{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a5cb2682",
   "metadata": {},
   "source": [
    "## Test kommuner Geojson  med styre\n",
    "* [tweet](https://twitter.com/Landgren/status/1486740776826585088?s=20&t=K5KALeO2sTktDmGiJ1GwoA) vill vi ha en karta med kommuner....\n",
    "  *  user story2 \"_Politisk majoritet i varje kommun, kan man lägga till det fältet i municipality?_\"\n",
    "\n",
    "* denna [notebook](https://github.com/salgo60/open-data-examples/blob/master/GeoJson%20kommuner.ipynb)\n",
    "  * [gist kombinerad med vem som styr i geojson](https://gist.github.com/salgo60/997142eafad5a1bf01deae91214d8ba1) \n",
    "B = Borgerlig\n",
    "V = Vänster\n",
    "BL = Blandat\n",
    "Ö = Övrigt\n",
    "\n",
    "![](https://user-images.githubusercontent.com/14206509/151426953-a1c8997c-4651-4b80-ab7d-a2ad4793ddae.png)\n",
    "\n",
    "* GIST med var datat finns - [Valresultat kommuner](https://gist.github.com/salgo60/6078c98809a06f5b1fd665990398e9f8)\n",
    "\n",
    "  * [CSV styre](https://gist.githubusercontent.com/salgo60/21860059ae3da3dbf26016b4ec34565b/raw/1f10ad71eb3e2c3e5427054a80915c56c5618e7e/kommunval.csv) \n",
    "  * [GeoJson kommuner](https://gist.github.com/salgo60/509cdecf107dfb2cf0ca820082b2e101) - [raw](https://gist.githubusercontent.com/salgo60/509cdecf107dfb2cf0ca820082b2e101/raw/c53fed3fc5373a96147375765690636970a2f9be/Kommuner%2520Sverige.json)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2e2a6573",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Last run:  2022-01-27 20:25:37.554250\n"
     ]
    }
   ],
   "source": [
    "from datetime import datetime\n",
    "start_time  = datetime.now()\n",
    "print(\"Last run: \", start_time)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b67076d8",
   "metadata": {},
   "outputs": [],
   "source": [
    "fileGeoJson =\"https://gist.githubusercontent.com/salgo60/509cdecf107dfb2cf0ca820082b2e101/raw/c53fed3fc5373a96147375765690636970a2f9be/Kommuner%2520Sverige.json\"\n",
    "csvkommunerstyre = \"https://gist.githubusercontent.com/salgo60/21860059ae3da3dbf26016b4ec34565b/raw/1f10ad71eb3e2c3e5427054a80915c56c5618e7e/kommunval.csv\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "43172e55",
   "metadata": {},
   "outputs": [],
   "source": [
    "import geopandas as gpd\n",
    "dfgeo = gpd.read_file(fileGeoJson)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b6d4e7c6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>name</th>\n",
       "      <th>id</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Östersund</td>\n",
       "      <td>2380</td>\n",
       "      <td>MULTIPOLYGON (((14.94400 63.59400, 14.98000 63...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Ragunda</td>\n",
       "      <td>2303</td>\n",
       "      <td>MULTIPOLYGON (((15.98800 63.51400, 15.96600 63...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Bräcke</td>\n",
       "      <td>2305</td>\n",
       "      <td>MULTIPOLYGON (((15.31700 63.14400, 15.42500 63...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Berg</td>\n",
       "      <td>2326</td>\n",
       "      <td>MULTIPOLYGON (((14.77100 62.74900, 14.76500 62...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Härnösand</td>\n",
       "      <td>2280</td>\n",
       "      <td>MULTIPOLYGON (((17.32600 62.90900, 17.41600 62...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>290</th>\n",
       "      <td>Östersund</td>\n",
       "      <td>2380</td>\n",
       "      <td>MULTIPOLYGON (((14.77100 62.74900, 14.78900 62...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>291</th>\n",
       "      <td>Eslöv</td>\n",
       "      <td>1285</td>\n",
       "      <td>MULTIPOLYGON (((13.33900 56.00600, 13.38000 56...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>292</th>\n",
       "      <td>Norrköping</td>\n",
       "      <td>581</td>\n",
       "      <td>MULTIPOLYGON (((16.20300 58.83700, 16.21200 58...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>293</th>\n",
       "      <td>Oxelösund</td>\n",
       "      <td>481</td>\n",
       "      <td>MULTIPOLYGON (((17.02400 58.70000, 17.03300 58...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>294</th>\n",
       "      <td>Söderköping</td>\n",
       "      <td>582</td>\n",
       "      <td>MULTIPOLYGON (((16.18300 58.52600, 16.18700 58...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>295 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "              name    id                                           geometry\n",
       "0       Östersund  2380  MULTIPOLYGON (((14.94400 63.59400, 14.98000 63...\n",
       "1          Ragunda  2303  MULTIPOLYGON (((15.98800 63.51400, 15.96600 63...\n",
       "2          Bräcke  2305  MULTIPOLYGON (((15.31700 63.14400, 15.42500 63...\n",
       "3             Berg  2326  MULTIPOLYGON (((14.77100 62.74900, 14.76500 62...\n",
       "4      Härnösand  2280  MULTIPOLYGON (((17.32600 62.90900, 17.41600 62...\n",
       "..             ...   ...                                                ...\n",
       "290     Östersund  2380  MULTIPOLYGON (((14.77100 62.74900, 14.78900 62...\n",
       "291         Eslöv  1285  MULTIPOLYGON (((13.33900 56.00600, 13.38000 56...\n",
       "292    Norrköping   581  MULTIPOLYGON (((16.20300 58.83700, 16.21200 58...\n",
       "293     Oxelösund   481  MULTIPOLYGON (((17.02400 58.70000, 17.03300 58...\n",
       "294  Söderköping   582  MULTIPOLYGON (((16.18300 58.52600, 16.18700 58...\n",
       "\n",
       "[295 rows x 3 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dfgeo"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "48383896",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Kommun</th>\n",
       "      <th>Kod</th>\n",
       "      <th>Kategori</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Upplands Väsby kommun</td>\n",
       "      <td>114</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Vallentuna kommun</td>\n",
       "      <td>115</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Österåkers kommun</td>\n",
       "      <td>117</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Värmdö kommun</td>\n",
       "      <td>120</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Järfälla kommun</td>\n",
       "      <td>123</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>285</th>\n",
       "      <td>Luleå kommun</td>\n",
       "      <td>2580</td>\n",
       "      <td>V</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>286</th>\n",
       "      <td>Piteå kommun</td>\n",
       "      <td>2581</td>\n",
       "      <td>V</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>287</th>\n",
       "      <td>Bodens kommun</td>\n",
       "      <td>2582</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>288</th>\n",
       "      <td>Haparanda stad</td>\n",
       "      <td>2583</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>289</th>\n",
       "      <td>Kiruna kommun</td>\n",
       "      <td>2584</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>290 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                    Kommun   Kod Kategori\n",
       "0    Upplands Väsby kommun   114        B\n",
       "1        Vallentuna kommun   115        B\n",
       "2        Österåkers kommun   117        B\n",
       "3            Värmdö kommun   120        B\n",
       "4          Järfälla kommun   123        B\n",
       "..                     ...   ...      ...\n",
       "285           Luleå kommun  2580        V\n",
       "286           Piteå kommun  2581        V\n",
       "287          Bodens kommun  2582       BL\n",
       "288         Haparanda stad  2583        B\n",
       "289          Kiruna kommun  2584        B\n",
       "\n",
       "[290 rows x 3 columns]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd  \n",
    "dfstyre = pd.read_csv(csvkommunerstyre)  \n",
    "dfstyre"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40897c01",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "b26be17c",
   "metadata": {},
   "outputs": [],
   "source": [
    "dfstyre = dfstyre.rename(columns={'Kod': 'id'})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "48f9fa67",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Kommun</th>\n",
       "      <th>id</th>\n",
       "      <th>Styre</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Upplands Väsby kommun</td>\n",
       "      <td>114</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Vallentuna kommun</td>\n",
       "      <td>115</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Österåkers kommun</td>\n",
       "      <td>117</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Värmdö kommun</td>\n",
       "      <td>120</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Järfälla kommun</td>\n",
       "      <td>123</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>285</th>\n",
       "      <td>Luleå kommun</td>\n",
       "      <td>2580</td>\n",
       "      <td>V</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>286</th>\n",
       "      <td>Piteå kommun</td>\n",
       "      <td>2581</td>\n",
       "      <td>V</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>287</th>\n",
       "      <td>Bodens kommun</td>\n",
       "      <td>2582</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>288</th>\n",
       "      <td>Haparanda stad</td>\n",
       "      <td>2583</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>289</th>\n",
       "      <td>Kiruna kommun</td>\n",
       "      <td>2584</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>290 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                    Kommun    id Styre\n",
       "0    Upplands Väsby kommun   114     B\n",
       "1        Vallentuna kommun   115     B\n",
       "2        Österåkers kommun   117     B\n",
       "3            Värmdö kommun   120     B\n",
       "4          Järfälla kommun   123     B\n",
       "..                     ...   ...   ...\n",
       "285           Luleå kommun  2580     V\n",
       "286           Piteå kommun  2581     V\n",
       "287          Bodens kommun  2582    BL\n",
       "288         Haparanda stad  2583     B\n",
       "289          Kiruna kommun  2584     B\n",
       "\n",
       "[290 rows x 3 columns]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dfstyre = dfstyre.rename(columns={'Kategori': 'Styre'}) \n",
    "dfstyre"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "d4ff26ad",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Styre\n",
       "B     129\n",
       "BL    116\n",
       "V      39\n",
       "Ö       6\n",
       "dtype: int64"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dfstyre.value_counts(\"Styre\")\n",
    "# B = Borgerlig V = Vänster BL = Blandat Ö = Övrigt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "859db92d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABZsAAAE/CAYAAAAgzB2CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAV0UlEQVR4nO3de4zld1nH8c9jh1oRteCOTW2r22ilVqKCEyySKFIvhRJbIyGtF1apriZ4N2rBP4oaY0ViRaPGDa0uBgsVMW1AkVpaidFWp4D0CmxqC1tbOgh4AYMWHv+YX3WybtntfM/sOTP7eiWTOed3OeeZf06b937zPdXdAQAAAACAEZ817wEAAAAAANj+xGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYNjSvAdIkl27dvXu3bvnPQYAAAAAAJ/Bbbfd9uHuXj7cuYWIzbt3787q6uq8xwAAAAAA4DOoqvsf65xtNAAAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYNjSvAdga+2+7C3zHgE25b4rLpj3CAAAAAA8DlY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMOOGJur6uqqeriq7thw7Ner6p6qek9V/VlVnbzh3Muq6kBVvbeqvn2L5gYAAAAAYIEczcrmP0xy/iHHbkjytO7+6iTvS/KyJKmqc5JcnOSrpnt+t6pOmNm0AAAAAAAspCPG5u5+R5KPHHLsbd39yPT0liSnT48vTPL67v5kd/9TkgNJnjnDeQEAAAAAWECz2LP5JUn+Ynp8WpIPbjh3cDoGAAAAAMAONhSbq+oXkjyS5HWbuHdvVa1W1era2trIGAAAAAAAzNmmY3NVfX+SFyT5nu7u6fADSc7YcNnp07H/p7v3dfdKd68sLy9vdgwAAAAAABbApmJzVZ2f5OeSfEd3f2LDqeuTXFxVn11VZyY5K8nfj48JAAAAAMAiWzrSBVV1TZLnJNlVVQeTXJ7kZUk+O8kNVZUkt3T3j3T3nVV1bZK7sr69xku7+1NbNTwAAAAAAIvhiLG5uy85zOGrPsP1v5LkV0aGAgAAAABgexn6gkAAAAAAAEjEZgAAAAAAZkBsBgAAAABg2BH3bAYAjs7uy94y7xFgU+674oJ5jwAAAOwAVjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhonNAAAAAAAME5sBAAAAABgmNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAsCPG5qq6uqoerqo7Nhx7SlXdUFXvn34/eTpeVfVbVXWgqt5TVc/YyuEBAAAAAFgMR7Oy+Q+TnH/IscuS3NjdZyW5cXqeJM9Lctb0szfJ781mTAAAAAAAFtkRY3N3vyPJRw45fGGS/dPj/Uku2nD8tb3uliQnV9WpM5oVAAAAAIAFtdk9m0/p7genxw8lOWV6fFqSD2647uB0DAAAAACAHWz4CwK7u5P0472vqvZW1WpVra6trY2OAQAAAADAHG02Nn/o0e0xpt8PT8cfSHLGhutOn479P929r7tXuntleXl5k2MAAAAAALAINhubr0+yZ3q8J8l1G46/uNadm+RfN2y3AQAAAADADrV0pAuq6pokz0myq6oOJrk8yRVJrq2qS5Pcn+RF0+V/nuT5SQ4k+USSH9iCmQEAAAAAWDBHjM3dfcljnDrvMNd2kpeODgUAAAAAwPYy/AWBAAAAAAAgNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhonNAAAAAAAME5sBAAAAABgmNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGDcXmqvqpqrqzqu6oqmuq6qSqOrOqbq2qA1X1hqo6cVbDAgAAAACwmDYdm6vqtCQ/nmSlu5+W5IQkFyf5tSRXdveXJ/lokktnMSgAAAAAAItrdBuNpSSfU1VLSZ6Y5MEkz03yxun8/iQXDb4HAAAAAAALbtOxubsfSPKqJB/IemT+1yS3JflYdz8yXXYwyWmjQwIAAAAAsNhGttF4cpILk5yZ5IuTfG6S8x/H/XurarWqVtfW1jY7BgAAAAAAC2BkG41vSfJP3b3W3f+d5E1Jnp3k5GlbjSQ5PckDh7u5u/d190p3rywvLw+MAQAAAADAvI3E5g8kObeqnlhVleS8JHcluSnJC6dr9iS5bmxEAAAAAAAW3ciezbdm/YsA35nk9um19iX5+SQ/XVUHknxhkqtmMCcAAAAAAAts6ciXPLbuvjzJ5YccvjfJM0deFwAAAACA7WVkGw0AAAAAAEgiNgMAAAAAMANiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhonNAAAAAAAME5sBAAAAABgmNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGDYUGyuqpOr6o1VdU9V3V1Vz6qqp1TVDVX1/un3k2c1LAAAAAAAi2l0ZfOrk7y1u89O8jVJ7k5yWZIbu/usJDdOzwEAAAAA2ME2HZur6guSfGOSq5Kku/+ruz+W5MIk+6fL9ie5aGxEAAAAAAAW3cjK5jOTrCX5g6p6V1W9pqo+N8kp3f3gdM1DSU453M1VtbeqVqtqdW1tbWAMAAAAAADmbSQ2LyV5RpLf6+6nJ/l4Dtkyo7s7SR/u5u7e190r3b2yvLw8MAYAAAAAAPM2EpsPJjnY3bdOz9+Y9fj8oao6NUmm3w+PjQgAAAAAwKLbdGzu7oeSfLCqnjodOi/JXUmuT7JnOrYnyXVDEwIAAAAAsPCWBu//sSSvq6oTk9yb5AeyHrCvrapLk9yf5EWD7wEAAAAAwIIbis3d/e4kK4c5dd7I6wIAAAAAsL2M7NkMAAAAAABJxGYAAAAAAGZAbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhonNAAAAAAAME5sBAAAAABgmNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhg3H5qo6oareVVVvnp6fWVW3VtWBqnpDVZ04PiYAAAAAAItsFiubfyLJ3Rue/1qSK7v7y5N8NMmlM3gPAAAAAAAW2FBsrqrTk1yQ5DXT80ry3CRvnC7Zn+SikfcAAAAAAGDxja5s/s0kP5fk09PzL0zyse5+ZHp+MMlph7uxqvZW1WpVra6trQ2OAQAAAADAPG06NlfVC5I83N23beb+7t7X3SvdvbK8vLzZMQAAAAAAWABLA/c+O8l3VNXzk5yU5POTvDrJyVW1NK1uPj3JA+NjAgAA/J/dl71l3iPA43bfFRfMewQA2FKbXtnc3S/r7tO7e3eSi5O8vbu/J8lNSV44XbYnyXXDUwIAAAAAsNBG92w+nJ9P8tNVdSDrezhftQXvAQAAAADAAhnZRuN/dffNSW6eHt+b5JmzeF0AAAAAALaHrVjZDAAAAADAcUZsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhonNAAAAAAAME5sBAAAAABgmNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAzbdGyuqjOq6qaququq7qyqn5iOP6Wqbqiq90+/nzy7cQEAAAAAWEQjK5sfSfIz3X1OknOTvLSqzklyWZIbu/usJDdOzwEAAAAA2ME2HZu7+8Hufuf0+N+T3J3ktCQXJtk/XbY/yUWDMwIAAAAAsOBmsmdzVe1O8vQktyY5pbsfnE49lOSUx7hnb1WtVtXq2traLMYAAAAAAGBOhmNzVT0pyZ8m+cnu/reN57q7k/Th7uvufd290t0ry8vLo2MAAAAAADBHQ7G5qp6Q9dD8uu5+03T4Q1V16nT+1CQPj40IAAAAAMCi23RsrqpKclWSu7v7Nzacuj7JnunxniTXbX48AAAAAAC2g6WBe5+d5PuS3F5V756OvTzJFUmurapLk9yf5EVDEwIAAAAAsPA2HZu7+2+S1GOcPm+zrwsAAAAAwPYz/AWBAAAAAAAgNgMAAAAAMExsBgAAAABgmNgMAAAAAMAwsRkAAAAAgGFiMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYWIzAAAAAADDxGYAAAAAAIaJzQAAAAAADBObAQAAAAAYJjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMOW5j0AAAAAAItr92VvmfcI8Ljdd8UF8x7huGRlMwAAAAAAw8RmAAAAAACGic0AAAAAAAwTmwEAAAAAGCY2AwAAAAAwTGwGAAAAAGCY2AwAAAAAwDCxGQAAAACAYVsWm6vq/Kp6b1UdqKrLtup9AAAAAACYvy2JzVV1QpLfSfK8JOckuaSqztmK9wIAAAAAYP62amXzM5Mc6O57u/u/krw+yYVb9F4AAAAAAMxZdffsX7TqhUnO7+4fnJ5/X5Kv7+4f3XDN3iR7p6dPTfLemQ8CW29Xkg/PewiA44DPW4Bjx2cuwLHjM5ft6Eu7e/lwJ5aO9SSP6u59SfbN6/1hFqpqtbtX5j0HwE7n8xbg2PGZC3Ds+Mxlp9mqbTQeSHLGhuenT8cAAAAAANiBtio2/0OSs6rqzKo6McnFSa7fovcCAAAAAGDOtmQbje5+pKp+NMlfJjkhydXdfedWvBfMma1gAI4Nn7cAx47PXIBjx2cuO8qWfEEgAAAAAADHl63aRgMAAAAAgOOI2AwAAAAAwDCxGQAAAACAYWIzALBtVNV3zXsGgJ2iqn6nqp497zkAjidVdVJVPW36OWne88Csic0woKp2VVXNew6A48iV8x4AYAd5X5JXVdV9VfXKqnr6vAcC2KmqaqmqXpnkYJL9SV6b5IPT5+8T5jsdzI7YDEepqs6tqpur6k1V9fSquiPJHUk+VFXnz3s+gOOEf+ADmJHufnV3PyvJNyX5lyRXV9U9VXV5VX3FnMcD2BGq6rnTw19P8pQkZ3b313X3M5J8WZKTk7xqTuPBzFV3z3sG2BaqajXJy5N8QZJ9SZ7X3bdU1dlJruluK0EAtlhVfaC7v2TecwDsVNPq5quTfHV3nzDveQC2u6p6RXe/oqren+Qr+pAQV1UnJLmnu8+az4QwW0vzHgC2kaXufluSVNUvdfctSdLd99hJA2B2qur2JIf71/BKcsoxHgdgx6uqpSTPS3JxkvOS3JzkFXMcCWAnWZ1+96GheTr4qaqyEpQdQ2yGo/fpDY//85Bz/sMAMDsvmPcAAMeDqvrWJJckeX6Sv0/y+iR7u/vjcx0MYGc5J8mbk9xVVS/u7tduPFlV35vknrlMBlvANhpwlKrqU0k+nvWVdZ+T5BOPnkpyUnfb0B9gi1TVriT/crjVIABsTlW9PckfJ/nT7v7ovOcB2Mmq6rQkb8r64rXbpsMrWe8L39ndD8xrNpglsRkAWChVdW6SK5J8JMkvJ/mjJLuy/sXGL+7ut85xPAAA2LTpCwO/anp6V3ffOM95YNbEZgBgofhCVgAAgO3ps+Y9AADAIZa6+23d/SdJHtr4haxzngsAAIDPQGwGABaNL2QFAADYhmyjAQAsFF/ICgAAsD2JzQAAAAAADLONBgAAAAAAw8RmAAAAAACGic0AAHCUquoXqurOqnpPVb27qr6+qn6yqp4479kAAGDe7NkMAABHoaqeleQ3kjynuz9ZVbuSnJjkb5OsdPeHj/J1Kuv/H/7prZsWAACOPSubAQDg6Jya5MPd/ckkmeLyC5N8cZKbquqmqnpJVf3mozdU1Q9V1ZVVtbuq3ltVr01yR5Izqupnq+ofplXSvziHvwcAAGbKymYAADgKVfWkJH+T5IlJ/irJG7r7r6vqvkwrm6dr/jHJ2d3931X1t0l+OMm/J7k3yTd09y1V9W1ZD9U/nKSSXJ/kld39jmP+hwEAwIxY2QwAAEehu/8jydcl2ZtkLckbqur7D3PN25O8oKrOTvKE7r59On1/d98yPf626eddSd6Z5OwkZ235HwEAAFtoad4DAADAdtHdn0pyc5Kbq+r2JHsOc9lrkrw8yT1J/mDD8Y9veFxJfrW7f3+LRgUAgGPOymYAADgKVfXUqtq4+vhrk9yf9S0yPu/Rg919a5Izknx3kmse4+X+MslLpm03UlWnVdUXbcXcAABwrFjZDAAAR+dJSX67qk5O8kiSA1nfUuOSJG+tqn/u7m+err02ydd290cP90Ld/baq+sokf1dVSfIfSb43ycNb+ycAAMDW8QWBAAAwY1X15iRXdveN854FAACOFdtoAADAjFTVyVX1viT/KTQDAHC8sbIZAAAAAIBhVjYDAAAAADBMbAYAAAAAYJjYDAAAAADAMLEZAAAAAIBhYjMAAAAAAMPEZgAAAAAAhv0PRCnCelTVQ/kAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 