Absolut! Documentation

1- How toinstall Absolut!
Absolut! Package
. x
wget . 3 g
s =z £
freeglut \s qtcreator Absolut.pro 5? 5 F
o =
gsl —— Latfit < 5 F
(included) * ./absolut gmake Absolut.pro < 2
[Qat] //‘v make
discretize
wget —» pdb-tools _ repertoire
(included) - /RbsolutNoLib make MPI repertoire
listAntigens
Load MPI libraries if necessary singleBinding
getFeatures
visualize
make MPlcxx hotspots
. /AbominationMPI make MPIc++ batch
make MPIgxx infos

MPI ———

The absolut package allows to handle bindings of CDR3 Amino Acid sequences around virtual antigens in a 3D grid. Antigens
can be converted from a real PDB structure to a lattice representation foption discretize], lists of CDR3 sequences can be

‘folded’ around the antigen, giving the list of optimal structural bindings foption repertoire], and features can be extracted

from these bindings [option getFeatures and poolFeatures].

Three variants of the program can be installed / compiled depending on your needs:
AbsolutNolLib is the easiest version to run, as it does not require any library. More than 200 antigens are available in

the library foption listAntigens], and all data processing (bindings and features) are available.

- Absolut is the full version of the program, which additionally allows to discretize antigens and display them in 3D
[option visualize]. A Qt-based graphical interface assists the discretization, but it is also possible to use githout
graphical interface and compile without the Qt library (see Advanced).

AbominationMPI is the paralellized version specially designed to bind millions of CDR3 sequences around antigens
[option repertoire] using the MPI library. Note that Delicab and Absolut are already multi threaded, but some cluster

require MPl when the program is to be run on different nodes.

Downloading Absolut!: will be in github soon

Requirements:

MACs that would be clang ‘brew install llvm’. Windows: mingw or visual C++.

C++ compiler: g++ and gcc (that should normally include a linker Id). Linux: ‘sudo apt-get install build-essential’. On
For using Qt, recommends installing gtcreator with the gt distribution. Linux: sudo apt-get install gtcreator, qt5-

default, libqt5
For discretizing antigens: Wget, for downloading the PDB files and python, for pdb-tool PDB processing.

Notes:
When using Qt, do not use gmake in the folder where the original Makefile is (that would replace it).

Suggest to use gtcreator, it will compile in a separate folder.

Absolut! Documentation

2- How to use Absolut! In a glance
Option 1: discretize: Open a graphical interface to discretize an antigen using LatFit.
./Delicab discretize 1Cz8 VW 5.25 FuC

Input 1: Antigen structure PDB name Output 1: Best representation of the selected chains in the 3D lattice:

Input 2: Chains in the PDB to discretize

Number of subchains: 2

Structure of each subchain:
133152 SULDDLLUURRDDURDSDLUDRDDLLDDRUULUDRRLUSRDUDDUULDRURRLUDDLULRULDRUDLRSSDLDLRSSDLRSRU
LDRULRLSRU
133160 USRSRUUDDLLUUDLSURUDLSUURRLURLLUDRUULSDRSDLSUDLRURUUDRLSURDRLUSRDULRSDRLDDLUUDURSLR
LRLDRRLURR

AA sequence (concatenated, all subchains):
VVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLOHNKCECRPKVVKFMDVYQ

RSYCHPIETLVDIFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCECRPK

=> List additional inaccessible positions

. . . 124833 333030 124898 343130
(optional) Input 3: Resolution of the 3D lattice 128929 333031 128999 393131
132900 362832 132903 392832
133028 363032 133031 393032
137122 343033
C++ code to add this structure in the library:
(optional) Input 4: Method of discretization string agstruct = "SULDDLLUUR...
CA
CoM
FuC

Side Outputs:

Inputs:

- PDB_ID The 4-character name of the PDB to discretize (will automatically download if not in the folder)

- Chains The names of the chains to be discretized (one char per chain, put together)

