Sam & Max » data http://sametmax.com Du code, du cul Sat, 07 Nov 2015 10:56:13 +0000 en-US hourly 1 http://wordpress.org/?v=4.1 Le pandas c’est bon, mangez en 7 http://sametmax.com/le-pandas-cest-bon-mangez-en/ http://sametmax.com/le-pandas-cest-bon-mangez-en/#comments Sat, 10 May 2014 06:30:35 +0000 http://sametmax.com/?p=10113 Les bases de Numpy, je m'en vais vous présenter une lib qui roxx du poney dans le calcul numérique : Pandas.]]> Ceci est un post invité de joshuafr posté sous licence creative common 3.0 unported.

Bonjour à tous, jeunes tailleurs de bambou, suite à un article d’introduction à numpy par le grand maître Sam Les bases de Numpy, je m’en vais vous présenter une lib qui roxx du poney dans le calcul numérique : Pandas.

Pour faire simple, Pandas apporte à Python la possibilité de manipuler de grands volumes de données structurées de manière simple et intuitive, chose qui faisait défaut jusqu’ici. Il y a bien eu quelques tentatives comme larry, mais rien n’avait jamais pu égaler les fonctionnalités du langage R. Aujourd’hui Pandas y arrive en fournissant notamment le célèbre type dataframe de R, avec en prime tout un tas d’outils pour agréger, combiner, transformer des données, et tout ça sans se casser le cul. Que du bonheur!

Donc pour commencer, on installe le bousin par un simple : pip install pandas qui va si vous ne l’avez pas déjà fait, aussi télécharger/compiler/installer tout un tas de librairies dont numpy. Je vous conseille aussi d’utiliser ipython afin d’avoir une meilleure interaction avec les libs, notamment avec matplotlib en utilisant le switch ipython --pylab afin d’avoir directement les graphiques en mode interactif, ainsi que toute la bibliothèque numpy directement importée (en interne, ipython fera un import numpy as np).
On appelle la bête d’un simple:

In [1]: import pandas as pd

Oui je sais, la grande classe…

Tout est Series

Le type de base en Pandas est la Series. On peut le voir comme un tableau de données à une dimension:

In [2]: pd.Series(np.arange(1,5))
Out[2]: 
0    1
1    2
2    3
3    4
dtype: int64

La colonne de gauche représente l’index de la Series, normalement unique pour chaque entrée. La colonne de droite correspond à nos valeurs sur lesquelles nous voulons travailler.
L’index n’est pas forcément une suite d’entiers, et la Series peut être nommée:

In [3]: s=pd.Series([1,2,3.14,1e6], index=list('abcd'), name='ma_series')
In [4]: s
Out[4]: 
a          1.00
b          2.00
c          3.14
d    1000000.00
Name: ma_series, dtype: float64

A noter qu’un type-casting est systématiquement appliqué afin d’avoir un tableau de type uniforme (ici le data-type est du float64) qui peut être modifié (dans une certaine mesure) via Series.astype.

Le slicing c’est comme du fisting avec une bonne dose de vaseline, ça glisse tout seul:

In [5]: s['b':'d']
Out[5]: 
b          2.00
c          3.14
d    1000000.00
Name: ma_series, dtype: float64

Et oui, la sélection par indexation se fait sur… l’index de la Series. Ainsi s[‘a’] renverra la ligne dont l’index est ‘a’, mais Pandas est assez intelligent pour reconnaître si on lui demande de nous renvoyer des valeurs suivant l’ordonnancement du tableau de valeurs (comme numpy). Ainsi s[0] renverra la première valeur du tableau, qui ici est égale à s[‘a’].
Là où ça peut poser problème c’est quand notre index est une suite d’entiers, comme par exemple avec x=pd.Series(np.arange(1,5), index=np.arange(1,5)). Si vous demandez x[1], Pandas ne retrouve pas ses petits et vous retournera une zolie KeyError. Pour ces cas ambigus, il existe l’indexation stricte sur le nom de index de la Series via x.loc[nom_d'index], et l’indexation stricte sur le numéro d’ordre dans le tableau via x.iloc[numéro_d'ordre]. Essayez x.loc[0] et x.iloc[0] pour vous rendre compte de la différence.
Comme pour les préliminaires où il est bon de tâter un peu de tout avec de pénétrer dans le vif du sujet, laissons pour le moment l’indexation sur laquelle nous reviendrons plus tard, pour regarder d’un peu plus près comment faire joujou avec nos valeurs.