1800x360 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plotStyre = dfstyre.value_counts(\"Styre\").plot.bar( figsize=(25, 5)) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "881bc977",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Diff storlek?!?!?!\n",
    "#dfstyre # 290\n",
    "#dfgeo # 295 \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d2558796",
   "metadata": {},
   "outputs": [],
   "source": [
    "kommun_shapes = dfgeo.merge(dfstyre, on='id')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "1aa7d68a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>name</th>\n",
       "      <th>id</th>\n",
       "      <th>geometry</th>\n",
       "      <th>Kommun</th>\n",
       "      <th>Styre</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Östersund</td>\n",
       "      <td>2380</td>\n",
       "      <td>MULTIPOLYGON (((14.94400 63.59400, 14.98000 63...</td>\n",
       "      <td>Östersunds kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Östersund</td>\n",
       "      <td>2380</td>\n",
       "      <td>MULTIPOLYGON (((14.77100 62.74900, 14.78900 62...</td>\n",
       "      <td>Östersunds kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Ragunda</td>\n",
       "      <td>2303</td>\n",
       "      <td>MULTIPOLYGON (((15.98800 63.51400, 15.96600 63...</td>\n",
       "      <td>Ragunda kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Bräcke</td>\n",
       "      <td>2305</td>\n",
       "      <td>MULTIPOLYGON (((15.31700 63.14400, 15.42500 63...</td>\n",
       "      <td>Bräcke kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Berg</td>\n",
       "      <td>2326</td>\n",
       "      <td>MULTIPOLYGON (((14.77100 62.74900, 14.76500 62...</td>\n",
       "      <td>Bergs kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>290</th>\n",
       "      <td>Malmö</td>\n",
       "      <td>1280</td>\n",
       "      <td>MULTIPOLYGON (((12.97100 55.67900, 13.01800 55...</td>\n",
       "      <td>Malmö stad</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>291</th>\n",
       "      <td>Eslöv</td>\n",
       "      <td>1285</td>\n",
       "      <td>MULTIPOLYGON (((13.33900 56.00600, 13.38000 56...</td>\n",
       "      <td>Eslövs kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>292</th>\n",
       "      <td>Norrköping</td>\n",
       "      <td>581</td>\n",
       "      <td>MULTIPOLYGON (((16.20300 58.83700, 16.21200 58...</td>\n",
       "      <td>Norrköpings kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>293</th>\n",
       "      <td>Oxelösund</td>\n",
       "      <td>481</td>\n",
       "      <td>MULTIPOLYGON (((17.02400 58.70000, 17.03300 58...</td>\n",
       "      <td>Oxelösunds kommun</td>\n",
       "      <td>V</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>294</th>\n",
       "      <td>Söderköping</td>\n",
       "      <td>582</td>\n",
       "      <td>MULTIPOLYGON (((16.18300 58.52600, 16.18700 58...</td>\n",
       "      <td>Söderköpings kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>295 rows × 5 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "              name    id                                           geometry  \\\n",
       "0       Östersund  2380  MULTIPOLYGON (((14.94400 63.59400, 14.98000 63...   \n",
       "1       Östersund  2380  MULTIPOLYGON (((14.77100 62.74900, 14.78900 62...   \n",
       "2          Ragunda  2303  MULTIPOLYGON (((15.98800 63.51400, 15.96600 63...   \n",
       "3          Bräcke  2305  MULTIPOLYGON (((15.31700 63.14400, 15.42500 63...   \n",
       "4             Berg  2326  MULTIPOLYGON (((14.77100 62.74900, 14.76500 62...   \n",
       "..             ...   ...                                                ...   \n",
       "290         Malmö  1280  MULTIPOLYGON (((12.97100 55.67900, 13.01800 55...   \n",
       "291         Eslöv  1285  MULTIPOLYGON (((13.33900 56.00600, 13.38000 56...   \n",
       "292    Norrköping   581  MULTIPOLYGON (((16.20300 58.83700, 16.21200 58...   \n",
       "293     Oxelösund   481  MULTIPOLYGON (((17.02400 58.70000, 17.03300 58...   \n",
       "294  Söderköping   582  MULTIPOLYGON (((16.18300 58.52600, 16.18700 58...   \n",
       "\n",
       "                  Kommun Styre  \n",
       "0      Östersunds kommun     B  \n",
       "1      Östersunds kommun     B  \n",
       "2         Ragunda kommun     B  \n",
       "3          Bräcke kommun    BL  \n",
       "4           Bergs kommun    BL  \n",
       "..                   ...   ...  \n",
       "290           Malmö stad    BL  \n",
       "291        Eslövs kommun    BL  \n",
       "292   Norrköpings kommun    BL  \n",
       "293    Oxelösunds kommun     V  \n",
       "294  Söderköpings kommun     B  \n",
       "\n",
       "[295 rows x 5 columns]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "kommun_shapes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "4bbe1927",
   "metadata": {},
   "outputs": [],
   "source": [
    "kommun_shapes.drop('name', inplace=True, axis=1) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "507f2971",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>geometry</th>\n",
       "      <th>Kommun</th>\n",
       "      <th>Styre</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2380</td>\n",
       "      <td>MULTIPOLYGON (((14.94400 63.59400, 14.98000 63...</td>\n",
       "      <td>Östersunds kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2380</td>\n",
       "      <td>MULTIPOLYGON (((14.77100 62.74900, 14.78900 62...</td>\n",
       "      <td>Östersunds kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2303</td>\n",
       "      <td>MULTIPOLYGON (((15.98800 63.51400, 15.96600 63...</td>\n",
       "      <td>Ragunda kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2305</td>\n",
       "      <td>MULTIPOLYGON (((15.31700 63.14400, 15.42500 63...</td>\n",
       "      <td>Bräcke kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2326</td>\n",
       "      <td>MULTIPOLYGON (((14.77100 62.74900, 14.76500 62...</td>\n",
       "      <td>Bergs kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>290</th>\n",
       "      <td>1280</td>\n",
       "      <td>MULTIPOLYGON (((12.97100 55.67900, 13.01800 55...</td>\n",
       "      <td>Malmö stad</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>291</th>\n",
       "      <td>1285</td>\n",
       "      <td>MULTIPOLYGON (((13.33900 56.00600, 13.38000 56...</td>\n",
       "      <td>Eslövs kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>292</th>\n",
       "      <td>581</td>\n",
       "      <td>MULTIPOLYGON (((16.20300 58.83700, 16.21200 58...</td>\n",
       "      <td>Norrköpings kommun</td>\n",
       "      <td>BL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>293</th>\n",
       "      <td>481</td>\n",
       "      <td>MULTIPOLYGON (((17.02400 58.70000, 17.03300 58...</td>\n",
       "      <td>Oxelösunds kommun</td>\n",
       "      <td>V</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>294</th>\n",
       "      <td>582</td>\n",
       "      <td>MULTIPOLYGON (((16.18300 58.52600, 16.18700 58...</td>\n",
       "      <td>Söderköpings kommun</td>\n",
       "      <td>B</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>295 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       id                                           geometry  \\\n",
       "0    2380  MULTIPOLYGON (((14.94400 63.59400, 14.98000 63...   \n",
       "1    2380  MULTIPOLYGON (((14.77100 62.74900, 14.78900 62...   \n",
       "2    2303  MULTIPOLYGON (((15.98800 63.51400, 15.96600 63...   \n",
       "3    2305  MULTIPOLYGON (((15.31700 63.14400, 15.42500 63...   \n",
       "4    2326  MULTIPOLYGON (((14.77100 62.74900, 14.76500 62...   \n",
       "..    ...                                                ...   \n",
       "290  1280  MULTIPOLYGON (((12.97100 55.67900, 13.01800 55...   \n",
       "291  1285  MULTIPOLYGON (((13.33900 56.00600, 13.38000 56...   \n",
       "292   581  MULTIPOLYGON (((16.20300 58.83700, 16.21200 58...   \n",
       "293   481  MULTIPOLYGON (((17.02400 58.70000, 17.03300 58...   \n",
       "294   582  MULTIPOLYGON (((16.18300 58.52600, 16.18700 58...   \n",
       "\n",
       "                  Kommun Styre  \n",
       "0      Östersunds kommun     B  \n",
       "1      Östersunds kommun     B  \n",
       "2         Ragunda kommun     B  \n",
       "3          Bräcke kommun    BL  \n",
       "4           Bergs kommun    BL  \n",
       "..                   ...   ...  \n",
       "290           Malmö stad    BL  \n",
       "291        Eslövs kommun    BL  \n",
       "292   Norrköpings kommun    BL  \n",
       "293    Oxelösunds kommun     V  \n",
       "294  Söderköpings kommun     B  \n",
       "\n",
       "[295 rows x 4 columns]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "kommun_shapes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "8f040b81",
   "metadata": {},
   "outputs": [],
   "source": [
    "kommun_shapes.to_file(\"kommunstyre.geojson\", driver='GeoJSON')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "fa035e98",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAARoAAAI/CAYAAACoOhaiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3hUVd7HP+dOzaT3hHRCIARC772DgqII9obdVdfXXd3mrlveXbe9q65d7ApYQEURC6AivXdCTyGk9zZ97n3/CCAlZSaZSQLcz/P4PJI595zfJJlvzvmdXxGKoqCioqLiS6TONkBFReXSRxUaFRUVn6MKjYqKis9RhUZFRcXnqEKjoqLic1ShUVFR8TnajlwsIiJCSU5O7sglVVRUOogdO3aUK4oS2dRrHSo0ycnJbN++vSOXVFFR6SCEEHnNvaYenVRUVHyOKjQqKio+RxUaFRUVn6MKjYqKis9RhUZFRcXnqEKjoqLic1ShUVFR8Tmq0KioqPgcVWhUVFR8jio0KioqPkcVGhUVFZ+jCo2KiorPUYVGRUXF56hCo6Ki4nNUoVFRUfE5qtCoqKj4HFVoVFRUfI4qNCoqKj5HFRoVFRWfowqNioqKz1GFRkVFxeeoQqOiouJzOrTdiorKxYQsy9TX11NdXU1xaTl2p5ORQwej0Wg627SLDlVoVFRO8cIb77FibyE2tJjtLix2FzZhwCoZcWlNCBSS3vuentHBhJu0XDdpGCMG9+9ssy8KVKFRUTnFg3fezObf/pv1pCFMP300BD99UE4SzUkLYIGvX1/DG8iMGDywM8y9qFB9NCoqp9Bqtbz5v48x0L4fRZFbHV8f0oNfvfMDH3+5qgOsu7hRhUZF5SyMRiPv/PlhetfvQVGUVsfnGbrz4fc7OsCyixtVaFRUziMkJJgP/vowfW1ZrY7tVrqZx2+c0gFWXdyoQqOi0gShoSEM7h7V6rjCmFE88qs/8Md/v8CajVs7wLKLE1VoVFSaIdTf0OoYIWkoH/Yg75Qm8rP3t/Hv195Dllv371xuqEKjotIM0aEByA5rq+OEpEFotJiDk3nhgIY7f/13LBZLB1h48aAKjYpKM/RP74FSX+HRM5IphB/py7zfPMfeg4d9ZNnFhyo0KirNsOtQNsIv0OPnhEbLfr9+PLvwSx9YdXGiCo2KSjMs3XAIyRjU5ud/rAnltt89w82P/wOXy+VFyy4+VKFRUWmCb35Yxx5beLvmkAOiWSf3YlullvLyci9ZdnGiCo2KShMs/m4nSkCkV+ay+EXx3dpNXpnrYkXNdVJROY89+7PYXK6FEO/Mpw0M5+lVR/l234uEGxXuve4Kevfq4Z3JLxLUHY2KylkUlZTy2CvLsIcke3Xe+rA0frSn8ElNCnf9dxnfrd/s1fm7OqrQqKicoqqqmjv/93WOB/Tz2RpCCIqCevPE6yuw2Ww+W6eroR6dVLosx3PyCAzwJyoywudr7T94hF+/spRD/v0RQvh8PWdgN/740vugKAiXnd/cfxvBwW2/4erqqEKj0qUoLCrm3WUr2ZZTwf4aLeGShV/OGsTcmb5LXHzu9fd5c0cVdSH98b3ENFIbkMiHpY3/rygyWX94ntf/8ECHiGpnINxJhfcWQ4YMUbZv395h66lcXDzwp+dYUwCWsFSE+OlUr6sv4eo4C/984n60Wu//bayqquZ3z7/HmkIwh3TvkB3N+SiKQr/qDSx/7e8dvra3EELsUBRlSFOvqTsalS7D4Qon1vDeF+wqHAHRLCm3cvSJZwgNDsDmcGFxyDTYnFjsThyyQka0P5Myk7hx9gz0er1H64aGhvDKH39OTl4+r3z8FWuPV1Pon4akaz2p0lsIIchzhVBbW0tQ0KV3hFJ3NCpdhqH3/YOysMw2Py/bzMRashmWGMxVI/swdcIYj3cniqLw5+de5/1jWlyB0W22pS0osou+1v2EGiWSosMpr22g1q6QFunHvfNmERfXDUnquvc3Le1oVKFR6RLU19cz5NGXsUb28dKEFaSKYkakhHP71RPp1aN7q4+4XC4e/dsLfFkRBX7B3rHDC8TlfUupJoIruhuZP28mAzP74HQ6fXKMbA+q0Kh0eQ4dPsLU/3yPJizBq/MqioK+Kpd+oQ7G9IzmrrkzCQ6+UEQsFgv3PPVf1rnSkPRGr9rgLRRFQVuVR4a+HI21hoXP/YWAgIDONusMqo9GpctjdzhQhPePBUIIHGEp7AC2H3Lw9uMLGNTNj+kDUph31XS0Wi319fXc8rvn2G3IRNJ33Y+EEAJXWDL7SEbxczLn4aeYOnIAIUEB3HvTnM42r0W67ndV5bIiKSEef2cdvgxhExodteEZrLHBdz/W8/Kq/zCyexi5BSXsNvZDSBdPYzih0XI4ehKHj7mIr9nHtDHDSUqI62yzmkUVGpUuQVBQEIGS3adCczYaYwD5xr7kl4OijznnOv1iQQgBGi0nQwdww/++y1X9Ynnivls8vnXrCC6+767KJYkQgjD/zvmAXIwiczZCCIrD+vNaThDX/fo5Pvnmh8426QIu7u+wyiVFZwnNpYKkM7LP0Idvt7beJqajUYVGpcsQEdBxAXKXMutKdfzl+Tc724xzUIVGpcsQrgqNV7AExPHV/pLONuMcVKFR6TII5fKuq+tNrFYbVVVVnW3GGVShUekSOBwO1hwu62wzLhnCggMIDQ3lRP7JLtFjShUalS7BSws/IduQ2tlmXDLUOjU88MdnuWv6VTx3xx2dbY4qNCrepTC/gBce+ydfLPoMu93u1jNms5klW/OQ9H4+tu7yoTy4Fxv2nuQB4SAsJ8ftn4WvcEtohBAhQoilQohDQoiDQoiRQogBQojNQojdQojtQohhvjZWpWujKApfvvAx1xpG0WuHiQ/+52U++O+7VFZUtvjcs29/zEn/Xh1k5eWBs76Ka7K/p4/LxdCaWpY9/3yn2uPujua/wDeKoqQD/YGDwL+APyuKMgB46tS/VS5TFEVhyeuLGWJtzJL215uYHDSYUQVJrP7dB7z/9AJO5ORd8FxdXR1f7CtFaHUdbfIlzcgtC7je2uib8ZMkir77Dqu19T7ivqJVoRFCBAPjgDcBFEWxK4pSDSjA6Qo9wUChj2xU6eIcO3SUN3/zX1L3+xNlCjvnNY2kYVRoPybUpLPrn9+y8D9vnuOc/PebH1MclN7RJl/SxOxeyr11ZWjPqsUz4Xg2C8aMZd2qVZ1iU6tlIoQQA4AFQBaNu5kdwKNAIvAtIGgUrFGKolz4J+ss1DIRlxYOh4NPXl2MKcvBoGD3jj52l4M1DXvoec0g+gztz5TfvE5FaIaPLb18UMqy+Z+tbzLD0XTW2GGtBh5+mGseeMDra7erHo0QYgiwGRitKMoWIcR/gVoadzE/KoryiRDieuA+RVEuqCAthLgPuA8gMTFxcF5ei1qkcpFwYOdeNr69ign6fvjpPK/fklNXyOeVW1hqTILoy6uZmq+QZZkpq/7K4+aaFisL7oyMxDlsKDOfeIKImBivrd9eoYkBNiuKknzq32OB3wBjgBBFURTR+K5qFEVpsdipuqO5+JFlmU8WfIj/Xiv9gtLaNZeiKKwr2c0nZVlsTRqJJujS7ADQUaRsfpOni7IIcaN8qawobLvzDu787W+9tn5LQtOqj0ZRlGIgXwhxem88mcZjVCEw/tTXJgFHvWCrShfnl7c8TPrBoHaLDDRmHY+LGcgzfW7ktzUF9Ny7HNlu9oKVlx9SwX5uqTjmlsgA/BgUxIS5c31s1U+4W4/mEWCREEIPZAPzgc+B/wohtICVU8cjlUuXnGPZpNgjWZa3BgNabk6f6ZV5NZKGqxPGMjXGxpL8NXxlqeFE72lduhB3V0KWnUzf/wmjHY5Wx2YbDOROmMCshx8iKa39fyzcRa0ZrOI2H730PqNOJCGEIKf2JF/krGF24kSSQ71b2a3KUsOi/B854DSjICGjICtn/QfYXU7y/SIIt1aRotdhl2XK7XYUIWjQ6AiRHcQZ/Kiw2zga3h3ivFT0vAvSY8MC/lZyiCA3hHnDkCHcs/B9n9ih1gxW8Qr2/LozTsaUoHgezryJdw9/wVB7HzKje3ptnVC/YB7ueXWLYxRFIbe6kJiACPxO9V9SFAVZkbE4bJj0RiQhoSgKu8oPszlnA1WykwNVJWT3nARaHVpT1+l00BacDdX03/4e8+uL3BIZAH1a5zjeVaFRcYuS4hICKzQQ/tPXNJKG+enXsKl4D+8c/YIGm5m5SVOIDvS9U1cIQcp5OykhBBqhIcBgOudrgyLTGRTZGKtjcdjYWrofh+xk5dEf2Bg/CMITfW6vN5FlmYRt7zOz8iizrBZ0nvSukmXfGdYCqtCouMW6z79jaOiFsTJCCEbFDmAUA3DJLj4+vopeDQkMiumaRxU/nYHxcYMBmBw/jB+KdrJm/wpWJwxBCu7YhnFtIfDgKqac2Mj1DTWESBJ42CDPWVbuI8taRhUaFbew5tWgkVruuaSRNNyUNoMFWUsZENW7yztzhRBM6jaYibGDiDu2grKSA9Q5zPwQMwB9eDzO6mLQGdH6h3S2qciyzLA1/+HOulJSFQXa+L0Vfp2TuKoKjUqr1NTUoC+Tzzk2tcS1KZP4IPsbKhqquK/PXIzarl05TwjB/WmzAHDJLn4s2klOzkZS9RHsqtrDx0lD0AS6+eZ9RNKORTxaXUREO8VbGDvnZ6EKjUqrrFn+ndspBgCRfmHc0uNKDlXl8EPuZq7oMb71h7oIGknDpLihZ/49rtsgEk+sZeuJLWz3j8aWPLjjjSrL5oayQ+0WGYCGoiIvGOQ5qtCotErtkVKM2kiPn0sPTaHWUc+7R5ejlSVuSruiyx+nzkcSEtclTeA64FBVDp8fXMkavYm61DEdsr4sy0zetZhJNqvH/pim0NbUoChKiykKvkAVGpUWOZJ1mPAyfWNmWxsYFpXJsKhMihrK+PzEGuw4qWqoYWBoT4Z36+9dY31MemgK6aEpXF9zkv/b8TG7Mq/2eZ/u7rs+ZJy52mvC0OdAFh8+919ueux/vDKfu1xcf15UOpz1i1bSL7j9EaSx/pFcmzyJG5Kn8UCfeWh0OhYdXuEFCzuelOB4/q/frUze/xWummLfLVSWy3XFBxjhxSnDgfoTJ7w4o3uoOxqVZvlh+Sp618RAgPfnHhKZgUlr4NPc73AJmQa7hUhtKDNTxnp/MR/gpzPyl4F3kJ6zivfKjtHQw/tHqf7rXmKykL1yZAKwKwr7UYhO7/j6P6rQqFyAoigUFRZR8NVBJgQP9Nk6GaGpZIT+VJB8Z/lBVuT8yMyUi8N5LITglu7T6F66j/87to6SHt4TyYg9n/GocHm1XW+lomB/4H6uuu9er83pLqrQqACwbsX3nNx2HFetHaXegcmlZ3zEgA61YVBEb5Y3lHKg/Ch9Ijou4a+9jIzK5E96Ey/v/JQ9fWcg6U2tP9QCsiwzqWQvsV7uCX4iLo6REyd2uCMYVKFRoXEHc3zlPqb4DQI9ENbqIz7jqqTxfJb3PTuKs7g5YyZa6eL4Fc0MSeW5fgn8M2sJRxWFE4ZAHD1GYyjIwmEKhsgUt+eK2fkR19RVg0bjNfuOKgqJv3iM9IG+26G2xMXxU1TxKds2bKWXs1tnm3GGa5Mmcagim/eylnNX32s72xy3MWj1PNXvFhRFobi+nG0FWaQGxlHjqOdEzjbKXGayHRbK7HYqhUSZMRRNfCZa00/14mRZZnzlEUK9KDIAcYrCus8/J6lXLzYsWcLAK6+kz4ABHba7UctEqPD+v99gQnnPTtlSt8TGsj1UNlQzK/ni8Nl4gsVhZXPBHoqdNSyyVFKdeSUAYbuW8lzORiJ9EG8kKwq7tFr6O52cVBRyoqOxhIVx1ztvExoa2u751TIRKi0y+cYr2PD0F4wM7tvZppzDqMj+bGIfL+79kAA/Ew1WM8IF0aZwrus5tbPNaxd+OiMTk4cDMKqukMd2LaOw10RmFu/2icgASEIw2OUCIUgWguSyMr6TJEJCQnyy3tmoQqNCt4Q4jKOiqdxeTZhfSGebcw4jIzMZGZkJNHZQEAiKzGW8uO8DZidOICE4tpMtbD9mhxWN4iL+238xD+9EALtN794dspNVA/ZUAJh167Vs1h3rbDNaRK/RodNoSQyM5aG+N/J90VZK6jqn7IE36R3WnRsD47kfm2e1ZbyAfPgwxfn5Pl9HFRoVoDEmZOr9s9lWk9XZpriFEILrU6ezNGc1cicVc/IWTtlJfsluRnSCiyy4pga7rekeUN5EFRqVM6SkdcfZP5B628XRicBPZ2Rq0giW5X3PS/s/Ir+mczKT28tn2Su5tvhgh69b5nRi7p1OYg/fl/dUhUblHObcewPrlAOdbYbb9AxOZk7KFB7sM4+VhZsvyqNUXu4WwrQd5y7dFxTE1muuQfPaq1z//PMdsqYqNCrnoNFoGHbzRA7V5na2KR4hCYn56bP5IPsb7E57Z5vjEbHx/Tv0+JcXHcUd//g7oydPJjy8Ywp6qUKjcgH9hw2koFt9Z5vhMZKQuLf3HF4+8HFnm+IRM5ImsVTfYpNXr9LtRD5bfvihw9YDVWhUmqHOaeGNA59edI5Wf72JeT2m8mbWp51tituE+4WgTRnWYevZw0JJ6N69w9YDNY5GpRliwqIY3T2Vl/Z/yKyEsaSEtlyYvCsR5x/N0NhM3jqyDNml4HDYSAlIYEb30Z1tWrNMSpzA8uwNXOXy/Q2QzmrFYe/Y46W6o1FpGpdCpF8YD2fexP66HD488m1nW+QR/ULTuKvnNdzT+1oe7HcjyWHdeGHPYsx2a2eb1iQJgTGYk4Z3yFqDq6r54g9/oCPTj1ShUWkS2eECGuNVrkocx/CYPvx3z0LKG6o62bK2kR6Swj0Z1/HB8a/ZXXqos81pkundp/Cl0HfIWoN37eaLV1/tkLVAFRqVZlCc5/pmUoLieSjzRjaW7+G1fUsuupsdaGwed3fva8mzFLP2ZNdL7k0IiMGSMrT1gV4gVAhKd+3qkLVAFRqVJsg+chxb8YW3TlpJy9VJE7il50yW5K7m3azPLzpnMcDspAnUOOvJqfR96L2nDI8fwwa5Y0KEu69dx4r33uuQtVShUTmDoigse3sJe55dzSRT8wWSAgwmbulxJVcmj+Xdo8v55MiqDrTSO1yROIZvCzZ1thkX0CcslbzEAR2yVjeg4P33qa7y/XFYFRoVAGprann1iWdI3ePH0OAMt56JNIUxv9dsBkSn89LeD31soXfRSloMBkOX3JFlxA3jkNM7dtU6nS2+x9En8nn5xhtxOp1eWa85VKFRoaa6hkW/f5WZmiGEGj1v4JQanMC8HlN5bvf7XfKD2xxXJ4zn1awlZJUd72xTzmFMzCC2JfTzylyvyS6+0ev4zM/Iu1ot/62rI+esJEpJCKZk57Dg8ce9sl5zqEJzmVNZUcni37/GTNNwpHYUw44yhXNX72t5ds/7WJ2+jwXxBuF+ITzY53oK7KW8m/V5Z5tzBiEEqbGDKPPCLiNNURhqs3OtxcptDgejjUYq9Hq+1OtZYjTwlqKwwW7HdcC3+W2q0FzmfPafhczyH9EukTlNkCGAhzJv5LUDS6g0V7ffuA5ACMHUuJFMTxrNi/s+4HhlxzdXawqLy4K/FyrtzdDp2anXAY27lyE6HUOEYJbdzjyrjflApk6HI/8k7/31r+1erzlUobmM2b5+Kz1qIr1aYc2oNfBQ5o18nL2SvJpCr83ra2L8I3io740cbjjBokOd30GzqOQAJi8IjVGSqNU1H5sjhCBOq+UKQL94Mbs2b273mk2hCs1lisPhYPeS9aQGxnt9bq2k5f4+81hVsInS+gqvz+8rhBBcmTCG8fFD+O/eRZ1W3yar4jh1+Qdweilyt85icSsKuL+ssOPdd72y5vmoQnOZsvTVxYzXesfh2BRCCOanX8MHx7++6IL74gOieSTzJvbUHO2UxNLc6gLqI/uyMKInywwmql0uClyuNqcMZNhsHFHcew/OvfvatEZrqEmVlyFHs44QkOXEL9jg03U0koZ7e1/Hywc+5n/63+rTtbyNJCRmJY6jylLD20e+IMEQxbSUUT5f1+a0c7A6h8dH3E2QMQC7087C3QspqSmku6WIK50Oj+ccYTSyXKejl6PlZ5dER6HpFtdW01tE7et0maEoCq8//ixX6jom1B2gxFzOspwfuL/PvA5b09scqDrO9/lbfJ7Jvip/E/1DexIVcGFBqvW5m9mX9y0ptcWMdDqRPPCtLTboudnW/M7yKMDvn+TqW9v+B6Glvk7q0eky48tFyxju7Ni+1tGmCCbED+PZHe9fNLdR59MnNJWHM2/icEM+7x9a7rN1chuKmhQZgDHJI3hw/B9JG/Vr3g/vziqdnlI3dzj2+gZsLRwBk2QZe2Vlm2x2B1VoLiPKS8upW3+S8E7o3dQrOIn7M+eyvSKL9459yWv7llBUW9rhdrQHIQQz4kcxMX4Yz+1ZSI21zqvzby3dR/+g1guFp4Yn8/C43zJ2/F/4o9PEJ5IWexMnk8V1P9k3WVHYJTW/AxJCeLXX9/moPprLiM9f+pBpwf07bX2T3o9pCY1+DpvTzsaSPXxXto06cz0z4kaREnZxFNeKD4jmob438sHxr0k2xTIuvsnTgsdsKNzNYwNuc3t8ZEAYC298iYqGKt7Z9gpy/j5uM5nYaLORq9PyeVUVUkQ4eklCb9DT1+EAuWlXSbZWS58xY7zyPppC9dFcJmz8fj2uT06SEugbZ197cMpOtpTs53jDSfxkPfN6Tutsk9xmU+leDpYf566Ma9s9147ygxyuzOHmnle26fnvj69n84nNhFdkcYNGg8YDH866mBjuW9O+OsKqj+Yyx+FwcPCzrV1SZKAx7mZ07ABu7zGL4bGZvJa1hG2Fvrlm9TYjo/oxM3ksr3ihIPrgiN4MjErn9QOftOn5Salj+N3ExwkMi/JIZABMFRWUlvruKKsKzSWOLMu89beXGaf3XcyMN0kMjOX+jHkoWnj5wEccKDva2Sa1SrQpgn7hPTlUnt3uuXqHdG933I5D6+fxM3ZJEBgY2K51W0IVmksYq9XKgiefY2xNT/x0vo2Z8TbDojJ5MON6ql0NvLT/Q45U5HS2SS0yKro/PxRv88pckcHt67XkqdC4FIWyxESMRmO71m0JVWguUaqrqnnr188zzTmAIENAZ5vTJoQQjI4ZwM/63ECxvZKX9n1ITlXXq4oHjbZ2C4yi1tr+fljt9Zva0Hk0/tv0Xjz84YdezXk7H1VoLkHsdjuL/7SAq4wj0Gs8+6XrigghGBc7mJ/1vYG1Rbu6bIH0ad1G8sGxb9o9j0z7hMagD6PBzePXpxERDL79dvz9/du1ZmuoQnMJ8vnCT5iuG+zTv1CdgRCCG3pOZ+nxrlk61E9nJMBoarePRXEzL6k5+kZmckJ2tTruiMlE/3vvYcJ117VrPXdQheYSZPDYYRyv7ZpHjPZi1Bp8/te3PUyIGcwnRz0XQkVR2Ft+hI9yvsVmb1/hsGEJAzhsMLU4xiLLWO+az6w77mjXWu6iBuxdgnRPS2W9cQXuVf69+OjhH8+h8mzSIzq2ras7xAVEUy/ca1LnlJ18mrWcyqqDKFUFOCMG8Mioe9ttgyRJaLUacDWfntAgy0QnJbV7LXdRheYSRR8TALWdbYVvGB6dySt7P+oyQnO0IodvD31GdFAC8zLn0SekO7uLDzEgJr3J8SuPfU9O0SaC6ssYaq4j+lTo/we1B7E77ei17W8iZ9bogOYFL0Kr5YeFi5hw1VXtXssd1KPTJYohLhCn7NvK9p1FtaWWEG3n36S9sXUBb/3wJHnr/8GtpQfpnvs9r299haGRfdlUvueC8Wa7lWfX/I3gg0u4uSKPWTbzGZEBuNpcy4LNz3vFtpBuo3hf1/J1tdbYcSEP6o7mEqX3sExeeOeP9IjqzaS4kfjrWz6zX0zsqDjIlSnjO9WGj/ctYUzhds7EWgtBT5cL/8LdPLf27yQnjqDebibg1Pd9be4GDh36hFvNtRibKdHpL0n0qs5hR8EeBse1LydNCIFeknApSrNRwsEZHXe4Vnc0lyjpvdNJl8oZsmMR765+inf2L2Rz8Z4ObezuK0ptVYSagjptfVmW2Zu1gqYSOuJQmFuZw8FD3/Bu1hfU2828uOEZ5AOLucla36zInGaE08HGA4vaf3OFhjGW+mZFxirLGCMj27WGJ6hCc4mSfegQLklDgFbLbfZarju2Fs3a5/jvxmfJqT3Z2ea1iwmxg3lhz+JO6yH15rYF3K9r/jAQIgT3WioxZ//AitW/YV5JFoNbqW53mmKHnTpZy4K9H7XLxmt7X8WH2uZ3sQYhqDx4sF1reIIqNJcYZrOZd5/8PdtuuYXx+edecafrddxddoiNG55jee53F+3uJs4/mlt6Xsl/9y7qcD9USV05wRUHCGllZ2KUJB6QFK60Wz3qZvCWIZz5ox+jW2gsxXVlF7zeYLe4NY8kSSTEDqKsGTEWQlB/IAubrWN6cKlCcwmx5pNPeH/WVQxcupR+DeZmx11tq6X7tkU8v/VlSszlHWih9wjzC+He3tfxwt4PMNvdu072Bh/ueIVpNt+tNyLzSmIDI5mZMJaluavPeW136SEWHv6SNw59yo95redV3TH4VjYGNH/EjM3LI6uDyraoQnMJUFJQwGv33IPz939gXGEhOjcighN1Wu4s2MWy9c+wpnBrB1jpfQIMJn7W9wbeOPRJh5QI3Zy/nUF1hR6XYPCEivoSoLGw+8S4YazM2wBATlU+B2tzuD9zHvekzyEsMITXDi5lV3FWs3NpJS06mre1j8vFd397mh3r1nn3TTSBWvjqIqahoYGvX38d80cfMaSyqs0pB/tcCntSRnFLn3kXZQKmxWHjqXUv8K+Jv/Rp2sWL3/+eO3xYfnSp1Y7fgHncmD7zzNfePvw5aaYETtpKuSF1+gXvb0vpPo7V5ZNXUcDY6EFkNeTgpzeioHC8OJdeZfu5WrT8GT+g0/JcYCQ3PfAzHrp9bpvtb6nwlXq93YX57JvvOZxbSK3VQZ3NRb3VQY3FQa3FQXlRASP3reIup40AjQba8QHL1Ah6527gveoTDO4zm5HRA7z3JjqAr0+u57aMq3j3yBfc2Wu2b9Y4spJRdb6tcXwoqBtP95xxztfmJk/h2R3v8fuR9zcposOjMhkelUledBEfH/6GezLmEOoXDEBWyHGKT2wFU/NlI76WBW+lTqA2ZRyfbTrIQ7d79z2dRj06dWG+2X6UV3NDWVwcxfKqWH6wJLKTVI75pVPdfTIbMqZS5KUNqVaSuKO2ANuGl3ll51tUWKq9M7GPqbHWUVZfSb+YXgRrA1ie+yNmNx2m7iLLMnm5q0nz8eZ/bl0B/9r82jkO7kCDPzFBka36oZICYnli8PwzIgNwrDaXXvoLs/cLHE5+EdmdB4O68b0phIaInkgGEzlWE/n5vrmRdGtHI4QIAd4A+gIKcJeiKJuEEI8ADwEuYIWiKL/yiZWXKTFBBmihvElNj0n8qb6CV49vJFDrnc3pYAkG5m7kw/JjJKbPYEbC2C6dBf5F/o/c3aexXu+1qZMpqC3h3awvcAmZiMBQ5iVPRSO1r7r/4r2LmdJQ1a5doztEarRU1RZjdzrQ6n/6ed6ZfjUfZH/LHT09SxeYkTSOJ49vYVb5IQb5GdnhlHk3PoNDDpBGzke2W5D0fohT3x+NAI2POiG4+9v5X+AbRVHmCiH0gEkIMRGYDfRXFMUmhIjyiYWXMdHBJpQCGSGa3ngKIajoN4dfWqp4tfgwkheawkPj1ejN5nJytr7DyyX7SIzoTd/QXiQGxbT7Q9seCutKifYPP2PDyboSdLIWrfTTr3FcUDQPDrgBaHSgPrfrfeb0mIpR0mN3Oaiy19IrNBm/VsLzT2N32rEX7yDaxyJT5HDyWdwAnhw0H5P+3KOOXqvHZXdSY60j2Oh+uU29RsfTk37Fmwc+44WGfCpSR2OPTD/jzNYYz/XH2SJ78sR/F7Lon0+0/w2dR6vOYCFEMLAb6K6cNVgI8TGwQFGU1c09ez6qM9gzNm7dxvXv7Ecb1IqGW2oYvOkN/lrrm6b0Vllmg93BicAItCExZKZOYmzMYJ+s1Rx7Kg+z+cQeXJJCkH8gvQKS2FN5mHt6z2nxOafs5LOj3+F0OAnU+ZMQFMPm8n2YjH6MiMjE5ZLpEZZwjlidzSubXuCawt2NfjAf8n63fjw49KFmd49Wp40V+eu4LmWKx3PXWOuYf+RTSvpefWb30hy6ukJemJfBjAmjPV6nvc7gFKAMeFsI0R/YATwK9ATGCiH+RmOa6OOKoninaKoKAP37ZBBk+wEzrQiNXzB7Bl3Pgk1vc5/N+ynbRklistEAjjooq2NTWTYf9D7JDT2vQmpmt+VNjtTksr/sGPcPuP7M1/aVHGF4eGarz2olLfN6TT/na/1jG7OqVx7fgEHS8fXJ9dyefhXhxpBzxhU3lFNstfFFYBjT6quI8NKO8Xze1QYwMHFUi0dUo9ZAcX05TtnZrCg2R7AxkNdSr+KO/C3UJrXcP9wR2I3nPtvQJqFpCXe+c1pgEPCKoigDgQbgN6e+HgaMAJ4APhZNfKeEEPcJIbYLIbaXlV0Y6ajSPP7+/kS6WWfaGZLAtwNm8z2+P9qMxMXgPct4Ydtr1NuaDwz0Fj8UbueWXjPP+VpmdE8yo9rX2nda6mjGpwzjsQG38faBz6g4KxZHVmQ+Ov4tf574OPdO+Sc/Jo3mc4OpyY6Q7cWUPIxR0QNbHXdT6gyWZLetumCkfxij6xtQLDWtjrVYvR8t7I7QnAROKoqy5dS/l9IoPCeBT5VGtgIyEHH+w4qiLFAUZYiiKEMiOzCJ61IhMtD9yvTm2P68ljGZPIfvw/Jj9TpuP7mD17Y8T6m5wmfrHK/OJ0kf47P5T3Nvn7m8e/gLtpbsw+Kw8Vnu98xNbjymSJLEnYPnM2vCX1gU3p1dXnK8n6bHoe94+ce/srpgQ4vjwkwhNDjbHpX8297X0u3YmlZTTwr18bz2Xvtyrc6nVaFRFKUYyBdC9Dr1pclAFrAMmAgghOgJ6IGLM569CxNk9Ky4eE3aVH6fMhhrByQcaiWJ+yqz+WjLS+TWFfpkjZ2VB5mW0vJ23xsEGwP5xcDb0StafrPmGXSylrig6HPGhPgF8fNxv0Xqezvvm0Ko8tL3eKBWcHt1Pvm7llBY33KsjuSkzbtISZL4Q8woAgp3tTjO4R/F89/sweVqve6w22u7Oe4RYJEQYi8wAHgaeAvoLoTYD3wI3KFcrFl6XZjoIM+KEwkhKO1/PY9HpvrIogu5s+Ykq7a+wsGq9jdQO59ycxVWp93r8zZHr/AUUqOSuDp1QrNjxiSP4IEp/+CbuMGs82K/rFn2epYf+7rFMdf1mML6kpaFoiX6RaYyvLIEVyudJCzhPVnxnfdSE9wSGkVRdp86/vRTFOUaRVGqFEWxK4pyq6IofRVFGaQoyvdes0rlDL3jI5Adnp2ZJZ2B7EE38nRgx0Uc3FhXwo6tr7GtbL9X540NiELrIydsUyw+/jX39Wm9K4AkSdw3/EESBj/I28ZALF7Y3Zx0OFmyczXPbX2n2THBxkAqne1z+P+u9zUElB5ocYxDMpJ16Ei71jkbNTK4izN93HAMNXkeP6f4h7Nl4FxebkN71LYy21LFia1vejVJc0REJsuOdtzfMEmSMGrd36VkxmRw35SnWRiaQHsOjxVOJ+8IA49OupM7Mq9tcWxVQ227SnzUWOqw61uOx5GMAZSYvXdAUYWmi6PRaNHStr+W9rDufDn+Ee5OHsoqpWMC7aY5GrBue4cvc70jDsGGQH48sa3DilwZ23AUMmoN/GLiH1nXbRBZbXAU75BhTe/p/HLGn7gqefI5aQRNMSy8D7vLDnm8zmk2Fe3HFtCKg12RCTR6z+mtCk0X593PvsEc1vZrXCUwisIBN/DCuPt4OLonOW5WemsPoxUnITs/5IPDn7e7uJafzkBaRDLV1o5p6WAUbe9AcM+wByhInsIWD8XKoCikhvUgMSjWrfGDYzJYX9R2P01yWBwR1cdaHKM4bPRO8t5tnyo0XZz1R0pajeZ0B0d4KsdG3MsTI27lD4HRmH28Q+gvQea+L3h97yJcbnRNbA6n7ESr0xJmCvGecS0QZ4ziSFlOm5+f03cO9h4z2WBwT2xkWWZ/QAQNzga31/jq+I/0DevR5tbAAyLS6OZo+ZpcMpj4fm9um+Zvcj6vzaTidY4cz2Z/Tft7/JxGCEFDwlC2jnuEe/pMY4HOt50RkrQaph39nhd3vIGtjTdHKws2My9lqpcta56M0O5sKN7drjmu7DUDTdq1bDCcGwNV4XSyQvrpa7Is81xICteO/RUzEsa5Pf+stImU1Ffw7M73qLRWt8lGvRt/aA6VtJDR6yGq0HRhvlqzGXtostfnlXRGqnrNYNn4R7k7ZSirFd/9GoRrtdyYv40Xt75Mnc29v9pVllosDitO2UlOVT7RgRfEgfqMAIMJh6b9u72pPSah6XEVa3U6lqLjn8ZIXg/oRuiA69nlcLHZpbC4WybX9J9LhCnU4/lv7H0Ffx79EO9nLeetw8s8N9CNE63Gi7d9auGrLky1xenTEg1KQDiF/W/g+bjBLDv6Pb8oOEh3rfedxiZJ4q7i/by59SXGpc9iYETvFt/XJ3nfgd1FtaOe23t1TCfFszEZvXNTNzVtKr/K28HVA6YxJiAcs8tC/7B0NuoDCNX6MzWifSkUWknLo4Nu49MjqzhZV0J8YHTrD53C4obTutJsR5Zlr1QFUIWmC1Pd0DGBao6IHhwLT+WJgu2kH1nL76oL8Pdy7IpWkri74hi7f/wPL3frQ1x0X0ZEDSKmid2Kv8GPm9JnNDFLx2DUXHhcNdutfJ2zjut6uXeMyyo7zo+lO7h7yI1sKNnNmLhBZ14bFTPAW6YCcE2PySzJXcUNgdNbHwyU1JdToGtdTMP99V4rPaIKTRemsqFjWmFAo//GHD+U7dH9uCfnR0Yd38hDllqv/aKdZoBWw4DSQ1iLs1ilLKU6ugd+oUlcn3YV1bY64gKjCdUFUVJX3qFHprPRuSRe2vkBwiDRYG7AZDRRa6nnipQxvHZgCff3mdfi8+8cXEZKaAIPZMxDCEFBdQkLsj7hhu7TPKon4y6SJFFlaYytcWcHXO+04dS07qzuFuK9GCxVaLowlWZHh/+EJJ2B6p7TWBE/lJ3HvuOG3B3MkL1/JW6UJK4CKD9GVnk2Lxcfwmmppy4wlvjQbiQYIjtNaEJEAN3j48mM6onNaW9sL6tpzDmL9g9n0bGvMLq0XNdrWpPPB0omIrTBZz70k5KHM0EeyvN7F3NzzyuIMoV73eY+gclkVWbTJ7z11JPUkDi65//AgW4DWhSmqCD3E3pbQ3UGd2EqO+jo1BTCFEpxv7m81fcKip2+zQbPQOaBugIedtaQiIUZKaPpE9k+/0VLyLLMtpP7mmw+933eFnLsRaSFJQFg0OrPiAxArCmSW3pcSVRQBK8f/JRX931Maf1P2ev/3voW2TUnL4guliSJ/xlwK0uOraSwwftFzscmDmVv9VG3xz8eNw6/wj0tjokI8F4el7qj6aI4nU5qbd7Lnm0rtcmjebooi+fLWg7w8ha3VOXxlx9fYEa/OUxOHOGTNV7c9yHjYgexIn8d9U4LNQ119A3uzt6aY4yOG8ikpOGtzjE2dhBjYwdhc9p5bf8S9p08RK9uqUxLGU3vsO7niNPZPNTvJl7Z/zFXJo8lKcC9AD13qbLUuH186hmWSMq+dWR169/keNlhpVuo91rvqH2duih2u50B9z+DObr1KnK+RleZS8Kq53nJ0DEb4M+cCsEDb8IiOai3NZAR0J1R8QO8MvcPeVuIDAynb1iPM19TFIXDlTkkBsZeUK/XXU5/jty9JXx253tcnTqR1OCENq3XFPtKjmDFwdDoPm6NP1iew8P2Amzd+l3wWj/bPj799+NoPUipaKmUp3p06qJoNBqkVhp/dRSOsGSKxtzK503cxviC3k4bSYGx3JgynXvS55BvKWlzFOz5HG7IP0dkoFEc0sO7t1lkTs/hSSjCY4NuZ0fJAT449jUOl3eOppnRPTlc734Cbu+IFFIqT1yQJhJUc4y/3nutRyLTGqrQdFE0Gg0ZmxfTd/1LWPP2nkkqtBUfx7DrM5zmc0syylYzsg/rtljiBvHekHl86sZtRXtJ1Osptfzk95jTfTJbyvfx3rEvWZT9FW8dWtbmuSP1wbx/9EuqLB2TO9US1/ecwYxuo1l87CuvzVlnrmvS99Qc/xM7AmPxT6U9FGsddw6Jol9Grxae8hzVR9OFmexnYGjpcXKKjnAwKxCNEMRZzHR3ufikeBcnA8LxkyS0spPetWU4hESJfwh2ScIhabEhYZUkrIqEVUgUBifRkOFerEVTmGMHsniIhLLjY65z+u7q/YRLJsT4UwazTqNlZtJPIfrLcn8gv6aIhGDPfRzX9ZiKU3by7sEviAgIZVbCuE5tIRNqCiItIJHNZfsYEdn+Y/IV8WPYWLyHcd3c61LRN7w7yfs3cSimL0IIhmvzeOwu77dnU300XZjXhw1jTG2d1+YrkGW+DgxlbVgaJQPnInlYTf80/iX7Gbt7GY/6qJvlO2EpPDz2N80eRWRF5pPjq8mtOMmDA28kQN+2nK3S+gpe2fcxkf5hTI8bSWp4YnvMbhfvHfuS23vM8spc7x5bzh093I+o3l12lF+6ygjy0/HRb+bRPaltfiO19/bFisa7P544SeKehhrm1m3hy7Is1gUnkjv4ZiQPP6gN0X35dkwM+/ct408n9hHXRNvVtiLLMlGxfVv0d0hCYl6PaViSbLx7+HMidCHMbSampSW2lR3gul5TSQ9JZnPJPjYe34fFbOHWXrMw6b0XQ+IOARg5WpNHWnBSu+eymi1YHDb83ChXYbZbqNLWMl5Xyfy7b2qzyLSGuqPpwrw+fgJjSkp8Nr9FlvnGaGJtYCz7B96MNsCz5D5FkQnKXsuQI+v4uaUKoxeiiD9Hz+QpfyQ2wP2OGSfrS1h+7Afu7TfX7Z5HhbWlbKzYy9zzGrLV28ysLNpEUV0507qNIC28/R98d3lp7wfc3PNKQo0tF75qjUpzNVvLDzAj8afeTLIiU1hbSq69GKc/SIF6NMEGAhJDmXLtDAxulrVoiZZ2NKrQdFGWPvMMYa+/QWwH/HycisL/mYL5Yerv25RyINvMhORvJqVwH/eXZJOia/sO54O4/tw39CGPn9taso/jtScx2yzMz7imxfchyzIv7v+AhzNvarYBnqzIbCrZy+GaXMKkQK5Jm+yxTZ4iyzL/3buIhzNvQteO3WyVrZbXD33K0IxB6EKMaIL1aIONJGV0p3ffDPz8fFPeVRWai4xPn3+egNcWkODFdhetUSvLPBWZyuGxnn/IT6MoMsaivSQU7eWWvL2M8FCzZFlmZb9rmNcOX0WFpZqPj3/LlG4jzkT3ns//bXubO/rOJtIvzK058+oK2VC6mxpzPTemziDUFNRm+1qjxlrHkpxVrbb6bYnvKrZz22uPej1PrTXUOJqLiNLSUhpef71DRQYgSJL4WfUJwvevaPMcQkjYug3g2ODb+ceYu3k0MpV8u/t5Ul/JkFNb1eYiWQDhfiFclzyFRQe+bPL1tSe20S863W2RAUgK7MbNqVdyZ/psNpbv5rWspazPb3spzZYINgYyPDyTL0+sbfMcmmDvZV17i65ljQo7vvueDFvn5Dj1dLm47cQmRMnhds9li+rN4VH389iIm3gyuBs1buRLLU8dwrKMqTx2cAm7qtphgwRBpoAL4kmKa8vItRYzLXFkm6b10xmYmTiO+zPmEmwKYOHxFSzIWsqiA8vPyXdqL5lRaQiXYHt5lsfPyoqMJs7fa7Z4C/Xo1MX48E9/pv+HH3aqDS8a/Vk+6bdIXrp5UZwOgvM20C97M7+uK22yT9MKNLwy/iFcoY1XzBHZG/ldcCLDwjPatGa1tY5X9n7Er4fchVN28tbBZVSZa5ndcyIZod5trldlqWFP5RHKHTWYXVbMFgtBwsSs1PEEGdueL/TOwWVMih9BYqD7RcJ/rN7NjL/eTHiE9zPEW0O93r6IsOWf6GwTuNdcR8GGl9g98ZdemU9oddSmTmBt/FByti/k+ZLDmM4Tm2XJA8+IDEB591H889g6nkTDoHDPo1RDjIHc0ftqfrPmGSKDw3mg7/UEGvx5ed9HCEmid3BKu9/XaUL9gpkQN/Scr1WYq/k87wf6hqQyMLptYnln72t4bvdC7s2Yg78bIQgH63JJnJ3ZKSLTGurRqQuhKAp5x9pegd9bGCSJn9UUEbfjA6/OKxn8OTl8PremjeepoJ/+Sn+maChMGXvB+JIeY/ln5RH2VnqeOf51zlq+KdjIY8Pu5InB8wk0NB4nfpZ5A58dWtX2N+Em4aYQbut1FcWOShYdarvf62d9r+eNg58hK83XMVYUhR9qdmGancTYKya0eS1fogpNF+KzNz+ie+JMPvJ3P4bEVyQA84v3oc/d5tV5hVaPJXM220O7k+do9KGsSB2CHBzX5PiCtPE8XbaPXeWH3eoRtaP4AK9mLaF7aCJ3pV9DbMCFxbOGxfRrk/+jLVwRP4aJ8UN5ad+HHK/0fLeq1+q5PmUqi499jcVho6C2BKfsxO5ycLwqn9XV21kTepiZf72V0dPc76TQ0ag+mi7Ciew8tv/7G4YFZ5BTV8CyHW9zV2Vup98evKv3Y+G4X3gczNcaiqIQeugrpu35lqW9J+HqN7vFaGD9sc1Mryrk10PvbPL1gtoSluX9wKCoDEZGX1j24HwW7F/KvNSprXaF9BaKovBp7ndEaoIZlzi09QfO45Njq7AmaZly/ZUUZucjaSRSevcgvU/vTv8dOY0aR9PFURSFBU88x0ztTz+jKmsNb+54g1tLDnq9ULgnuBSF/zWFsmnq73zyC61b+xohRiMl/eciGVq+LUk+uJI/xQ2nR9BPYfJV5loWH1tBSmgCM+JHNRuAdz5O2cl7h5czP/0an3aaOJ81Rdupaqjh2h7uBwCur9lD7KwMxs+c5EPL2o8qNF2c5e9/StJ2HWF+Ied83ea0s2D3uwzL3kiGF/OJPKVKUXg5IIwfh85HE9LNa/Nqy45gdTjQdnOvUBNAjwMr+HPSBEK0ASw++hWxQVFcETcag9bzWjkHyo6ytmwXo6L7078NDue2sqfyCDuKD3BXxrUtjrM6bax27OKqX95EXGJ8B1nXdlSh6cKUFBWz5s+fMDqk6e2+oihsLz3Apzvep3ddEdN1+gtubDoCRVH4wmBkafxwyvtd7ZU5/XPX0pDsuV+h+86lZDhkHht8e5sE5nzW5m/neMNJbu95VYeVjDhRV8yy7O8a0yCa+Hnm1hdxPL6Km395F7p2pHR0JGpkcBdm+ctLGBXcfB0SIQRDo/uSGZeJojeyQatlqdHIO5JghdWK3cc9tM+2Y7bdxl9y1jL4+39dUHirLSiibR/q7EFz2RARx5ITa9rV1/s04xKGMDN+LC/t/wirD+vsnE1iYAy397qa/+5ZSK31p