Defining functions

Functions can be thought of as
microservices written in the rule
language and are defined like this:

<name>(<param>,
<expr>

., <param>) =

Example:
square(*n) = *n * *n

Variables in functions: The let
expression As function definitions are
based on expressions rather than
action sequences, we cannot put an
assignment directly inside an
expression. For example, the
following is not a valid function
definition:

quad(*n) = *t = *n * *p; *t *
*t

To solve this problem, the let
expression provides scoped values in
an expression. The general syntax for
the let expression is:

let <assignment> in <expr>
For example:

quad(*n) = let *t = *n * *n in

The variable on the left hand side of
the assignment in the let expression is
a let-bound variable. The scope of
such a variable is within the let
expression. A let bound variable
should not be reassigned inside the
let expression.

Defining Rules

Define rules with nontrivial rule conditions
like this:

<name>(<param>,
on(<condition>) {
<actions>
}
}

The rule condition can be skipped for
rules with trivial or non-existent
conditions:

., <param>) {

<name>(<param>,
<actions>

}

A rule can have multiple conditional
expressions:

., <param>) {

<name>(<param>, ., <param>) {
on(<condition>) { <actions> } ...
on(<condition>) { <actions> }

}

Generating and Capturing
Errors

In a rule, we can also prevent the rule
from failing when a microservice fails:

errorcode(msi)

The errormsg microservice captures the
error message, allows further processing
of the error message, and avoids the
default logging of the error message, like
so:

errormsg(msi, *msg)

In a rule, the fail() and failmsg()
microservices can be used to generate
errors. fail(errorcode) generates an error
with an error code.

Example:
fail(-1)

failmsg(<errorcode>, <errormsg>)
generates an error with an error code and an
error message.

Example:

failmsg(-1, "this is an error message")

The msiExit microservice is similar to failmsg:

msiExit("-1", "msi")

Inductive Data Types

The features discussed in this section are
currently under development!

An inductive data type is a data type for values
that can be defined inductively, i.e. more
complex values can be constructed from
simpler values using constructors. General
syntax:

data <name> [(<type param list>)] =
| : <data constructor type>

| <data constructor name> :
<data constructor type>

For example, a data type that represents the
natural numbers can be defined as

data nat =
| zero : nat
| succ : nat -> nat

Here the type name defined is nat. The
type parameter list is empty. If the type
parameter list is empty, we may omit it.
There are two data constructors. The first
constructor "zero" has type "nat," which
means that "zero" is a nullary constructor
of nat. We use "zero" to represent "0".
The second constructor "succ" has type
"nat -> nat" which means that "succ" is
unary constructor of nat. We use "succ"
to represent the successor. With these
two constructors we can represent all
natural numbers: zero, succ(zero),
succ(succ(zero)).

Pattern matching

If a data type has more than one data
structure, then the "match" expression is
useful:

match <expr> with
| <pattern> => <expr>

| <pattern> => <expr>

For example, given the nat data type we
defined earlier, we can define the
following function using the match
expression:

add(*x, *y) =

match *x with

| zero => *y

| succ(*z) => succ(add(*z, *y))

For another example, given the "tree"
data type we defined earlier, we can
define the following function

size(*t) =
match *t with
| empty => 0

| node(*v, *1, *r) => 1 +
size(*1l) + size(*r)