Un peu à la manière des arrays de numpy, on peut appliquer des fonctions mathématiques directement sur la Serie, ou passer par des fonctions raccourcis:

In [6]: s.sum()
Out[6]: 1000006.14

Ce qui revient au même que de faire np.sum(s) (rappelez vous, ipython avec –pylab a importé numpy dans la variable np).

La fonction describe est bien utile pour avoir un aperçu rapide de ce à quoi on a affaire:

In [7]: s.describe()
Out[7]: 
count          4.000000
mean      250001.535000
std       499998.976667
min            1.000000
25%            1.750000
50%            2.570000
75%       250002.355000
max      1000000.000000
Name: ma_series, dtype: float64

ce qui donne le nombre de données, la moyenne globale, la déviation standard, le minimum, les quartiles et le maximum de la Serie.

Le truc à retenir est que c’est l’index qui est primordial dans un grand nombre d’opérations. Ainsi si l’on veut additionner 2 Series ensemble, il faut que leurs index soient alignés :

In [8]: s2=pd.Series(np.random.rand(4), index=list('cdef'), name='autre_serie')
 
In [9]: s+s2
Out[9]: 
a               NaN
b               NaN
c          4.021591
d    1000000.401511
e               NaN
f               NaN
dtype: float64

Ici, seuls les index ‘c’ et ‘d’ étaient présents dans les 2 Series, Pandas effectuant avant l’opération d’addition une union basée sur l’index. Les autres entrées sont marquées en NaN, soit Not a Number. Une possibilité pour contrer ce phénomène et de dire à Pandas de remplacer les résultats manquants lors de l’union par 0:

In [10]: s.add(s2, fill_value=0)
Out[10]: 
a          1.000000
b          2.000000
c          4.021591
d    1000000.401511
e          0.563508
f          0.655915
Name: ma_series, dtype: float64

Mais si ce sont uniquement les valeurs qui nous intéressent, et non les indexations, il est possible de les supprimer:

In [11]: s.reset_index(drop=True)+s2.reset_index(drop=True)
Out[11]: 
0          1.881591
1          2.401511
2          3.703508
3    1000000.655915
dtype: float64

Oh joie, oh bonheur, je peux faire ce que je veux avec mes cheveux, enfin mes données…

Et PAN! dans ta frame

La DataFrame est l’extension en 2 dimensions des Series. Elle peut être vue comme un empilement de Series dont les index sont partagés (et donc intrinsèquement alignés), ou comme dans un tableur où les index sont les numéros de lignes et les noms des Series les noms des colonnes. Je ne vais pas décrire toutes les manières de créer une DataFrame, sachez juste qu’on peut les obtenir à partir de dictionnaires, de liste de liste ou de liste de Series, d’arrays ou de records numpy, de fichier excel ou csv et même depuis des bases de données, de fichier JSON ou HTML, et depuis le presse-papiers.

In [14]: genre=[['femme','homme'][x] for x in np.random.random_integers(0,1,100)]
 
In [15]: lateral=[['droite','gauche'][x] for x in np.random.random_integers(0,1,100)]
 
In [16]: age=np.random.random_integers(1,100,100)
 
In [17]: df=pd.DataFrame({'Genre':genre, 'Lateral':lateral, 'Age':age})
 
In [18]: df
Out[18]: 
    Age  Genre Lateral
0    69  femme  droite
1    46  homme  droite
2    89  homme  droite
3    14  homme  droite
4    74  homme  droite
5     5  femme  gauche
6    66  femme  droite
7    73  homme  gauche
8    99  homme  gauche
9    17  homme  gauche
    ...    ...     ...
 
[100 rows x 3 columns]

L’affichage par défaut depuis la version 0.13 est en mode ‘truncate’ où la fin de la DataFrame est tronquée suivant la hauteur de votre terminal, mais ça peut se changer via les divers paramètres à regarder sous pd.options.display.

Là donc nous avons une DataFrame de 3 colonnes (plus un index), chaque colonne étant en réalité une Serie :

In [20]: type(df['Age'])
Out[20]: pandas.core.series.Series

La sélection peut se faire de plusieurs manières, à chacun de choisir sa préférée (moi c’est Dafnée avec ses gros nénés). Ainsi pour avoir les 3 premières lignes des âges

In [21]: df['Age'][0:3]
Out[21]: 
0    69
1    46
2    89
Name: Age, dtype: int64
 
In [22]: df[0:3]['Age']
Out[22]: 
0    69
1    46
2    89
Name: Age, dtype: int64
 
In [23]: df.Age[0:3]
Out[23]: 
0    69
1    46
2    89
Name: Age, dtype: int64
 
In [24]: df.loc[0:3, 'Age']
Out[24]: 
0    69
1    46
2    89
3    14
Name: Age, dtype: int64

et oui, les noms de colonnes peuvent aussi être utilisés comme des attributs de la DataFrame. Pratique (qu’on n’attend pas).