- Resolution The resolution of the 3D lattice [default 5.25]

- TypePos The type of positions used for discretization [CA for Carbon Alpha, CoM for Centroid center of the

side-chain only, and FuC for fused center of the whole AA — default FuC]
Example:
.JAbsolut 10B1 C
JAbsolut 1CZ8 VW
/Absolut 1CZ8 VW 5.25 FuC
Outputs:

- Download the original PDB and fasta files from the PDB server, saves it into the running folder

- 1CZ8delns.pdb new PDB with the same structures but where insertions are removed
by shifting the ID of each residue (using pdb-tools). Note that side information
of the PDB might be removed in this step, like the position of glycans.

- 1CZ8 VWprepared.pdb new PDB with only the chains of interest (as input for latfit)

- 1CZ8discretized5.25FuC.pdb Latfit output: new PDB file, one chain has the original positions (lines ATOM)
and the positions in the 3D lattice (lines HETATOM)

- 1CZ8 VWinlattice.txt Description of the discretized antigen [Each chain is described as a starting
position in the lattice (6-digits number) and a list of moves in space (straight S,
up U, down D, left L, right R). See ‘info_position’ to convert lattice positions.

Note:

- Agraphical interface will open, allowing to change the discretization parameters and visualize the results.

See the following pages for description of the graphical interface
- Please do not run this option in debug, the call to python pdb-tools scripts using system() usually fails (no idea)
- Please keep this order of arguments

Absolut! Documentation

Graphical interface for discretization:

pdb-tools

"' Form - O X
poe (1 Filename Warking directory Fasta (5
[1rvz | [1rvZ.pdb 36_windows_msys_pe_64bitRelease | >1RVZ:A|PDBID|CHAIN|SEQUENCE A

Python command (if not in the PATH)

VienPDBin®D | 2 [

|

Chains read from the PDB

Chains of interest A HEMAGGLUTININ; V|3

4 | [aceGIKBDFHIL

l 1RVZmerged.pdb]

-> Merge chains into file: Delnsert

latfit

Atom: CA, CB or CoM FuC 6 nKeep struct per iteration

s 27

ATNADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLC
RLKGIAPLQLGKCNIAGWLLGNPECDPLLPVRSW
SYIVETPNSENGICYPGDFIDYEELREQLSSVSSFERFEIFPKESSWP
NHNTNGVTAACSHEGKSSFYRNLLWLTEKEGS
YPKLKNSYVNKKGKEVLVLWGIHHPPNSKEQQNLYQNENAYVSVVT
SNYNRRFTPEIAERPKVRDQAGRMNYYWTLLKPG
DTIIFEANGNLIAPMY AFALRRGFGSGITTSNASMHECNTKCQTPL
GAINSSLPYQNIHPVTIGECPKYVRSAKLRMVTG

LRNIPAR

>1RVZ:B|PDBID |CHAIN|SEQUENCE
GLFGATAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKSTQN
AINGITNKVNSVIEKMNIQFTAVGKEFNKLEKRMENL
NNKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLK
NNAKEIGNGCFEFYHKCDNECMESVRNGTYDYP
>1RVZ:C|PDBID |CHAIN|SEQUENCE

