kNFbNq0Sdx8880iNDRUWK1W0blzZzFnzpxLboekPHIF\nbYlEIpHUKKTziEQikUhqFFLYJBKJRFKjkMImkUgkkhqFFDaJRCKR1CiksEkkEomkRiGFTSKRSCQ1\nCilsEolEIqlRSGGTSCQSSY1CCptEUgHdunWje/fuXH/99bz55puX25wqoWQ9vKuuuop169adsdyC\nBQtITEwkMTGRJk2acPz48UtopURy4ciFRiWSCjh27Bi//fYb9erVu9ymVDpHjhzh4YcfJiQkBKPR\nyI4dOypcdaGEfv360a9fPwAaNmx41rISyZWAbLFJJGegpkabq1+/PsuWLWPOnDn06dPngs6tqc9E\nUrOQwiaRSCSSGoUUNolEIpHUKKSwSaoVo0aNol69ehgMBlRVLZMiIiKYOnVqmfK//PILwcHB5crW\nqlWrUlY5fuWVV0hISCAmJqZM/Z988skF13XgwAHCwsL8dYSGhtKyZUt69er1t+2USP5JSGGTVCum\nTp1KSkoKqampxMfHoygKiqLw4YcfkpmZyahRo8qU7927N5mZmcTExKAoCv3792fTpk1kZWWxatWq\nv23PhAkT+PPPPzlx4gRRUVE0a9YMRVHYvXv3Bdf1+eefo9frURSFu+++m9zcXHbt2sXy5cv/tp0S\nyT8JKWySaklUVBTDhw/3OzNkZ2efsWxaWhpZWVlMmTKFH374gQ4dOlS6PZmZmbjdbm6++WaEEBw+\nfPiCzp8/fz7NmzcnKysLgLvvvrvSbZRI/ilIYZNUW4YOHYqqav/C//vf/yosY7fbGTBgAO+//z6P\nP/54ldmSlJTEddddR3x8PADJycnnfW5xcTG///47BoPBn3fddddVtokSyT8GOY9NUm2pU6cON9xw\nA8uWLePIkSOsXLmSxMRE/3EhBIMHD6Znz548+uijVWrLunXr6NKli1/YLqTFNmXKFEaNGsVrr70G\naHPFoqKizlj+xIkT9OjR44LmkyUmJjJt2rTzLi+RVGeksEmqNQ899BDLli0DYPr06WWE7ZlnnkFR\nFCZNmlTldiQlJfHWW28RGhoKaC3FzMxMIiIiznpecnIyZrOZ2NhYkpKSUBSFLl26nPWcmJgY9u3b\nV2m2SyQ1DdkVKanW9O/fn7CwMIQQ/Pjjj+Tn5wPw0UcfsWbNGmbOnFnlNjidTv788086duzob7HB\n+XVHTp06lccee4y8vDx27doFcE5hk0gkZ0cKm6RaYzQaueeeewAoKipi5syZLF68mPfee49FixZh\nsViq3IYtW7bQqlUrTCYTgYGBhIeHA+fujly8eDF9+vRBr9ezfv16vF4vIIVNIvm7SGGTVHuGDRvm\n3580aRIjRoxg3rx5xMTEXJLrJyUllRGjBg0aAGdvsTmdTlatWuUPaZWUlARASEgILVu2rEJry5Ke\nno4QgszMzEt2TYmkqpHCJqn2tG/fnjZt2iCE4MCBA7z22mu0a9fukl2/xHGkhPNxIClxGCldB8C1\n115bJTaWpri4mK5du9KkSRNefPFF/7y51q1bc9ttt1X59SWSqkY6j0hqBMOGDWP06NGAFsHjUrJu\n3To+++wz/9/x8fEIIc7YYjt69Cher5f69esD4PV62bhx43k5jlQGZrOZtWvXVvl1JJLLhWyxSWoE\n27ZtQ1EUhBB8+eWX/vGqqubgwYMEBwcTGRnpzztXi+2DDz7gqaee8v+9fft2CgsLATm+JpFUBlLY\nJNWe1157jcOHDzNgwABAizSyePHiS3LtpKQkunbtWiavZIztyJEj5cr/8ssv9OjRA5PJVKYOAL1e\nT6dOnarQWonkn4EUNkm15rvvvuObb75h3rx5jBw50p9/qSYjnz6+BqdabA6Hg7S0NH++y+Vi0aJF\n5caxSoStbdu2BAQEVK3BEsk/AClskmrL+vXrGTt2LAsXLiQ0NJQbbriBuLg4hBAsXryYjIyMKrfh\ndI9I4Ixz2T766KNyQZpBE8dLNb4mkfwTkMImqZYkJyczaNAgZs6cSePGjQFQFIUHH3wQALfbzZdf\nflmlNthsNtLT02nevHmZfIvF4h9zKxlnS01NxW6306RJkzJlU1NTSUlJAeT4mkRSWUhhk1Q7bDYb\n/fr1Y+LEiXTr1q3MsWHDhqEoCgAzZsyoUjvWr19P586dKzx2ejDkyZMn+702S1PSDQky8LFEUllI\nYZNUKzweDwMHDqR///488MAD5Y7Hx8fTs2dPhBDs2bOHDRs2VJktFY2vlbYDtBbbqlWr6NSpU4VR\nUEqELS4ujtjY2CqzVSL5JyGFTVKteOyxxwgNDeX1118/Y5mHHnrIv1+VTiQVja+V0KBBA4QQ7Nu3\nj7lz555xfbXzDXwskUjOHylskmqB1+tl+PDhLF++nK+//vqsZe+8805CQkIQQjB79mzsdnul25OZ\nmcn69evPuGhpSYtt/fr1PPbYYxWWsdvt7NixA5DdkBJJZSKFTXJF4/V6Wbp0KZ06dWLGjBnEx8dj\nNBrPek5hYaG/W6+goIBJkyb5V9quDA4fPsyQIUNwOBwsX768wjIlwvb444/TqlWrCsvMmTPHv6Za\nQkJCpdknkfzTUURlfuMlkkoiIyOD66+/nqNHj/qjcpQQGRnJpk2bqFevXpl8p9PJ1VdfzZ49e/B4\nPGWOBQcHU69ePb766ivatm17zut3794d0CZN9+7dmxdffJE333yTTz/9lNTU1DJCWadOHZ544gn+\n9a9/+fOSk5Pp3bs3W7duJTg42J//6quvMnfuXLKyskhPT/fnBwYGUrduXcLDw1mzZs15PKFLx4IF\nC5g8eTKgeXGuWrVKjgdKrmiksEkkEomkRiG7IiUSiURSo5DCJpFIJJIahRQ2iUQikdQopLBJJBKJ\npEYhhU0ikUgkNQopbBKJRCKpUUhhk0gkEkmNQgqbRCKRSGoUUtgkEolEUqOQwiaRSCSSGoUUNolE\nIpHUKKSwSSQSiaRGIYVNIpFIJDUKKWwSiUQiqVFIYZNIJBJJjeL/A1L+vnbphTLPAAAAAElFTkSu\nQmCC\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "S2TSXy = c2Xy + ergXy\n", "show(S2TSXy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Let us do the same in terms of the Weyl-Lewis-Papapetrou cylindrical coordinates $(\\rho,z)$, which are related to the prolate spheroidal coordinates $(x,y)$ by $$ \\rho = \\sqrt{(x^2-1)(1-y^2)}  \\quad\\mbox{and}\\quad z=xy . $$ 