L’une des forces de Pandas est de nous proposer tout un tas de solutions pour répondre à des questions existentielles tel que “quel est l’âge moyen par genre et par latéralité?”. Comme en SQL où la réponse sortirait du fondement d’une clause GROUP BY et d’une fonction d’agrégation, il en va de même ici :

In [25]: df.groupby(['Genre','Lateral']).aggregate(np.mean)
Out[25]: 
                     Age
Genre Lateral           
femme droite   45.476190
      gauche   49.208333
homme droite   41.571429
      gauche   55.823529
 
[4 rows x 1 columns]

OMG! c’est quoi c’t’index de malade? Un MultiIndex jeune padawan, qui te permettra d’organiser tes données par catégorie/niveau, et d’y accèder par le paramètre level dans pas mal de fonctions, mais ça je te laisse le découvrir par toi-même. Je ne vais pas non plus m’étendre plus sur toutes les possibilités offertes par les DataFrame, il y a tellement à dire qu’il faudrait plusieurs articles pour en faire le tour. Juste conclusionner sur la facilité d’intégration Pandas/matplotlib en vous disant que les Series et DataFrame ont une fonction plot permettant directement de visualiser les données, et ça, c’est juste jouissif.

Datetime dans les index

Je vous avez dit qu’on reviendrait sur les indexes, et là c’est pour rentrer dans le lourd (mais non pas toi Carlos). Pandas donc supporte l’indexation sur les dates, en reprenant et en élargissant les possibilités offertes par feu le module scikits.timeseries.
Prenons l’exemple de données (complètement bidons) fournies par un capteur à intervalle régulier sur un pas de temps horaire:

In [26]: dtindex=pd.date_range(start='2014-04-28 00:00', periods=96, freq='H')
 
In [27]: data=np.random.random_sample(96)*50
 
In [28]: df=pd.DataFrame(data, index=dtindex, columns=['mesure'])
 
In [29]: df.head()
Out[29]: 
                        mesure
2014-04-28 00:00:00  49.253929
2014-04-28 01:00:00   1.910280
2014-04-28 02:00:00   7.534761
2014-04-28 03:00:00  39.416415
2014-04-28 04:00:00  44.213409
 
[5 rows x 1 columns]
 
In [30]: df.tail()
Out[30]: 
                        mesure
2014-05-01 19:00:00  25.291453
2014-05-01 20:00:00  26.520291
2014-05-01 21:00:00  33.459766
2014-05-01 22:00:00  44.521813
2014-05-01 23:00:00  28.486003
 
[5 rows x 1 columns]

dtindex est un DatetimeIndex initialisé au 28 avril 2014 à 0 heure comportant 96 périodes de fréquence horaire, soit 4 jours. La fonction date_range peut aussi prendre en arguments des objets datetime purs au lieu de chaine de caractère (manquerait plus que ça…), et le nombre de périodes peut être remplacé par une date de fin.
Si l’on veut calculer, disons le maximum (horaire) par jour, rien de plus simple, il suffit de “resampler” en données journalières (‘D’ pour Day) et de dire comment aggréger le tout:

In [31]: df.resample('D', how=np.max)
Out[31]: 
               mesure
2014-04-28  26.298282
2014-04-29  28.385418
2014-04-30  26.723353
2014-05-01  24.106092
 
[4 rows x 1 columns]

Mais on peut aussi convertir en données quart-horaire (upsampling) en remplissant les données manquantes par celles de l’heure fixe:

In [32]:  df[:3].resample('15min', fill_method='ffill')
Out[32]: 
                        mesure
2014-04-28 00:00:00  49.253929
2014-04-28 00:15:00  49.253929
2014-04-28 00:30:00  49.253929
2014-04-28 00:45:00  49.253929
2014-04-28 01:00:00   1.910280
2014-04-28 01:15:00   1.910280
2014-04-28 01:30:00   1.910280
2014-04-28 01:45:00   1.910280
2014-04-28 02:00:00   7.534761
 