Allow jumps CheckBox 8 ATNADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLC
RLKGIAPLQLGKCNIAGWLLGNPECDPLLPVRSW
Lattice type: Cubic SYIVETPNSENGICYPGDFIDYEELREQLSSVSSFERFEIFPKESSWP
Average fromPDB (10 NHRTRCVTA ACSHER) L\ TEKER
) Lattice distance: ls.zs = l 9 ‘3.90 < ‘ iterate 11 Discretized PDB
1 - A
Discretize side chains as well] CheckBox 12 :Eﬁipz‘ LATTICE PROTEIN STRUCTURE 17-DEC=:
TITLE FIT OF THE PDB STRUCTURE 1RVZ ONTO A
L= | LATTICE
13 -> Discretize into file: llRVZdlscrehzedFuC5.25d|screhzed.pdb | | View 3D Latfit Output COMPND MOL_ID: 1;
3 COMPND 2 MOLECULE: LATTICE PROTEIN;
114 | - Convertinto lattice into fil: | | 1RVZinlattice. it | COMPND 3 CHAIN: L, P;
COMPND 4 ENGINEERED: YES
u 5 o Multichain structure SOURCE MOL_ID: 1
15 View PDB+ discretized in 3D KEYWDS LATTICE FITTING
v 16 12 Subchains 21 EXPDTA THEORETICAL MODEL
| rmr View receptor structures 133152 AUTHOR LATFIT SOFTWARE
3) SUDLURLDUDRURDUDRLUULRRULSUUDSURDRULSURDRSDUULU REMARK 40
17 [randmoly picked SDLUSRRDULLUURRUDRDSURRLLRLUDLSULRDDLLRDUUSLLSURD REMARK 40 GENERATED WITH LATFIT (C) MARTIN MANN
(1)) number oshow: [<] | DLURDLLUULLDLURULSUDDRUURRDLULURDRLUDLDUUSLLUDSSU 2008
= | URDULRUDRDRUSDURDSLUSRSRSUSRDULDRUSSDSLLDDLLUULD REMARK 40 LATTICE = cub
19 size receptors 7 % | DLUDURLDLRDDLRUSSLRRLUDRUDDRDUDURLUDRLUDSLSUDLRS REMARK 40 PDEID = 1RVZ
20 min interact = | |LSLRLURLDLRULDSUDLSRLDSUDRDSLRSRSURDUSRUUDUUSDULL REMARK 40 CRMSD = 7.08%
10 ~ | |UDSUUDUSLUUDULSSDDUDUUDDUUDLSSRU o REMARK 40 DRMSD = 4.4411 o
145270 DEMADK 270

1: PDB file ID, will be downloaded directly from PDB database

2: Open Rasmol to view the original PDB. Suggestions: Use rasmol terminal to play:
‘select :A’” to select chain A, ‘restrict :A’ to only show chain A. Or ‘select hetero’ to
select the glycans or so. Suggestion: colour shapely, show spacefill, and unselect
hydrogens.

3: Shows the chains available in the PDB (note: sometimes PDB files have weird
formats and chains do not appear)

Selection of chains to be processed:

4: List of chains to be further discretized. The Merge command will create a new
PDB file where all those chains are put together in one chain.

5: Fasta information of the PDB. Note: some residues might be missing in the crystal
structure, so not all AAs will appear in the structure.

Discretization using the latfit library:

6: What will be discretized. Three options: ‘CA’: only the Carbon Alpha of each
amino acid is used. ‘CoM’: only the center of mass of the side-chain of the AAs is
taken (centroid representation), but the backbone is not included. ‘FuC’: Fused
Center, where the center of mass of both the side-chain and the backbone is taken.

7: Latfit reconstructs a structure from one tail, adding residues one by one in grid
space positions. nKeep is the number of best structures so far it stores before
adding the next amino acid. Min 1, suggest 25.

8: Some crystal structures have missing residues, or when you use more than one
chain, there is a gap between the last AA of one chain to the first AA of the next.
These are called jumps and we need to use this option when calling latfit.

9: During the discretization into lattice, we can decide what is the distance between
two consecutive AAs. When discretizing the Carbon Alphas, the average distance is
3.9A between two next ones. However, when discretizing centroids or fused
centers, the average distance might bigger. Using higher distance between points
generates a more compact structure (with less holes) and with lower distances it
makes longer tails. The best is to look at the dRMSD between original and
discretized structure for different lattice distances.

10: Average distance between C Alphas in the PDB file.

11: Automatically iterates all possible lattice distances and types of discretization
(see 6).

12: Text of the generated PDB file after discretization. It contains the original
structure of the points to be discretized in 3D (the C Alphas, or centroids, or fused
centers), and the position of discretized points as well.