9azTtnJd7U7cF0RwR2/uf+iEZnWUIWmE1m/6kcyqqLd8hHc3P9WysNSmSrLzLVauVNWGKTT8YNOxxKjgbddTip83K0AIEWBP9aUMP/H/yPw8Hftmsspt303XZU6mpci0/jdvsWcqCtqlx0AUQHhWKwWrD6sUng+IcZAHup3EwuPfUVeTSFH6/JZE3KE6/51T5f3x3iKKjSdhMPh4PAXO0j0oBL+sKQxvO8XdOaaN1ajYbrLxTyrjZuExD69ng+NBt53Oqj3oejohOBmm4U/H1lJ3zXPIdutnk/SUI7SzjrAmsBwNvSfzeMFm1iev96t6++WuD39Kt4+uKxduVaeotfouD/jOl7K+gj/61O483f3ExDgve4DXQXVR9NJLHl1MQOORuKn8yzMf9mBFTQc/5LJTkezt1H1Lhcb9DryFZhrtxPixSLT52OTZRaaAlnRawaWFDdziMxV6I6twdGvZWeoR1ScYGrhXh7ucSXh5znVPaGgtoQv837krow57SrV4Anf1m1j3tP3EBTsu6zwjkD10XQxykvLkXdXeSwyANf0mckVU/7Op7EDOdDMByFAo2G6S+YOl4uvDXp22H33F9ogSdxtbeDJA5+TuuHVM0XUm0Nx2pGyvvGuyACEJ/Jtnyt5LPtb1pa0PbM6v7aIH49soai+zIvGNc+e2qOMvGfqRS8yraEKTSfw5WstO4BbI8wUws9GPsTWgMgWjws6IbjJJWM1mVjqY6fxYKeTp0uOMHPVXzHmNb9r1dcVIgdE+cQGSZLI7nMFT7ls/CdraZscu2/u/oTXr/pfYpqIKPYFNrudiG7RHbJWZ6IKTQezZ+suEooDvRIk1i1yKAVu+GJGO50M1Wh4FcWnt1RBksTPLbXck7WMkGM/XvC6vuIYSlk2pPu2Wp2zWwYbzNVnbqS2Fu5lX8mRVp87VJ5N37he+OtNzXaa9DaDwnqxdtnqDlmrM1GztzsQRVHY9tEaZgQ2eYz1mPigWNbq9MQIwQTZhdSCeCUpCrfLCgu1GsbZ7PTw4bXpTJuVfYdXU1F6iHohUdRtEPj54aitQO7ZMbcpPQt28WJdGUGh3TH5+ZERksri7G9osDUgCQlJknA6HNzbZy7QWN3vq/x1PDbg9g6x7zRaSYv5eGWHrtkZqELTgaz8ZAVDnKngpc/4iMTBjEh8jdyqfF7e/jrXNpQQR/NHKZMkMd8ls9Lkx3Gbjek+DE77jcMCpY1N558rPsK3/a6BHhdmaPsC3bFNXK/YOVl7kvD06YyOHQTAUM6NQC4xl/PK/o95sO/12GUHkX5hHZqOcJrwaj9OnsgnPtE3HQi6AurRqYMwm80U/XCMCD/vJicCJIcm8Nupf+HrkETMrRyNhBBMdzhJ0OtZ1gE3jg5FYV9IPKSObn2wlxhWsJE0BBMVB/tK9jc7LtoUwcT4Yby1/zOMWgNml5USc3mH2XmafqFpbFi+psPX7UhUoekglr36IeNMrWcVt4cHxzzO2wFR1LlRbzjD6UKj01Lp4yA/nRBMtVUw8Yd/0m3f5z5dC8BZU8aoup9ujAJKs8iqar6eTXpIMqkhCfx729toJIktpc0Lk68QQmDNru7wdTsS9ejUAZzMy8fviAN9iG8djCuPrEaRdFQrCoFujJ/hcPKOTse9Pt7Z3Gg1g9XMaygsY7ZP18rYt5RxDgecOgLNNleyZPtbVPaZy9Covk3mRo2PH8L4eO/4zdpKQkMIB/dl0TuzbdX4ujrqjqYDWLt0FUOCe/t8HUlS0LlsRLqZdKkTgqFCsNnpfqeCtqIoCubqCmSr2WdryLKT4fVFaM/zs8xrKMew9r+8/s2veWXTs2RVHfeZDW2lZ0gyu1du6WwzfIYqND5GlmWsR6s6xMk4K30WD0x8inf1Jna4mWw4QJY5YjS2GmjXXsyKzJ7o3kjGtvXJdofwvV8w3Vzf5GvpRgN3OBu4teQg27e9wcZ2BPX5CntObbvTKLoqqtD4GCEEkaNT2Fizr0PWC9Cb+MWVz7ElNI1aN8XjCoeD972QBd0S/pKGSXUnkGXf+YTGVB4h3I3d3LXmCtZsWECFudpntrSFDJHApjUbOtsMn6AKjY8RQnDVbXMY/dur+UrZQbHZe/1/mkOSJJ4Y/ys+i87gkFaLrCh8qzewV9P0jztSSIzS6VmAgtWHO5urG2qI3f4hsrUep7nWq3OLE7sYV+f+93a+bOPr3AuDCjuTWP9IcjYd7GwzfIIqNB1EXGI89/3zf6gYq+U72y6yqo77dJssSRIPj/4FW4zBVLhc2LtN5KSu+Z7LaYrCbbLCEp2O3Q7f+GxcsoLm2E5uzN3MwL1feHXu4Tk/0teD72eAVosuby3PbHmVOluDV21pD868elwd3KW0I1BvnTqY6fNmwTw4fuQYG1ZuRHvYzAh/90tZeopijMRfKqPOVoW/wQ+szX+o/CSJ21wuNpr8eMPuYJrDQaK+fRXsil0udhn9MAdEYDNGsXjofRypymOltWlfSltw1lcxor7E4+eutNXhLNjOAsXFL4b/rFOC9c4nXo4g+3g2aT3TOtsUr6IKTSeR2rMHqT17sOTVRZDru3VmpM/hnbLDxBv8sdvdyxYf5XAyHNhiMLBBr0PU1zNHo0Xvhv+jyulkq8HIYV0wYYHhRIf04ppe09Gfda2cEZ7K00LhmQNfcazPlW19a2dI27uUiXb7mSttT9BKEhMKdvOXdc/St1tvrutxhUfPFzc0BvjF+HsnCTNIZ6Kmstorc3UlVKHpZHQBRmRFdrt6v6ekRSTz62tfA+CVdX/HpSho3PhAaoRglKIwymanWtLwpiS4X5YvqG9rVxT2CkFBQAj1xjD8/ZO5ts/VzG2ls2K/sB78wxjCv/Z9wdbM9tUgznRUo2/HbqSnRvCLykP8o6aIOakz3NrZFDeU837WF0T4h6HICoO7ZdA/rP0Fzqsd9aRGdr1Ok+1FFZpOxhQayLytr/Bc7+tICHK/x3JbSI8bz/uKILa+gOl290sohGg03CTLvCUJ7jnr6xsMfmSH9GRq2pVMjPC8xWyMKYKfJY2ndtuHWHRGevkHoXM62a81kJc23u15qrXe6RF+ja2SZ7e9w339byDA0LxQKorCooMrmJ9xLRH+jSkl72Z9QaguiMRA9ysmNsXR2jzGJ9zUrjm6IqozuJOJS0mgIG0iv85d6fO1JnYfxSPjfkNQ2mw+8gukxoMbphBJYrSssKihnl2KwiYgSxfEz0Y+RFobROY0PYISWDDkHhb2v42n0q7hlz1n072m1KM5CkX7OyEApGs1lNaV8c9tb7RYznND4S4mxw07IzIAd2Rczdcn1iMrMnvKDrfZhqyqbPTt9It1RdQdTScTEx2Fn2zmROo4bjv8MdF2F6ON3ZiZMvIcv4Y3mZY2BWfqBN7Z8RZJFQcYYbW0+oxLUfjWEMLEgQ8QHRRJkN6fCX7eqQp39rHx39vfY2XSAI8S3Av1YdS7XARo2p6NbpVl7rdIZIYY+OWQu3gtawkjo/oToPUjPjAGP50BjdCw5Mi3nDSXMCNhzAVzTIoZxp83vkS4IZQY/3CiTZ75bU7UFuHfu/PbIfsCtWZwJyPLMgPv/Sc1kY0Jl4qiINcU41+dQ5RsJ6GhgQcTxpPsxcZtZ7Pwx6eYXVXc6rgCh53jmbcyM32KT+w4jazIvHZkOR+FJuGM6u7WM7bCIzy/6RX6tkNocmw2DmXeyPUZjc5gWZb5/YbnuTppAjsqsvhoxwpMeiNhfiEsnveflt+DLPPliR+5OnmiRzb8Z+c7PPPtG13i9qsttFQzWN3RdDKSJBFo1HK6S5IQAk1ILNaQWE4AebKLrcUHCKvaSWx9DS9m3uLV9Z2njk9mWW6xMV2wpKGoLterazeFJCQe7DUb3dEVvK3VI8Ja79Coi+lBnsFA33Zkou8ROvwlLTk1BaQExyFJEj1Dk+kTncaIxAE8NPBm7E67W22BJUniZH0Jhyty6RmW5JZwlDRUYI/TXbQi0xqqj6YLYNI1/5dYSBoc3fpRkjKOPdHp7CzybuRojcafd0ITWRyVyavB3dnRTOvdAI0GZ8VBKtrZIsVd7u5xJfOKs3DVtl4fRpIk6v1a7tvdGldrQbPjHXaVZv30te4TWHzs6zP/1mv1aCX3/jbPTZ5KXnUBbx9ehqy07gtbdHgFL7z5sueGXySoQtMFMBnc++WVI1P5oMy7yYCPjvstj4z/PY+NeZQnJv6GysTJ7NQ17Ru6or6Kp1b+r1fXbw4hBD/vPYebCnZD1clWx2/SBvOqKbjVwl/NIUkSeUn9ueKsFr1hphB0ikSNtc7j+aICwpmWOpqZcWN5Zf/H2F3NR1vvKT9MyOBubu2WLlYu3Xd2ESG58RcPQAiJooD2/eVujTl951CRPIldTYhNqEZDr1DvVwhsDklIPJJ+LfdUnEBbcrTFsYfH/5zPJv2af4i2ewN0pjD8dIZzvnZz+kx+KN7W5jmjAyO4LW0WL+37ELP9Qqf70eoTfFrxI0/9/c9tXuNiQBWaTmbvgYPsr3X/dqlYG3BOr2ZfMKfPHMqTJ7H7vALmQgjC64tx+jAD+3yEENzZYwY/tzVgyt/d4lhndTGDm/gwu8MXioYrelwYpWzUGiiqL29XXlqQMYCH+t7Aa1lLqbL+1LM8qzKbReUrefOz99s898WCKjSdzMuffIc9JMnt8Q2RvVh4/HsfWtTInD5zKE2aeIHYjLbb+GDPRz5f/wJ7Esfxa52J4GZ6RjlO7sdQcoC9Rn8cborCHquVxbLEHhneKinB2Ew8zojwvnxXsLXNtkOjf+fRfrew8MgKChpK2FN+mGUN63lj6bvtmvdiQRUaL9DWv3a5J06yrsCzTF2NXxAr7WVsK217UJi7XNd3LqXJE9lzltiESxLWat+v3RSTY4Zwr6RDU3puhTzZWg9F+3Gawlg39ucs1hvcEpsNiUOYO+MfFGXO5ooBVxLp3/SxcGBsBrLLye6K9r1vSZJ4pN/NvJP1OavYzcuLXm/XfBcTbsXRCCFCgDeAvoAC3KUoyqZTr/0S+D8gUlGUFq8ILqU4mqPHc/hk5ToOFNZwuKQejcuKtiqPCePH0zshkvHDB9KtW7cWrysf+/srfFqd0KYrzV4Hv+bN3je05y24zdL9S4nJ+4H+p8pHbBESSWN+TVp42yOC28NLhz7jvbgBSCd3ozeXIkWk4IxIQ/E/lSNUmMW4PR9zha2eAec9W+Z0EipJbHc62RSRRlJML/pF9mFgZOulVh/86k/8a/ITBBra7ifbV3cc/5lJjLvSsxibiwFvxNH8F/hGUZS5Qgg9YDo1cQIwDTjhFUsvAl5d9CmfbDlOttUPZ2gyQoRDWONr/tXVvF8UhZxnRffVJ8ToLPSMDiAtKoAZowcxsF/fM6JSVl7BmlwzIrRtcRPZAVEcr8wnNcz3vYDm9p3LEhTIW0N/h4Ohsov3Dy4lbcwTPl/7fFaf2M5+lxX/wp1Y4wfiDAi/UKi7ZbAm/AmyN73FS1W5nLDZiNfrMUoSv6goZ0JsN4L0Oh6rzcNZncPC0sMMGP+7VgX/F8Pn81XBOm7oPqNNtu+uO0ro7B6Mnjau9cGXGK0KjRAiGBgH3AmgKIodOJ0I8izwK8D3fTQ6mbq6Oh775+t8VxeFYsoAEzT3aynpjbgiUikACqzwfZ7C63s3kar/hsGJIVw5sj9fb9pNZUjPZudoCaWujN6FR0kY3HG9kub1ncf/ledRUHGQKzUaetWd5IectUxM8f2H5mjFCV4tXE+uyZ/SkBSUxJlAy+d+yeDPieF38asVf+QqrYZDQrCqqpJnomOIlGU4ddGnlSQqLPVu7SrTwpNYU7SNepu5xaTLpqi0VMOY8MtSZMC9HU0KUAa8LYToD+wAHgWmAAWKouy5VKMZT7Nx227+8M7XHPPvg/BrPrhObiaLWAiBEhLHMeI4Vg4fLs5CD4jANrrI/MPw9wvwWS5Us8uKBsKNBlbb7EyxWXjr0DKfCU2VuZYPj3zN2tp8inqMwNHnCoSHnTUlP38OzvoLcav+xhMuG1OCQzj/J2SVZaJj+ro9523pV/H5iTXc0H26R7Zs1R7j7hv/x6NnLiXcERotMAh4RFGULUKI/wJ/onGXM621h4UQ9wH3ASQmJrbd0k7imzXrefzj3dQH9Wt19+F0M4ZDBEbSnmKZQtKQ5+/beJrzKa4tI762hOEuJ+sNBj5tqCcyxbt+BqvTxkeHv0bWC2KNEdzZZzajak/wi5pcnG1s3ysZTeyI6o25YGeTKRYlTie1lga3awIZtQYKqopxuJzoNO79vA/X5jHkjvGXbHqBO7jznToJnFQU5XTTmaU0Ck0KcHo3Ew/sFEIMUxTlnAw9RVEWAAug0RnsJbs7BIfDwTOfrKc+KNOt8bIsIzvtSB2w0ygOTmB13lamJA3z+VoAS/e9z83OxsZsYxwONvuZKKg+yCsb/k2AKYErek4/p2yCu8iyzJfHf6RUribSGMLV3ScReiorXFEUDpYexyopbTpinqY8bRJ7i3YzoonXdhkCOVld5NF8gaYAt0UGoNBWzsjMdI/WuNRo9bulKEqxECJfCNFLUZTDwGRgp6Iok0+PEULkAkNau3W62Hj61YUc0vd0OwZAi4zDzVyY9iJH9OA/5s0oBbuYGjfQt2vJMoH1BejO+os8wuWCqmKgmGrXIbblfU+NKYACWYMUlYlJMpIZnsaQ2D5NHvFyKvP5pmAjof7BjIzuR1LQhdnpVqedr+tOoAyZ1y6h0YV1I88UyAjzhakE9u5jeSHzeo/mCzIGtPi6U3ayv/wYx80F1DkbqKmtIXT5ambd0L5Kghcz7n4qHgEWnbpxygbm+86krsHhY9l8klWDFBzl9jPW6Eykw99B76k+tOwn6hJH8PTaBYyPbvrD7C2WHviMUQ010EwuTohGwxjge5dEnSJRX3iAqwbMJcwvmNUFW7BixyY7sLkcWG1WDDo9qQHx3NdnLpoWjkR+OgNXRqXxXH0VBLWvTkuBXxA0ITS6sgO8uOMNxiaOpX9k66U4yxuq2Jm7n4zg7mSG/VRAvLShgnVlu6l3mjGbzYyM7Md1yWf+FrM2p+UUiksdt4RGUZTdQLPNiRVFSfaSPV2Gv7zxKbUetrEV/qEYFRtWH9nUFNbMmfxz+yL+MMJ32l9de4QYNxL+cvWBPDXpD2RVZBMbEEG4MYT0cPdqyjTH3MTxfL7rXU4MnnvBa+Lw91iLjqIbM7/F46p+32esdxn4uSyjPet9yLJMPYKwgDCSA92r9xPhH8o/J/6St7OWkVtXCEJQZq3CX9ZzXc+pzWZ3Owt9mzbS1VHr0TTB+5+sYKM56lS0kGd0pMNPV1tI5skdPDbIt4F7fk73+mU7bfVUWmroG9HDa2trJA0/SxjED4dXk++wUaYISvrMAKcVveJEN/I2dHs/xWW3QXA3nE4XSlxfdGHxWLZ9glE2owmLpWHEVB7fuIBnqk/iBLJlhZWhyTw44hHCTCEe2zU/4xpqrfVIkkRAK4XYAfQNAovFgp9f8721LmVUoTmPisoqXl69HyXY/SvPs3Eq4DTXoDUFe9mycxENFYzO38tfM2/16ToALuHejc/t1ipeXP0XrhlxHwOiPNsNtsSYqAGMiRoAQFF9OSuOr2dJ/j7qRt2BZDDhTJ8OhgCk2mKEpMOvZD8V2z5B6x+CMnA2DRotkjGAg6Pu49pjawgqPUFwVQlvT3qyXd0nWvPVnI2f0GM2m1WhUWnkif+8SWFQRpudj7bUiSib3sXZZwbaSN+F6CcU7OCvfTxzYraVBskPRVFa3a0ZJYnQ2AwyI3r6zJbYgAjuSZtFpaxwPH8ztVYz+T3Gg0aHEpqABrAHRWGK6Y/2PL+OZAzA3ncWDSd38mtCfdbipinqFAshISEdtl5XQ02qPIv3PlnBD7VRiHb8AkoGE2LwPFwVrRdraiuKotDN5pu2tU3RO3Y0x2X3kj+Tw5M5XpPvY4vgV72u4rW0ObzZay7KkbXnvCaEdIHInI05bgD/V7bD1yaeg6wFTTtqGl/sqEJzivr6el5atf+nxLz2oLSpaaLbyNWFOGu9V1Kzylzb5NfNdit7Cg9yuGwfxRr3+hKsObSWhav+zrHqjkt/u1XxQ192xO3xQkhYQqKR21iNry2I4EuvhYonqEenU7z/2dcUB7Qt9+h8JFsNst53Z3FNaByawLb7gIpqStlRtJNZ6TP4POtzKo58RV1IAvNH/A+VlioWrPoTg0x+6J12Il0y1wvcaocL8JS1iGMSFJhL6BHi+0hwk97IgwPmsHXfQo6Ep7qdphCK0mGlM12yC32i+/6cSxFVaICqqmqWbslGBLTNAQzgqinFvnkRIUm9UCJ6YCncAynNRgS0GUWRkUqPUNdCg7OWeHP7O4QUb8Wi0fHvou0MNhczCQV7ZS6frfkD9Uj8RichTs+v8ezDKAFbU4bzs1jvv/eW+L/UmdyZ/SNVPSa1Ola2W4mt97wOcFtZU7uba2+7q8PW64pc9kcnq9XKvX95iWP+Ge2aR5iCMIRG0dBtGKK6gJBYXzmCBQm5O/hn+nVtevqa3rPJQ8ssq5kHak4w1NEoKHpJYo61gdutde26orcA0UHxHZ7XE24K5XZNOPrK7FbHioZyJvp3TN7dzurDxE7uSVCwd5rtXaxc1kKjKAr3PPUs27R92uUABpB0Rug9DUPxPupy91JdmOMV+85GtltAkSnpOYq3T/zYpjnD/UO5bcKfeM/g3646uM3hB6ze/y21to4PUJuXMpZe+ftQXK3UNA6J41uzb31Ix2rzWanfS7/HJzFt3oW1iC83LmuhAcipkxBuOjpbQwqMxNVzItoxd+Oyuxfk1hIi6xt0R1ajyd+Btq4Q08ktGA58gSg6wOfmapYXbGjTvJEBYcwe9QSfe1hTxR1kYIBGYWOxd9vCuMuNIb1RWmnPIooOEOnyzY6rxFzBt86dBN3Wk7v+8hDJPdoXGX2pcFkLjRCCXjGBXp9XMgYQFOuFX7CUEThqynBE9kI++D2FW77Cnnkt1oxZuAbN5q2SY5Sb23b7lBQShxQ3hiKHd6/Jt7gUMgbdyoyksV6d113GJgwitup4i2PkyB7g5d1cg93MyobtVE82cde/f86gkR3ro+rqXNZCA5DRLRjFzb5KnqA5rz9QmzCFYjD5IxkDcA65mZB5fz3n5ZIBs/nT7kUeHYHWFe0mp+okRypzySo9SpCHzt7WGK3TcLyqsYi3xWHz6tzuIEkS/a0OZFvzO0pJZ2SPVm739baiKByszOZ7624O9Knm9mcfYfLsaZd13ZnmuOyFZtb44UhV3g8ws2gDcdaWtWsO2VpPbXEe0PgBuiBxUHaSHhyD2eFeL6MleT/wF1c9N1cc5I6aPAr8tPi3saBUS+RUFLFg52s8u6VzWrz+qvdsQot2tjimqMd4fn9waZvmr7BW851jNxvickn5xShuf+4R5tx9A1qteonbHJf9d+ZQ9gkweD/GQVtXhJw8vF1z+OVvRu7bfMlISatnrST4fu+H3BqRwtWJY5vNHl5duJUX/IKQo9I4LS3dCte7lVrgKT+rPIx/tcRHcf28Oq+7GLUGYiuLqElufowwBrE1OoXP8zYzO6mpklhNU2drYHvECe568mF15+IBl/WORlEU3vtup3eigc+eV3ZRX5qPyGt7K1UAl6UOKbJlX09h76mUDpnLvyJS+MXu9yi1VJ7z+pqC7bx99CveayhGjko757V8UzR/NATyL/9Qir3osvA/FQhnaeeOrj3cGT0UbfmxFsdYI3rxqlLFvgr3bgitThs/+h1k/u8eVEXGQy5rofnsm+/YZXO/sJW7CEmDfvIjaKzVyBvfwl5Z0KZ57L2mYzywwq2x2oAwtg+Ywx+OfkVBQ+mZr2+pP8HrqSPITptwwTM5A69n25V/4oepT/JdgPed4rGVBeTVFHp9XncYE9eP+KrWBaQ2aRRPlmyi2tp0GsZpnLKTb5Vd3P3nhzssovhS4rL+ji36fjeKybu7mbNx9pqKGHknhtz1yG247pYMJojLhCNr3BsvSRzodzWvZK9GVmSyqrL53hCM1Ep5UVPOJnr4wHE7VQMfHPjU6/O6yxiXH0pDRYtjhBBU9JrBA4c+adY5rCgKX1m3cudffoZO551QiMuNy1Zolq/6kV0W34nMaYSQcPWdjbR/BdK2Rdi+ewHN/uXIVveExx7WHZPwLN3gu6QRPLV3MU/t/5yG5KGtjjcHxLJcGMiVvHsckCSJUJ3kk8BAd7iv5wwiS/a1Ok5otJzoNY1H93/Q5Otf12/lpj/dh38Hd564lLgshcbpdPLS8k3IAd4/NjWFpDfCoHm4htyMbuw9OHpNxa9kN7qDX7v1vMNch72yAGdDtVvjNUERrOl/NSXd0jGUHWr9gchkdlzxR14OTWSnlzOaB+Tt4J8bnvPqnO4iSRJpZnPrkcKA5BfI3uTB/PvwF+d8fXPNAa54/HpCwzzv8KDyE5el0PznjQ/I0qa1PtDLCCGQ9H5IOiO2pFHIcf2Qty9BbiVB0tZrOmRvRi5uXTSc5loca15FyvoGR2RPqHG/lci+sY/wn9h+HPZi3ZQMrYZIWyXLc3+gytKyH8QX/DJpMn7Fe9wa6wrqxsrwWJbmNUZcV1lr0Q4LJyHl4utH1tW4LK+3V+0/iRTQOVevZ+MKioOMaRiy12IzRSLF929ynGQMwBjTA1tAdKtz6rNW4Bp7D5rSg+iPrMY6+AaPSl9UjryTp/d9zn35Wxhtb1uG+PlcX1dCw85FfCp9giuuN6EhSRwtOcp1mdfSKzjZK2s0R0xgJEkFZRx2c7wlohdvmjfTo/woBUFV3HfnL3xq3+XCZbmjGZgY1ml+g/ORTME4ek7B316NfHQdouQwiuxCtpkRJQdRFAVXQxUujQ6lhcBC2VqPa/3raJMHIzRaHLGZuAbf2KZk0dLM2fyn92w+Nhi99n3ylySux85NBXuYceALHik/yJbNr7KldK9X5m+JK/UxiGr3b7/qEkfwx+KNTHvwWvUa20tclkLzwLwZ+FW3Xk6gI7F0H4/WUolN6JD2fY449B0OWaDZvhjHgVXIZceR/MOan0BvQh+fif2ser3tKveQMpw3h93PC8YA7D6qRHetpZKSLa/z4aEVPhX+67qPI7rCDV/VKWSbmetnjSclTU2I9BaX5dEpNSWJYVEKazuu7K5bmEwm5KjuKFHdETT+cOTY9Asa0zeFJEnIVSeRyz5AGnqTV+yRwhNYMfnXVKx5jscaKgjxwV/33tYGlhbv5QVbNd0D4piVOsHrawD0NlspdNiQmshBU2QXitOBpG/cwfWXj/HEfb/2iR2XK5el0ADcML4/az8/AV6OCm4Pdks9st2M5EafoNPIshPTdy8hegzHMnAufjsWYbbUofHzTgCepDexecpv+Nf3/+bJ2pIzUb/t5QtDEFnCQGh4CHcPvIuogHByak7y3tHlyHYXt/ae1Ww6RVt4PG0mW4s20ZD4U7qBoij412RzZbKOwb0SKKmsQasRXDnxVjUoz8tctkJz5eTxpC//N4foOkJj6z0T48GvsIX1QMS5V1ZUkrTMsRUTeeQrFigK04sOkFi8nzWhiewd9aBX7JIkiR2TfskLq57mV+YaJA93NgV2O1XA9ug0ZCFQbFZmDJ3P3IA4DGcliqYEx5MSHE+luZol2auotdRxR+/ZGLXtz4QPNgaSVF/FAdmFsTqXXsEu+scFc9t9V9Ez1XdtcVQauWyFRgjB9H7xHDzoQGi9H+2pyC78TmxBJzuRGippSBmJf+VxXKYQ6iOaLhsqtHrsmdcQeGwV9bhfv7gqOJLbKgqp3PMJ1ygyJkmiZ1k2vz/wNdV9rmjyGVvxcXQRCUi5O5C7D8VZmoc+JrXZNSRJy/cj7idu44vcZnMvW/xHRUNh0gDSIgcQrA/koah0bE4HDQ4zEabm41LCTCHc1OMKzHYLH2Z/i59LxxUpYz1q2HY2uVUn+d8Nr3LSXMrdkzKZ//PrSIiPa9NcKm1DdOTty5AhQ5Tt27d32Hqt0dDQwPhfvER5aB+vzqsp3EvNho/4TDQQcap0wKMB0RirStgZPwARnoSm51hc5hpEfRkisjtCSMh2C1pHA/47l1I39oFW15EtdcRvX0Qvcym/aiJGZbmfP/l+QWitDaxKmUBEfTGJFcfwkwQjqkp4OaYPk07uo8E/kH5OOztDojmsDyInbigkDWxyTV3BXh7Z8xFT7c2nLOxzKexJHsKElKn0Dmu/QzW/ppiPjn/Lz/vdhL6FHttNMf+rJwlMDOf5V18gPj6+3baoNI8QYoeiKE1W/LqshQbgsb+/wmc17QvIUixV6IsOYIsfgv/xNTyctZq+ipOo8+qT2GWZvVYbh/yDOBoQRmp1CUGWej7rMZRyrT9DCvYRptUxwdXA7wbehpzQcqxP6o/P80xlHg5FbrWuzHa9HoRgiO0ngdis1dLbbif4LH+EoijskyQWhiawb9zPm5wr5NBqfnNsNf2d50bcmmWZCqeLpYHR/H7G017tBFneUMXKvI3cnDHT7Wd+veYZhl8/gZ//4lGv2aHSPKrQtMDeAweZ88IanG3sQSRb6ui1cQF/qcrnLZ2Jmx1mYtpQAMksNx55oPHD/ne7g6P6AIqvfbrZZ/S52/nb3o/p64Pr5xJF4dfJIygZOK/J1xO3L+KPJ3fR7ayvfa5o2O2fwO1D5tIvzLttcbNr8jlSnseM1DFujT9al09uhpn5D93jVTtUmqcloblsfTSnOZidj6xt+gJZURTk6kIkpw1FCJRTMbYKAoSEcDlIP/glz9UUIGm1/EKxQxurrJnO2lUIIfidQc8XBolXWnimPjCGHI3GJ0ITLQRx5lJKmnn9xJBbeKU6n6fqytCdcg7PFi4K/P28LjIAhQ3lpLn5x6DMUkVFP5h/vyoyXYXLWmhKSst47us9yEGNzllFUVCqCwiuPEaUpYyIkhzGlOUTqcjIKCgKuBQFhcZq/xIwxM/PZ1ehIYpMyO7PqB5w7QWviWMbmbLxHaYHBvqk/65FljmuazmRcPPw+3jn+39w71k1lyVFQT71b28enUbF9mdJ9iqy6wuZ2kJFPKvTxo7QPO6+72Gvra3Sfi5boVEUhcefeZsCOYygnLVENJQRWZbLuNJ8Jumkn8TD6IUi421knN1O5YnNvNJvNpIk4XfkRyad3MxhvwiOxw0ixT8AvY9C5FdLEhU9J535BZFlGbF5Mb2VOiIVJ9FOMzENNfhZLawM8Geao9FfM7NoP//54X9JjB/EDT2v8po9kpC4IXU6O8oPsmD/Uu7JmHOBwCuKwkrnTu598jE1daCLcdn6aL798kue/cM/mFxbygyNQNtFA7RyNRI79EZ2yhqq6ut5WadQJcvs1ekZ70b5g7biVBSeCk9k17hGR2qPDQu4rWA/Q3W6Cz7EG5xOJD8/Mux2vtRqkSVBoT6aGwfdQp+wVK9/6Css1Sw8soIbu08jOjDyzNe/rdvGnP+dr5Z06CRUZ3ATFBUVsX7SZPp2keRKd9iuKEQ6HCTpPbvibSsf+gfy7tQ/EnxoJX849h19nK5mx36qKByymPmN8aej5PcOF1vCezIlbTxVthqccgMOp4PU0F6MiOnfLgGSFZkl2asI0wYzNWkEm2v30//hSaRl9GrznCrtQ3UGN0FsbCw10VFQ3Jy7s+vRU5b5WpZJ6qD10uprcR7ZwC05a1sUGYC+Gi3ZkRl8LCzcWN9Ys3iSTsOwysPYtxwm7CwneZZzJS8l9Gdm7zmkBLUttuX0UWpnxUH+u3cR1/7iFlVkujBd87zQQejiLq4ArhydjtoO7B3UR1GYuPNDZllbjgQuQLA9KoM/T32S0YPn86n2p5KXAVrtOSIDjcWw7ijaz5I9i6lvodGbO0QZw5hwywxGTemczpgq7nF5C81FEoZ++ngrKTKZPirZcD6yLPO2JHhUr23xiFMhy6wM7879Ix4BICUgjhJjsFtr3Ft2hLfXPs3zW16g0lLtsY0Wh5VD3cqZecs1Hj+r0rFctkcnAFdEBO/ZbTi1OvR6HTqtDp0QuFwunBYzNwipyatrpyw36zxeK8uclAQ3e1TXrmWe0eipCYsjvOAwcR1Uhf8Lh4NrtFr8WyjrWa0ofBKSwGOjnzjzNT+dkauH3MnyTS9yla3l0p1aSeLOhlLkumLeqy0mNL4/o+JH0j0woVX7FEVhtbybe594zP03pdJpXNZCI9lsXK/VYZQkcLoa/ztFiaThNSG49zxR2e9wsEmrQQfc2cScRSY/BjicrLbbmXLeh9Quy+jbcLsVp9Pib62mXKOjUhItCp23qAvwJ9bR8q1WjoBpva+/QIzTQ5I5mTmH3VvfYYAbZkqSxJ0NZXB4Ne+VHmN85jz6hrVc0/mHul1c99Ttahvai4TL+qfkOHq0UWSaIFoIbnW5+NRoRK/V4FKgymIBg557ZYUCIViu11Nks3Gd00n4qV94HYIMl4saPyNv2B3cfCq14AuXizyXiz6SxCQPPxw32ixgs4BWos7l4n3ZxXyp7TdPFU4nX0T2IKZbP+yOOqpKs8FcTWB8HwyGQOprChElrVfZ7a/Am7tfJyrgd0QHRpzz2pT4UbxZdZLwQ9+QoHP//d5elcvKTS9zPGMmVydPbvLYdqAumz63jCIqpvUayipdg8tWaKxWK/Khlss7Bmo0XO9wgKOxFJ8TWOtwgEZLnKIQZ7PhVBTe0Wnxszu4RaejxmFHURRG2h0MkmU+1mnRaDSMssPVGg0faCRwtd3PEiBJuGjblXyDLLMkOI7k1HE8mDAenabxx6/0VrC7HOfUhvnv5heQC/e0GPUsCcFd1joWrftfrhvzJDFB57avuavvPF5zWZl27Ecite53VpjmaOD4jg95qTKX+Zk3439WIbAKazX1/fVMH916vyqVrsNl6wze8PXXZFRWefSMVggmabQXfO0eBfxPxbaMtdlZJBqTJA2SxG0umZvtDpJPjQ9pZ1i+EAKTn/sV+ACsssxCUwTr+s3hnnG/46rkyWdE5vSchvPKL9w54E7eiEpvtV6wRghutZl598e/Yj+vbYwQgnv73cLL/p473VO1Ejflbeb1Tc9xrPYE0Bg7s9F4lDn33ujxfCqdy2UbsLfwt79l8GfLvDbfWlnmiBA4gHidltF2B2FN7AayNRr267ScaDDzcBv7J63WaBhmsxF03hFMlmWy7Xb2aQ1UBYThFxyFMSiGMP9ujI8dRqDBs06LZruFV3cs4JaifeckfTZFgyyz0D+MG0Y8SkLwucKyu+IQ2ZteZaqzbVfZnxtDiOl7La5gLfOevoeg4KA2zaPiW9TI4Cb45IUX6PHiS17PFVIUxa2I18nZ2XydnOyRc3iDQyYvbSwhplB0kgG7bKamMpchRQc5YghE6T6OtNBUUgLiCDeFeCX0v9pax