
CUDA-Q and Quantum Accelerated
Supercomputing
Monica VanDieren, Sr Technical Marketing Engineer | August 2024

• What is Quantum Accelerated Supercomputing

• Useful Quantum Simulation

• How-to Guide to CUDA-Q

• Distributed Quantum Computing

• Conclusion

Agenda

Accelerated Supercomputing

CPU GPU

Accelerated Supercomputing

CPU GPU

Accelerated Supercomputing

CPU GPU

Matrix Multiplication in Parallel on a GPU
A x B = C

Matrix Multiplication in Parallel on a GPU
A x B = C

Matrix Multiplication in Parallel on a GPU
A x B = C

Kernel = instruction for each thread to follow

Kernel for matrix multiplication:
compute the dot product of
an assigned row in A with an assigned column of B

Matrix Multiplication in Parallel on a GPU
A x B = C

Kernel = instruction for each thread to follow

Kernel for matrix multiplication:
compute the dot product of
an assigned row in A with an assigned column of B

Accelerated Supercomputing

CPU GPU

CUDA

Quantum Accelerated Supercomputing

CPU GPU QPU

CUDA CUDA-Q

Tomorrow’s Accelerated Quantum Supercomputers are GPU Supercomputers

Accelerated Quantum Supercomputer

A hybrid quantum-classical device that uses
GPU-supercomputing to turn qubit technology
into a computer able to run useful applications

• Useful quantum computers are mostly an AI
supercomputer

• NV supercomputers are QPU-agnostic

• Hybrid applications use CPUS, GPUs and QPUS

• AI supercomputing needed to control and operate
QPU hardware

Accelerated Computing

Quantum Computing

Generative AI

Deep Learning

Scientific Computing

Quantum Challenges
What’s Standing Between Today and Useful Quantum Computing?

Error Correction
Methods that Scale to Large Quantum Systems

XZ

HPC Integration
Sub-Microsecond HPC-QC Latency

Developer Tools
Integrate with Scientific Computing
Familiar to non-Quantum Physicists

Algorithms
Algorithms with Exponential Speed-up

Qubit Scale
100k-1M+ Qubits for FTQC

Qubit Fidelity
99.99% 2-Qubit Gate Fidelity

NVIDIA Quantum
Powering the Global Quantum Computing Community

Simulation
Algorithm Design, Resource Estimation, QPU Design

HPC Quantum Integration
Integrated Applications, QEC, Sub-Microsecond Latency

AI for Quantum
QEC, Calibration, Algorithms

CUDA-Q

Quantum Simulation

Libraries Programming Model Infrastructure

Quantum Integrated
Computing

GPU
Supercomputing

Tools

cuQuantum DGX-Q

Generative AI + Quantum Algorithms
University of Toronto, St Jude’s, and NVIDIA partner to invent GPT-QE

• Generative Pre-Trained Transformer-based (GPT) method for
computing the ground state energies

• First GPT-generated quantum circuit

• Run via CUDA-Q on NERSC Perlmutter

p
𝜕𝐶

𝜕𝜽

Generative Model

Circuit Samples QPU

Update 𝜕𝜃

• What is Quantum Accelerated Supercomputing

• Useful Quantum Simulation

• How-to Guide to CUDA-Q

• Distributed Quantum Computing

• Conclusion

Agenda

The Case for Quantum Computing Simulation
Quantum research is limited by access

~50
Publicly available QPUs

~500k
Quantum Developers

Availability

10-20%
Typical uptime for deployed QPU

Uptime Scale

0
Fault-Tolerant Qubits Available

O(100)-O(1000)
Needed for useful

applications

3-4
Circuit Depth, typical

19
Circuit Depth, best case

Accuracy Iteration Time Integration

4 million
CUDA Developers worldwide

1 hour
GPU Cluster

7.5 years
CPU

40Q sim

Quantum Simulation on a GPU

Recorded programming demo

Fraud Detection
HSBC Leverages CUDA-Q to Develop Improved Fraud Detection

• Fraudulent transactions: loss of $1.9BN per year for UK alone

• Quantum-inspired methods may improve fraud detection

• Reduced false positives by 4%, improved true positives by 2%

• Run as 165 qubit classification problem with CUDA-Q

∅

• What is Quantum Accelerated Supercomputing

• Useful Quantum Simulation

• How-to Guide to CUDA-Q

• Distributed Quantum Computing

• Conclusion

Agenda

Quantum States
Single-qubit states

The zero state The one state Quantum states

Ket notation

Bloch Sphere

Quantum Gates or Operations
Some examples

The Bit Flip Gate The Hadamard Gate CNOT Gate

Ket notation

Bloch Sphere

Representation

Rotate 180
degrees about the

X axis

Rotate 180
degrees about the

X+Z axis

Quantum Kernels or Circuits

Template for a Quantum Program

• Initialize/allocate the qubits

• Manipulate the quantum with gates

• Extract information from the quantum state by
taking measurement(s)

import cudaq

qubit_count = 2

Define the kernel
@cudaq.kernel
def my_kernel(qubit_count: int):
Allocate our `qubit_count` to the kernel.
qubits = cudaq.qvector(qubit_count)