13: Runs latfit to discretize the selected chains into a lattice.

14: Reads the PDB generated by latfit and transforms into our lattice
representation with Straight, Up, Down, Left, Right.

15: Visualization of the discretized lattice in 3D. Holes (defined as external points
with 5 contacts or more to the structure, are marked by a green small sphere).

16: Generates all structures around the antigen and shows a small number of them,
to see where the antibodies would bind. Options:

17: Normally, it takes an antibody sequence randomly and shows the
top structures with higher total energy. However, by clicking random,
a ramdom set of structures would be shown instead.

18: Number of structures to show at the same time

19: Size of antibody (receptor) structures. This is number of bounds,
so add +1 to have their number of AAs.

20: Minimum number of contact points of the structures.

21: Result of converting the discretized protein into our lattice system: Number of
subchains, and for each subchain, the starting position in space (a 6-digit ID that
encodes x + 64y + 4096z) and the structure. At the end, the list of AAs in the
structure is given.

Commands when visualizing structures in the program:

Q/D: Previous/next structure. S: Axis B: Black / White background
J: next heatmap (the last one is the merging of all)

A: Mode Amino Acid coloring / random color

H: Mode Heatmap / random color

I/L: smaller/larger AA spheres

Arrows (left/right): moves the structures.

X/Y/Z x/y/z: move the current point +/- along an axis

P: (on/off) prints the position of the current point in cout

O: (on/off): Outputs the current display as image, automatic naming

Absolut! Documentation

Option 2: repertoire: Calculates the best binding of CDR3 sequences around a discretized antigen from the library.

./Delicab repertoire 1FBI ListCDR3s.txt NbThreads

./AbsolutNoLib repertoire 1FBI ListCDR3s.txt NbThreads

mpiexec —-n NbProcesses ./AbominationMPI repertoire 1FBI ListCDR3s.txt NbThreadsPerProc
Input 1: Antigen structure 1D (inside the code) Output: Annotated Files
(xC8
(A k?
A)
J)
3
; 2) C& CDR3 CARDIVITWPYYAMDYW
,’7 ¢
\ (CARDIVITWPY 14
A Slides ARDIVITWPYY C‘Q \“
. (11AN) oo
Input 2: Precalculated possible structures (200MB) —_—
#Antigen 1FBI
ID_slide_Variant CDR3 Best? Slide Energy Structure
42881_00a CARDIVITWPYYAMDYW false CARDIVITWPY -54.77 129120-DSLLRRDDSD
42881_0la CARDIVITWPYYAMDYW false ARDIVITWPYY ~ -61.49 125152-UUUSURUDUD
42881_02a CARDIVITWPYYAMDYW false RDIVITWPYYA 54, 07 141278-SLSSRRSDDS
) , i 42881_03a CARDIVITWPYYAMDYW false DIVITWPYYAM 121119-RUSLLSDDUD
Input 3: List of CDR3s to ‘structurally annotate 42881_03b CARDIVITWPYYAMDYW false DIVITWPYYAM 116959-USSDDSRRLR
42881_04a CARDIVITWPYYAMDYW false IVITWPYYAMD -62. 9 121055-USDDSRRLRL
1 CAGPSTTVPYYFDYW 42881_05a CARDIVITWPYYAMDYW false VTTWPYYAMDY -64.95 137374-URDSRUURDU
2 CARAYYSNDYW 42881_06a CARDIVITWPYYAMDYW true TTWPYYAMDYW -65.! 09 141405-SSSDRRDLRS
42882_00a CARDKGAYSNSWYFDVW false CARDKGAYSNS ~ -47. 55 137312-RULUUSUSDS
3 CARWDDYDDWFAYW 42882_01a CARDKGAYSNSWYFDVW true ARDKGAYSNSW -48.6 r 9120-DSLSDLSLLD
4 CARESSGYGYW
5 CARYNYGPMDYW X6

SR O
{ s(;f?c,,
(optional) Input 4: Tag to be put in output filenames Temp. Output: Backup files with ongoing calculations, in case of crash (1/thread)

(optional) Input 5: First to Last lines to process

Inputs:
- Antigen_ID The ID of the antigen in the library. The full name would contain the chains, for instance 1FBI_X.
However, provided there is only one antigen for this PDB ID, we can use 1FBI as shorter name.
- Precomputed structure file.