4ur/sijrvpWx8qKwiqjH/6pM7mi5/RzbS/Zye4DX3Br9ck2JaEu0xuY8PwLjJygxst0VdTI4CaYeMstrHjzLYZYrV6d190P9/2xsRy02ejv5+f23IM1YA3qxjXdp57z9Tf3fci4hJGkhXg/ZrigoZQ+9gZwY/MlCcFEi5mPK/IueG109CAUB+xZ9ywDPXjPAOVA7/vuUUXmIuay9dGEhYXh7Ot+XV5vM02v54iHOw49YHNc2CPm7swbfSIyiqKwJnsVUzTu73p/dDmZkja1ydcGR2fwbahndroUhX1jRjP7oYc8ek6la3HZCg1A4JDBODspqTJYksiXPBMaSZKorrtwt+Ar1hRuZVie+0ddl6KwzhBJWkRjV4F1uVspqi0987qfzsjNQ+7ke6v7rXbXJSZy27PPqmUfLnIua6GZcMst7DW6057N+wghsNTXc8iDo5tTlik7eRC7q2M63+WW7Sdd6/6vSInTyfjUyXye9Tm//uxh5J0L+HzV7yipKz8zJiM8lcq+M/hU1mBu5UZrf2AAo/78JwIDvdOjSqXzuGx9NAARkZHYM/vC9h2dsv6DIaF8rSikuzm+yOlEjumFzouN1VqiuMyz3VOMVsvCo18yxk/H74UdhESay8WS/Ut5eGRjVwchBPP73kh5ynS2le+j0lxEbXkO4SXHmSwpZ5zjOTodYb/8Jf1HjfL6+1LpeC5roQEIHDIE57btaDthax4mScRotRyxWunpRrSwvyQxvvuwDjtGhEdlYD1e2Gz09PlIQvAr7GD56WjkJ0k4ao7znzX/4NFxj5/pPhnhH8oV/uPOjDtZW8L6in3UmkuoKD5K5lUTuONGNV7mUuGyPjpB4/FpXyeW65zkcLBOr0N2Iyv7K0li+85FLD60vAMsA8VV57bINIdWCO6x1nBjxVEWbH6p2XHxQdHMTpnCbX1uYXD/2cx7/JftWlela3HZ72giIiOxZGTArt2dsr4QgrlOF68KeECWm40x2WC309tgYLBsZnH9SZ/bVVJfjuH4VtB5Z/cUpNEwqvwgi1c9gdkYglMfwRU9ryIptNsFY13hWkwmz6KfVbo2l73QAAQNG4Zz565OOT5B4w3UTbLM65LgVlnG/zyx2ex00OBvYvSpbOrUE3vYnnSAIZHNd9h0yk6+yFlNbd1J7HYzwSEpXJE0kSCDe21lq2y1xHj525Eqy6Q21EBDDVY5h91FO1jnH4zZLxShj2ZWr6uIDY5CF+1ZBLNK1+eyjQw+m/KyMlZOnsJAu/vXrr7AJsu8qigEazWU1NVzq15PtkbCYTQy6bySDZ8ERJHa91rGxgy+YJ6ChhI+3r2QOUUHzlS3s8oyS/zCCEweyuSE8XQLiLrgudO4ZBfPbH6JB0r3e/cNtoBZltml0ZBvDGDwr57g6puablyn0nVRUxDc4MXrrmPygazONuMMxQ4HB4xGjJLE6CaC9AB2yHC0xzhu7T0PUFh86BOKqooIcdZzR21hk8/IssxyrT+OlMH0ix7CoMjeFziX397/ERMPfXum9EVHss1oZM76dQQEuLfzUuk6qCkIblArSXym11PpsDPaZie9gzoNNEeMTkeMywWu5ouCD5agz7E1vF6djyy7uKUyl712OyE6HTSTsClJErNlCxxfz+7DP/Ib/24kRaWSHJ7C4Ig+bC3fQ9rh1QRKEg5FOdOFsqOQu6eoInMJogrNKboBw+12ZEVhl0HPx3oDdWYzisuJpNUhaTQMtdvp00GlNN3FKEnMr8xp/IckMUSv5wudjp4tCNRpBmg1DLCV8D97DlIdFEieS6IKBRNOdiOQAZdOS4CfHzF2B+l2O1FaLZIPxUef1nJlPZWLE1VoTmEvbQyVl4RgsAKDbTYckoQk6dEIAYrC20YDfdpRtKojkCQJ4bBzXEikuikIPYKDGa6RKDTqCLLZuFpzXrS0zU6Z08lWl4tiIdAYDUxwySR7+dhtlWWC+jTv4Fa5eFGFBqivr8dQVX3B188/Nkx1yXzucjG7jXVkOoqrECw36Em1u5eqkKYoRCIY6nSSq9WyALjKZiP2rONjpFbLzNM+G6eLFS4XKyRBgt6ApMhEOByUaXUMcrmwOZ0EnnrGE7IMBq6YNcujZ1QuDlShAY4dPEhcQz3oWvbLxAOHTSa+ttu5ogt3uJQkCasHgXbTtVoW63Uk2x0kKwr3KApf+/lhcTqY20xFwJmnxfaUozrH7mCAAkvsdhIVhUpJUGvQE6DTE2C3091mI0mrbbH+jzU5mbCwMPffqMpFg1tCI4QIAd4A+gIKcBcwB7gKsAPHgfmKolT7xEofk7NzJ2la93wvk202PtfrkK22NhVw6gg22O0EeejMtlgsOCUNWiGQhGCmy0WBkFggBDMcDhJb2Z2kGBqjq287O0nVJYPLil2W2el0sl5R0Jj88NPpMCqgt9tJcDjoLgRGScLQo4fH71Xl4sDdT8p/gW8URUkH+gMHgVVAX0VR+gFHgN/6xkTfYysqbvTDuMkwq413LGa30gY6mvdQCDQaucLDmCC7zU7Dee8nDrhXljlsNLJIltv8fvWSxAg/P+br9dzudDHPYuUqq5XJTic2u42PHQ7ekQTKRdLQT8VzWhUaIUQwMA54E0BRFLuiKNWKoqxUFOV0FNlmGk8WFyXO8jKPxsdKEn0MRl6TBMUOO9VOJ887Hez3crU+T3CeCvabjKBfGwThDqOR9YYLc76EEEx1OpkBvKGRqHS23OvJE7SSxEA/E7cbDAxCMO2WW7w2t0rXwp0dTQpQBrwthNglhHhDCHF+jPhdwNdet66DcJaVtz7oPIZrtdyvwCqDkVVGA7ciONDGNijt5bjDwTsaidsUmbbuCUyShLWF/kvhksQdLpllHhbrcpf65CSiY2J8MrdK5+OO0GiBQcAriqIMBBqA35x+UQjxJI0tjxY19bAQ4j4hxHYhxPayMs92Dh2Fq6KiTc9JQnCbLDPP6SJUoyHMz4/f1tV52bqWKbDb2aHTcres4C+17zbM4mw59sYgSUTrDVR4cVdzZm41fuaSxh2hOQmcVBRly6l/L6VReBBC3AnMAm5RmsllUBRlgaIoQxRFGRIZGekFk72L3W5HVFa2ex6zIpOtwGN+HVuxL1qrxSQkr9SosVnMuFq5TZvucPCFXsfmZtIi2oohMdGr86l0LVoVGkVRioF8IUSvU1+aDGQJIWYAvwKuVhSlbQ17ugA5x44R3c5dSK4kWCRJ3C3LRLl5e+UttJLEUS996AfJCvtbORpphWC+rLDFi0eoOpeLcPXG6ZLG3VunR4BFQoi9wADgaeBFIBBYJYTYLYR41Tcm+pajO3cS187dgIRAQfisipgsyy0eV3p4KTdooF7PCb17RcCGGYxe29XkaTT0HjbMK3OpdE3ciqNRFGU3cH5W5iXxJ6ihoABDO+NhEmWZG2WZd4VgvpfsOpuFQKWAGU4nhyRBmktmp8vJVI2G7XY7IS5Xs0mUntLgdLBekhjTys3VSKeTjw0G+trtBJwVYyO3ULyrOarDwohRHcGXNJd9ZLDLSw7qYElikEbDWruNcRrvfVuLHXai/UwkKQqfmhvo5RdAQ20dPTUacnU6ChQFo04LsnduvG50yXxoMIDN1urYKXY7H1it3BsQwAeSQKvXo5jNHLJYiNXr0AiB3uEkw+Win9GIthkB0sVEq+1ULnEue6Fpy9V2c/R3ufjAaASH925lvjQYmO9wIICvbHZitTa2KwpJej0zgS9sNvo2Ef/SVmqdTkLd3B2FabUMNpn4WK9nsOyip9UGkgbO6kRp1gnyNBq+12iw63XYhIRdkbHZbOhtdvrIMkREeM1+la7JZS80jtLS1gd5wDC7g9UOB1O8UM9mg93OcKPxTNTyzWGhvFBUzM0hIYxXFBCCJ/0DMMqN/+8NFjkd3CSE20exQZLEoBaikE2SRG9JoreigO3scYIGnZY8BY51YqCjSsfQNZN1OgiXy4XiYVRwa6QKQaGfn1fSE46Y/Mg8a57+Thd/Dw9niCSdER//s/7fG8zU6vhKr6MjKi/6SxoyNBp69e/v87VUOpfLWmhys7OJqq7x+rxXOB187IUo4YAmEhkjJYkgH5apSNRqGWOzs6SDyng2yC5CkpM7ZC2VzuOyFhqtJFHvg3arkUJiV119u+eR3aiS5wsStVoG2Gws0/q+7k6ekOg1dKjP11HpXC5roUlKTSXwgfvxrpemkXgvCJh/J97E9NRq6W6x8rWPdzaVwUHEx1+0+bgqbnJZCw3AVffdx6GpU7B72ScxQ6PhNauF11xOVlksWNvgs9F0QtlQ51nlIPrpdPhZrXyt0fjMZ6NJSuqydX1UvMdlf+sEcMe//82CirsYvX0HJi/90qcpCnqdnkRJokAH6zUSTkmDXauhRpZx1jYQr7gIRSFI0hCn15/TOK7a6cSIArR/V5Nnt5OrKIxv5RpclmVeVmQSJQm9Totdo8WiyNSbLSx0OM4tauUl1GJXlweq0ABGo5GH3n+fl++8k8lbt3kteCzplNM2XqslXqGxdcopv8sfQqJYOPhWNBqBxmlDb60m3FrOoJP7+VlNCU84FYYJQaXsItRuY7if8YIOlqcpcjgwCkHoqWOOLMv8zWYlIywMSVaIUxQCNBq+dDqZ1cwcux0OvpVl7tbpiBBSYyzQqXig31ss3Onv/e6R9S4XEQMGeH1ela6H2kDuLMpLSnjvurkEWMwInZ706mp8FUpmlmXuyrySmrQp53xdV5lN8NaPKRt9D7LOiOKwoZQe4392f8wsTdMC+FdjCH5OO790mql2OvnC5WS/1cq/gkPOGXdAq+WQEOyvquR+g4GYUzWSF6PQXatlkN2Bvgkh+rK+ngh/f0Z42We01Whgzrp1BPrAIa/S8agN5NwkIjqau75cTlBQEJIk8cpddzN+wwafhMebJInkimz2nFeGRdNQRmmfGUiBEWgAjAEYqrMZpjiBpjPDS2NS0cgONh3bTr5Bz1xJ4rYmkiP7OJ30AWaYTGzV6vhaCOw11Yw1mchwuqCZ3c4Yo5F9QJXTiZ8kYfTS8dKVlKyKzGWC6oU7j5CQkDPOyblP/43N0c33qH7f6SDP0fZ+3X5159bBkW0NmKvKkRIGnPN1mz6IIkfzV93lAVGUBsWyyWplrNOFSWq5Po2/pGGiLDPf5WJIQCAbJKlFZ7VJkihyOJivGHkgtg9mL9VK1qd298o8Kl0fdUfTApExMST+7CEK//xnup13xMx3OIg0GvlOlrmrjcfPqPpKZFsDkqHR/6GpOoEtrh/nJy9oJcF/olIxRsaDRoOi0aOz1GBy2HCUn6QqOAlhDKIycDWxwrPYm8FAhqzwvU7LSVnmvibeil6SOOJw0CsliT1Db+fB7e/x7Ml9hLXj6ltRFAxJSW1+XuXiQhWaVphy4w28snoVsevWn7NL+Mag526nk690Wsx2R5tuq25z2fm+cCf1KWMBcOr8kevKIDzhnHHOyJ6UTe7Z5Byu3V8ghSaCVk9O+ljsB79v0s/SEn6SxJUumU81GuyOpv00v/f357c2K2g0lAy7k4dCV9ErZztp9VVMVhxn/D3uUuVyEdu7t0fPqFy8qEcnN7jhH/9g41n1Ula4XExSGmsGT7TbWdrGdIMArZakwv1nYlREUDS6mnyP5jBoQWgbP+Tl3Sfx98DoNtkCMMlu54MWilkZbI3RzkLSUN1rBpunP8m7V/yBR3pPpsjDIlj5ej3pgwa12VaViwtVaNwgLCKC5J89SKEQVDud2Ax6Uk+Jg7+kIUina3PB7tuLjqArOQSApDPgb/CsFKj+rCxxyWBib9/pbGmjC2W3TseVLeRRTaurQFTknvm3EAKNfwh1fa7iyfg+bG1oIN9ux+mGD6cuLJTw8PC2Gapy0aEendxkyg038MqqVRzZsJH5Duc5ZRlmOl28J+DuNszbT6shrjyLvJjGY4Q1tDv2khz00SluPa85r0axOXYAL3Y/wsDszR4foYp1Oia0IBIDNBKG+mJsEec6cYWQKBhyB0+mTUPvaEBjq8WgONApLgyyE73Ljs5pRe+wobdb0NnN6AwS96rFri4bVKHxgHGPPor/hg3ozvuA6IQgyGBos68mpKGKvFP/L4cmoTn0HbgpNIp04Q6oNOMq/lBdwD+rC9y2ocThwGG1QgvRv1tcCragpvOSJJ0BKSIZGZCB1g5So3U5btumcvGjHp08oODQITKayai+yu5gcRvjS/yrS8/4aSS9H34a930+LnHhUUfS+3Go/xzeMga5Pc8Go5F5LRTreklj5PWeo1FCE5od4wkRAd6rCqjS9VGFxgOqDh9utkmbUZLop5HY62HPa4DkugpkS+2Zf2t17n0IZVnGqTT9I7SHJrF88PV8qDO1Oo+iKFQrcouBeFNtDcgaPSjeiaFRhebyQhUaD7AXtHwUGep0sbMN9XtjnTYU60+9pSwxmXB8favPOSvycfiFNfu6NTKdpQNms15p2Reyz+mgpqblAmA9tRr+k/UdxpM7WrWrNRTZRXSwX+sDVS4ZVKFxE5fLhSUrq8UxQggC2yA0G8Pj0IT+1DVbCYrFJLfek0+UHcUV2HKbkoa4wbzYa0Kz188NsotXa2u53a/1nU+cXodfQ/tLnyq1pQzp26v1gSqXDKrQuMnaL7+kT0Fhq+P8HQ6Pa8+MsNYRXLDtnK/ZghNwlBxv8Tm9ox7Jr3U/THXvK/hPt6Y/2BKCZD8T4W5E+ebYHdSZ2t/WuBsV9M/s0+55VC4eVKFxA7vdzoE333Ir5H64zcYXLs9iaqa57Fy75ws01T8F6zkj0/Ev29/icyI4Fv+Sva3OL4SEPbjpnK0yRSHWzRSK9Xo/nGHu3Ya1RHpMIBof1j1W6XqoQuMGi/7wB8YcOuTW2FCtFrsHtVtqnU62OJzc6LCSlPUVitx4qyWEQB8Q3OKzcvJw7KXZbq1j0Td9NNoqYIKu9SBBWZZZkTgQEdj+HY21hQRRlUsTVWjcQN6506O2uYOdLr53I1L4I50f8wfN4S/pU3jT5uDxk1kE5/7kBLZJJmR7yz2PDMbWfSsAFs2FviNFUajVaElopQeVLMs8GRRLdfo0t9ZqjWNlZpxtjKRWuThRA/ZawW63Q0WFR8/0lmV2+7XcsfKI08UnA6ZjTh6Doih8mDSClSe3YD8rAM8a0h1Xzhb0vcY3O49w8yq8MrIP7+h+5E7HT07mQ0Afi6XFID2zLDPfIVGXPAIZCXcOPFJVPqbqXFwIZCRkIZAlPWh0yBodxQ31rP5hLTOmTnLLdpWLH1VomkBRlDOZ2ts3bya2tg48LInQ02bnmN1OD6MRuyyzBIlCrZ5udhtjZQd/Sx1ObdJoBI3HJG1QBLUZM8+ZQxMUgbzzAI7gbuhi0pDtVpx1p1r4Oh3IFXlIWvccz66AKFYkDGLesbVnSoIekmXGN/O+7LKMVZb5WKPhfZ3MiR0fs3jHZ+TFpXFy6O1nSlucRnZYEbXFGIv2cdex9VzNT8cjlyxjkWXqFZkGWcEsy1QOCwZVaC4bVKE5xdGsLLYtWYJ51y7k/JNI/v4Ik4ntx45yexsKhPcFfq4PQNd9AMWB3aiN7IvkF4RsrWdx9QmckWlIbuT6aMc/gFR2HG3uJhRJh0bf+AG3FR5Gb6nEOfRGt86/2gNfYQ6O4/7uI7g+bxezZDs7rRau9Q84M6ZBllkoCRIQ6IVAp9WQLAR6RdDDYOApwFl6lF9se5ca/3ACFAfBTiv6hmqMtZWMtdbTXyNd0PhOI0kESBIBZ31tW457viWVSwNVaIAX7r+fxB/XMuCsnQwNDQD0RrDS6eB6D3c0BknCnjGeEz2vADhz5ND4hyD7h7jtHBNCQolKw8FPNT+l8mxkUzjSoGvctkenAVvSUCqShrIgeQRL939DbEUeKy21jNbr2C+7yDYYme9woJfET0mj511IaSWJ58uz+bYim4ku+dzETYP7NWkcObluj1W5+FGFBohMSaH7mh+bLH8ZqtVi1euotDs8rigXXl1EsbeMPAu/mlzkdM+OHWe/N1dIImVj7qNUdrGrtoSXavJJPLaeF+qKmq0bfD51Wi1aV9vLmJpOnKCkuJjomJYDDlUuDdRbJ2DG/fezs4Ui2be4ZD7Waj0OxEspOo5saz3C11Ns9VW4zO73DJdlGWG48HZKSBo0Id2wJw2nKHU4lR7cBIU6nNS3o3ZwhsPBlhUr2vy8ysWFKjRASGgoyojhzb6uEYI7ZZm3BGe6OLrDJEsNUlHLQXdtwY4WXZb7H1LX8Y00hLdcNrM+fjjPn5UG0Ro2vY6gdtQM1ksSJ5cvp7ykpM1zqFw8qEJzigG33EJuC85ZoyRxiwILPCjW1NtoJNpR5Q3zzqFs71qK9m3AUd3ywUyWZdi3HGfFCRR9y0GEQqvjYGwGdjeFVO9wtrsbwoSDh3jqiivYvWFDu+ZR6fqoQnOKASNHcsKv5YziYEniGuBtD7oe1Jfk4ZezHmPOevxy1hOYvRa/otbTBppCtlvR7fmUyLE3EtlrKFTkNTnOWVeB2Lcc05GVkDoWrcuOobLlvCmAqu7jecnYcjTyaQa6XHzukfUXsk2rYWxNLcd+/ihfv/NOO2dT6cqozuCzEP7+YG7ZpxIjBJOE4H1F4TY35nynOIuA8iPnfG23S+H/+kymIv1Kt21T8ndhspRh6TMLSatHEx6HprYc3d5PsabPQNKbkJ12DAe+RBuejD19GhatDk7sROsfgquVHQ2AxhjApozJTNnxKZmalv8GhUsSBp0OPCxKfhqHorBXlrlHp4OGBhb/3zN8X1zHP3/10Jm+WiqXDupP9Cx0iYlujUtSFMYJwUI3uh+cH1MCMEAjGHd0I4rZvWOVPmsFelMQ1p7TznQ8cAV2Q4nrhy1jFrqTOzEc+ALDkVXYMq7EGT8IodGirc6ndtvnuFJGokSmtbJKI3XJY/h76kjq3HAM+zudbh+1zudrnZa5pyKn84RgZcIQPiqJ5ppf/puFn3yJo40CptI1UXc0Z2Hs1RN2uFfYKUlRsGo0fOtwML2Zqnst4RAaFKRWQwE1R9cgd+uHM6TpEppCq8fVfcyZOFwJsP+4AH1ACK7QeILn/q/HtlVmXsPjVYVMtZXhOmWlVnYxzmojXJKwyDLbJEEueFwAHaBMlmmwuQjRarErCgsCoyjpfx0SsJe+7F5Xz4urn2FYYghXDEtn+sSx6i7nIkcVmrNIGTuWkvfeJ9rN25ReLpmDOj21NpvHNzA7UwYgmVr2h0hH1qANi8XWjMg0hVyVD+GJ0HeGR/acjdDo8A8OY+6Jn8pWyLLMc2Yzu+vrmRweTiAa7pfa1sXgG72OW+yNO5ZFRn+2j3ronK21ZAyg2NiXL2rg01dWc8dvf036pAn0mzOH/sOGtfl9qXQeqtCcxZCxY3kjIZ7oIvfD7KY6HHyKe/6a02y0OSgMT29xjD5rBa74AdiC3L9ydubtxHV0HSI2wwNrmlg7ez3TTp5bTVCSJH4REAABARyyWrG14sNpjv2SINliRdLp2KbTsbzXlUh+zfuP+hdt55aaasSyz8ld9jlbe/bEf/hwJt5xO7HxTXdkUOl6qEJzFlqtluT58yn729NEunmN7S9JaP2MyBar29v7UQYd8XmbyI/uhRCNz8iyjLOqEFfRYXT1RWjTx+PyQGQAJL9AzLWVKLZdKBodhvQJHj1/mvT87cyQm/eRJOr1fORy0b+VI6NVlslVZPK0OmwGPTYE2O3M0+molGXeCuuBpfuIZp+XZZnBDSVnopqTgeQjR5APH2btRx9S36cPwSNHMuX22wkJCWnDO1XpKFShOY/pt93Ga998w/idu9x+JsNm41Uh+JkH61ybvZNnFT0hkbGg1WNTtEjGECx6PzQpQ5v1ybSEFJWG/8T7kIJjsH/3IrRBaERNEf1qW64LbARcrRTLKnQ6WWi1MlmSmCwktFbbmdcUReG1gFCyh89v8TYieN9ypjTUw3nV+CQh6Gd3wK7d2Hfu4vP33sMxejRz//QnQkJDW3uLKp2A6mE7DyEEwx96qMXgvfPpj6CnRuNRW9y+kkCX2J/61MnUJ43FkTwSYnrj13MUhvIjZ/o8tYZUVwK1Px31NHojuj2foBl9p9u2nE388e+5xWVrcYwkSZhaKZa1XQgeMpkYbDKhPW+nt8zgxw/D7m51Bziy6giRrZT81AvBsPoGRn7zLR9cfz05blZCVOlY1B1NE/QbMeL/2Tvr8Diuqw+/d2aWxQy2DDIzs2MHHAaHG2o4DTVt0kCbfkkpTSlN2qZhahpmRgdsJ3bMzChbspilpYE73x+ShbvS2rHTgN7n6dN45s6d2dXu2XsP/A4rPG76BoIxXzPbsnjKoXFljLl8DkWgSJNIopbBrNH4di8k1D+64BWAFahj0KInmR6sZVHuELw1JViNtWwfcSxaN47mdvMEG3DvW427dh/5WxezQVMY0UU3h2rTpN6WIKIbCuFx49M7b782CsHLfWegJuV0+UxmTTET9mvvxIAiBLMLi3jv5z/n8jfewNNN8mUP3yw9hiYCqqpi9ukDm2P/ddSEYJRQ2GSEGaZ1va1Yb0nuSR+AmT0yYnhbTc0jEKrHu28lodzxEeewpUXG6pf4Y6CCOEXhnOKNPInNZNPg3PceolfGEERy185ST9kGcovXYm1bySDF4meaRq3LwR5N43mngz7BENMjrCgKTIOpiouuYvPBDkZovsPJe/FZbEsfjj706C6fC2DIxreZarbvcR4LM3cX8M6DD3LOL35xQNf1cHjpMTRRmHLzzWy/5loGHkDnyUmWxVMud9S2ufv5/YDpNI4+s8scGiV3BMZX/6Xv3lWE0vIQ2OiKk5r4XKyUfqStfol/lGxqlxBoKwpDnQ7O6JPPwlVv4559FUKN/Ce2TZ3hGz7g7Ooi6n0eFNOkWNfJdTpJBsboBivcbh4Ph7kE2m1/xrk9PKoI8g2TuAiGyLZtGkMhEII6KXnQl8QXY87Fzoytl5OUkon+UrQDNDLQtJUSPR0WvnX0GJoojJ0+nTVjxjBw2bKYrxFCMFVKFhoGR3ThLBUJsXUSMCb+iBM+/h2nlm1tObZeN3jHk8h14XoSO+TuFDU20uhy83tVsL5qK3evfRVLc9FQtgdn9kD0Ea1SoQlbP+LmmiJeczm5zDQxbZvHHQ6ubjPfBMNgoG3zjKpyaYdnu8y0+I+qckWE595i24wwDHC52KxqLOs9OWYjA+Dd8ilH+etj1sZpS6NlkZzX54Cv6+Hw0uMM7gLPgPwDvmaobbPX13VnAiXGtH1Fc7I5Lq3dsZFOB7dbgU5G5n1bMjchkYTmX/ORTgeP7VrCX7d8zgf+IjxtclUcJeu4edNnvKJqnG02rb40ITheVbi/Q61XoqoyyOlkqdne36IpCjJKwt5Ot4tJzT6eEtOkLrl/TK93P1Mq1tPrIDOBS4D+o0cd1LU9HD56DE0XHFzeK6RZsksJBYcdex3P8oR+VHazFZsvJWsbGhjdIeoVp2n0bY4OeRrKsG0bpXIXQ5e9zBBh00dViG/zhe4rbYrCYcwOzz5d1ylwe9jXZv5N4TDjokTZDBueMQx2mCYLswbhyo6tzgrAbKxhXMPBt92tjI+nd4w1az18c/RsnQ4DMw2d/wql3TakLVLE7kOo7TuFHbu/IC3KeV1Kqhwav0qIHGVaFg7zmW0zZMdXuGuKmVJTwsWK5BnD4FQhOuWo/CoxkRegU6bzybrOK5bJJZrGh1LyWSDA7Qmd2/EGpWRbMMhH4y/i5ard6OPPjPnXLHHj+8wsWs4sPXxQ2yYAUpJxxNAQr4dvlh5DcxjwKSpn2jb/0VSKwzo32HY7p21iqJbqGOdSEzKoVjWQkVc1XwaD9LHdnQzGfr7SVG5RVBRA1O1rWcOWCSJ+mZMUBY9Dwwzr7RzALxoGZ6oaC0Ih4lwuzktKomPhQK1tc2VI4p9xGa68UZj9J8RsZIYtvJ+fVReQhzh4IwOoqakHfW0Ph4+erVMXNOw8+JYgCbZNncfHZ9f/kqsnTm1/rjZ2+UpFUQhG6UYppWRnnI9Sd+Scl2rTZHtdHaoQnYTXL1BUVkT5Qh8XCvOwZdHYvDUqoKllSpKmkQmUhkKMFQJHhzmXIKg/68/YebH7SHwbP+Sid3/Fz2r2NhmZr4mWkvK15+jh0NOzoonC2q++ImvFioO+/iOPh9fv/DtKXBzF2bk8sn0LP2lsACCxtgzbli11Tt1R4m8AATsMgy81lWxVo1FKyhXBeZbkTbV9lqApJa/aNrrTyS87bKmklLyqhylzOLlOyoh5Kgs9SYwYcjKLZZi1Wz9juL+cS5p9PYOcTtYqgo81lTmG2c6A5VsG6o4vsYcdE/P75K0r5nzz0GnPiJ4ShG8lPSuaCNTX1fHlXX8kvxsnbDRs22ZJVg5KXFPLNDs9k8UTp7WcT9YD2N301N6PXlnI5GaBrWd1nYsRHCclZwLXIEhSFBS/n38HgwSkpNw0+IuhkyQtfiwlvTpEp0JAuapxvaJEbWBn58/ilP5HcuaA47ls5s+xvEkt5xRF4VwESn0Dezo4gxtVjXCMAlsA0tRxlO2IeXwsOHq2Tt9KegxNBDasWMGorVu7HxiF5+N8LP5x+xLLfVNm8XZztXOKaWIbXdcT7UdxuAmqKl8ZBh+XlrA3gq/mHIcTVUoeCAZ4XkrOcTo53hG5FulpRXC2okTsYQVQbhokOFtXQX0Tcmjs1XkrVKgqpAjB3jYJjVt1HV/Z5phel7FzOdmv3srd1qFpR6NLybxgGFdG5iGZr4dDS8/WKQKp2dlsh6iRnq4osW3eye6DyGmf/m/l9eOdcRM5dcUSrBgkQPejxKfyiW4wy+fl1b79yIng9HUrChd7PPwrvi85SSl8GaxjVVUhPltystIaqvZLSYamkdmFL2SZK4GQv70P6ZSBp/Bq2XbOCla1HJtmw7/CYVLdbuKkRYNQmOnz8fM9C7kvKRuz1+guX9eQLx/jnwnxqAeR/QtNhuU/iouNvYdRl5BBnSOeYCjA8uOOPaj5eji89BiaCOQPGsQXyUnkNzR2O9awbdYD44Rgg6bxcnomZb+4M+LYPXNO4ZnNG4hr8JO/8lWKhh2Dmd6PxBUvk2XUki51Uqwwlagsy55AKGsYRy+6n6tVhSTdiBpZAvAqCoNyBnHx8HMAqPTXsKxiLU9seJsL9HqcwFPhEJfi7hTVec2dRJkeJl5VyRl8IucNaO9jyfalI9P7wt5WQ7PAllzpcpGpqlTYNvWqSn7zVqpq/Su8U7mLijGnR3xWZfcyrk1KRD2AbhL7WSrhhd7DKU7pT232GNQ2xaN5tevIyMg44Dl7OPz0GJoIaJqGyM6Ghu3djt1pWdx41InM+Ox9Np1zMbVHRpfQNPL689oZ53P7M48xIz4RR00hWqCC6sYyrqht3zplZ1UhhZveZrq0OkV3ouFos3pJ8yVzom82R2RP4oPC+Szf8jlnyCp8ESJNWp+JXJQ3i221BczOjSyVOanvUbxUU8y5DSW8Y5k4fT7imrOK04UgvU2S39nhENqexTw84iQUrfMWLuHzRxmYnHjABZMAL2f0Y+vEpoKIjma3V0LPx/nbSs9fJgrOvn1hW/eGJsm2cSSl8OV9T7U4f7uibtqR3FO0l+nzPua6k/5CsieR54L1mNW72+Wt5AtBvh05KhQN2+6cjRzn8nL2gBM5MW82r+14n8JdX3C8GUTaNqukxSd4uChjPDm+DHJ8kVcD9aFGVpXu4C2cVFgWY1xuTjHNLvNdGt0+FM2JuelztGFHthwXZVv5eXoqjoN0tAdNE9u2I/qY8jJil8bo4ZulxxkcBas6tpS6dE1j0JqlMRmZ/ZSfeQE1+eNJ9jR9MaZlTeJz4+t1fZRSosvof06f08uPh51FVd5UnkvtyzOJmbgmXkdin/EMSY1ei/TC9s84vfBTHs7Np2rmlQS8ycyIQeBrhzcFueY9kj57BLOx9b0csfkDxh6AQBjAElR+k5zLnUk5lDbUR3Vkf76zgaLikgOau4dvhh5DEwHbtnn9q6U0xvCrqwrBdfv2kvbeazHPL1SNzb1TCZtNEZvc+Ez2+b7+r7EQXS9Q//TVY6Q6k7l65u1cf9RdTMsbz6n9juTxrW/wWUnnKvUXd83n1cqNBPMmoSZmoTjdlCd2X3leYhjIgk1ct+tTHsvOJn3ThwBYVXsIFe/gltpa/mXFbmyeS+vDslk3snz2TfiPvzXquLKEwdz6j2diVifs4ZsjJkMjhEgSQrwqhNgihNgshJgqhEgRQswTQmxv/v/vTabU4kWLyUgdwyZFod6y+EIP86ltR5T3NGybFbYkecVXB3SP0r59KG4oB8CpOnAkdy9EvsUw+FMo2JKx25YiSxLv7Fx71JZpvcaSE9d+ezQktR9XDD6dzZXts6Bf37OIRxLiKZt6MYqrqdjAUV3A0PK93T7na5bFrV4PpyoKSarKyRUb0Nd+wDXz/8l9Hhd3JSTQW3NwfUV5t3MBmEmtIWvFEV35TwjBonAuDz0bu9Hv4Zsh1hXNP4EPbdseAowGNgO/BD61bXsg8Gnzv78X7FtfwB2zr+PtUJjXDB2HadFX1/nQsvA357FUSslG2+ZNh8bpusH4qnJkfV3M95CDh7M32BpGHth3Gm900fe60TRZ6dA4Li6epRGiT29nDOHEvl1Lf762+SOm9xob8ZxXdXHp/L9z29LHuGj+PTxYug4jrX3ynVayiQtk9/k/XpeL+DbPeFo4xFXbP+I40bQCjFdV5krJ1Jyu5TyllLyvOCjOir2kQXiSeHxxIdt27o75mh4OP906g4UQicARwCUAtm3rgC6EOA2Y3TzsaWA+cNvheMhvEikl9ZtKUX15jO41gLOrilrOZUvJS0IwXgiWKQp+y2RyyCJB0+hXV4tsqEeJUkXd6T7lpSQ74lv+fXTuNAri+/LUplc5qmgtfbT2xsStKGQIwTjT5COXkycNk4C0SA2FSI1L5rSRZ+Lp4td+Vdkmeidns62qALfDRV5Cdrvzlw47nRdd77IlZwyK0xtRmS+YnMdGSzI+ihM4ICUbdb2ph3mbbadPUTi3wzVCCIZKyVtOB3ZDI3tMk3OdDrKaEw3/oYcpDwbZM3w2elrs2cYA1YmDuP2Bl3jl77dF9ef08M0Sy4qmH1ABPCWEWC2EeFwI4QMybdve73krBb7zKZm2bfPozTezetl8ANzx+exs80H1KgqzdYOCUIgrgJ+pGlOaU/xHO51kLvw45nsl7t5FbocoT9+EHH46+acUTvwxj2oePlFU9hkGtm2jKQpmsxbxcbrBZbbNlTYMdXvY6MthWErXIl258RlsKt7KC+/+ioc+/j1bqtpvlbZW7KaqpADVkxBV/tNK7sNaJboEw/OKgtPh4MwY5U/HWZLTdIMKVWG818sWp4sXnE6etG2GuFxckZREatgf