[9 rows x 1 columns]

Cependant, Pandas propose aussi d’autres possibilités non dépendantes des DatetimeIndex mais qu’il est bon de connaître, notamment celle pour remplacer les données manquantes avec fillna ou celle pour interpoler entre les données valides avec interpolate

In [52]:  df[:3].resample('15min')
Out[52]: 
                        mesure
2014-04-28 00:00:00  49.253929
2014-04-28 00:15:00        NaN
2014-04-28 00:30:00        NaN
2014-04-28 00:45:00        NaN
2014-04-28 01:00:00   1.910280
2014-04-28 01:15:00        NaN
2014-04-28 01:30:00        NaN
2014-04-28 01:45:00        NaN
2014-04-28 02:00:00   7.534761
 
[9 rows x 1 columns]
 
In [53]:  df[:3].resample('15min').fillna(df.mean())
Out[53]: 
                        mesure
2014-04-28 00:00:00  49.253929
2014-04-28 00:15:00  26.378286
2014-04-28 00:30:00  26.378286
2014-04-28 00:45:00  26.378286
2014-04-28 01:00:00   1.910280
2014-04-28 01:15:00  26.378286
2014-04-28 01:30:00  26.378286
2014-04-28 01:45:00  26.378286
2014-04-28 02:00:00   7.534761
 
[9 rows x 1 columns]
 
In [54]:  df[:3].resample('15min').interpolate()
Out[54]: 
                        mesure
2014-04-28 00:00:00  49.253929
2014-04-28 00:15:00  37.418016
2014-04-28 00:30:00  25.582104
2014-04-28 00:45:00  13.746192
2014-04-28 01:00:00   1.910280
2014-04-28 01:15:00   3.316400
2014-04-28 01:30:00   4.722520
2014-04-28 01:45:00   6.128641
2014-04-28 02:00:00   7.534761
 
[9 rows x 1 columns]

Voilà, j’espère que vous aurez plaisir à travailler avec cette librairie, il manquait vraiment un outil de cette trempe en Python pour l’analyse de données et je pense qu’on n’a plus trop grand chose à envier maintenant par rapport à des langages spécilisés. Je n’ai pas parlé de Panel qui est le passage à la troisième dimension, ni des possibilités d’export, notamment la df.to_html que je vous laisse le soin de découvrir.

A plus, et amusez vous bien avec votre bambou.

\o/

]]>
http://sametmax.com/le-pandas-cest-bon-mangez-en/feed/ 7
Importer des données, retour d’expérience 11 http://sametmax.com/importer-des-donnees-retour-dexperience/ http://sametmax.com/importer-des-donnees-retour-dexperience/#comments Thu, 16 Jan 2014 15:49:21 +0000 http://sametmax.com/?p=8772 Dédicaçons la chanson de notre article au plus barbu de mes amis poneys.

J’ai importé des données un très grand nombre de fois dans ma vie. Depuis des APIs, des XML, des CSV, du filesystem, des formats binaires, des formats batards, etc

Pour tous les jobs d’import, Python est probablement le meilleur langage au monde. Autant j’aime Python, autant je suis lucide sur le fait qu’en dev Web, Ruby et Javascript sont d’excellentes alternatives. En programmation concurrente, Go dépasse Python. En IA, Lisp est le top de la concurrence.

Mais pour l’import de données, Python est simplement le meilleur langage au monde. Sa capacité à lire énormément de formats facilement, sa force de manipulation de données numériques et texte, sa philosophie d’itération, ses nombreuses libs en font un outil incroyablement souple et puissant.

Malgré cela, on retrouve toujours des grosses difficultés dans l’import de données. Elles sont les mêmes pour tous les langages.

Voici mes 2 centimes.

N’accordez aucune confiance à la donnée

Partez du principe que tout champ peut manquer. Que toute donnée peut être mal formée ou corrompue. Ou fausse.

Même si le service en face est sérieux. J’ai bossé avec des données du service de santé américain, de France Télécom, de startups, d’outils Open Source, de scrapping de sites, de mon pote Maurice, et de mes propres scripts

Vous savez ce qu’ils ont tous en commun ? Aucun ne sont fiables. Aucun.

Ils ont tous des données merdiques à un moment où à un autre.

Ayez donc une approche défensive. Pour CHAQUE champ, posez vous la question : que doit faire le script d’import si il manque ? Si la donnée contenue est foireuse ?