Apply a Hadamard gate to the qubit indexed by 0.
h(qubits[0])

Apply a Controlled-X gate between qubit 0 (acting
as the control) and each of the remaining qubits.
for i in range(qubit_count - 1):
 x.ctrl(qubits[i], qubits[i + 1])

Measure the qubits
If we don't specify measurements, all qubits are measured in the Z-basis by default.
mz(qubits)

print(cudaq.draw(my_kernel, qubit_count))

Building your First CUDA-Q Kernel

• Initialize/allocate the qubits

• Manipulate the quantum with gates

• Extract information from the quantum state by
taking measurement(s)

First set the backend for kernel execution
cudaq.set_target('qpp-cpu') # selects a CPU backend

if cudaq.num_available_gpus() > 0:
cudaq.set_target(`nvidia') # selects a GPU backend

cudaq.set_target('nvqc') # selects the NVIDIA Quantum Cloud
cudaq.set_target('ionq') # select an available QPU backend

qubit_count = 2

results = cudaq.sample(my_kernel, qubit_count, shots_count = 10000)

print(results) # Example: {00:5005, 11: 4995}

print(results.most_probable()) # prints: `00`

print(results.probability(results.most_probable())) # prints: `0.5005`

Sampling your First CUDA-Q Kernel

import cudaq
from cudaq import spin

First set the backend for kernel execution
cudaq.set_target('qpp-cpu') # selects a CPU backend

if cudaq.num_available_gpus() > 0:
cudaq.set_target('nvidia') # selects a GPU backend

Define your Hamiltonian Operator
operator = spin.z(0)
print(operator) # prints: [1+0j] Z

Define your kernel to generate the plus state
@cudaq.kernel
def plus_state():

qubit = cudaq.qubit()
h(qubit)

result = cudaq.observe(plus_state, operator, shots_count = 10000)

print(result.expectation()) # prints the approximate expectation value computed from 10000 shots

Computing Expectation Values with CUDA-Q

More Sample Code on our Website

https://nvidia.github.io/cuda-quantum

https://nvidia.github.io/cuda-quantum

• What is Quantum Accelerated Supercomputing

• Useful Quantum Simulation

• How-to Guide to CUDA-Q

• Distributed Quantum Computing

• Conclusion

Agenda

GPU-Accelerated Quantum Computing
Some High-Level Strategies for Parallelization

• What is Quantum Accelerated Supercomputing

• Useful Quantum Simulation

• How-to Guide to CUDA-Q

• Distributed Quantum Computing

• Conclusion

Agenda

Quantum: Not Just for Physicists
Overcoming these challenges requires broad spectrum of expertise

Error Correction
Methods that Scale to Large Quantum Systems

XZ

HPC Integration
Sub-Microsecond HPC-QC Latency

Developer Tools
Integrate with Scientific Computing
Familiar to non-Quantum Physicists

Algorithms
Algorithms with Exponential Speed-up

Qubit Scale
100k-1M+ Qubits for FTQC

Qubit Fidelity
99.99% 2-Qubit Gate Fidelity

Physicists

Engineers

Computer Scientists

Developers

Mathematicians

Chemists

Biologists

Subject Matter Experts

Students

...

	Slide 1: CUDA-Q and Quantum Accelerated Supercomputing
	Slide 3
	Slide 4: Accelerated Supercomputing
	Slide 5: Accelerated Supercomputing
	Slide 6: Accelerated Supercomputing
	Slide 8: Matrix Multiplication in Parallel on a GPU
	Slide 9: Matrix Multiplication in Parallel on a GPU
	Slide 10: Matrix Multiplication in Parallel on a GPU
	Slide 11: Matrix Multiplication in Parallel on a GPU
	Slide 12: Accelerated Supercomputing
	Slide 13: Quantum Accelerated Supercomputing
	Slide 14: Tomorrow’s Accelerated Quantum Supercomputers are GPU Supercomputers
	Slide 15: Accelerated Computing
	Slide 17: Quantum Challenges
	Slide 18: NVIDIA Quantum
	Slide 19: Generative AI + Quantum Algorithms
	Slide 20
	Slide 21: The Case for Quantum Computing Simulation
	Slide 22: Quantum Simulation on a GPU
	Slide 23: Fraud Detection
	Slide 24
	Slide 25: Quantum States
	Slide 26: Quantum Gates or Operations
	Slide 27: Quantum Kernels or Circuits
	Slide 28: Building your First CUDA-Q Kernel
	Slide 29: Sampling your First CUDA-Q Kernel
	Slide 30: Computing Expectation Values with CUDA-Q
	Slide 31: More Sample Code on our Website
	Slide 32
	Slide 33: GPU-Accelerated Quantum Computing
	Slide 34
	Slide 36: Quantum: Not Just for Physicists
	Slide 37