01wdWWb3494nXjioa3s49MRiaDRgHPCQbdtjAT8dtkl2k/ctogdOCHGVEGKFEGJFRcXBCxp9E3z++usMee99kpSm7cH5Yy5g14DjeMXdKojQz+Xi1AgdAjI1B1n1NTHfK6GqmiR3fKfjQghO6DOLuL4zOO74+9g58nyezhjOS2l9qJft32KXojBGCIb6S/jrgj9REYgeKUtzJzMmzsNNifH8UjF4d8kD/G3x/aws20TQCLGgchPuuK5XY8KWVEZYNTWaJk8qChOcDkaraovKX6xcqTmYIQSzbZvzdJ3LhOB4G/rbcGL5NrQt8w9oPgDFFcezqyrZtLX7FIUeDj+xGJoioMi27aXN/36VJsNTJoTIBmj+/4iePdu2H7Vte4Jt2xPS02PTyv1fUF9fz7YnnyJTCOLsVj/EGcPPILH30eyIIUqSVlzU7Zj9pNoqaoROj/XhRt4qmI9bc+F1ujlpyBx+Ov3nXDHj17gSIhcMHm+FuLhyBy9sfKvTuYbmFYEiFGTzSkVRFH5iNHBO8WpK5/+Vz/Yt4ZNwGYw5rctnVryJLMgcyieh9n6aaimpDQYYE6G9ytchLCVfJWZhHmTHzZqEfP7vkdeQMUqn9nD46NbQ2LZdChQKIfarSx8NbALeBi5uPnYx0PlT/h1h1YIFvHDGGczc0VRJXNkhqr17z2fkd9P+FWBsRQXazu6LMUc99zwXEjnK9LelTzInZwoXDzm107mgFl2L+BXLIrtgMUvK17Ycm1+ykv9seJN/rH2WPy5+iCM7VEqnaBpHuJx8vHcZtWn9un1uAKv/ZL6Mb18Flud0kqhqhzys/JIvnq9Gn/u15lhh9+fvjz9/iJ6oh4Ml1qjTT4HnhBDrgDHA3cCfgTlCiO3AMc3//k7Q2Nhaw1SwbRsbb72NI4r2oQjBIk1jdN/WWp+yhkpG6o0xORVPsyVDPure3s4Jx3NsVuRU/1OHHMU/Vz0b8ZzDlUlNlF9n6XZxvEOwet2rVAaatnCbq3fy0/EX8PPRF3LduAv4l/CyWtLuF15Kyb6ynfizRnb73AB2Qg5+V+fmbLYavSL8YEkLhxC+rydkpbh8PLummg2btx2ip+rhYIjJ0Ni2vaZ5+zPKtu25tm3X2LZdZdv20bZtD7Rt+xjbtmNVp/yf0djYyAPXXMN/jpjFUz++mMdOOplPrr2OCXWtYemkcIhEV+sWJd4VxxZXXMy/1kZDPXZpMc5P3oOKcmyj/XZCSonoIhFwYsYIhmRGztS9eNwlfByX1Om4bdstz3d+fQlPr3+JDdU7SFRaV0DJnkQePvOfvBffh9cHncDHqhuAJ4GThYWzIrZmeYoRID7YgNnmngA7A6GW0P+hol4IZIxyGl1Rl5DPHY+93rOF+h/yg8kMtiyL+6+7jomffMrRgQBTli1jxs6dTC9q71fJFwor9i1t+bfX6eaocVfyeEI2sQhw+koC3PTaUl6tGUKvZ/6D8qf/a3d+yt/uZU5G5O6T+3FEES9XFIW03CPZ2MHoFdqSvGCoZcxRhSt4evUrnD/05HbjnKqDv8z5NZeOOBNryLH8zbKZ6nJxpqZw0apXSSxe2W68WVtKJ+LSmB+XwyXeTK7wZbFWEcx3ulg/5WKePwDR9a7Yo6r8Iy6ZdwYdgxZ/aISsVtr5/O3R5w7JXD0cOD8YQ1NfX49dUkpcN8LXbkXBrm8fqRiZOZSbjv49b/oyumyjAnDsoMlcMOAYchIyeHP4NQzLH9HufFpSOimurqM7XenVzB1+EnvabF0aLItndYPZztYq6QGaQq+a3VQHaqPOc2b+CaQm92Z484rrbCNAXtEaALR96/Ete4HzPvsrfT+5BxlsH2JWFUHVcbdSfOwtPJk+mMf6TsfKn8xKbzofRhHcastu0+AJw2BRwE+9afKiobPFNHnLMHk8PoV7Mwbz0TG/pnpw7JKg3aG4vDy/tqZnC/U/4gdjaJKTk7nymf+yNCmpy3Gfu71Y3shVzDcceScf+rpO87espqW+lJK/fPo7lMUftTs/L8XB27vndzmHR3VRH4quheNvI625QUqOl7Jd5TfAHuHk/T2foVuRI0GqopLTe1y7Y2Mr9uKu3E7c+g/4U8FXXKYo3FNfzIAPfo+UJvau5Tj2LsPOGtJyzbapV1A97MSmex53G69nj2KhZbGvucq6La80NmBKyWcuFz9SVdKcLj5VVca4PRSoKu8nZvPa0bezbfJlXb4/B0tdYj539myh/if8YAwNQHpmJurQIVHPr7FtvPmnc930yA3inZqTOk86sgt/TUVdGQsLvuKG167jvPoiTrdM+v3y5yQ89SS9f/M77g/nc2q/2V0+Z7Ijng0V0fM/akUirzidPOvQ2KQoDHa7O435naqTt+5t1lZGj4KludOpblM3dZ7hZ+DCx7jXX8LA5hWST1E4RpgoK9/i+MVPkLnpExyDoz9/4bgf8YdxF3JV1hjWtulkucQwKFYUHsRmgqLiUxQGaxqnC8EQy2K6lNSmxBb5+jqssPtzz2M9Uahvmh+UoQEIBKOLgn/piueo/JldXn/26Mt41eGK6hzeV7CMDeue4W7NJFkI+homlb0no+ccR3mfKShGZC2VtmzxFzCtd+SaJIAjB86hr2VxoWFyuapGFLMCGOtysrMuesuYdHcKhR2c1XlGkMwO850uBH/f8wU/9fm4NFyDWbazy+fX+o1HzriEVYrGOkvyuWnxiC+dGU4PNygqo9vcU0rJ9abC5dJF3cCua7UOBYrLx7Nra1i36eA1oXs4cH5whubNLZt5K9BZEFu3bVxxuSjd+HCyEzMZN+4qPo/ii+jj9XCRbG1D8lhGP/T+05tOZg3mv9Xrun1Gt9I5+3ZfXQllDZVsLN/Ci189yNv1Dd3OAxAMVkY9V1xTTEkHQ9NLSkojRMWGaRqqEAw3TQZtfjemez83/jJ+PuN67uk3hZLjf8WTKe11lB/VPFyWM4Jdx99C4wm/QGydF9O8X5f6hP7c+dgbWAcpvtXDgfODUth758GHmKSqVKudjckW22Zsr6kRrurM2JxR7Kg6kkVFXzA9HGx3ru1iRZeSXTnDEc3JfkJ1sM2XSEAP4XV23u7sZ6CvNyv3bWB8bqsjeXftXhZ++S9GJibxf6rko3gfyO5D7lu3LOA/Rasp82ThVASXTLqeZG+Tn2nzvvmoHZrPfaWHmRylIR1Aoqpyir+Me+vKURO71ud15gxCFixHyR6KaRoUSJXfJOVgmyabpcA/7RLsuNZscd1fjyYlyt4V+Ld8ie/4m7p9fQfLKpqiUL+85seH7R49tPKDMDS2bVNRUUHhZ59yXiDIQxHGbHE4ubTvlJjnjHMm80FtDVtUBYmN0+vFgaCqvgGafSa1UhLoYAxqc8byr23v8csRZ0ad26k4qJXtDdiMPpNZv7M/s+ubguw+aVNlmqRq0f+EO0Ihjne5GG+EwdiDX1r8c9G/OXbQUazf+AIJegjFF8ffAwFczQl3iqKwzzDJdkaPHs3Rw7y//jW2z7gm6hgzUIe1+D8kD5tBIGcUxif3I6ddwprGYhQzTDB7VLsGeo6qHdjpfXHsXAApefim/gix+lXssWdFvcfXQXF5eX59KSdu2sqoYYO7v6CHr8X33tCUFxfz8o03kbZ+PVOadW6nery8aRrMbVNWsM+R1O22qS0by9Zzm9OBV1EQgNIs1P2019Oy0vApCh5No+3mRHH5WOXu2kfTL7EXzxa/08lPYyqtf64xlsVLqsLlXczjUhTWqwqFQmGuZeFTVE6o3sqC5bu4Rmt+rYbBPbbkWqGhCIERF89T0mJCF/OqQjDQaKCrckVbD+IbdiSBnFG4NryJyB2Eo2AhoSEnoTS/Zy3zbfoQo74Me9JFmG3+Bi5vHLG12Ts46hP6c8ejb/DGvbce0N++hwPne29oPvj73zlqzZomn0nzh2mMlAhN41VNw6nrNKoae6tiL4hcUriSdYVrONetdupLJFQVZFMkx6coZNUWUd/h+nJPOmUNlThVJ+tKt7Ckaj0+1cPeuhLm5E3hyH6T0dzt5Rj+ufDPzKktguavaJyq4nO5WFZdzSCXi6QIK5veTieXSJsnzDABRcGrKAxzuRjWYZwQCrW2TUpzP23N6QSr6xDwIH8174YaUdyRtZJl2VZC2cObPmCeJOz82eiBGjxb3ifsTYM2q0evx0nDsIs7OQzN+GyUojX4aytRaouw+01GS8pG8yV1+WwHwmqRz58ffpbbr+3ZQh1OvvdmXI2imD9a2pylG5yK4HzLIsHhiim/4s2t8/hq/bP83aORFEEOYbQN77WZR4ugp6KnD+KGne/w7PZ36ZWYxVUjzuKCoSdx06SLcTvdXPvB7ymsLm4Z//jyxziuehe9OzR+GxwOE+9w8Ji0qO1C8Dvs91PfhePzRlVlXhuhrcpQ9+uIGXqYjHXR67rU3JF4aptU7mTYj/BXgTeZ8LCTEe5E9M8eRIYaMesrCFRHlvQMJfbBLFiO5q9ADJiBWrQax5aPcK4/dPW7isvLixvqWb1h0yGbs4fOfO8NjXfAAMwY6pROUyzWlnT/YVtWvIGMhhrKOtT67Ge0aVLlbFqN/NmTzGa1s+aM4vRQNPJUXK448lPzSPYkkuxJJMuXxsze47lk1OlUt+nNbRSviljrPRYY6nRytsPJO13UGXncbkIC3gz4Iz6zoiiETZNNzcYq1RXdUb0fn6IyrLF1FdjRSGtxKdg1RdimjtQ8ONp0ubRS+4M3EceeJYSWv0Iwr7MTXt2zBGPxf7HzZ6KNPwtn1gAck8/HHn8uSmIGvt3zcW18G3Xta8g9q7p93q6oT+jHP16MXbSshwPne29oxh9/PNtiqCpuUDWy47sWCawPNTKu9wjSxl3Kh+ljWBohxF2gCNRmXZZVeWOxp1wYcS7bsujliVyZ/FDtBtYMPYIfr32a3XXF5Aw8hXu9WRREMZj1lsUWXeeu+rqIJRJjhOBDIXjHH2B1lPfifATvGTrv2TYTw7EVMp5UU0rv935P9nt3cfq7v0KUti/MDA08Grn0eRxuD3raoNYT0oJwI9bgY/Ad+RNCi58lXLgey7KQegh76TMIXxqeOTegZg9BaO23kaG8qfj7zSY8/FTMUafj8Jcjts9vN0aasan8QVOwoE961xnfPXw9vvc+mj79+zNv6FDY3HXz+Vqni4y4rgv4nt72NlcNOwuX5uS4gbO4f9G/oGI97zb4qXV66J+YSLkp2ZSWw1cNZVgpeVHnksWbeHj1+0xOH06qt30DCa9QMdLy2ZmWz5WFKxivBMnxxJPeWByxoZwu4FxVAxXmh4Kc6PW1Oz/W6WRPMMjNKSksFDDOburD7ZcSy7bJdjiaShg0ja2hECd52stAbAiF+ErTMFQFRQictk2iplFlmdwXrsUlBCqwef3bbGtTnqB5E/CkpHVasWhlmzH0ELUv307SoEm4Mvri9PgIfvIvnCk5KMNOwOygeRMNJVCDioFIH45jy3s0utJx6bVIzYvaWIYxOnp0r+V5avbyo0sPXV1VD5353hsaAG9+/24NTakriX31pVQHahmd09Fd2kRGQhqONpGfn06/gZs/+ytLZp6MI7UXbfNltxshFEf0LYipOqiYNJdL983nLNPDj4e2ttK9LmMCPyvdhJE9glDeJJbV7iVj65dc1iEy8oqmUmNa9FdUZrgUGqRkQxT/yhRNY4nTwfRQmCdMg7DHA2GdTATFqspwh4N9VQ0kupz829BJ8HjxaBo+yyJPSi4RgsUOjdRgiBEOB/VhHVVR2mUl3xio4L75/2DzyNNRU/sAUCd8qPWVqAlpWMF6VE8Cqt6IZRkknXwrWqCS8PqPEWn9ic/sjTWmKZxtNlajxaXgLtuAWV2EOfR4CNTg2DEf4fKCK57A3nX4UnMJDz+l6Zqk3mi1RQgrBZk6AG1rbNshUbKOYUOujWlsDwfHD8LQ4Oks1NSRcQ2lbJn/G6Si8rE3g/MnXkNuYvtOAfNLd/CXxa+x6vxHWo7FJ+eiJWd3nK5rI1OxG2fRKsSUi6hiGE8sfZ4n3rqVP064kBm5o+iTkI1n21KM7KaEPSMpjz5xXmho71gOIsCyWCclU1WVFFXF9Lh5EptGf4Bkh4OLmvNhshwOQpqDEQ5JnWVS7A9wtq915VMVDjMiMYHFqsYpgGqasN/B3GxMZpkWb3o9aMEQQyJEufraNvfVFDL/q4dZ4E5kee44PIoKuz5HWhKrsRZX//EQqMZ97E1UPnsTqRf+HSEtjJWv4qrYSdKXj9LHbCCnqoidiotN48/BxoGsLiSubg+BEaeAlGDqaH2n0XGTZyf1wgCkv4aAbnX7Abdtm/hQbP2lejh4fhCGJmnoMAJS4u0iV2Li/i2JlKzSG/nt+le4bfjpbKrYSao3iUdKlrJv8AySMvuzt66YvMSmnkR+TWnJ/I0FKSW+io2EJl3QkrBmTbkQ775VyOZH+PnW16kbcXK7GFNiuH0198uKQl5DA7M9HmgT/fpxsy5wg9vNs6ZBhWkyX0rCPh8pzQ7j6W4Pr+k6fwwF+bW7yQjvT/xbFwgwzekgQ4vc7WCuYfKAEAySMmLuiSIER5kG2Y2VLCpYi+OEW1rOOYHAlgUowoXaUE5K/5Gw4iVcWfnYGYMQu1dxY6iC0baNpqrU2AZ/3LOI9dOvg9WvEbZCKP1mNHkWta7lKNwVWwgNPbrLMQCiajdXn3tKt+N6+Hr8IAzN6BnT+cLhYHQMtS2mlHwcl40cfTzXVm2kITkL1ZbYE36EEIL48m30is9qGZ9oCaQeRHG2XzXZto1thhHSRLhac020zR8S6je9U0uT7FAdR+TPZkXxRnYn90ao7b/oi/OmUL32XfITEojXVOJ1vcnIRCFeVRnjdPKaZRIwbG7qUNN0ptPJfOBTv58jPZ4Wo5EXH09aN72xBwpolJKELgz3ENsmLzGJjp2wnUNmIRc+jF5diDruLMx3/4qdNxxz11qMsXP5q91ISmMZo3eu5AzbZGywio2KgjL+7C5UejpjpuXj3T4Pf/ow1C70kHMdAX5yxU8PYOYeDobvfdQJIDcvD/+YMTGN1RSFtPQcrPgsAn2noab3h4wBLbk4Pqez3S/5pJR8tNrWMK9tmXh2fE7OvL8x9dN7SFvzGnbbDgpmCFydQ95Fls3ikg28V7YGI3d0p/N1I05id3wWF5gmc8M6J8TwrZtqWfzEht4eN2aHaFS9abLRskhyu3nO4eBZp4PXVZXJto3STZTOVtRuBcQesCX9y7cjijtLhIr86cQlpaFqGr6JJyFC9XinnocnVEF91mgKpcILA4/lIk8O8xwHpxks4zIIDT0Jb9n6LvOjBmX4op7r4dDxgzA0AJ683jGP1R3RVwr1on3BodtWMdqsPpSK7Vy98k2eDJTz21AtDxSuJnP5f7GlhTR1NAFE2GqFBx3F3cECPqjc3Wk103LvxAweMw3CByDcJIRgcCjMxg4h6w+BUwSMV1Uusiwu1A3OsCyGxjC3ZVndlgZkeX3cblscs/Xtzs+UO5LwyNNRdyxAi0/BNfsniKQcgmV7sLd9hjXuXHx6NdqM8yk78oaYX2skQv1mokWpCheNFZx9ROztdns4eH4whqZjLkZXqF0kvxmBekJm65c2xR2H2kbFznL68La5PlHTuKVgNWrFDvTPHiA0+PioejQ1aYMY4Yxj7IZ38exciHP7fOw2cyUkpXK2UHjiAJsNrNM08h2tr//p2lrKDJ28A/AttcVjmSzpJntYiCZ/zZyGSuZ8ejfuLx9D1LfRIDZDiLCfxvK9TYZVUXAkZyLGnd10j/gkZGLsPw5Rn8ObjNOXgFnfvnmhLS1mJ1Ry4tFHfO179NA9PwgfDYDibeoIYDeXJDRYFnstixQh2KRqHN2sBmdKiWpE/xLpioOgHsatuTClyYaqAtDCkNHUH9pTv48JrvaOyhFuF/aGj/BOOx/pit6bSfFXc+uI0xmU2ofVZdvY5y/nHyXr0TU3wuUlXLKLFE1jhK6zwuViQoydGc6Rkvc0jV56mIlOF0JVOUVzUC0lyxWFY6OUaUQjU1EJEd0YP+3wUGc05eiMlJI+tRWsSHARXPUmcbbBcDuEHgqwLGwTN+YYzB1fwICZCKcXUbcPGiqotxx41r5OeNiJXUbwYiHYezK+DW8THjkXANs0GKNv4N9/uvFrzdtD7PxgDM2HazZQqaisCgQ4Ji6ORD3M1emjSUrNZUzVJo6ua3JbvhMKs8+ZEn2p128Sl+6bj88IEzQN9uWMJ65qM4HyHagZA4i3Arg7+C9CUuLrN4bGuK4zj71GPVnJTSHtsZmDGCn789n8fxJfvY2NSVk8FWoSsTrC6eQ/tmQCsRkHp6Iw17a5VyhsD4U4zePhnlCIYR43E03JGy4XZ8QoArVWUXnf1BlmN7Ur7UijafJar+E4ErNZseptLnbaeB1O/tqwjyuKCqk78w8MWPssF+khzpcOqrLGopkNKMufQ1omoXkP8nezjh0ON6874/FIk7oxZ7WTlDhQhFAw+0yEnYvwZPRhbj/43Q234uxCCqOHQ8sPwtBUVlbySXGQj6dcgyJgc8kqrt61mN6apGbUCexeXEKpsZcsh4NFOQMR+dOiziVccVT2n81+3ToHEE7OxrdrPn4gPtxZ+e4/mpu67LF0t1HxSJOENtXQASPEwJrtXKjZ0Ng+fhMGlpomk1Q1ptWIEIKLheA+QyfscvIrr7cl3P9hKMRnTiczpcTRPJdu2+yyLMoVFb9Do8SVgObLok/qYP44+AQ+KvySO1e+QpZZj6Yb5GLTR1F5LiGT8Ki5GE43gYGz+HNdOd7N83i4cBm/6JXHa0VLWODN4sLwbu6TAa7b8B7+iedgTzgf587FHFW8joUOB9cIydlWA//evYTKsq0s6z8La8CMg5ZzMONzSC1dyZ/OOZnjZkX/+/ZwePhBGJq1G7fCwFloJWsRo0+jOL0vz9SXtXRBLBtzJtfVV3GyWcPuuhrU3YuQ+UcgwwHE4v8ippwHnq5bpIT6z8a3az6ydHencxvzRqB6OkeaOtHBXsQ7fYSdHrA6V4DnhHV0KfljMIBb00hxudEUQYMN/YATIxifVFVFUVWkDVsMg3GuJsf29Q4H1YbBew4Hc20bv5T829AJu1K47ohf0Dels69kasYYqjyvcWrISa2iUm9ZlCoKWnURYsMHMO70poEON0NK1pGpaWQLwee7V5Hv82EDmQ4H04tX8jHnYJZs5fo1r3CypuGX8KyqMCUYZIjPxzGhOt5d+xr/SBuAkpLT/fvYAamHmMhW7n/w9+Rkdb2q7OHw8IMwNA2BACIxCw9Bgl/9B3vyhe3U4TRvIoHjb+FlQOxZjsPlQgeUmj3cP+RU7toxn9IRp3S7fA/1n021HmJDbSEjmn95G02T4uS+MT1nR2VOGxu/5opoaE5pNhK7LCdnC4ECuBE84YxnpzOe7YFiBnaYTwjBiORkzgmF2exw8IKqkGZazBGCFE1jWX0d9cnJGLrFjQ4nL8QnRjQyAM+tfoFT/A2gqiQ1/y8PGBcXz4t7F/PfzCGouUPJXfMqd9o6SrPjOV4anG+EURQFXUowDQbN+yuWv44j9qcQKCpTVI0aj4cjTQuEoMbjw3EwRsYIc3L8Hu6/8zbUCLIePXwzfG+iTnt3d15J7KewtBKhOQlljMAeNRd72YtRx4bjsskqWEvOpvdJLljG6MxB/KPPHLSi1TE9R8OQ47lr6DFsbVbce8ydSGN29I4GbWlU3ZQ0tEZHFKHQ4EhknWVzkxbHO0ZrPs7zQvCK08mJapOg1X6/kJU2iNvn/JZNWmTdX920EEIwTFE4z5I0tPFT3B2fwI9Ni8sVFaeioHaha5ybmENVhG2MJgRT9TBz5/+LuZ/+kbqVH+FrNjI7QiGmuN14mq973zBItCX3NJbxb8IktDEEw0yT6TYtwmJScxxQRfZ+xlpb+dcdN/QYmf8x32lDYxgG8995h8cvv5x5p5zCgjffjDguIyUB22wKQSu+JByO6KHujOJ1PDz2Yp4fchZPj7oIRVHonZBFohWMek1HaoecwG+HHsku02J73vBOWcPRCOeO5bd7mnI+CuqK+fn659mUlsWdE89l89gzGC4tKkyT90M6bkXhbF3H1E22hEI85Ujg72GbsVljACjz5dLQxsEbkpI7/H5cevt8mnzTYIUe+QvsrK9kTWXknty5ibnsiNIJolFVOUZV+UlDDW/0bl0RbXE6SRMKj6sO3lJUligO3u81jsYYHNGDg43Ibtq8dCSjfgv3/vwCtC50lXv4ZvhOG5qHr7gC7cabmL5oMdNMi52vvR5x3IcrtqO0DSt7EpEycpp9ak0xCa44NEUjpU1HSPcBJMALIagZdgq35k9jW2kxpr+2y/Etv9RCQWv+Bb+vcAHLR5xE9ZgzCedNwqPXEXC6+HzQCYw79ncYfWbzJ+nipeyxbB15Jhcc9X/E951C74Sm8ojLJl3LouaVhG3bLHBoHOFxc06H0ofRNqxVFCoilB2cYzTw8YY3Ij7zhNyxJA05m0URjI3TtimPkPhXGwpSEwzy4tDT+Pcxv2b1KXcxOVRKcgyGYDEC9QD6cDsbSvjlKWPI7xtdqqOHb47vrKk3TRPP9u3tugC4N25g35495Pbp03JsxdoNLK1yQRtdI7v3GNTlz2P0nYKWOajttPRL6VyJDeCyD7wHUFhRyZBhhrz1a0ampFLj9lGhedinuChxJpNWvIFjVZNGobDelcC68RdygqdpBVBgW+2iSXblXgqGncTlg08DYGBKHxanDyLblUa/Zj/KLya3SpWrioKmaiBN9pgmoUCA03yR0+1/pCi8qKpcHiEvp7GqiNVlmxib2Vk646j+R3DUh3/nr5lpDG2zSswVgkWqyowO489xe/i1KVH7T2qJHi1NHcob+gpOD3edAPgzbIwlj/LZMbd3G3mSeoiz+lmccUL3RZU9fDN8Z1c0X7z7LoMr2jdHG+MP8Mn997c79t4XKwkktP9Vs+OzsCf/GE/p+k7zhkKdHa8AKTHo6LbFs2cRobzJ1Bx/G0tm/5TdioPTq8u4rXIv/yrfzn/2LuHPRgOnGzoX6SFuqS9j4uf/YkzqQK5b8zR7Ni1BtkkcDGQMYW1Fk47wzeue59rFD/K3hl1cULqcOxc90s63A/DSujdQm1dKpU4nenMB5gu6zqNCtNQ+SdvmFWy8UbZPE6TO4n3LOx03pcm9n/+eu7PT+RKbVW1KHBJUlfj4zlE2p6IwI87XzlD4x8zls7jsiMqAbVGF4HJ/DX1XPNvlONu2GW9v5Q83XtHluB6+Wb6Thmb3tm1sfeRR0jo4+IQQBLa0b3W6aU8p0dCDfsy6snbHPL7IYewJShJWQ1XEcx1xVu0ghBMtuUnp184ZwkfH/Jrbe41iQfMvv09RSGzz/OlCMNKlcXXVMtaMOpW4c+9ulxErKgvYKkOct/lFVvQZzZqJZ1MxaA5i6NHMG3M8Fy24j0UlG1vGXz7hAqryJrPO4aTCNPigsoIHLAvL5+NYy+IV08S2be41DOZYkvOi+K3eUuM4eeCcTscfWXI/59UVMVLVuEJzsNnr5U+NDS0Go5eu8w+hcYs7iX+htGgVywhlD9smXszCGBLy0oTgisotJOxYEHVMdsMW/nXzpT3O328Z3ylDs3fXLh678kpWnnkWR+yK3FPapbTPHwnKyF8g27axHD5k9d52x4WpY0bw35ybP5v46m3dPqNtS2ThGug7qd1xRVEomHQJfx13Cf9xR97ChF1uavvPiqhvYw2dQ7kvgcKhJ2Im9kZxNEWVhBCovmSCx9/EH8pXtBgbRVG4dMKVzHckkeHx8nB6BoMcDvoZBn0Vhby4OO4JhzkZyO3COT48dyB5ca3bSSkljy3/DxuLtrbIRAghuMCyuMHr4wHL5B1sptg2u31pbDj+/1jSfwYrm19TIELNmVldjOyivqwtE3WdS7bPQ9m3odM5V8M+fn3GJHrnRt7+9vC/41tvaEzT5P1nnuGpSy7hq9PPYMYXXzLcMKJmw7Z1MyxfvZaNdZHdUGZdGYYrCWe/ie2OvxeXzasRqn2dmpNMq3vRblFVQDBtSNTzMnswb6aNpCaC83WSvx7f9i8iXqd5ExBG9MiX0Jw0jJrL36rXUhdqzU4ekjueXF3HKQRzpKS5CzjTdZ3z3W7WxcXxiR3BcWua/M2RRHWgveDWHz/4BXMKv+RmpfNWy6co3OJwkm7D1VWVFCQ2bVlrRp3Krwccx3opCUWoTHfmDGJrauw5MieEQ5yz7iXstqvRUD0XDnVyyjE9RZLfRr61zuDGxkZe/c1vMVasYHRxMf1iXAoXo7B05SoeeOIZdjQ4MBpMlLT8TuNUdxxqqLLzcaHSLzFScxPIDPjZ1U0BorexiEDfrj/s4ewhvFm0lHjLIEXVmNKs/jdYSoZufI8lGUPQElt7Ult7VuGs3Io1qmslOCEE1Qm9KPdXk+hu8pGk+9LZ7XDSy+hsGHKBc3SdVxxOTF1vEihvJk5RSPTGMzx/CgsLvqQmEODtda9xrleQqigt8p6RmCIEI1NSuUxa7L+rMvxolu7+DEPp/JFTC9cxM8Zt6X5+HApQtfhBPjr6NrDh9LRK/u+66w9ojh6+Ob61huarjz5i+NtvE6eq7aQqo7HUFqRbJm/6nbz47w+pT5yCmhuH+Oo/EcfbtsRWnJ2WdL7C1YybFvkDe4yvH1/VFkFydPkCoceQb5M7gpdz/4YMNSL1IL/57C8tEZqbrTDnv34H8tKHW5/Jv4/g6LO6lbpQG8sJOeOYt28Vfr2eBTs/paJ8K7cpXW9LjtZ1HlMEF5gmCc1RPE1RuKqukJUrnuULIRglTf7mVnDGGOVf7PXSmNe+7LI8PoUUOq+ejtr6LhOsrlX9OiKE4PpgA7Wf30fCCXO57/abD6gCvYdvlm+toanetp1eMRiYG0ImSxr85M06l6odq3GO/RGKw9VSwKil9cWQJkqHX1Jj1RtozYl0zvVvYXsS0Sv34nd5uGXZE/x54iW4O2TXHttnEvfv/ZC6KIZGGiH8YSPiuUgo7jiklJg0+YyqpWSBZeEZOJF2sS9F7dbISCOEueJVDMPiyep9rC9Zx68b97ZzOEcjRVHINHTu8Ps51xfHtDY+m/EK+EyDMo8bpxG7MdinOjFT+7Qz5JbmJNXfeeWSHWrsdCwmhGDq0L789Hc39vTO/pbzrTU04eJ96FJiARKwm//bAryKwl1JuZR7EynqN4OUtAH4VQ33oM69eUKWjbbsOcxRc9G8iU1CUg0VCD2AMvUioEmkSR8wGzGgqa7xqxWv8eOVT/Dy5PYtOBRFIXv3ShqFF6tPZ5EEpWo34bTBRE7+j4xSsIIBus4fPfHsjctEKioDanazts0Y1dH1jM6iFVBbTGDkKXhTe2P6a2h89w+oMf517w4EmOl288+kZB4Ph6g0Bae2yU/ySInRTS/ujpxSV82a129j64/+2XJsef+jKVrfWXFvXq9xTNuzlD4x6usAWLbN56NGcu2TT3aZ6d3Dt4NvraF5qtKmaNy52EI0N01r/X/FCmNmDEJ6mzJFu1owm+5k6Ncbdft8NE1B6mH8Zbvx9B5B/Vu/J3X2pdQLL2p9BVpCk1/EMeFMSip3ceX65+iHg6vzj23JEp4t/Vyy9gU+2PUpX/Y/up3BsTMGEb/xbfTsgTG9RmPDhzj8FdxoCPyzfoydORgpJSWf3Itr4zst/Yr8uFFq9iKTI2e56vs2weQft/wxNV8yqjcerxnbSiHL52Vm83f8RM3Bn2qqacjOIS4cZrBh8JaAn5pml36ZjqRqGrNcGnu/fJLgjMuaXm/2MIrjknBuegd9WKu/qWTMWTxcXcDvaotxxnCPWilZMWUyVzz4IG731xPF6uGbQUTqxXy4mDBhgr1ixYqYxh5x3d/YGx+5kduBYG34EPpNxlj0n6YuiBPORUoTq64CR3I2cuGj2HFpKGPnRqzOlnoQb9lGsvR6chobGV2wiFObs4TXKQofJ6SzIXUQZSObMnaViu2E9q4jITUDMzEPM7lPpzn3Yy5+GmXECSgJGe2Oe3YvQCgagT7TW45pBYsx+3bWUXFs+4SQcKIObO+Adm1bwN3bPmBYNx0N/gPMFIL85s+BbtsstCWKtBmkaZRJyVghuhUsj4RfWpQJlScTM1g+43oUZ1MZiHvPYkJ92r8WqQeY++lfuCYcOWFyP3s0jaofncv5v/51j0/mW4YQYqVt2xMinfvWbmy9rkOz2HITRvUl45hxGaZomlNRNBzNTd+s3uNQ+4yNKgGhOD2Eek+gIP8ovuw9hsRgq7N3lJTcXFvGb3YtYtqnf+HM+X/h+M//jcfUCfWdiVlbjLdwSdRnS8jIbWdkrNKtsOIFwkn9wbYJb/oUKU3kkv8i9MhfQGEEOxkZgPCgWbzi6F4DJ97lajEyAE4hOEZR2aOq9ALGK8pBGRloknvoL+DO2lJSV7zUcjzST5vi9PLO6POY54q+Tdzo8yJuuYUL/u//eozMd4xv7dYpwa0SIUBxwITrqlAA1ZuIs/dwjO0LUdp8MR39JuDc/hl6avTeP/vx1e1lurPzW9bPltzRXAJwX2oW1uTzmk9Mxdz4TqfxctM84l2CQBv5CKkHYM9KmHw+Egg5PYjdKwlv+ZL4zAE4jEb2u5ntUD1a2VbUcB3BhN7Rlfu62Ya8qocZHmWMU1V4zLZxKgq2DUPCYaZE8IXcpyXiVBVc3iQS45ORpTs4O1TbzjnrVBScVmt4XdpRcqByhvDf6mn02b2QQR0qupdkpDP6rrsYd0RPnsx3kW+xoXFA4OCulXoAuXc12oDpxGX3a5nGTOmPUtS+vsmo2Yfmi62hfEqoul2uSUc2KQrz+81ud0zTNDpmsDi9cVjeeGxfazWy4vTicDtbjIn0peFO643DaCDUayLG3lU4K7ejNpZiBBoJpwzA9mXgSIu+NUtvIyBuStnp2bdYFv3DIYhQgX3BfhWuZifw504njwJXWFY7I2JpDs6eeg39EnJRhEJ1sJZXtr9D3u4lTLVbI3Dn1u/hgcJ1WL1HYSkOZKgRpY1s6X4qR5zEgzUF/K5iJ4mKgmXbzM/vzyn//Cd9Bsbm++rh28e3duuU6D144Wjn9k9xudyIZc8Rrm8TTtX9SGf79H/nlnkYWcO7nVOGAwwpWNPlmLfiUtH7T229Xck2GkKdE+VCKQMwjPa/2FLKlrKClmNZwwj3nowQCqLPBPStX9CQNABr2AloWQOjG5n6cqzFT7OrvIS1qspD9fU8Ytu8rwj+ZVnsaS6gHJ6QyLgomjIdOdK2OdOyeLrDxufmUCXvr3uO+uatXYoniStGXYRr0sXMc7RKc5xg6By1tWl1Z2aPRNv+WdR7bZ5+DQ/4kghIyafjx3HxSy/1GJnvON9aQxPv/hqLLSOM1Xs8cvy5