Les outils d’abstraction sont vos amis

Un import, c’est typiquement le genre de taff où les surcouches vont énormément vous aider. ORM, DSL, XML objectify et toute lib qui peut vous éviter de travailler trop proche du format va vous faire gagner un temps fou.

Prenez un peu de temps pour les mettre en place. Même si ils vous font perdre un peu en perf, un gros script d’import devient TRÈS VITE un sac de nœud. Et vous voulez que les problèmes soient facilement identifiables.

Pour cette même raison, virez toute la logique de l’insertion des données en dehors du script. Votre script doit avoir une logique découpée en 3 parties :

  1. Le script d’acquisition, qui charge les données et les passe sous forme brute à un importeur.
  2. Un importeur, qui est capable d’extraire des données raffinées à partir d’un format de données brutes et appeler le bon code d’insertion.
  3. Du code d’insertion, qui attend en paramètre une donnée toujours propre (sans aucun check), et qui se charge uniquement de prendre cette donnée et la mettre dans votre système de stockage (généralement la base de données).

Le script d’acquisition doit rester très simple. Une suite d’instructions logiques pour récupérer la donnée, l’énumérer et la passer à l’importeur. C’est lui qui fait les appels API, qui se connecte au FTP, qui ouvre le CSV, qui parse le XML, etc. Ainsi vous pouvez facilement interchanger les importeurs ou voir si il y a une couille dans la récupération des données.

L’importeur est généralement le code le plus crade. C’est une série de try / except, de logique métier, d’assainissement des données. Vous ne voulez pas de code d’insertion là dedans, car vous voulez que ce code, qui est difficile à débugger et va être celui qui va être modifié toutes les 5 minutes au fur et à mesure que vous découvrez toute les merdes, soit dédié à une seule logique : obtenir de la donnée saine. Ce code sera spaghetti, vous n’y pouvez rien. Mais vous pouvez l’isoler et le commenter à mort.

Le code d’insertion est un code réutilisable. Il se fout de savoir d’où vient la donnée. Il attend un format, et un seul, et toujours de données correctes, et propres. C’est le but des importeurs de lui filer une entrée normalisée et pertinente. Ce code est propre, et doit être très bien testé via des tests unittaires. Il va vous servir plusieurs fois, car c’est le même code qui sera utilisé que vous importiez d’un service X ou un service Y. Il représente VOTRE logique métier. N’insérez pas ce code dans le code d’une autre abstraction (type ORM), ainsi, si vous changez d’outils, vous changez simplement ce code, et l’interface reste la même pour vos importeurs.

Debugging

Votre script va planter. Beaucoup. Souvent.

Un champ absolument indispensable – que la spec papier notait comme toujours présent – va manquer. Un autre champ noté de type int dans le xld contient une lettre. L’encoding n’est pas le bon, alors qu’il l’a toujours été pendant 5 mois.

Ce n’est pas une question de si, c’est une question de quand.

Donc déjà, blindez votre script de log. Quand je dis blindez, je veux dire que chaque if, chaque résultat de check, doit être accompagné d’une ligne affichant l’action en cours, et son contexte (la donnée traitée, de préférence avec un truc pour l’identifier, genre un ID). Quand il plantera à 3 heure du matin sur un truc hubuesque et que le relancer pour obtenir le même état prendra une demi-journée, le log sera votre seul chance de réparer la panne sans engager un psy.

Mettez aussi un gros try / except générique qui loggue toute exception, pour pouvoir faire un debug post mortem. Idéalement, faites le dumper locals() et envoyez-vous un mail d’alerte. Vous ne voulez pas que le script ne tourne pas pendant une journée sans que vous le sachiez.

Mettez des options dans votre scripts pour pouvoir débugger plus facilement. Par exemple, si vous avez de code d’insertion qui est sous forme de tâche asynchrone (type celery), mettez une option --synchronous qui insère le code inline afin de pouvoir utiliser pdb sur tout le script en cas de besoin. Ou alors, si vous avez une grosse archive à décompresser, mettez une option --nozip pour pouvoir sauter cette étape.

Et si vous insérez un break point, mettez le dans une condition du genre :

if id_du_champ_ou_autre_moyen_identifiant == "valeur":
    send_mail('Alerte, on est peut être au bug. Bouge ton fion.')
    import ipdb; ipdp.set_trace()

Comme ça vous pouvez retourner à vos moutons le temps que le breakpoint s’active, ce qui, sur des gros jeux de données, peut prendre énormément de temps.

