{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Logistic Regression = Binomial regression with logit function\n", "\n", "This notebook shows (empirically) that performing a logistic regression for\n", "binary data is equivalent to a binomial regression with logit link." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | x | \n", "y | \n", "
|---|---|---|
| 0 | \n", "1.691 | \n", "1 | \n", "
| 1 | \n", "1.691 | \n", "1 | \n", "
| 2 | \n", "1.691 | \n", "1 | \n", "
| 3 | \n", "1.691 | \n", "1 | \n", "
| 4 | \n", "1.691 | \n", "1 | \n", "
| ... | \n", "... | \n", "... | \n", "
| 476 | \n", "1.884 | \n", "1 | \n", "
| 477 | \n", "1.884 | \n", "1 | \n", "
| 478 | \n", "1.884 | \n", "1 | \n", "
| 479 | \n", "1.884 | \n", "1 | \n", "
| 480 | \n", "1.884 | \n", "1 | \n", "
481 rows × 2 columns
\n", "| \n", " | logdose | \n", "n | \n", "dead | \n", "alive | \n", "
|---|---|---|---|---|
| 0 | \n", "1.691 | \n", "59 | \n", "6 | \n", "53 | \n", "
| 1 | \n", "1.724 | \n", "60 | \n", "13 | \n", "47 | \n", "
| 2 | \n", "1.755 | \n", "62 | \n", "18 | \n", "44 | \n", "
| 3 | \n", "1.784 | \n", "56 | \n", "28 | \n", "28 | \n", "
| 4 | \n", "1.811 | \n", "63 | \n", "52 | \n", "11 | \n", "
| 5 | \n", "1.837 | \n", "59 | \n", "53 | \n", "6 | \n", "
| 6 | \n", "1.861 | \n", "62 | \n", "61 | \n", "1 | \n", "
| 7 | \n", "1.884 | \n", "60 | \n", "60 | \n", "0 | \n", "