GENPBJoS9LTNH6GMOLFlmNlYwwklGxi45HG8RSvpyjGeVLiE64O1Uc+vUFS+GHRyu2Na5gCC+7Z3Gusq+BKzg+yCbKjA0sNoeztXSu8nPrsvjqTu63gcZRuxR53C6qmXcG9FJfOEk/OF4ERpc5FtU6xpPKWqqBFKD7oiVVHo7XSxyDTbdX8cWLSZsg75MbOyJ5E78TLec7fqc/yooZq0tW+gOFy4PV20nVEUFo69kP+OGs11//1vxErwHr5bfLu3TgeJ8DR9uIWqtfS4to0whuZpZ1mz173BNcJGK9/OzqJN3JG9jMqRp6EkZrfXgrEl/Yo3dGqj0pblCanYvdqvjGSogaT8MZg0aaRIU0fzJhCq2Id341tYpkSOPwcALTETc8xZxO2cR6SgtFG2nWBc5NKIjiiqiuJNQus/kWKHFyV3KM++dwc/tcIkaxpTaWqXezAcY5os83j4wLIowQZpU+X2McbZeRs0OWMUromX88bK/3J6oIocITiheDVPDz2OQNowrF1fobZZAe7H2VjC5ZOTufWql2Jy+gaDQf719Kus2FNNeaOOJgRZiW7yUjz8+MQjGDq4ZzX0v+Zbu6JJS/C2yG8eKFqETDWhaGC1ny/HDrUo2uU7HTxbsZ2z592Db8l/WsbYgRq8S/7L+cXRK7d1KVnl6uzn0byJhOKzaXjnT5Q/cxON7/8NAHdKJsbos9Ay+2E2VrfeyzTQg5FLGLwVmzDTB0U815GmUqSmP63WeziKovBh5mhese0DaqcbjUmGwUlScoW0uQK4xdZ5adNLEVeEY1KHMnHilbwU1xRdOzPYyNClT0FSDvF6dafxCfW7+e2cXtz2kwtjMjIr1mzgxF/cx4M74lluD2CPbxg7vUNZZPTjhbIsTr33Y358+30UFBZ1O1cPh49vraEZ0DcXK1B7wNc51r+FTOmc2CZDjUilvT/C2yGspSgKVzoU7izegHfH57grt3LC/H9xecUmRnWRGLYbm8K0oRHPKVlD8aTmkDbjXDyJKcivnob+TfkxoYyRqDsXYds2jrKNDPnqEXICnb98AA5vIkIIbNvGWbGV+I1vR93qRbIlctI5PDj6fHZKiRHhuneFg/dDIeZF8Cl1h6IojC1YydqKyPrCQ5P7c+Skn/BsfA4uReHMuiIo24HpzcAM1AFNBn1YcAMPXjKN8087Pqb77ti9h+sf+ZDdCaOjlmgYyX1ZKAdx/t3Ps2Fz9zIfPRwevrVbp0H9++HRv8QgvfvBNNUKqeXbCPkbUBwJYOoIrdWwqHHJBEt3tHvBnvrO1dsAo1XBj7Z+TrnLw3V6A6+5XRCKLhExWFE5fu/nfDSw8zbA3vA+2ti54ElEGzyrSQen+Zdacbpxp+WgvvN7bjfqGKcq3O1KYGewHtXT6ttwbfoYR30xDm05ecVruahoEwmWyU1qHAw5qtM9hRVFbDxnKPfsHYCuOomr2MU/aBI5v86ZyN6JP0KXEtUyeHrPMp4t2xT19UZiqKbwcuEKRqYNQo2gp5Of0JuTJ1/NU8sf45Lavcza8CrzZ/0Cx9rXGDN6NBceP5ozTrjggPJj7nj4FUoTIxv4jhQnDueaf77Gi7+5lNzsrJjv0cOh4Vu7oklLSyPXHdvWyVG6Aef6Nwij4WgoZ9qiR/B+8UincfG5+S1OTLFzCScE66POebYR4LrGKnYqClqU7UxbjvfXkvn5v9odE9s+JbB7NUbZDmRz4WDHL1LAUjm/sZxxatOfYnxjNaKyvajXUWWrebF0Aw8ueYZ/l25hsqbQW1VoWNukmyP91dhF66G8yfFctGJeU15OBxS3l5LZ11M18yqqwzobFQUpJaGMPpjpA1EyB2PnjKB+8FFc03c812YN4S0ReaXwoa3wsgXrdQNTStyKwpydn/Hg4r8zv3hZxNVW77gsfjT5Wh5L6c+RteUMLfqYP1x9Dq//7ReceeKcAzIyS1euZml91039OrI3cSS//FfXUqA9HB6+tSsagAHxksqCLwG7qZ6p5YPY9CEWto0RCtDgzkAbdQYO4DhV5wZ/HbcnpLGappWObYRwl20k5E4m/eO/Mc4JG8pLGRCDv/lLReFi2WQETNtu8el0ZIiUUFWEueMrlMrtxGXmEU7JI/60oxGVuzCXPY857iy0uJSWa8zaUnpvncdcd1NYu9o0+c/Qo1B6j2kZ49i1jDn1TcmAvdr0YKqUNunDpxO0DFILvuTszQt4EQcNY04ic9RsDK3rsHXDefcy7707eNOdQGmHYlQjpS8FKX0BeLSmkI+2zWNYyXYuk2G8isLiUJj/jD6B2twJqFW7SA5XM3jXCo4PlPHj8m3sKt3GA70WM7n/0UzMGNnp3rnDJ+KZdAYfXHn5QWf4vr9oDTLxwBrKCSFYVJvIkpWrmTI+tl5bPRwavtWG5qaLz2DuPz9BT4yelAatL0LZt54jGpq2Q97acrxlG0hc+RY+h8bp/mpWaE6uCTcSH1KpdgoetyVXR0hk249t2wQNg1JFsMWSPFNVzRPpnZ2+b+kGgxUFLBucHpRhxxJIaF2e22n9iXPHU1u0AW1Ia2arKnUm1RajOJq2Gn/WvJSlD8ehB1rqgqbtXcjQCK6YUiGQxdtIXPcp53hdzNUE06TOnVs/Y+9Jv4lpqVoal866shJcCdG/sDK5N7snX8aOxhoWbPuYPg1lrEsZgDLkeIRQkAkZVAGLBh7LotpC4uoLSdYbSGqsYMWSJ8nwpnHBmLPI9qaxRiug7zHD+MUpv/3aJQSFNQcmFt/yehJzeGvByh5D8w3zrTY0w4YMYkLy+yyOMVAyZftHjGn+UmbVVTBq2Uv8xgqyPzX3KDPYIqKVoiicY0peMnQuiOLofdXtYbErk00OhY2DT6TXqpf4eaCWO2Sopc2LLiUPp+aj5E9GZg5G8yR1mkeaOmL9p6SPPo62mzXbl8qupCzwN61YNvvS0epLcIYqcen1NFZXcGRDecRnqzV0LqzeydleD9BUOFkmBGMcCg3r3qRm1Nxu36+ts27A/uRfSD3Y0uTOs/5twoaOOex4hNPTol+sxiXTOO5cNkLEkgehapDaD39qP/xAEWCPk2ytLeHLwtWcOcDLvX//6yGrUQoaBxeeByiq7V6StYdDy7fa0ADMnTKELz+tRvF0vR+XZTs4tr615YiqCm7UG7tU53tXUTjX2X6LYdo2DygOXi/cS9LcX6H3GkkFTXKTFePPojSpN39c+jh/Lt+JU1HQAIdtE86b2El8SUoTo3QX2vxHiLMMlGBVO0OjuHys7D2F6V88y8jh4xHDTkRNysOkyXQkfPkYxY1+VmMz2uVuClMbBpWKoEJTubxDGH+UEKTWVfKyuQP3qC7fLgDcGz7gpHA5Hyx5FmvaxQjNiVsRPL7rS/5VvJ6vwibxY+ZQ33sKShftcaMhhIKanIstTa674bhDWggZ79L229cDJqAfvJHq4eD41jqD93PWyccySHafAxG/dxUjmvNupJR4vd52vZwj4XQ58SkK7+LgZ2GVUkOnzrJYWNeA9/rn0Xu1+hfUim3Y6QNQHC62mQoXuFI5I2cMp6qJ+HNGIFa93Gn+sQvv596vHqK3HaZ62vmUzry60xhz91J85/+VgsmXYyS1D8vPbSzkCIeDWlXl7nCYF1SFOtsmSTc42emK+PqSVZUjIqb8tZK67m2OeOuX/Gjzh1xvhHihfCP9Fz+KEqjC0FwkKQq/Nf18pIa5csOHeFa+iH2AWcRtSZD19OlzaDtG5qW4u8zk7gqvs6cVyzfNt35FoygKswens2VzZbMP2AZbNn3IbLvpC2DbjKvdiav5F/MZbObqBigKT9g2hrS4OkIS36eGg2XOFG6efClzPCnc8fEf+CuNjPNq7Hz3r+w78eaWVYodn4FaugmZNQxGn0iDOwnRvMpy0pS/o694EWvIsWhxKUhTZ0JDGWNUFc0KMmzfCoKbPqQxcyAls67FqilCX/YyidPOx/Ald3o2u2Al4wONpGoaR6JxJIAlKRGCt00TGQjxXlwaP5ftjYpbCPbFRw/fOle8zG1FyxgJ0FyNnaBpPFhdwP99/m9sPUChorDfK3asbeIuXsdDK1+kdsL5rc9n28hQI+6a3bj9FeT6y1AUpaUSqsl9L7AFNDZU4nD8ssu/84HyoxNn8+yf3iaU0ll4vjvyUqKXP/RwePjWGxqAK846gX2zZjMRgRA22AKBjQIIGwQ2A2kS1N5tGKR73CSaTcvjDCFIcbr4XVUVv0lKapmz0jQpzB7IkEADyY540rzJHDP8OJ7cvZDTR51LujuZKzfNo9Hlw9qzGtXhgIQ0RNYwrOQ+nVT9jJGnYeshXJs+YEbdTsygnzmmAULwYLwPAtWoTpVb/OUUGWH6r32PwsFHYCT2iviahxQtY1CErUaiqvKV9HDq2JOZlZTHc5WbMCq2cWFDKZqiYNp2l/q5murAKUT7vjTN3GU0gIAHwyGudbVulY5QFay9q7k/vR/+uGzEpk8YQoiRFXuYLE0GKKLL8oyvBgyIeu5gGdCvL0OTLFYf4HVqfTEnnzX+kD9PD13znTA0WVlZTDlyNpPmL6BJ0hNaBDzb/jeQqao8X1dHsqKy1KFxksPJANMkGB9Poa7Tu9kn84niQBs0je2uBO7b9RF/G3MRozOHMi5zBP0Scnl218cEhszGufJlrJmXg6Jir3ixS9lQxenGWV/OL2uau2M2GwpVCKSUPGdr6EHB0Wve4dap1/DU5nfY9smDVCWnUzT+7HZzDTfqIvo0PEIwsf9ILh5xBgBH9JpAdaCWv331IFfU7CBd0xiv11AY5RnrBx/NpoIvGdyFvyTftnlSwHmWxNNsQI5UbFJWvMIripurjEbynM6mjXeE5LyOqPkHvuqIhfF9U1hVYEVsuBcJ27aZntTA1Amd9Z57OLx86300+/ENHYqMYU++UteZ7nBSpWn8TNUY2NyHaaYQvNLswwlIyRv9JyPSB9Br9yL+MuoCAAYk5NEvoalw8bOCtciv/os1+nQUlxe1aDWW1vWS21HwFT8p3xrx3BPOBM494c88eebfuWviZSS44vjZmPP4+fjzKHEmtBtr+mvJb6yJOI8QgowOFdwp3iR+N/tW3m3W1bGt6ImOQqhY7q5fx3FuD+dakqc7vN+jVYW7hN5kZGKkxjTpfeTsmMcfCDdceDq9GjbHPD6jbit3Xfujw/IsPXTNd8bQjD/xRLZ1E7V42tD5EjjC4eBkh6PdisApREuQ4iVboTp/NrZlEm6ojrjV8Cam4IlPwlzzNtLUkX0nY4cbMRY/E/Hezl1fMnn7Ao7TIr+lfUL1LNrXeaG/rHwTVq/2SW2p699mshHdWMS5OldKO1QNb0aTSqC3TXvZjAUPkrHwIcxAHZnv/oET3ryVQn89Fd0Y7e2WRUljQ5djYmFjVhZHnHxy9wMPgoSEBP7v3BnE1xd0O9ZRu5dbThpBXq8DS/Lr4dDwndg6AfQbOJA/uVzstkxaOyLQ3CUBLGlzvG2jCiuixq0NVJkmn4bDfJ4/GS2+6dc/IT6l09g/bHiF9baNNeYc1EAd6qYPsUedipbai8adq+mYUCz1ILM2f8JNRvRoz/r4LO7oP7PTcafTCcmtH36loZycsm3sUBVGR7EFS7YtZHr2RHLiMtoZU19cBrZtU9Cmt1S2Q+G3pdu44Y1fc1VCHBM8HqSU/FtaXC4UfFF8K0uAK3ydDdqB4ho9Ck079B8zXdd5/f1PWLhxD06za0FzgLA3g5c/W8FJR83A54vc+7yHw8d3xtAAzJw2jQmffx59gBAQ5UO9DLjG5SbgcLQTbapISKO4vhyn6mBbVQHT8sayrGw75lHXNrt/FKRQEIAydA7xloHpr0XzJWHbsilXZNNHzGisBlfkLUVIShRvBkoEAfQcVyrGkudIzOqNKSF/zwrutUM8JgTDbIkjgtF01Zdx4eu38evZV3NMnyktxxPdafzJGceiyZeh0BTmz6kvxa0oPOpzQ3M3SEVRuFrCiw4HP26jS7Nb13nPoXFkWGdNQwMXpHQ2wgdCg2WRMX169wNjxO/389I7H/PVthLWFDdS5u6D4s6DGB5TcbpZLkdyw58e5om7fnHInqmH2IjJ0AghCoAGmvq3mbZtTxBCjAEeBtw0pU5da9v2ssP0nAC4Bw9CfvZZzKr82yybOlPnXc1DqgxxrcOBpij8smgNd6b3J9hvBg19pnFR4Qp0wyC0exWz935JKHtAS1cExeVF0f2IojU0rJ+Hw+0jTgZxeOKpK9lFXFou1YVbmBTFyAC4FYWGun0Rz9UajShj5hJw+/DtXshdNUWgKJxpGDyqCAYqGr11HVsIbFVluBDEC0njMTewsn4PbauUjus9g+d2LcWh+5vUgrd9yamNNRBBQsGpKPhCQf4jbS5xuVip63wG3IRgvtvFXx0OHpGSVEWQKhROjekdb8/61FQuPPPMg7iyPSWlZfzlqddZuLuByvh8FEcfSDrwfb9QVD6vSWbegsXMmdW5dU0Ph48DWdEcadt2W12FvwK/s237AyHEic3/nn0oH64j4088kXUPP8zgbsaZUnKt6qN28AQCcVk4K3bwcuHKlpqmEYqCGmrK0RWKSrjPZBzVu/EJyZLaEuSgo1qiS+6d8wk445G+dJKGTqehqgx91OnogDYQQoC6bzenJIxlfM1ufhuqjfhMzohNRqA8XIfqblrK51YV4G1+xhRN4zrg1zhZNvwEzIQsBpauYkBjKetEA67cwWyp2oYlrRZZBlVReXrWTVy3+EH2LXuRJGGT0UVEprcN75kmT2saq/x+/pyYiCoERwOoKpcLQZmqslwocBCKfOqokbi6aJ8SC1+tWMvNT3xIUcJwRIr42k5FGZ/JKwtW9xiab5ivs3Wygf3hkkSg+Os/Ttf0GziQX6XmgmGBENhCxW4Ob9tCAUVgobDPl0rJ0JNRXD6EEDQm9uLNXcs4y9X6MXWrakv+rKNmN1bl7iYDs/zZFh0b9/Z5+BP7oQ4cgArIUA2mXdYkJN7Gt+GacwMmUDv/PohiaI73l3PTh79jRv9pTM4eTa+ETMKmzoZw03i7sZKJhRs6td2coAdYkZqHO3MAhb2GtQtbb3KnsaVyN8MzWvNUNEVjXHwa11RtJE9KHF3ktwxSFHa73RwH5KelIjs4oJMVhWRpY5gh3tB1TvfG7tsISknq5Mkxj4/EgiUrueWZLyhPHNFlWsGBsq38INtr9HDQxGpobOBjIYQNPGLb9qPAz4GPhBD30LSKPew/EUIIEo47k3mBrqu5oUPhn8NLXZtfdiklces/pdZQsNL7YO9bgxzbrN3rcGHQpPgWMAVqmy+xmTEEr3AQeO/PxJ1ye6d7Fquelv/WpUSjVVIzZJlc0LiHuLUFfLjuFUbNvIEPdi7iiyFH4ATiyzZyvm1CBz/OEGmh2UbEFlfqgMk8vuBh8gszGJU1imnZY9AUjQR3c1O4braY23SdAU4nSZrGDEtGzYkZqKgsbZPA97Jlkm9JxncR5l6bkMDZ557b5f27oqCwiNue/pzyGIWtDoTqoNnpx6KHw0us7/QM27bHAScA1wkhjgCuAW60bbs3cCPwRKQLhRBXCSFWCCFWVFRURBpyQAzLTcKWB7aMTy5ZwQVtvkPPaSp3KRZnbfsIva4cs9nI2MUb0fWmyl7nvtUweHa7eYSqoWQNJq7vKEx/baf7BIcew+2upjYhP0/pw5nZIynUm1YJ/6qvI11VyXU6Cfg8/KZgER+MPRlnalNmcLwMRfzgv5qaS6hwfafjAO7CNZTWFXHBnsUkLH6Qv336e8r9VVRHycHpyCSvl+Wqgr8bHWG3opDqcvGwbfOrxgZUTQOvl7fdbt72uHnL4+ZNj5s3PB5e93h4w+NhW0YGcXEHF7V67f1PuejPL8asnnegWDaY3bQK7uHQEtOKxrbtfc3/Xy6EeAOYBFwM/Kx5yCvA41GufRR4FJp6b3/dBz73xKN4YukLNKbEJtQtKnYwfMsC7rdMvIZEk5Kw00WqqoLTg2PgjKZxhaupXvQiCaf8Cg3Qc8eiLH8Bo990HBn9283p8iWAL6nTvfxlBazJHcMZBatx9xpNOD6bmoKVfOrXuS4jk5RmQ7IjLp2GKee3e/N9UVreFuUMRq2swKgtQfUmozjdLb/Gg/Z+xW9lEE1RyVcUrm4o5qHVz9IYCvCJLTkmSpvftvQN67yqCC52du1LOd00sQHd68NlA6bJ+ChfVt222XHiiRHPdceTL7/DXxaUEI4/PEYGICS81NTUkJmZedju0UN7ujU0QggfoNi23dD838cCv6fJJzMLmA8cBXRuYHQYyMnO4ui+Lt6ss7uVHbClReKip7mTEFJzYNo2AdvGIWC1pvHO4FYRbFdjMYn9R6NU7gTfeIQ3GXvShcRvfpdQG0Ojvv8XGl0+HP1bBaykNHGufR0yhmDnjoIRJxBWVGzL5KmMvhxRWci90kVf00+u00lFoLOPwN1BVtQvJTcl51Eo3bhGHUv98leQAsIN1STnj8UON2JWFOJrs93RFIWfVm5ktW6wKc4HevdC47UJCVwcwzho2rq6Yoj4rfN4OOn882Kasy0r123g3s8LCCf2737w10DDxN2F2HwPh55YVjSZwBvNX2oNeN627Q+FEI3AP4UQGk3Bl6sO32O258YLT+WTP76KPzlyvx5H6UYG7/0KLdDILWYDaBqKEDiFYL9X4UtfCv781hwPqYdQJ52PY90bGDQV3Qkh0NytDlCzbAc3BkvZYLl5v2wXyTsX0jDwCETBMsyhx0BcUxLg/tobqQdZF5asP+5XqJ54/vjJvdwVrMLuILNp2zbuNm1XAB5SPBRMvxrF6cYEvHNuwDYNnKqKJRRksJ46MwBlnUsexjodbIixrUowHKJe2t1KahwIxvBhpBxEDs49z39MY2J3McWvT5rTJDHxwPSGe/h6dGtobNveBYyOcPxL4H9SBts3rxeze2m8F2G3IfxVTFn/Drf7myPxERL4QlKyxtvUZ8go2kB83W5E5kBsaVG6YTFxacNx5TRtzcxmn43UAwxZ8RxjbZtjTJ1Jix9guGVxcdkuwifciojQR1r1xKOeeGvTcxWt4caGMh5weykaeVrLGGftHvLXvcVlVUWgtm51Gptb1Uo91CI61baliOJJoCaxF/X7NpIQ6TWGQqySknHd1CWNCoZYomkce4gMjWXb+MaMOeDrVq3bwLJaHyQdksfoksEZPZnB3zTfqczgtlx26izW/exOkjQNbBvFlmBLXP7aViPTAcu2+cQ0eVNxsTtnAr41r2L5GwhOuwQhBAJInX0xept+1OHGGuL2fEH86o+40w6Q3vylngFUAo7cYRgRjExHUkvWk+50ku5woTYUY6T0Rvvsfga7NP5a297IAJwSqGHnZ/+gMegnOPf3EbeJgX4zuKd0I7+vL+38/qgqbzqdVFsmy3xpFCVk4DNCHFFXwilms/GUkvv7jmVIoJJjG6s6zXEwbHQ4mPmjAy9cfP7DxVhJkSUzDiVKYxnnHjfmsN+nh/Z8Zw3N+NEjubxvEpOXLIn5mi81B38eeQ4Jmgk7FmLMvgZ1/TtYoUZUT1N/Zy1cj9msEePa8iHW4CPxN1ZztBEg3dHeGKRpGmP8hSyO4d4KNo+ZBopVzwWr3uDJcJgfNRRzUTCyw3a8Q+OZUCWP2ILXa4oQKb07z+mJZ3fuMIhgaFQhmGMYvCMtduYOpXj46QDsLFjMZ9u/pLcqKFUclIw7j4Y1b7KvppRcx8G3Id5PY34+Ob07P2tXWJbFqsI68MXW8vdgsW2bmfHVHHfkjMN6nx468501NACFyeksSeuFTXNxJTTnmwhqbIX0xiou9teSpKqsE4IXs4bhHjCZcPVeHFNGIYTAzD8CsfYNmPJjAMLZo9AXPIYy6ydN5+OzyVz1Klc7IhuEOcEatq17k8puxMC1+BRuaRPZ2Va8ggm2pLsMg0ux+KBuD36Hj3EL/oEQgiFSZ5snidXH3IbehXSFWwg+VeMp7dP6xQr0mcqm3PHs9Jc1iYe542jIn8Gu0jUckq95+MCFv595/V12aH0Ou5RAWv1W/vDr87sf2MMh5zttaFLHTOBx58yWuqSOSD3EmtUv0rtqDytHnIrMa2qxIVLysBqr8ax/HbuhDiZd0HKN6o7D6Y1D3fAmwbFnI4DGpByo2RPxHlN0nYKdX/KxHqBkQvQPsa60Xy38xl8Fju7ffqei4NuxlNmr3uAyBRKaDeqrRiMrTZ3GuGzW6gajnZ1XI29Zkqqc/thxrd0+hRAIh6udPrGa3pdXamuZkJDQInR1sIiKcnRdb6pKj4Hq6hqeWbAFJW7E17pvd8hQIxdOyO6Rifgf8Z02NJNGDsJashItMbJGruJ0U95vKoV9puPIah+hMte9T2D0STh2L8LQQxDyowSq0Eu2ED9kJuG0QS0GLCkcvaMlwPHS4kM9ep8h27bJLI5doAmg1jR5XhFsqK3lDOBMtb2P5m0lDm3Na+jBBv7iS+V5o/0z3m1rLJp6IVbuqJjS93e5krAj5h8fGDl19WzbvJkRozvFDzrR0NDABXc8wI640Ye0xCAS48RufnbprYf5Lj1E4zudgz1y+FCSja6dmF5/SScjA5CYGI/qS0ZFoi9/heDiZ9EtG1t1Ur/243aauuWWYJsZPRt5ixA0OqJvYZRANWl1kfszRaLKNLk34OdEzcH9ySl0rH/+KBCicugxyAnnoc64kkpPGjdLlbuEizu0OJ6wYIPqbTIyMSTtATgGTEQ/yK4CbemlquxYvrzbcbZtc/UfHmSTL/ZnPFi8dQXccenJPSUH/0O+0ysal8tFpk+lKx040aFqWpo61qZ5BKvL8Sx/gVDWUDwj2oggZA8kFJ+BXbETkdkU4tZHn8qjheu4J8L8jaZJtpRcW7aGv+8diMxrjfjvz+AN79uMZegxv9ubpeSYhET6ShmxXumt3kORvcY09RkQAuXIa1hv6ghFQegBlkobX8VGzJLNOHKGd3s/M1BHfvUOgor42tFlVQiMurpuxz3w31dYpOch3Ie39YltGZyWrzF+1OHdmvXQNd9pQwMwLsdN0eovW4oRbcC2BTY2huYjWNd+xWNt+BB6j0XTA8gRJ6BGCE07e49CXfcWduYgPPtWMXPj+/wswjtVbZo8GQ5TZVn0VVUGbHiXbc2GJnXN6+QWLKeo32TO2zGfIimBVr/FM4bkomYHs5QSCS0yFm+HgtztcEQ0Mh9KQeGAWe0Euff7XQDwJKICId90fPtWYm79DDn4qC7fQ6u+gosaK8k+BLk0tm2jeDxdjqmtreO/X+2BpGFf+37d0T+wmTuv+/lhv08PXfOdX0ve/Yuf0D8jgVCfaYT6TCPcZxp636kYfaehe1IIDTq23XiZORSn0YBj4HSML5/AtfFNlG2fI4MNZL57F2ZDFUgTf+FmMuc/QN/PH+XGQG3EZfc70uISj4dMn48rFIUsaZK44kVMfy0n7FvFnTLEH3Z9Qa2icErzNZ/rBp+GTZ7pNZZLLY2NpuTqzIHc1Vz5/Z6uc1FSMloEI6NLySveFIys2L6geu54RNZAtI3vdznOlTWA1YrKC9KOqSmbX0pqTZOQlO3UCgH2SMmgbuQh/vLEy5QlHP4MYK2xjJ+dOgVPN4avh8PPd35Fo2kav73kJC59/Av8CX3bnXOmds7ncGUPxLXlfUJZJ+I8+qeEhQJVBUx8+w4u0gQ7P/0T6wyT0wT00it4IT4ebJsq08SnKC39i162bfr64kgIh8lxuVBNk9OsMGftXcaWwuUca9u4FJX+wDuWRa7TycXOZAqT0/H2GY3adzLFRohfl20knDYA95KnoLaILZbJaMOI2Mp3nSkpShuIvWk+6vCuVyn7sRJ7o9SVYXz+IOqsq9sZTClNQEFRFF4acQbZu77kVH8JPhF5ZROSkqdVhYGKglMIDAEmAtms22wLhaAQJFdF95tJKVm4vQqRdHijP7Ztc2RKHXOPO/Kw3qeH2PjOGxqASeNGcc7QlTyxO9Rlj2ipB7Ebymis2Ic2BKS/Dmf1DpTaIip7jyChbDMnAie2CTuXBgI8LSWO+DgqDAOtwU+BZXJscgqzDIMPTZPJAhAKw2wJisJAaLftSXG6eCBsYWRk4sscREA21VwpDjfhXk1bLTMhje2lO+ibnEKvUOQI1gSnxlmb52FqGvtKl7Py6Nu6fF9kcyTMUVOAMupknBvewnLGY/Wfhr1vA66GfUhbIEfPhYHT2JeQwYKVT3Gi3poL829b4hAKcabB1rDOrW43carafltn281dRJsc5vMffJBJxxwTcRW4YdNmikg57FGmtJpN3H335Yf5Lj3Eynd+67Sf/7v2x4yWO6Ked21+H3vLp+gNtWhxKbg3vk14zduEU/IxRp3Ozr4zKY4Q/bjD7WaOy8V5luRKoTDR52VgfDxzmrcYmxVBoRAs6aKI8bO0Abx75PXUjDoNM30QitU5qW1ffA7XDpjF4tquW5ykOR2c5XQwKlRH2qInkFWtmnvSbF+FnfDOHzj7w99g1lSgpuZhjjodh63Dsudxur2Yo07HGZ+E1JuqyZXMAaz0pbZsn94JhzlFKPwEGOJyc5rP12RkumHcxk28/cijEc8tXbsZEqK37D1UNKgJFBRF1mnu4Zvne7GiAVBVld9dfjIXP/Q5DQn92p2zbYlpGqijTsMD0HcMIaBtQDqpaBWDLbPTlkUIQU5zfZNXCPYIwZltJC9/pqgU6QbvqCpT6MytqX0oG3UG+FJbjrkLltJRyUUfeBSqZVJkNnJH1V5+GqwhI0Kx5ABps8WGs/Qwp5Rt5Pn6PXyYMohRjfvYU16M7DWUvYOOw7fgYS4XQY6xHOSUbeYflQWoaX0JDTgaJacKK7Fp6xLMm45n9wLCihvZZxILUkcQ3reD4cnJNNiSk5uV+sYfgGZwgqqy7oUXaLjwAuLj49udq24MIZTD7zPRE3vz3/cXM3HMqMN+rx6653tjaADGjRzOVN/LzFu9EqWNFIMtJXrfKXT1W1w/7kzmVazndCO6NktASvwCUtsYAEVRyHM6MSL4VXaGdTblz8YQDuzyXQiXDxDIYEPEpaRQNeqnXMrSYD31b93JTNXmrA5O4cUCzhUCRQg8QnB5OMA5RSuJUxRst0a4Yhsv7tvAmQ4HCWrTe+CPS8KLQRhQHC5IbPWPCM1BeOAxiLJtpL71G24mxFiPBxEOd5IVjcTbtsT2eEAIJAIJSNtG1tdx/w03cPtTT7UbX1YfPbHxULOp9Os3wOvh0PC9MjQAD/35Tk6/+W+sc7Xv/tjdgt+sK8dubIAuVPvfxMZrWNAhvf6zQIAjIkQ2Hug1BCN9EDUv3EpC35EgJZ7MvoQ1T9Q9q9QDjJ9/H+d5HKz2+3neoeERCvsEjLUky+obuCo9vd018c0GTtDUm/vSZlGnRdLm3+5UcpwOwmmRtXv2o278hEtUg3HdvlOtlBo6qsfLSaHI9U1r1q5l765d5PVvFbIKm18/+zhWyhtNTNM8LA3sejgwvjc+mv2oqsrVJ0+FKFIR0XCm9uKRcefxniv6sv48oVATwUexx+3C22HlMV9xsKf/NNStn5Fx6m24jrgC1+yrMAfMQunCzyF2LuX6xmpG2TYXe72gaqRoKtcpKsuBWTnZ3SoL7uet7IHUHHcLmzOGRDyv7VvP6E/+ilFdzHnBIo48wMzgt50uTuiide9of4D5Dz3c8u9AIMCO0tj0jA8FEtEp/N7D/4bvnaEBOOGoIxiuxZ7yvx9l4DS2aNGLAYUQiAhGoreUaB2+pM9rPgLZY3AqFnabUK4d9qN00WvJE65v16b2fEVhFgIhBClOBw169C92R0ZUF6OUb8MedUrE81qwnumBKka8+ztODgUjdsWMxltScpxtd9nMTwiBvmFDy79v/8dTbHEdPi3gjsQ5iLm4s4fDy/fS0AghmDkoM6bks7ZIKemrB6Oer7cs8HeW9QsLhfI2Wi6PKS72jTkNWbQeK729iLoal4JDsZHLnu80j23qhMt344/SbO7HCDK80WuqOlJnmeBJjno+NGA685LzuC8+7oCkPCtME9XpoPumNxC/Zw+lJSWUV1TySUG4XUbz4aZXUk+i3reF76WhATh26hio6ywI1RXmmjfJDbUamgWKYH0bpf9qISKm6Z+kqmyzm5boC6Tgk4HTkTkjEWWbUMq3opZsaDfeHHEqrpzBGEXt26g4Nn9AeOzpbDhEspoDAg2Y3RhbPxrGARrkt1SFE4zY2pUMMU2Wf/gRz7z5EQ1JA7q/4BBh25LRvXp0gb8tfG+9ZGNGjSDT/oBysjudM/21xBUsREqbgGUjQo3Y/SbjSc3l7V2CKcBbDieP9jsab81e5lZv5UemwSuWyS0R1PO3hMPEOZ381ZXIqkEzqB/QlLUrxp+LDni3fkAgu31Rn5Hch9CCp3DWFeH0xlO7aw1JWXloqb0pUJ1gRd4ilQX8URu9dWSdbmArXf+JNUXBeYBVzV7dIKBpLU7ornAqCsGyUnbZyQgl6YDu83VIq93Cdbf2JOx9W/jeGhpFUeif6qG8gy9Qhhrx7Pyc4IhTm7oKNJZieRJxVu5Cz5uEVbiCrWU7mJeagxx2NI3Am189g69kNUlRfvh7OxzcV13FzlN/iiO9b6fzwcYGpBFCcbiRRgg1VI8I1RGu2Eu413Cs3pNwpg2hMdyIQ1H4GB/j7BomdvB/2LaNJu2Y16GLhh2JGp/W5RgHB95T+xhVYa2qEqsgplAUahti9y19XexQA5dM7UNq6oF3Yujh8PC93ToB9Etvr3Yv9RDOLR+iDz8FoahNzdhS+iI8yRi9xyOEoCBrBLflTmD71NbuMZ74RBqkTV6cj8eBz8Ltc0FKTYvapGzUpM6rJ4BAxjBETRHSCKOsehlt9xeYO5eQePRPcI46EUVzosan4UjrC0DDtB9jRXCyrlIURsS4zfFLiWUZLT6Rtv4q27aRlbuRepCyylJWYfO6UPgiSulDRzI0B1VdpAG0JSQl3pycb1QLZpK2l+svPvsbu18P3fO9XdEADO2VjixqXkmYOs6Nb2OMnItQo7/s+gGzYECrBfYsfIwr/AUcoamgGzRYFvdJSduSxt/2m0DN0JNRHZG/fNaat3DkDsDZsJeGlL4w8AhkYzWOuMi/uIkFSxkprXZbpHrL4pOAnys9nZ3Br5oGQ4SCZZrEC0GVpjEMuHTfWv5TPhFnoIJA+R7cvYej2BZG9T4a8aDsXELtUTfw270riavezYUVW/mzO548K8z5XSQuAjTGGDZe7/Ny6skn8+ljr8KBywkfMMn1O7jrxrNiTgHo4Zvhe21oTpg9lT98+AxG+mBcm98jPPzUdhnD3WHu28JtlZuZ3ObXeLWicF2bdixlpkFDxkDUuMjRHVtaeLIGYo47B5PWxEEtipEB6B0obelAWWZZvO90sz6tP6vzjqB+w2v8VG9gf7WQX0oyhcKLwQDp0sZlS+a4PTwoLaTqoH7xSzjzRqBOOI9g0Vrk3tWoM66grUk0hs8htGs+9409Cy0uhfQFD3Fm1XZcUVYhL9s2R3aRP9MWc+xYkpKSmDQwh1f3NaDE0JrmYJGhBi6ekMHggYe302UPB873euuUnp5OnsdAFq2HrGFdVnZHQrq87OlQ4yMUhVc0ldsbGjCl5J9JvQj1it5HTwnWomA1SzLExoBAU9fK3abJr3XJs5OvYvOMa3HnjWDF8XfwfHxT3ZRu2/zFkLzjb+RMVeNnCQlcnZhEvsvFLR4vt2gq0/UaHOPOQFEURN5Y1BlXRL6pEWoxftWDj+ZPnkSqI2zTNhoGmQ4HsYg81FoWec09uM88aQ799N0xvwcHwyR1Dz+79MB7SvVw+PleGxqAS44aiaduN0b6gQstpZSuZ0SHvJWZts3VCI5LSeaquga2D5yOUKP3Q5KKRsnyDwiv/TCme7qrtrO+qpLzivfxW08q+877J86M1iJRRVGocPqwbZv7XV5WDzqCs9w+xkYogVAUheEOhbjd3fe+Mq3WrZCVNYivjruDV5qzpOd5vNyXmsMtGQP4t+phlhmb0dynKgybNg0Ah8PBpUcOR/iru7nq4Eis28FdP+nZMn1b+d4bmovOOJHjJ4/ANg886pFfup7BemRfxSzDxJ+YTkPe1JZjtrSQZVuxGyqxgk0FfcKTSMa5d+MJx9YJMrR9CQ95XfwmI5OqrMg6txsGHcfFGUP4bOyFGGNO5+9DZ0ed70IhuGLzOzi3fxF1jC0tSlfNa3dMURQW5E3ljpTe3D/ibD6eeRMbpl2NI6tflFk6U5OaRlZWqyTEJWefwgX9w4jAoemKuR8ZDnD+6BSGDMo/pPP2cOj43hsagL/d+hNG6JsO+LoZoTrUKL+QJbaN05uAEAIrWI/92QOM/exefv/JP5g47x7EvH8gw006L5qmYHuSYrpnXFwCAEM0jVtLlzPq83uhQ6sWM3MwFdOvRGYPbhInr6/ocs454RBjdy9o+bfc+AH61i9a6oCEopI6/gSs0q3trqsZcRIrjvgZRm5rgWpvKxDT6wBwDBncKdp0141XMCXu0NY7jbZ3cfOVPY3hvs38IAyN0+nk3p/+iLT6bTFfI6VkbwRJS11KqqTkC7eLmVYAra6Q8Pv38O/q7fypsYzJPh9/UEzm1hfTZ+EDOOuLIDEHX4ylA2HRug07wtD5Y+0++m7+oMtr/L60LosHFSG4zl9Dzju/x7H6FUSvsSieONSN77UOGnos3podXc4jpaSfPzYjYdo2vpEjI57LTYmPePxgcNfv5ZfnH4t6iLKpezg8/CAMDcDggf256bihaI1lMV9TH8HQfKgq/L2xgW1V1VwWbqTm44cZE65lQAcpgmvifPylbh/2vo0A+GsrkeGmOilP6VrsZc9hLX0WT9EyLH9ty3X59YXt5tGEIMHuOtQcROMsy0FJF5GgdCE41w7izBmKSMxCyxuL5fRh1JS0jAn3mwnLnok6h7p7OWMDjV0+y342Oh3MPOeciOfcUdoLHyi2tDiul2T6pLGHZL4eDh8/GEMDcP5px3NKjh/bjPzFlVLSe+l/yHvlFjI/uZdhRvsCy2ctkzrd4O6ERP4vLg5NUXiFBv7pjRwyT1QUHEJgNlSiqx6spc/D6tcwAvXY485GnXwh/roa1E2tXQoKLMEWq320R3V1vRoSQ44kcObd3ONN7XLcsdJg5Ib3W/1HGYOhem/rAHcCLm9S1OvH7FtC/xidrYGBg8jKiRybqg10bThjpVfDZn5/3UWHZK4eDi/f6zyaSPz1lqvZcfM9rA7kkLDzC/oHSuhrBUg0ddzhIJODfnppgk0N+xjeYTleheAnanvbnO2InpejKAozdi7m/cKNOI7+KYqioVcVQWqvFguvDD8Oe9nzYJkIVSMw/CSWl2xmSJt7Oxq6jtTs703l8cZBXdfte39VV8pFxSupz5+N9CTiX/0QKXV7cXq8BPxBynYsJ2XUaZ2us2pLOKa+JOaojntE9MZ1tcFDYGgCNVxx5FASExO+/lw9HHZ+cIbG4XBwxayhrL/1Fo4RgsSOe/tm52VHIwMw0ZZcV13DH5KSyXFED2m35UajkUJPApubixudqb06jTHzJuLdtwojbxIiKYfVKblc1NBaeX52sI5VGz7CHHFcxHvYpo5WsoGRge79J05FaalvUt1xJJx0G5Y0CPlScK5/i4STI3dWGLvuZWYbRsSmdh3ZJyWDjj026vkavwGxvX1Rmewu5pKzL/h6k/TwjfGD2jrt59TTTyN9yODORqYbpmkOjDHH8BMtgZ0xClBJKalxd+38dGQNxKU3rUQc5Vs5qbak3fnFDif6sDlRr9cKV+Cb/yTndtjqSSm5MTGX37sTqTdN9ug6j4YN6pLa5OV44hG+5ixlh48ha17uNL9VV8achtIuRa7asqtXLuOnT496vjEce/JiJOLrdnHnZXN7cma+Q/zgVjTQJIyVNGsWxvYdB6Qqt0fXqcoehTX2PP75+X38y1/Oq6bNGYrdKYy7zzB5THWxOW8M9cNP7nbuYDCIFawnf/cXHK22PpNp2yz1ZXVZlGjkjGFC/LtA05ZkoepmW1wa8YF6/Il5bBp+Aqt3f4GekIuhulFTO6foq0VrOH/HQo4x/Dzy1i/ZnNKfRl8q/rxJjNv8JkfqekyrGQDP8BFdGoGvYyBsaXFKvpPhQwZ1P7iHbw0/SEMDcPxVV/HGy68wuaF7pXwpJQ82BniovJReRyejaA5sW/JfzcNz/adQvW0+Vyk2/5aCvZqbPVkDkd5E6gcdF3PZgzH8BOTnD3FJzS7QWldai1xuguldJ8kJp4eC+BR2Vu7hYS2RE0fO5dT0gaio+MtWUOjyEhrStO2KtoazpEV+fRXpXg+3S4O6yq3IMosdexZTpIio+UQdCUhJ8sQJXY5J9jooiGm2zvRp3MTtd15/kFf38L/iB2toEhMTYcpkmPdJt2Ovd8SzbeLJ9EvOxEptErAsGnE8VVYAh+2ixtCZm9yf1LoyCo+9rcU5eyD7UkXRyErPYULDnpZjISl5yxTUjJrb5bVCCBqEk9dxMHfs2YzPGk66t2k7tG9HFcaeVTj6jIt6vWPvcrQlrzLJ21RyoAhBMoCmsTcYZKjLGbPY1oaEeM4688wuxwxI87L6IJKDnQ0l3HLGVOLiDl9hZg+Hhx+soQEYde657Jn3SVTtWyklv/akUDD5IhwpfdpJRIVymprQ2eEAnx13MyK5F0XLn28xMgdDgycZKWXLNsklBHWWjXPHl+gDIstMJe5czGi9nhOGncy4lEG4NCdas+M5ZIbZ63KhxaejrH4FfeDREavGnXojL2sGkUzjGofGhTH0d9qPPXQoPp+vyzHnzpnMm48sxkjs3Bs96rxhP+cOsDnlmFkxX9PDt4cfpDN4P+NmzKBwaGRV/kLD5C7Vw5qBs7BTostwC5cXJaU3QggSUjK+1vN4hWznixFC8DAhjt75adRr4mqL+c3AuczMGoPP6UVTNB7f9SknfPAbjt/zCXsHHIVI6U0oFEJd92bEOQKeVNaEI4ecVbcnZj+Wbdt4RkSuz2rLhDGjOCojhC1jU/ezpcV0bTe//3mUyvMevvX8oA0NQMpRRxLukHb/X4eXm8fNZfEpv4cBM2OeqytBrVjw11bwrLt9XohDCPKCDS39sTvSzxuHq4PGzhehchpO+AVm/kyU5mQ/x5QLULyRxbqttAHM93bOR6k3TQr9jbwYClIVQ8X2BoeDGT+KTabhb7+4nAENa7vtVCHDjUy3N/HYb6/viTJ9h/nBG5oTLr+clWlNGbU1psn1afm8NOMn1OfPPvDWIPaBNSuTeqCltsiqK4XEdF4ecwavqu2V+jyqBlFqkFYl9OblwgVsqdhOVXMd0mTLg1nXvtRC3bMcvW/nkLO17AX6v/M7zg13biPzkkPjFqeL8YrKPcHobWj20zhuLLl9YmnCAgkJ8Tz3259wtHM7Ws3eTudlOMDQ0CZuH6/x3F9v63Y71sO3mx+0jwbA6/WiTZnKqx99yqvD5lA74JiD7j0U8h9Yr2dt7ZvgSUCOOBnH9s8Jjv8RQggW5A7hrL1rW+cVApztyxBkqBHFHUdj5kA++egvLKgpYUDvkdw46zauGn4y7214nro2TuTAjmW4j5nc8m/b1BGhOkS/SWRt+4LcuM5lDjmaA6dhMNDppF83jdgqbJs+p556QK8/KzODJ/9wIxs2beWt+UvZWx2gLmjidSpMHJ7BVeff1FMs+T3hB29oAIaeeQZ/KPZg9p3KgS7ObWlhL30WX1Iq9SY4dy/B7jcFq3wXjpI16H2noyVmEvr0AZyzrmyREhUrX0QOPwG58QO0tW+i9J2AbN4amJ54dClb2qAMMHTcn/0b/ZgbkKbO0Hl/YVCwlnnDTqYxayjHGrUcF+dlc+NeHlp0Dz+ZehO2ozWsbjXWYHZYEaXs/JzxOxbzuunCTs2CcPvShXrTZP8awrZtdCl5Apu5NqRG6GW9efAgruom2hSNEcMGM2LYgQuT9fDdocfQAJOmT2fMW0tYcRDXyvoyLKERHHoyDsC7/WP8gK9qM8FRc/FsnYerUsXMHIBRXoArZxDG5s9JTkyl0ZuMGHcOFjayjUpfEV5uqffzz6SmjOJsyyK9ajfVq9/AJ8PcHKyhl6JQtuk9FjoTcFkSVJWhhsHKkk0U1ZUQlq2+D8UTT0JGLqY0UZojUkGnj4uCdVyjKGhBWkov9vOhZTIdQNMQQnC9qqLbNl9oGoXAqGCQcW1WOYlTpvT4UHqISo+hacZv2BBbB5EWXKXraNi6BG3mZS3HgqbEsfY19PwZCKFgDDkOA3CUbkLfsxa1fD0iezh+V9N6IZIDOZw9gqme1oruf+ph7nS6cOxaiF/T6NVsFP5P2Fy79GlS3K1Gqr/Hy19Wv0Bo8lktqzOhalgDZuFc+zr6yLlg26Tu/Io0RYmYcfy5ZdEnLo7cDt0onUJwdLOG8jqXi+cdDpx+P1MVQb9myc4eeohEj6EB1q7fxNZg/AEZGtf2TwnE5eCcdVW742FnMlrGUERcZrvjMmMwvqK1GENPa4kERcM2dBbqJkeqgkxNpbfbTd5+v1GbKI1DCB51O9qtJKbqYdaFtrJadbfbBoq4dMKDjkX95J/kJSbxk7pSFDVyLKDc7ebcbrocjLJtRuk65YrCS5rG/TNjj8718MOjx9AATz/1LGlVIazqbdgIJAo2AksIJAIbMKWNVDWwbSyhYoQaUQd2zsFx5E/GtfFtwqntoy9CUfEkZxDoxsgACEtnx9TzuWjvas4PlODEhCjh5Y7bFSEE80qLIILz1usv4VqjhmPLykCNvM2pN00yD2ALlKGqjO+V2+O07aFLegwNMHT7eq7cvqPLMYW6wQ3TLiLUawL6rmVow0+JmhtgmhJbWp2iV7ojAdNfi+ZLAsAq24azeC3W2PZdFdWsQcAgGDCNFe//gfMPoFULwPBRU1keoee2VVlETX01FS43li35SiiMB/LaOHcXGAaTsUGLXcdBzYstpN3DD5cffB7NlnXryNyxs9txvZ0O8orXAeDsP6nLamoTFTpkvcqqPZQvfQulTTTIUbIe0WciyqqX0Fe8hjH/YayaonbXuRWFKTE2awOwbJuNdY0Y6z/EbKhm0Kf3ICp3Y9VXcPKehYxwu9mkKmxzuhjsdPJGh+4QFW43GQdgZIJSkjxlcvcDe/hB84Nf0Tz0yH+YZElQut8unFW4gb/034GVNqDLcU4NjI4dMSt24h53GorTjdlQBVs+xRsXh57SFzuxF6oeQHHH4ylehVqxkQZ/ADnoSGo8ichgdbe/CFJK/mvBTGkQ7jsUR3ofEt64g9/5nNy94lnWZ4zErChjeEJzBrBtg23TkJjEb6squcXrw6co+NxuCMfeu3Zl715cfPHFMY/v4YfJD97QbHfm8MnEczlpwwdcGu464W6mqvDa9k/YaRqYWZFrpABCUkWE/SjNkSUZDhDas47UvEHULXwcd+4grLGnozevHISqYXz5JM6ZVxDKbep6KesrmPjOnTg1lRps0jvkrkgp+XVaP1bV1ZGamMJpe9fz7PTLeDVYhTlkDqnLXyDkryMxPpNfBmr489p3uTapcwnC5HCY0V4fHzgcKIbOgfXyBO+UKTi7SebroYcftKHZsGkLWwI+ZO+hvJ6QzebVr3F39V60LrZF/yjbwVWGSWEUQ+Oq3Iqp12Ns+RQjpR/O0nWoQkHtPYrg0KNwDDSQmqNdREjb9D6ulGxEm8rvxPXvcqtDJU5ReNyWXN3hPitDIVYNPRGR1o8q0+DZvDVofcZjGCH+v717D4+quhc+/v3tueZ+hQRIINyCcr9FLqJtEAFBoXIQqG3VUotUq9ZjsbY91p6+9VHU83reY/vU0/Paaq22ausFa7F4eYsiCCdchYDAKUEgJAESEpLJXPbe6/1jhpDbJAMyE5T1eR6eTGb27PWbeVZ+KSKEmQAAF6VJREFU7Mtav5X5t8cZJn7u6d0LESFbhBvzevFsyOSWTuYWeQ2D6y2Lg2Kw098MMc7WPmlZ9Js8OaZttYvbRX2N5sW/fYCVGS5VYGYUsn3KMr5VOJaKUPSLrw2miWV3/GNVtoWnYh2huiqsCUsI9RmNuftd7Ik3Yk9YjNFQiWPLH1Ebn8Pe/kbL+2wziGFbpKZltjyXs/ZXPFK1g0yHA6cIxbbNjxvq+Z2/mWBkhO+TOUVIThEiBobLg1k0CRED787VLPFVc1NzA2mt7gSNDYaYYtu8G/BH/WxGKMTZzD//JC2NkunTz+Id2sXqok40N82/mmFNO1rKFRieZKonfoMfjJ/Pa0bH04Em2+Y6y8sxbwZq6yuEyt8htCu8lGzS/vdo6j0Ke2i4Xor36HY8X16OiCBi4Jr8dazxS1ATFnFq/yYgnGTUhmdpHjCFhuqD+Nf8O2ZjLRmYDGmVJKYZDqZlZTHf5WaVy8UvlM1cXzVT3l3ZIcbhNbuZKYqiTm5RDxPhSBdFo/aYJn26SLLt2UOG6MmOWkwu6kQzdFARrzxyF5fb5S3L14oIDYNLeWbqN/l5am9s2yZo2/whZPFdZzqe635IaPJNMPZ6jKISnAWjsNY/QwjB2aoMgxOz0zKeDm8qqX2L8e/7EKPsDzhGzsaRlounYDiOwtGYJ6sYKO1G5BoGVQoyHA4WWhbfFYPFIsxurCV0sqrNtltm3MdPndH/+CfYNm+2utNUY4Y4FFlf/IjDQe9O5jFF4ynoF/O22sXtok40AKmpqfz+0ftY1Lsa5T8zsTCQO5R1U7/NbE8uN4y6jt+W3k3lrPtwRJKJiOBIzkAy8klOy8QqnnFmp/vX0XD0QNQ27Uuvxus7jpp0E2RFTt0GTiM5UIscr2Bv7fEO7+nf3MzedmUobKFD+QjD6aYxOStq2yMsmyEOJ381DFYG/LxgKypdLl73uKlCtUzk7I5SCmd+n5i21bSLPtFAeKG3h79/GzmNB9s8L8lZyNX/jPKdwPCmdDp1wFFbQXNqeEVG2++jef8mXP46vFO+HrU9V2Y+weZGzHZHI8HcYlzmKQ6NW0C5v239l1zbxm+1TSoVTheOzI5XVSoHTuZef5A1UZLGMBHm2DY/8Hi5y+VikgjzA0HGpMa+JvZew2DCdd2v7qBpoBNNC5fLxTWX5mAH2q4tbbi9hMYsxPzohU7fd2zNrzAGXgaAc9fruLL6Ip5kJCO/y/acysSR0XY+lKv2f2D0fKykDA62SyrvOR0ktTutme1vJnPrqx32HRx8OeVL/oPNoe5LZca6VlN7x4qKGBKlDKqmtacTTSvDBuTjtDoOVrODPhqPHcKOTAWwbRNr7zryPvy/TE9yEDq4g/TVK5GhX8KZU4Dla0BZXY/mTcvt02F0sSs1E8PtRTL78bQpPOdwsNlh8Ee/nxKPl6Ht9pHldDK28VDUNtKzcmP74BHqLJJO0oToqypoWns60bQyeexIss2O64DUr3oYV6+ByPZVAJiHdjFpw7P829Gd/IvlZ9KH/8n1wRNY6eFTKMtwoqyu7960v0EeqjtKKLJOrOfT/+aXKS6+YVk8nJvPb4oGMy1KKc8sFb2dWNdiOlt7HA4m33hjXPatfTHpRNNK8ZCB3D1jGI6mYy3PBdY/R/bURaSOnI6V3AuAK8tfZURqCmsEUgyDh5KTmCpQuP5pACzL7rbCvy+1AH/ZK+E2qvZjb36JUP/wnCHlTuL0kL7s4aNwfmUxb0dZ67upi5qA25N6UxslQXUqxrx0fNBAhgwfHvt+tYueTjTtfGPBHK4vaMasO4L741eRlGxU31FYGf1I3ruWUa/dz2zLzxKHE8vpoiFSviHfsjhR82n49MoMdFt32Kw9TLLbwN7xBsHNr+CZehNyekqC4WTRqfApnCMYoHlMCf81bToVnZSKqHF2XnbCrqukqbGeqrM4qul6PYJI3EqRctllMe9T0yDGRCMiFSLysYhsE5GyVs/fKSJ7RGSXiDwavzAT67H7ljOVT/APvQr3mLkAOJLSKbT9VHjd/LRkGj/JyycNxekrMW4RHlGNFP7udjKsADi7rqLlMn3Yo78Cw6aTMuO70OqWdLDfGPoPGQ2AGZlHVHPDzdw3fXaHZHNp4GSHfdu2zbx1T/LrhkMMP8+nTxvy85h3zz3ndZ/aF9/ZHNGUKqXGKqUmAohIKTAfGKOUGgE8Ho8Ae4KI8OJTjzM96XCbU6BPpi2j4ao5+G+6jQ3fupt/S8ng0ZzeLUumDBXhibQU7q7aQebLK3Bt+3On+7dtOzyDGzA8ndw2bzxOob+eo8EglQVFLTHVLFnKfdNnc7BVspl4qg4O7Wjz9vSdf2VR0I83xjExsTpoGAy+/Xa9JK121j5LT/wO8IhSKgCglKo5PyFdGESEJ3+0nIG+T1qec+b0J7j1YwCssvW4bl7Oxnt/wi+Tz/zhpTkchIImwRGlkFWAf/Or2GbbVSBd5W8iExdHbfuSsud58FQNL6em0jimpE1MNUuWsqJVshmhFKMOftDm/VPrdtPrPFe8qzQMGr99K1ctjh63pkUTa6JRwBoR2Swip4vkFgNXiMhGEVkrIiVdvP9zKS0tjUG92/7vbYUE2VuO51Q99sixSK883i+dyeL8ftzatxCfbfOnPkNpHjGX0IBJGDn9af7gGQAcu97E9+ZKjKxCjC7W6D6Ufym3ZvVnU24+Rkrb7donGxFhrO/MSGKzrpKJ9R1HFsdCRbkaXJ6cRP3y21ioT5m0cxRropmmlBoPXAPcISJXEi4xkQ1MBlYAL0kn622IyDIRKRORsmPHjrV/+YIXNNvetXElubAGDaX24zMLvB2ft5jqHz2M1+vlIXHx6Yi5LbV8XQWj8CanYvoacHiSSZr1z4T6je2yTd+lszla+j1qcwd1+nrr06hPTZMpTQ049oaPaobvep2p3dxaj1UV8EHJRIY99RQL7rrrvOxTuzjFlGiUUkciP2uAV4HLgMPAKypsE2ADHUaIKaV+rZSaqJSa2KtXr/MXeYIcqdiPfewfGAf/GxqPQ58SgivuIml52//dPe/9lTmHKihMTcXMOlND1/XJ21iZBdiHthLIKGy5sxQLM6hQZucD/0SE6iVLWTF9Fk7LYmL1VmzbpqSp+jOPn7GU4oM+fTAffJBlzz3HSH2XSfuMuk00IpIiImmnHwMzgZ3Aa0Bp5PliwA2c2zH7BSwluy/BgJ9gr2Ia3v4Fvg9fIG3QEBhU3Ga7tJqjDA0E2FKxH7v6TKFzCz/Nl/VHju2GrLMr4m26crBPRP9KRYTqxUv5/vRZ5NUdIan8LUqbGqJu3y0R9rldbLx2Lje+sYqrv7rk3Pelaa3EUhMgD3g1cirgBF5QSr0lIm7gNyKyEwgCNyvVSfm2z7leGV683vApTPr1P8Ws3ktz+Srchz/FLhyAeayG/E3vY5dtxGdZPJWby6+2PsdfZv8rRvVuQiOH4Zl8OXYoiFFxgNCBDXgHTsbs3f0SsJI1APexKqy86LOkxTCoXryUN+vrGV32Dv1c53Z932fb1GWkU/DQQ8ybNu2c9qFp0XSbaJRS/wDGdPJ8EIg+RfkLYsHlI3jnjUocKeFxLs68YpyV/bEaGxBgxsM/ojTYTJIY9BPBEOGIFc63jvpP8N10BwDWhEk0//0RgouX4Fz9EcSQaJyZfXDU7qG5m+367Czj+zfewJ6+vXin9gRXbPgIz1nc2t6Wmgr/tICfrViB8yzq0WharHSv6saMK6aQ/uKTNKWcGVDnSTaQ9esIBINUJycz6lQ9WU4nRP5Ic5PChaeMlDPjY4zkZHjgZziDQVyODcSygIphGLhCZpeJJvnQAX4wfDBfvfoqmD+PUCjEU4sXM6N8d0yf773iYq55dCWDLrkkpu017VzoKQjdSEpKon/kDrPZdBLHx6tIVslwqBbH2+uoFze3+W3sVmeN+45UhMfOHO5Y/MreUkYorSDm9p3BzlOSsiz6bN/IQ33Sw0kmwuVyseCJJ1jfq/uZ21tSU5j3f/5dJxkt7nSiicHCKcXY+9eRUrUV89JraL5kDky5BeeohdT0nYaRlNZmBMrVyV7k+XtYVrWfnFuux241ktc5eSoO6xBSdxhlmXR7WcsfHuynlCJl7y4mlpcxa9827j66l3dvXtQmyZzWb8AARj7wAOVd1POtcDrJvv12CgcOPKvvQtPOhT51isE3F83jt39dz+G+pS0JxTaDYBgknTpIw+hrWPHpR3zVV8MEy2aBw8FxN2TaNo133Y/hdKL27ML1p1ew51zDiYnjSXl5FbatSMrpi2laGMrCEgfKnYzpToXkLJwp2YR8p8jfvonSFDd3zC5lyIDY7lxNmjkT2zR5//HHmXT4SMs1G0spNuZkU3DbcmbdfFOcvjFNa0snmhgYhsGyeVfwL+saMLzp4blK7/8XSikClknSzIVs7zeKur//guFuk8ubG7jV6+VpW+E+XIHaug2pPomULMW5sxzjH5swpt6CBHwcePJrFNz5PCRnYFgh7GAzjoAPR8iH01eDfczHW0vmkZ/fdcW+zkyZM4dx06ez+plnaN6/H2XbuAsLWbh0KRkZHReT07R4kUTekZ44caIqKyvrfsMLkFKKa+95jF3eEQSq9uMWC3IHYW54Fte0W9tsGzq0i5Jtf2Spv547Pb0wSpeh0sJlO83GWlyV21HFpQAYW1/GyrsU6Tuy03btgI/Hp6ex6LrZ8f2AmvYZicjm05Ou29PXaGIkIlw/aSiWvwn3rrdQ2QOxGmvxpUHz+v8ktP1FLH94yRZX4Qi2zH2Q+91ZOK78ZkuSAXCmZmPXHsIO+Agc3IaVMzBqkoHwWlMf7oy+ooKmfR7oRHMWbl54LVe//xgr6/aTt3MVVGzC3RyEH/+Y0LJbUPvfbNnWMJz45v8rrqqPO+zHGj2f5EMfQX0lVmb311zWVZyisbGx2+007UKlE81ZcLlcXFE8mDFOJ8sPbqRf1R5USgoKwTpWjWP0UMzKcG0Y29+IUfZCy7pNrQW2vUFzsw/pNwp3zZ5u2z2eXsxv//Rmt9tp2oVKJ5qz8N5LL5G3O5wYpqKY469h2L7duB9+lNR3d9OwejW2IwmAQM0BzH7jCOS1PS0K1R7GqD8KI+fizikkaHhx7fpL1w0bTg5W18XlM2laIuhEE6MPXnuN+ocfYWDgzHIsi5RivNuBc/I3kYGTMPwmzl7hcSmBjX8kWNe2Fliw/F3YtRr3l29rKSNhFI3DtrouZJ5Vv487b7zuPH8iTUscnWhisHXtWqr+18+5pLntZABbKTYEz9Sr8QyfTvCdJ7Ftm6yiEfh3/g3/tr9gNZ/Ct+V1HKaP9D6DEc+ZYlZ248kuF5tTZpDrR2QyoFCvc619fulEE4Pda9Ywsqmp5fcDoRDv2YofetI5XDih5Xn30MtJmfo16v70AAycRPpXHgBPKof/46t4UrMxRs3FV1CC2v5Gy3usyl0E0/pGbXuIfy8/vO1r8flgmpYgesBeN5RSrN5XyYbsfPo0nqRKwavDrsXOH4Yrqw9pe9+mYdsqcCYhecU4ROH1eLCyB2IYBuJNo++cO3AUXxHeoTcNsfyEag9j1h7BOLobu/+4TjO++E6wfPY43JGVEDTt80onmm78/JfP8EHfmTAoPCIY28ThdCNmEOeWF2msP46nYCTKcMGpoximH0/JDYT2vI9n+JdxndiPjF/YZp8yYRFJB9YTSM3ByivG2vUWzpJFHdqemnKMG67V0wS0zz+daLqw+r33+d0eBanpQHgqAkbk6MK2sdP74By7EAxHyxwoBXj2ryVQFF6b2ilgBRoh6cyQfxHBHHQ5DsDIK8a5+UVCtt1mLe6U+n9w/53XJuBTalr86Ws0XTBDIfzOzmdABz/6PWbO4E5XpLTzhuHcvza8j3H/hLM6em0YEYPQyOswyl5oWR9K2RZzipyMGt59cSxN+zzQiaYLE0cPx91Y3eF527bJzCvEyOr8TpBKy8cVKW1lGE7cpq/LdgxvKmrkXJL3rsY6sImCU7v5ye1f+OKF2kVEJ5ou5Ofnk1NXjrOu7Vwjx953aS7semUAR2p2y8JxAX8ztr/rKQSSnIX/krk4PUnMGJRMWlraZwte0y4gOtF0QURY+/snyLLbrizgUSGk1VrZnfH1K0HtfgcAc/gsUg5viqnNUTnCg/fecW4Ba9oFSieabiQlJTGlKAOlzgzMi6W0huFJwWGFRxEbhpNAoBmrm6MaV0Ml99xQ2uaisKZ9EegeHYOf3fF1ChrKW35XxFbDx5AzX6956SxSuziqUUrxpdwmSqfqxdq0Lx6daGKQmZnBXdeMxWiKLOkbY7GwVnmm26Oa7Pq9/GRZx7E0mvZFoBNNjBbPm8WV6SdQSsWaZ1pOgWzfSYb5dvKtmRO5PLgVb/3BNtspM8T84Rn0L4g+FUHTPs/0gL2z8Mhd32DeT3/HCdvCaqrDSErvdBzNaXbTSRZkHKR0+jDmXLUEhyO87dad5bz09gaqG4I0BkJYZgM/+Pa9ifoYmpZwOtGchfy83tz25WLeXHOE5Qv68+nRGv6n6iRbPj1J5SmbOncu4vKS6jtKSZ6D21euYHLJhA77GTdyOONGDu+BT6BpPUMXJz9P/H4/O3bt5mTDKUrGjiIrq+vb35r2RdNVcXJ9RHOeeL1eLpswrqfD0LQLkr4YrGla3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3OlEo2la3CV0ATkROQY0AccT1mh0ufR8HDoGHUN7F0Ic5xrDAKVUr85eSGiiARCRsmir2V1scegYdAwXYhzxiEGfOmmaFnc60WiaFnc9kWh+3QNtduZCiEPHEKZjOONCiOO8x5DwazSapl189KmTpmlxF9dEIyK/EZEaEdnZ6rlsEXlbRPZFfmb1QAyPicgeEdkhIq+KSGY8Y4gWR6vX7hURJSK5PRGDiNwZ+T52icijiY5BRMaKyEcisk1EykTksjjHUCgi/09EyiOf+e7I8wnrm13EkLC+GS2GVq+fv36plIrbP+BKYDyws9VzjwL3Rx7fD6zsgRhmAs7I45XxjiFaHJHnC4G/AQeB3B74LkqBdwBP5PfePRDDGuCayOM5wN/jHEMfYHzkcRqwFxieyL7ZRQwJ65vRYohHv4zrEY1S6n2gtt3T84FnI4+fBb6S6BiUUmuUUmbk14+AgnjGEC2OiCeA+4C4XyyLEsN3gEeUUoHINjU9EIMC0iOPM4DKOMdwVCm1JfL4FLAb6EcC+2a0GBLZN7v4HuA898ueuEaTp5Q6GnlcBeT1QAytLQVW90TDIjIfOKKU2t4T7UcUA1eIyEYRWSsiJT0Qw/eAx0TkEPA48MNENSwiRcA4YCM91DfbxdBawvpm6xji0S+d52tH50IppUSkx257iciPARN4vgfaTgZ+RPhQuSc5gWxgMlACvCQig1Tk+DlBvgPco5T6s4gsAp4GZsS7URFJBf4MfE8p1SAiLa8lqm+2j6HV8wnrm61jiLR53vtlTxzRVItIH4DIz7geqkcjIrcA1wJfS/Af1WmDgYHAdhGpIHyIvEVE8hMcx2HgFRW2CbAJz3VJpJuBVyKPXwbiejEYQERchP+4nldKnW47oX0zSgwJ7ZudxBCXftkTiWYV4Y5F5OfriQ5ARGYTPv+cp5TyJbp9AKXUx0qp3kqpIqVUEeE/+PFKqaoEh/Ia4QvCiEgx4Cbxk/oqgS9FHk8H9sWzMQkfujwN7FZK/e9WLyWsb0aLIZF9s7MY4tYv43VFO5KI/wAcBUKRgL8F5ADvEu5M7wDZPRDDfuAQsC3y76l4xhAtjnavVxD/u06dfRdu4PfATmALML0HYpgGbAa2E75OMSHOMUwjfJFzR6s+MCeRfbOLGBLWN6PFEI9+qUcGa5oWd3pksKZpcacTjaZpcacTjaZpcacTjaZpcacTjaZpcacTjaZpcacTjaZpcacTjaZpcff/AYuV5lvF2J7VAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x720 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "fig, ax = plt.subplots(figsize=(10, 10))\n",
    "ax.axis('on')\n",
    "ax1 = kommun_shapes.plot(edgecolor='black',\n",
    "                         column=kommun_shapes.Styre, \n",
    "                         linewidth=0.3, \n",
    "                         ax=ax)\n",
    "plt.show(ax1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "80c66e13",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Ended:  2022-01-27 20:25:39.327903\n",
      "Time elapsed (hh:mm:ss.ms) 0:00:01.774177\n"
     ]
    }
   ],
   "source": [
    "end = datetime.now()\n",
    "print(\"Ended: \", end) \n",
    "print('Time elapsed (hh:mm:ss.ms) {}'.format(datetime.now() - start_time))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "158ef81a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}