\n", "

For simplicity, we denote $\\rho$ by $r$:

" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "(r, z)" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('r z')" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false }, "outputs": [], "source": [ "S1Erz = S1E.subs(x=1/2*(sqrt(r^2+(z+1)^2)+sqrt(r^2+(z-1)^2)), \n", " y=1/2*(sqrt(r^2+(z+1)^2)-sqrt(r^2+(z-1)^2)))\n", "S1Erz = S1Erz.simplify_full()" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": false }, "outputs": [], "source": [ "S2Erz = S2E.subs(x=1/2*(sqrt(r^2+(z+1)^2)+sqrt(r^2+(z-1)^2)), \n", " y=1/2*(sqrt(r^2+(z+1)^2)-sqrt(r^2+(z-1)^2)))\n", "S2Erz = S2Erz.simplify_full()" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def tab_precis(fz, zz, rmin, rmax, np, precis, tronc):\n", " RP = RealField(precis)\n", " rmin = RP(rmin)\n", " rmax = RP(rmax)\n", " zz = RP(zz)\n", " dr = (rmax - rmin) / RP(np-1)\n", " resu = []\n", " fzz = fz.subs(z=zz)\n", " for i in range(np):\n", " rr = rmin + dr * RP(i)\n", " val = RP(log(abs(fzz.subs(r = rr)), 10))\n", " if val < -tronc:\n", " val = -tronc\n", " elif val > tronc:\n", " val = tronc\n", " resu.append((rr, zz, val))\n", " return resu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3D plots" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We also a viewer for 3D plots (use `'threejs'` or `'jmol'` for interactive 3D graphics):" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": true }, "outputs": [], "source": [ "viewer3D = 'threejs' # must be 'threejs', jmol', 'tachyon' or None (default)" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", "