Ultimately, the program needs three precomputed files for an antigen. A list of structures, a dictionnary of
structures to binding codes, and a compact list of binding codes. These (weird) files look like:
i) SUDRRec88cb568db9617734142c2elch8ae9e-10-11-
91fbe8b6e59930b8e5270c6093af8136Structures.txt
ii) SUDRRec88cb568db9617734142c2elcb8ae9e+NISQH9359bc275d9357a840bfec064d42eaba-10-11-
91fbe8b6e59930b8e5270c6093af8136.txt
iii) SUDRRec88ch568db9617734142c2elcb8ae9e+NISQHI359bc275d9357a840bfec064d42eaba-10-11-
91fbe8b6e59930b8e5270c6093af8136Compact.txt
The first file (Structures.txt) is smaller (like 100MB) while the two other ones can be huge (1GB). Luckily, the
program can recompute the files ii) and iii) quite fast, so you just need to provide the Structures file.

Where to find the structures file? Philjppe-robert.com/Absolut/Structures/
If the structure file is not available?
You need to recompute it, can take up to 5 days [not parallelized]. Use the command singleBindings for that.

- Repertoire file: List of CDR3 to process, with a unique ID for each of them [ID can be integer or string or whatever]
Should be two columns: ID then CDR3 sequence.

Outputs: Annotated raw binding file

Absolut! Documentation

Advanced: Installng the required libraries for Windows

Installing Qt framework https://www.qt.io/=> download => open source

Recommend to use a Qt distribution that includes a C++ compiler if you don't have:
https://www.qt.io/offline-installers

Installing gsl library

https://sourceforge.net/projects/gnu-scientific-library-windows/

Make sure git is installed in a folder WITHOUT SPACES, so not in Program Files => needed to reinstall manually outside the
program center. Git can be found here: https://git-scm.com/download/win

Find mingw32-make.exe and rename it to mingw32-make.exe as just make.exe and make sure it's in the path, so that
make can be run directly on a command line.

.Jconfigure --host=x86_64-w64-mingw32 --prefix=/mingw/local --enable-shared --enable-static
$ make

$ make install

Then the dll are created in the .libs folders

Same thing for openGL libraries. Seems GLUT is not supported anymore => Change to freeglut. Good thing, we can have
multiple time a GlutMainLoop window, need to find how to do it later. So, to install freeglut:

Install freeglut

Help can be found there https://medium.com/@bhargav.chippadaig/how-to-setup-opengl-on-mingw-
wb64-in-windows-10-64-bits-bz77f350ceaze

Needed to install cmake

https://cmake.org/download/

and to put it’s folder in the path

Then downloaded freeglut

http://prdownloads.sourceforge.net/freeglut/freeglut-3.0.0.tar.gz?download

Then from CMD (and not from git bash), inside the unpacked freeglut, do:
cmake -G "MinGW Makefiles" -S . -B . -DCMAKE_INSTALL_PREFIX= x86_64-w64-mingw32

do make all

https://sourceforge.net/projects/gnu-scientific-library-windows/
https://git-scm.com/download/win
https://medium.com/@bhargav.chippada19/how-to-setup-opengl-on-mingw-w64-in-windows-10-64-bits-b77f350cea7e
https://medium.com/@bhargav.chippada19/how-to-setup-opengl-on-mingw-w64-in-windows-10-64-bits-b77f350cea7e
https://cmake.org/download/
http://prdownloads.sourceforge.net/freeglut/freeglut-3.0.0.tar.gz?download