Enfin, je sais qu’on a tendance à être fainéant et vouloir toujours débugger en direct. Mais faites des mocks. Faites un faux XML, une API bidon, bref, un truc qui vous permet d’insérer des cas d’import avec une données dans le format attendu, et testez votre code avec ça. Pour les petits imports, c’est une perte de temps, mais pour les gros imports, ça va vous faire gagner des jours. Ainsi vous pouvez tester des cas isolé, rajouter des bugs rencontrés, etc. Et en plus ça sert de documentation.

Problèmes courants

Il y a mille et une manière d’avoir un import qui plante, mais il y a généralement 6 grosses foirades qu’on retrouve tout le temps.

Service défaillant

Le service (FTP, API, humain en face, NAS, etc) qui doit vous fournir les données est indisponible. Vous n’y pouvez rien. Envoyez-vous un SMS pour vous prévenir, aujourd’hui c’est facile et ça coûte presque rien. Ainsi vous pourrez dialoguer rapidement avec les personnes responsables de problème.

Champs manquants

Grand classique. Tout champ peut manquer. Tout. Même un ID unique sans lequel la donnée n’a aucune sens. Faites vous un wrapper du genre :

def get_data(champ):
    try:
        # extraire le champ
    except ChampAbsent, ChampMalFormé:
        return None

Et utilisez le partout. Et décidez ce que doit faire votre programme si il rencontre None. Pour TOUS les champs. Si None est une valeur possible, utilisez Ellipsis. Si Ellipsis est une valeur possible, faites vous une classe InvalidData.

Mauvais encoding

Super vicieux. Je vous renvoie à l’article sur l’encoding pour cela.

Donnée aberrante

Impossible à prévoir, très difficile à identifier. Donnée de mauvais type, date ou nombre hors limites, texte dans la mauvaise langue, etc. Vous ne pouvez pas tout prévoir. Pour ça, il faudra faire au fur et à mesure des plantages.

Données mal formatée et malicieuses

En plus de get_data, il vous faut un clean_data. Qui check si on peut processer la donnée sereinement. Pour tous les champs également. C’est con, mais si LEUR système n’escape pas les entrées utilisateurs, c’est VOTRE système dans lequel se retrouve les injections de code.

Performances

La vitesse de votre script sera généralement limitée par 3 facteurs :

  • Vitesse de lecture.
  • Vitesse d’écriture.
  • Vos plantages.

Ces 3 facteurs sont en général très liés.

La meilleur stratégie, c’est d’extrapoler un max de données, et de cacher tout ce qui est cacheable. Par exemple, copiez les données brutes sur vos serveurs (genre si c’est un fichier sur le leur). Copiez les références externes, même si vous n’en avez pas besoin afin d’éviter une query de plus, vous les supprimerez plus tard. Pré-calculez les champs, par exemple age, si vous avez la date de naissance, etc.

Si vous avez beaucoup de checks à faire pour l’assainissement des données, mettez vos données en cache (par exemple dans redis), pour que les looks up soient rapides, ou au moins, ajoutez les index qui vont bien dans la DB (on peut avoir des perfs X10 rien qu’avec ça).

Ensuite, partez du principe que ça va planter souvent, donc :

  • Faites des opérations idempotentes, c’est à dire qu’on peut les relancer autant de fois qu’on veut sans risque. Typiquement, vérifiez si une donnée existe avant l’insertion, et si oui, faites une mise à jour complète.
  • Mettez un historique. Sauvegardez quelque part l’avancement de votre import, afin de ne pas tout recommencer depuis le début après le plantage.

Ah oui, et faites des copies de sauvegarde des données brutes ET des données importées. Pour les premières, parce qu’on est pas à l’abri un “rm -fr” malencontreux. Ne rigolez pas, ça m’est arrivé la semaine dernière. Une semaine à tout DL à nouveau. Pour les secondes, parce que tant que le dernier import n’est pas terminé, on peut toujours corrompre toute sa base avec une couille de dernière minute. Comme un encoding qui change aléatoirement sur une donnée non datée.

Bon sens

Évidement, je parle ici d’un synthèse des problématiques rencontrées. Vous ne pouvez pas appliquer TOUT ça, ou en tout cas, pas au début, ou pas sur des petits scripts, etc. Selon le sérieux de votre source de données, il faudra plus ou moins être défensif. L’expérience et la douleur vous permettra de trouver la juste dose de morphine.

]]>
http://sametmax.com/importer-des-donnees-retour-dexperience/feed/ 11